2013中考全国100份试卷分类汇编 圆的垂径定理

合集下载

2013中考全国100份试卷分类汇编 圆心角、弧、弦的关系

2013中考全国100份试卷分类汇编  圆心角、弧、弦的关系

2013中考全国100份试卷分类汇编圆心角、弧、弦的关系1、(德阳市2013年)如图.圆O的直径CD过弦EF的中点G, ∠DCF=20°.,则∠EOD等于A. 10°B. 20°C. 40°D. 80°答案:C解析:因为直径过弦EF的中点G,所以,CD⊥EF,且平分弧EF,因此,弧ED与弧BD的度数都为40°,所以,∠EOD=40°,选C。

2、(2013•内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为().cm .cm .cm=,=4cm=4cm3、(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.专题:计算题.分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A 正确;由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE 中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;AC不一定垂直于OE,选项D错误.解答:解:A.∵点C是的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B.∵=,∴BC=CE,本选项正确;C.∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D.AC不一定垂直于OE,本选项错误,故选D点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.4、(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()ABD=×5、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是().、=6、(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()=,即=,7、(2013台湾、34)如图,是半圆,O为AB中点,C、D两点在上,且AD∥OC,连接BC、BD.若=62°,则的度数为何?()A.56 B.58 C.60 D.62考点:圆心角、弧、弦的关系;平行线的性质.分析:以AB为直径作圆,如图,作直径CM,连接AC,根据平行线求出∠1=∠2,推出弧DC=弧AM=62°,即可求出答案.解答:解:以AB为直径作圆,如图,作直径CM,连接AC,∵AD∥OC,∴∠1=∠2,∴弧AM=弧DC=62°,∴弧AD的度数是180°﹣62°﹣62°=56°,故选A.点评:本题考查了平行线性质,圆周角定理的应用,关键是求出弧AM的度数.8、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.,MN=FC=2,NO===2,=9、(2013•常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=2.ADB=∠BDC=×÷=4BD=×=2.10、(2013•黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.根据可以确定∠,即==,=。

圆的垂径定理

圆的垂径定理

圆的垂径定理定理是经过受逻辑限制的证明为真的陈述。

一般来说,在数学中,只有重要或有趣的陈述才叫定理。

证明定理是数学的中心活动。

圆作为数学中常用的图像,有十八个基本定理。

圆的十八个定理1、圆心角定理:在同圆或等圆中,成正比的圆心角所对弧成正比,面元的弦成正比,面元的弦的弦心距成正比。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中存有一组量成正比那么它们所对应的其余各组量都成正比2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推断1:同弧或等弧所对的圆周角成正比;同圆或等圆中,成正比的圆周角面元的弧也成正比推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所推断3:如果三角形一边上的中线等同于这边的一半,那么这个三角形就是直角三角形3、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。

推断1:①平分弦(不是直径)的直径旋转轴弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧推断2 :圆的两条平行弦所缠的弧成正比4、切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。

5、切线短定理:从铅直一点引圆的两条切线,他们的切线短成正比,这一点与圆心的连线平分这两条切线的夹角。

6、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。

如果他们相交,那么交点一定在两圆的连心线上。

7、平行弦定理:圆内两条弦平行,被交点分为的两条线段长的乘积成正比。

8、切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。

9、割线短定理:从铅直一点向圆引两条割线,这一点至每条割线与圆的交点的两条线段长的积成正比。

10、切线的性质定理:圆的切线垂直于经过切点的半径推断1 :经过圆心且旋转轴切线的直线必经过切点推论2:经过切点且垂直于切线的直线必经过圆心11、弦切角定理:弦切角等同于它所缠的弧对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等12、定理:平行两圆的连心线垂直平分两圆的公共弦13、定理:把圆分成n(n≥3):⑴依次联结各分点税金的多边形就是这个圆的内arccosn边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形14、定理:任何正多边形都存有一个外接圆和一个内切圆,这两个圆就是同心圆15、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆16、定理:正n边形的半径和边心距把也已n边形分为2n个全等的直角三角形17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

2013中考全国100份试卷分类汇编 圆的综合题

2013中考全国100份试卷分类汇编  圆的综合题

2013中考全国100份试卷分类汇编圆的综合题1、(2013•温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()...,,ππ3、(2013•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是18cm、31cm.+r==+r=4、(2013四川宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).考点:相似三角形的判定与性质;垂径定理;圆周角定理.分析:①由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:=,DG=CG,继而证得△ADF∽△AED;②由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=;④首先求得△ADF的面积,由相似三角形面积的比等于相似比,即可求得△ADE的面积,继而求得S△DEF=4.解答:解:①∵AB是⊙O的直径,弦CD⊥AB,∴=,DG=CG,∴∠ADF=∠AED,∵∠F AD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG =CG ﹣CF =2; 故②正确; ③∵AF =3,FG =2, ∴AG ==,∴在Rt △AGD 中,tan ∠ADG ==,∴tan ∠E =;故③错误;④∵DF =DG +FG =6,AD ==,∴S △ADF =DF •AG =×6×=3,∵△ADF ∽△AED , ∴=()2,∴=,∴S △AED =7,∴S △DEF =S △AED ﹣S △ADF=4;故④正确. 故答案为:①②④.点评:此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想的应用.5、(2013年武汉)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接PA ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=;(2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.第22题图①第22题图②解析:(1)证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =60°.又∵AB =AC ,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接OC . ∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF . ∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524.设FC =24a ,则OC =OA =25a , ∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a .在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aa EG a EG 402432=-,∴EG =12a . ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF .6、(2013•常州)在平面直角坐标系xOy 中,已知点A (6,0),点B (0,6),动点C 在以半径为3的⊙O 上,连接OC ,过O 点作OD ⊥OC ,OD 与⊙O 相交于点D (其中点C 、O 、D 按逆时针方向排列),连接AB .(1)当OC ∥AB 时,∠BOC 的度数为 45°或135° ; (2)连接AC ,BC ,当点C 在⊙O 上运动到什么位置时,△ABC 的面积最大?并求出△ABC 的面积的最大值.(3)连接AD ,当OC ∥AD 时,①求出点C 的坐标;②直线BC 是否为⊙O 的切线?请作出判断,并说明理由.第22(2)题图AB=,根据三角形面积公式得到当,则=,即=,再利用勾股定理计算出,所以∠AB=,AB=,AB=3,CE=OC+CE=3+3CE×3+36=99=,即=,解得,OF=,,7、(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O 与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是30°;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.②利用切线的性质以及矩形的性质和相似三角形的判定和性质得出=×n=,±OA=EOA==EOB=,=,±OA=±OA====8、(2013•包头)如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC 的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.,ADB==,AC=2==,AB=ADB=ADB=ACE=.9、(2013•荆门)如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.,即可得出答案.EOF=化简得:,时,10、(2013•莱芜)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.×.CO1+×π.11、(2013•遂宁)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,求BN 的长.CE====,=,=,CN==﹣.12、(2013济宁)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.考点:反比例函数综合题.分析:(1)∠AOB=90°,由圆周角定理的推论,可以证明AB是⊙P的直径;(2)将△AOB的面积用含点P坐标的表达式表示出来,容易计算出结果;(3)对于反比例函数上另外一点Q,⊙Q与坐标轴所形成的△COD的面积,依然不变,与△AOB的面积相等.解答:(1)证明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所对的圆周角,∴AB是⊙P的直径.(2)解:设点P坐标为(m,n)(m>0,n>0),∵点P是反比例函数y=(x>0)图象上一点,∴mn=12.如答图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则OM=m,ON=n.由垂径定理可知,点M为OA中点,点N为OB中点,∴OA=2OM=2m,OB=2ON=2n,∴S△AOB=BO•OA=×2n×2m=2mn=2×12=24.(3)证明:若点Q为反比例函数y=(x>0)图象上异于点P的另一点,参照(2),同理可得:S△COD=DO•CO=24,则有:S△COD=S△AOB=24,即BO•OA=DO•CO,∴DO•OC=BO•OA.点评:本题考查了反比例函数的图象与性质、圆周角定理、垂径定理等知识,难度不大.试题的核心是考查反比例函数系数的几何意义.对本题而言,若反比例函数系数为k,则可以证明⊙P在坐标轴上所截的两条线段的乘积等于4k;对于另外一点Q所形成的⊙Q,此结论依然成立.13、(2013•攀枝花)如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A 作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.EF=x BD==,即EFF==,EF=xBEBD=AB=2BD=(x,×ACB===14、(2013年南京)如图,AD是圆O的切线,切点为A,AB是圆O的弦。

圆的垂径定理及推论知识点与练习(最新整理)

圆的垂径定理及推论知识点与练习(最新整理)

圆的垂径定理及其推论知识点与练习(1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。

若直径AB ⊥弦CD 于点E ,则CE=DE ,⌒ AC=⌒ AD ;⌒ BC=⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

若CE=DE ,AB 是直径,则⌒ AC=⌒AD ;⌒ BC=⌒ BD②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC=⌒ AD ;⌒ BC=⌒ BD③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

若⌒ AC=⌒ AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC=⌒BD ④圆的两条平行弦所夹的弧相等。

若CD ∥FG ,CD 、FG 为弦,则⌒FC=⌒ GD 特别提示:①垂径定理及其推论可概括为:过圆心垂直于弦直径 平分弦 知二推三平分弦所对的优弧平分弦所对的劣弧②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.(3)垂径定理及推论的应用:它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”;②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题;例:如图,在⊙O 中,弦AB 所对的劣弧为圆的, 31圆的半径为2cm ,求AB 的长。

解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由题意得,∵⌒ AB= ×360º=120º31∴∠AOB=120º,∴∠AOC=60º,在Rt △AOC 中,∵∠AOC=60º,OA=2,∴OC =OA=1,∴AB=2AC=2=22122OC AO 3故AB 的长为23练习一、选择题1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( )A 、CM=DMB 、∠ACB=∠ADBC 、AD=2BD D 、∠BCD=∠BDCGA A(1题图) (2题图) (3题)2、圆弧形蔬菜大棚的剖面如图所示,AB=8m ,∠CAD=30°,则大棚高度CD 约为( )A 、2.0mB 、2.3mC 、4.6mD 、6.9m3、如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为( )A 、4cmB 、5cmC 、6cmD 、8cm4、半径为2cm 的圆中,有一条长为2cm 的弦,则圆心到这条弦的距离为( )A 、1cmB 、 cmC 、 cmD 、2cm5、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A 、∠COE=∠DOEB 、CE=DEC 、OE=BED 、⌒ BC=⌒ BD(题5)(题6)6、如图所示,在⊙O 中,OD ⊥AB 于P ,AP=4cm ,PD=2cm ,则OP 的长等于( )A 、9cmB 、6cmC 、3cmD 、1cm 二、填空题1、如图1中有 对全等的直角三角形;有 个等腰三角形;有 条相等的弧。

2013中考全国100份试卷分类汇编 几何综合

2013中考全国100份试卷分类汇编  几何综合

2013中考全国100份试卷分类汇编几何综合1、(2013四川南充,6,3分)下列图形中,∠2>∠1 ()答案:C解析:由对顶角相等,知A中∠1=∠2,由平行四边形的对角相等,知B中∠1=∠2,由对顶角相等,两直线平行同位角相等,知D中∠1=∠2,由三角形的外角和定理,知C 符合∠2>∠12、(2013•攀枝花)如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为①③④(请将所有正确的序号都填上).考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.分析:根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.解答:解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=AG,故③说法正确,故答案为①③④.点评:本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.3、(2013•泸州)如图,在等腰直角△ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OP•OC.其中正确的结论有()A.1个B.2个C.3个D.4个考点:等腰直角三角形;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:结论(1)错误.因为图中全等的三角形有3对;结论(2)正确.由全等三角形的性质可以判断;结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.解答:解:结论(1)错误.理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,∴△AOD≌△COE(ASA).同理可证:△COD≌△BOE.结论(2)正确.理由如下:∵△AOD≌△COE,∴S△AOD=S△COE,∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,即△ABC的面积等于四边形CDOE的面积的2倍.结论(3)正确,理由如下:∵△AOD≌△COE,∴CE=AD,∴CD+CE=CD+AD=AC=OA.结论(4)正确,理由如下:∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.∵△AOD≌△COE,∴OD=OE,又∵OD⊥OE,∴△DOE为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.∵∠DEO=∠COE=45°,∠COE=∠COE,∴△OEP∽△OCE,∴,即OP•OC=OE2.∴DE2=2OE2=2OP•OC,∴AD2+BE2=2OP•OC.综上所述,正确的结论有3个,故选C.点评:本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.4、(2013•绍兴)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P 关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 2.8.考点:几何变换综合题.分析:如解答图所示,本题要点如下:(1)证明矩形的四个顶点A、B、C、D均在菱形EFGH的边上,且点A、C分别为各自边的中点;(2)证明菱形的边长等于矩形的对角线长;(3)求出线段AP的长度,证明△AON为等腰三角形;(4)利用勾股定理求出线段OP的长度;(5)同理求出OQ的长度,从而得到PQ的长度.解答:解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠PAF+∠PAE=2∠PAB+2∠PAD=2(∠PAB+∠PAD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD于点O,则有AF=CG,且AF∥CG,∴四边形ACGF为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB•AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.点评:本题是几何变换综合题,难度较大.首先根据题意画出图形,然后结合轴对称性质、矩形性质、菱形性质进行分析,明确线段之间的数量关系,最后由等腰三角形和勾股定理求得结果.5、(2013•莱芜)下列说法错误的是()A.若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B.2+与2﹣互为倒数C.若a>|b|,则a>bD.梯形的面积等于梯形的中位线与高的乘积的一半考点:相交两圆的性质;绝对值;分母有理化;梯形中位线定理.分析:根据相交两圆的性质以及互为倒数和有理化因式以及梯形的面积求法分别分析得出即可.解答:解:A、根据相交两圆的性质得出,若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心,故此选项正确,不符合题意;B 、∵2+与2﹣=互为倒数,∴2+与2﹣互为倒数,故此选项正确,不符合题意;C 、若a >|b|,则a >b ,此选项正确,不符合题意;D 、梯形的面积等于梯形的中位线与高的乘积,故此选项错误,符合题意; 故选:D . 点评: 此题主要考查了相交两圆的性质以及分母有理化和梯形面积求法等知识,正确把握相关定理是解题关键.6、(2013年潍坊市)如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别于BC 、AD 相交于点E 、F . (1)求证四边形BEDF 为矩形. (2)若BC BE BD ⋅=2试判断直线CD 与⊙O 的位置关系,并说明理由. 答案: ..90,,.2.90,90.//90)1(2相切与,即理由如下:的位置关系为相切与)直线(为矩形四边形是平行四边形,四边形又的直径,为证明:O CD CD BD BED BDC BDC BED CBD DBC BDBCBE BD BC BE BD O CD BEDF BED EDA DFB FBC BC AD ABCD DFB DEB O BD Θ∴⊥︒=∠=∠∴∆∆∴∠=∠=∴⋅=Θ∴︒=∠=∠︒=∠=∠∴∴︒=∠=∠∴Θ考点:平行四边形的性质,矩形的判定,,相似三角形的判定,直径对的圆周角是直角,圆的切线的判定等知识的综合运用.点评:关键是掌握矩形的判定方法,三角形相似的判定方法,圆的切线的判定方法. 7、(2013•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关数据(单位:cm ),从点N 沿折线NF ﹣FM (NF ∥BC ,FM ∥AB )切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN ,AM 的长分别是 18cm 、31cm .考点: 圆的综合题 分析: 如图,延长OK 交线段AB 于点M ′,延长PQ 交BC 于点G ,交FN 于点N ′,设圆孔半径为r.在Rt△KBG中,根据勾股定理,得r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.则根据图中相关线段间的和差关系求得CN=QG﹣QN′=44﹣26=18(cm),AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm).解答:解:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′.设圆孔半径为r.在Rt△KBG中,根据勾股定理,得BG2+KG2=BK2,即(130﹣50)2+(44+r)2=1002,解得,r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.∴QN′=KN′﹣KQ=42﹣16=26(cm),KM′=49(cm),∴CN=QG﹣QN′=44﹣26=18(cm),∴AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm),综上所述,CN,AM的长分别是18cm、31cm.故填:18cm、31cm.点评:本题以改造矩形桌面为载体,让学生在问题解决过程中,考查了矩形、直角三角形及圆等相关知识,积累了将实际问题转化为数学问题经验,渗透了图形变换思想,体现了数学思想方法在现实问题中的应用价值.8、(2013•滨州)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.3考点:平移的性质;等边三角形的性质;菱形的判定与性质.分析:先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断④正确.解答: 解:△ABC 、△DCE 是等边三角形,∴∠ACB=∠DCE=60°,AC=CD ,∴∠ACD=180°﹣∠ACB ﹣∠DCE=60°, ∴△ACD 是等边三角形, ∴AD=AC=BC ,故①正确; 由①可得AD=BC , ∵AB=CD ,∴四边形ABCD 是平行四边形, ∴BD 、AC 互相平分,故②正确; 由①可得AD=AC=CE=DE ,故四边形ACED 是菱形,即③正确. 综上可得①②③正确,共3个. 故选D . 点评: 本题考查了平移的性质、等边三角形的性质、平行四边形的判定与性质及菱形的判定,解答本题的关键是先判断出△ACD 是等边三角形,难度一般.9、(2013陕西压轴题)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点,如果AB=a ,CD=b ,且a b ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.考点:本题陕西近年来考查的有:折叠问题,勾股定理,矩形性质,正方形的性质,面积问题及最值问题,位似的性质应用等。

中考数学真题分类——圆 试题及答案详解

中考数学真题分类——圆   试题及答案详解

中考数学真题分类——圆一.垂径定理(共1小题)1.如图,在半径为√13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2√6B.2√10C.2√11D.4√3二.垂径定理的应用(共2小题)2.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.3.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.三.圆周角定理(共7小题)4.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D̂=CD̂,若∠AOB=40°,则圆周角∠BPC的度数5.如图,AD是⊙O的直径,AB是()A.40°B.50°C.60°D.70°6.如图,在⊙O中,OA⊥BC,∠AOB=50°,则∠ADC的大小为()A.20°B.25°C.50°D.100°7.如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°8.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°9.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.10.如图,已知在⊙O中,半径OA=√2,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=度.四.三角形的外接圆与外心(共1小题)11.如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;̂的长(结果保留π).(2)若∠AEB=125°,求BD五.切线的性质(共7小题)12.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°13.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.814.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC 相切于点D,BD平分∠ABC,AD=√3OD,AB=12,CD的长是()A.2√3B.2 C.3√3D.4√315.如图,等边△ABC的边长为2,⊙A的半径为1,D是BC上的动点,DE与⊙A 相切于E,DE的最小值是()A.1 B.√2C.√3D.216.如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O分别交于AC,BC 于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.17.如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.18.如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.六.切线的判定与性质(共3小题)19.如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E ̂的中点,EF∥BC,交OC的延长线于点F.是BD(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.20.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.21.如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.七.切线长定理(共1小题)22.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.八.正多边形和圆(共4小题)23.如图,在正六边形ABCDEF中,AC=2√3,则它的边长是()A.1 B.√2C.√3D.224.如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是.25.在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.26.如图,正六边形ABCDEF的边长是6+4√3,点O1,O2分别是△ABF,△CDE的内心,则O1O2=.九.扇形面积的计算(共4小题)27.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.π+√3B.π−√3C.2π−√3D.2π−2√328.如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.29.如图,把腰长为8的等腰直角三角板OAB的一直角边OA放在直线l上,按顺时针方向在l上转动两次,使得它的斜边转到l上,则直角边OA两次转动所扫过的面积为.30.如图,在Rt △ABC 中,∠ACB =90°,AB =4,BC =2,将△ABC 绕点B 顺时针方向旋转到△A ′BC ′的位置,此时点A ′恰好在CB 的延长线上,则图中阴影部分的面积为 (结果保留π).十.圆锥的计算(共3小题)31.已知圆锥的底面半径是1,高是√15,则该圆锥的侧面展开图的圆心角是 度.32.如图,在扇形OAB 中,半径OA 与OB 的夹角为120°,点A 与点B 的距离为 2√3,若扇形OAB 恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为 .33.如图,圆锥侧面展开得到扇形,此扇形半径CA =6,圆心角∠ACB =120°,则此圆锥高OC 的长度是 .十一.圆的综合题(共4小题)34.如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB =30°,∠DAB =45°,点O 为斜边AB 的中点,连接CD 交AB 于点E .(1)求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上;(2)求证:CD 平分∠ACB ;(3)过点D 作DF ∥BC 交AB 于点F ,求证:BO 2+OF 2=EF •BF .35.如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=12,求AEAP的值.36.如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC;(3)求tan∠ACD的值.37.如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且AĈ=CF̂,连接FB,FD,FD交AB于点N.(1)若AE=1,CD=6,求⊙O的半径;(2)求证:△BNF为等腰三角形;(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON•OP=OE•OM.参考答案与试题解析一.垂径定理(共1小题)1.【解答】解:过点O 作OF ⊥CD 于点F ,OG ⊥AB 于G ,连接OB 、OD 、OE ,如图所示:则DF =CF ,AG =BG =12AB =3,∴EG =AG ﹣AE =2,在Rt △BOG 中,OG =√OB 2−BG 2=√13−9=2,∴EG =OG ,∴△EOG 是等腰直角三角形,∴∠OEG =45°,OE =√2OG =2√2,∵∠DEB =75°,∴∠OEF =30°,∴OF =12OE =√2,在Rt △ODF 中,DF =√OD 2−OF 2=√13−2=√11,∴CD =2DF =2√11; 故选:C .二.垂径定理的应用(共2小题)2.【解答】解:设⊙O 的半径为r .在Rt △ADO 中,AD =5寸,OD =r ﹣1,OA =r ,则有r 2=52+(r ﹣1)2,解得r =13寸,∴⊙O 的直径为26寸,故答案为:26.3.【解答】解:如图,记圆的圆心为O ,连接OB ,OC 交AB 于D ,∴OC ⊥AB ,BD =12AB ,由图知,AB =16﹣4=12cm ,CD =2cm ,∴BD =6,设圆的半径为r ,则OD =r ﹣2,OB =r ,在Rt △BOD 中,根据勾股定理得,OB 2=AD 2+OD 2,∴r 2=36+(r ﹣2)2,∴r =10cm ,故答案为10.三.圆周角定理(共7小题)4.【解答】解:∵∠A 与∠D 都是BC ̂所对的圆周角,∴∠D =∠A .故选:D .5.【解答】解:∵AB̂=CD ̂,∠AOB =40°, ∴∠COD =∠AOB =40°,∵∠AOB +∠BOC +∠COD =180°,∴∠BOC =100°,∴∠BPC =12∠BOC =50°,故选:B .6.【解答】解:如图,连接OC ,∵OA ⊥BC ,∴AĈ=BC ̂, ∴∠AOC =∠AOB =50°,∴∠ADC =12∠AOC =25°,故选:B . 7.【解答】解:∵∠B 与∠C 所对的弧都是AD̂,∴∠C =∠B =24°,故选:D . 8.【解答】解:∵∠A =66°,∴∠COB =132°,∵CO =BO ,∴∠OCB =∠OBC =12(180°﹣132°)=24°,故选:A .9.【解答】解:如图,连接AD .∵AB 是直径,∴∠ADB =90°,∵∠1=∠ADE ,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.10.【解答】解:∵OA =√2,OB =√2,AB =2,∴OA 2+OB 2=AB 2,OA =OB ,∴△AOB 是等腰直角三角形,∠AOB =90°,∴∠OBA =45°, ∵∠BAD =18°,∴∠BOD =36°,∴∠ACO =∠OBA +∠BOD =45°+36°=81°,故答案为:81.四.三角形的外接圆与外心(共1小题)11.【解答】(1)证明:∵AD 平分∠BAC ,∴∠CAD =∠BAD ,∵∠CAD =∠CBD ,∴∠BAD =∠CBD ;(2)解:连接OD ,∵∠AEB =125°,∴∠AEC =55°,∵AB 为⊙O 直径,∴∠ACE =90°,∴∠CAE =35°,∴∠DAB =∠CAE =35°,∴∠BOD =2∠BAD =70°,∴BD̂的长=70⋅π×3180=76π.五.切线的性质(共7小题)12.【解答】解:∵AC 与⊙O 相切于点A , ∴AC ⊥OA ,∴∠OAC =90°, ∵OA =OB ,∴∠OAB =∠OBA . ∵∠O =130°, ∴∠OAB =180°−∠O2=25°,∴∠BAC =∠OAC ﹣∠OAB =90°﹣25°=65°.故选:B . 13.【解答】解:如图,设⊙O 与AC 相切于点D ,连接OD ,作OP ⊥BC 垂足为P 交⊙O 于F ,此时垂线段OP 最短,PF 最小值为OP ﹣OF , ∵AC =4,BC =3,∴AB =5 ∵∠OPB =90°, ∴OP ∥AC∵点O 是AB 的三等分点,∴OB =23×5=103,OP AC=OB AB=23,∴OP =83, ∵⊙O 与AC 相切于点D ,∴OD ⊥AC ,∴OD ∥BC ,∴OD BC=OA AB=13,∴OD =1,∴MN 最小值为OP ﹣OF =83−1=53,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长,MN 最大值=103+1=133,∴MN 长的最大值与最小值的和是6. 故选:B . 14.【解答】解:∵⊙O 与AC 相切于点D , ∴AC ⊥OD ,∴∠ADO =90°, ∵AD =√3OD ,∴tan A =OD AD=√33, ∴∠A =30°,∵BD 平分∠ABC ,∴∠OBD =∠CBD , ∵OB =OD ,∴∠OBD =∠ODB , ∴∠ODB =∠CBD ,∴OD ∥BC ,∴∠C =∠ADO =90°,∴∠ABC =60°,BC =12AB =6,AC =√3BC =6√3, ∴∠CBD =30°, ∴CD =√33BC =√33×6=2√3;故选:A .15.【解答】解:如图,连接AE ,AD ,作AH ⊥BC 于H ,∵DE 与⊙A 相切于E ,∴AE ⊥DE ,∵⊙A 的半径为1,∴DE =√AD 2−AE 2=√AD 2−1, 当D 与H 重合时,AD 最小, ∵等边△ABC 的边长为2,∴BH =CH =1,∴AH =√22−12=√3,∴DE 的最小值为:√(√3)2−12=√2.故选:B . 16.【解答】(1)证明:连接AE ,如图所示: ∵AB 为⊙O 的直径,∴∠ADB =∠AEB =90°, ∴AE ⊥BC ,BD ⊥AC ,∵AB =AC ,∴BE =CE =3,∵EF 是⊙O 的切线,∴OE ⊥EF ,∵OA =OB ,∴OE 是△ABC 的中位线, ∴OE ∥AC ,∴OE ⊥BD ,∴BD ∥EF ,∵BE =CE ,∴CF =DF ,∴EF 是△CDB 的中位线; (2)解:∵∠AEB =90°,∴AE =√AB 2−BE 2=√52−32=4,∵△ABC 的面积=12AC ×BD =12BC ×AE , ∴BD =BC×AE AC=6×45=245,∵EF 是△CDB 的中位线,∴EF =12BD =125.17.【解答】(1)证明:∵AE =DC ,∴AÊ=DC ̂, ∴∠ADE =∠DBC ,在△ADE 和△DBC 中,{∠ADE =∠DBC∠E =∠BCDAE =DC,∴△ADE ≌△DBC (AAS ), ∴DE =BC ;(2)解:连接CO 并延长交AB 于G ,作OH ⊥AB 于H ,如图所示: 则∠OHG =∠OHB =90°, ∵CF 与⊙O 相切于点C , ∴∠FCG =90°,∵∠F =45°,∴△CFG 、△OGH 是等腰直角三角形, ∴CF =CG ,OG =√2OH ,∵AB =BD =DA ,∴△ABD 是等边三角形,∴∠ABD =60°,∴∠OBH =30°,∴OH =12OB =1,∴OG =√2,∴CF =CG =OC +OG =2+√2. 18.【解答】解:(1)∵AF 与⊙O 相切于点A ,∴AF ⊥OA , ∵∠F =30°, ∴∠AOF =60°,∵OA =OD ,∠AOF =∠ADB +∠OAF ,∴∠ADB =∠OAF =30°. (2)∵∠ACB =∠ADB =30°,∠BAC =120°, ∴∠ABC =180°﹣120°﹣30°=30°, ∴∠ABC =∠ACB , ∴AB =AC , ∴AB̂=AC ̂,∴OA ⊥BC , ∴BE =CE =12BC =4,∵∠AOB =60°,OA =OB ,∴△AOB 是等边三角形, ∴AB =OB ,∵∠OBE =30°,∴OE =12OB ,BE =√3OE =4, ∴OE =4√33,∴AC =AB =OB =2OE =8√33.六.切线的判定与性质(共3小题) 19.【解答】证明:(1)连接OE ,交BD 于H ,∵点E 是BD̂的中点,OE 是半径, ∴OE ⊥BD ,BH =DH , ∵EF ∥BC , ∴OE ⊥EF ,又∵OE 是半径,∴EF 是⊙O 的切线;(2)∵AB 是⊙O 的直径,AB =6,OC ⊥AB , ∴OB =3,∴BC =√OB 2+OC 2=√9+25=√34, ∵S △OBC =12×OB ×OC =12×BC ×OH ,∴OH =√34=15√3434,∵cos ∠OBC =OBBC=BH OB,∴√34=BH 3,∴BH =9√3434,∴BD =2BH =9√3417, ∵CG ∥OD ,∴OD CG=BD BC,∴3CG=9√3417√34,∴CG =173.20.【解答】(1)证明:连接OF ,如图1所示:∴∠DBC +∠C =90°, ∵OB =OF ,∴∠DBC =∠OFB ,∵EF =EC ,∴∠C =∠EFC , ∴∠OFB +∠EFC =90°,∴∠OFE =180°﹣90°=90°, ∴OF ⊥EF ,∵OF 为⊙O 的半径,∴EF 是⊙O 的切线; (2)解:连接AF ,如图2所示: ∵AB 是⊙O 的直径, ∴∠AFB =90°, ∵D 是OA 的中点,∴OD =DA =12OA =14AB =14×4=1,∴BD =3OD =3,∵CD ⊥AB ,CD =AB =4,∴∠CDB =90°,由勾股定理得:BC =√BD 2+CD 2=√32+42=5, ∵∠AFB =∠CDB =90°,∠FBA =∠DBC ,∴△FBA ∽△DBC ,∴BF BD =ABBC, ∴BF =AB⋅BD BC=4×35=125,∴CF =BC ﹣BF =5−125=135.21.【解答】(1)证明:∵在矩形ABCD 中,∠ABO =∠OCE =90°, ∵OE ⊥OA ,∴∠AOE =90°,∴∠BAO +∠AOB =∠AOB +∠COE =90°, ∴∠BAO =∠COE ,∴△ABO ∽△OCE ,∴AB OC =AOOE, ∵OB =OC ,∴ABOB=AO OE,∵∠ABO =∠AOE =90°,∴△ABO ∽△AOE ,∴∠BAO =∠OAE ,过O 作OF ⊥AE 于F ,∴∠ABO =∠AFO =90°,在△ABO 与△AFO 中,{∠BAO =∠FAO∠ABO =∠AFO AO =AO ,∴△ABO ≌△AFO (AAS ), ∴OF =OB ,∴AE 是半圆O 的切线;(2)解:连接PB ,∵以BC 边为直径作半圆O ,∴AB 2=AP •AC =2×6=12,∴AB =2√3, ∴BC =√AC 2−AB 2=2√6,∴BO =OC =√6,∴AO =√AB 2+OB 2=3√2, ∵∠AOE =∠ABO =∠ECO =90°,∴∠BAO +∠AOB =∠AOB +∠COE =90°,∴∠BAO =∠COE , ∴△AOB ∽△OEC , ∴AO OE=AB OC,∴3√2OE=√3√6,∴OE =3, ∴AE =√AO 2+EO 2=3√3.七.切线长定理(共1小题) 22.【解答】解:∵PA ,PB 是⊙O 的切线, ∴PA =PB ,PA ⊥OA ,∴∠PAB =∠PBA ,∠OAP =90°,∴∠PBA =∠PAB =90°﹣∠OAB =90°﹣38°=52°, ∴∠P =180°﹣52°﹣52°=76°; 故答案为:76.八.正多边形和圆(共4小题) 23.【解答】解:如图,过点B 作BG ⊥AC 于点G .正六边形ABCDEF 中,每个内角为(6﹣2)×180°÷6=120°, ∴∠ABC =120°,∠BAC =∠BCA =30°,∴AG =12AC =√3,∴GB =1,AB =2,即边长为2.故选:D .24.【解答】解:∵在边长为3的正六边形ABCDEF 中,∠DAC =30°,∠B =∠BCD =120°,AB =BC ,∴∠BAC =∠BCA =30°, ∴∠ACD =90°,∵CD =3,∴AD =2CD =6,∴图中阴影部分的面积=S 四边形ADEF +S 扇形DAD ′﹣S 四边形AF ′E ′D ′, ∵将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处,∴S 四边形ADEF =S 四边形AD ′E ′F ′∴图中阴影部分的面积=S 扇形DAD ′=30⋅π×62360=3π,故答案为:3π.25.【解】解:如图所示,连接OB 、OC ,过O 作OE ⊥BC ,设此正方形的边长为a , ∵OE ⊥BC ,∴OE =BE =a2,即a =5√2.故答案为:5√2.26.【解答】解:过A 作AM ⊥BF 于M ,连接O 1F 、O 1A 、O 1B , ∵六边形ABCDEF 是正六边形, ∴∠A =(6−2)×180°6=120°,AF =AB ,∴∠AFB =∠ABF =12×(180°﹣120°)=30°, ∴△AFB 边BF 上的高AM =12AF =12×(6+4√3)=3+2√3,FM =BM =√3AM =3√3+6,∴BF =3√3+6+3√3+6=12+6√3, 设△AFB 的内切圆的半径为r ,∵S △AFB =S △AO 1F +S △AO 1B +S △BFO 1,∴12×(12+6√3)×(3+2√3)=12×(6+4√3)×r +12×(6+4√3)×r +12×(12+6√3)×r , 解得:r =3,即O 1M =r =3,∴O 1O 2=2×3+6+4√3=12+4√3, 故答案为:12+4√3.九.扇形面积的计算(共4小题) 27.【解答】解:过A 作AD ⊥BC 于D , ∵△ABC 是等边三角形,∴AB =AC =BC =2,∠BAC =∠ABC =∠ACB =60°, ∵AD ⊥BC ,∴BD =CD =1,AD =√3BD =√3,∴△ABC 的面积为12×BC ×AD =12×2×√3=√3,S 扇形BAC =60π×22360=23π,∴莱洛三角形的面积S =3×23π﹣2×√3=2π﹣2√3,故选:D . 28.【解答】解:∵∠ADO =85°,∠CAB =20°, ∴∠C =∠ADO ﹣∠CAB =65°, ∵OA =OC ,∴∠OAC =∠C =65°, ∴∠AOC =50°,∴阴影部分的扇形OAC 面积=50⋅π×1360=5π36,故答案为:5π36.29.【解答】解:∵△OAB 为腰长为8的等腰直角三角形, ∴OA =OB =8,AB =8√2,∴直角边OA 两次转动所扫过的面积=14π•OA 2+90+45360π(AB 2﹣OB 2)=16π+24π=40π.故答案为:40π. 30.【解答】解:∵△ABC 中,∠ACB =90°,AB =4,BC =2, ∴∠BAC =30°,∠ABC =60°,AC =2√3.∵将△ABC 绕点B 顺时针方向旋转到△A ′BC ′的位置,此时点A ′恰好在CB 的延长线上,∴△ABC ≌△A ′BC ′,∴∠ABA ′=120°=∠CBC ′,∴S 阴影=S 扇形ABA ′+S △ABC ﹣S 扇形CBC ′﹣S △A ′BC ′ =S 扇形ABA ′﹣S 扇形CBC ′ =120π×42360−120π×22360=16π3−4π3=4π.故答案为4π.十.圆锥的计算(共3小题) 31.【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4, 设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=nπ×4180,解得n =90, 即圆锥的侧面展开图的圆心角度数为90°. 故答案为:90. 32.【解答】解:连接AB ,过O 作OM ⊥AB 于M , ∵∠AOB =120°,OA =OB , ∴∠BAO =30°,AM =√3,∴OA =2,∵240π×2180=2πr ,∴r =43,故答案是:4333.【解答】解:设圆锥底面圆的半径为r ,∵AC=6,∠ACB=120°,∴l AB̂=120π×6180=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC=√AC2−OA2=4√2,故答案为:4√2.十一.圆的综合题(共4小题)34.【解答】证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O 是AB的中点,∴OC=OA=OB,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴AD̂=BD̂,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴DFBF =EFDF,∴DF2=BF•EF,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.35.【解答】解:(1)∵AC为直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠DAE =∠ACE ,∴∠DAC +∠DAE =90°,即∠CAE =90°, ∴AP 是⊙O 的切线; (2)连接DB ,如图1, ∵PA 和PB 都是切线,∴PA =PB ,∠OPA =∠OPB ,PO ⊥AB , ∵PD =PD ,∴△DPA ≌△DPB (SAS ),∴AD =BD , ∴∠ABD =∠BAD , ∵∠ACD =∠ABD , 又∠DAE =∠ACE , ∴∠DAF =∠DAE ,∵AC 是直径,∴∠ADE =∠ADC =90°, ∴∠ADE =∠AFD =90°, ∴△FAD ∽△DAE ;(3)∵∠AFO =∠OAP =90°,∠AOF =∠POA ,∴△AOF ∽△POA ,∴OF OA=AF PA,∴OA PA=OF AF=tan ∠OAF =12, ∴PA =2AO =AC ,∵∠AFD =∠CAE =90°,∠DAF =∠ABD =∠ACE ,∴△AFD ∽△CAE ,∴FD AE=AF CA ,∴FD AF =AE CA =AEAP, ∵tan ∠OAF =OF AF=12,不妨设OF =x ,则AF =2x , ∴OD =OA =√5x ,∴FD =OD −OF =(√5−1)x , ∴FD AF=(√5−1)x 2x=√5−12,∴AE AP=√5−12. 36.【解答】证明:(1)∵BM 是以AB 为直径的⊙O 的切线, ∴∠ABM =90°,∵BC 平分∠ABM ,∴∠ABC =12∠ABM =45° ∵AB 是直径∴∠ACB =90°,∴∠CAB =∠CBA =45°∴AC =BC ∴△ACB 是等腰直角三角形; (2)如图,连接OD ,OC ∵DE =EO ,DO =CO∴∠EDO =∠EOD ,∠EDO =∠OCD ∴∠EDO =∠EDO ,∠EOD =∠OCD ∴△EDO ∽△ODC ∴OD DC=DE DO∴OD 2=DE •DC∴OA 2=DE •DC =EO •DC(3)如图,连接BD ,AD ,DO ,作∠BAF =∠DBA ,交BD 于点F ,∵DO =BO∴∠ODB =∠OBD ,∴∠AOD =2∠ODB =∠EDO ,∵∠CAB =∠CDB =45°=∠EDO +∠ODB =3∠ODB , ∴∠ODB =15°=∠OBD ∵∠BAF =∠DBA =15° ∴AF =BF ,∠AFD =30° ∵AB 是直径 ∴∠ADB =90°∴AF =2AD ,DF =√3AD ∴BD =DF +BF =√3AD +2AD∴tan ∠ACD =tan ∠ABD =AD BD=2+√3=2−√337.【解答】解:(1)如图1,连接BC ,AC ,AD , ∵CD ⊥AB ,AB 是直径 ∴AĈ=AD ̂,CE =DE =12CD =3 ∴∠ACD =∠ABC ,且∠AEC =∠CEB ∴△ACE ∽△CEB ∴AE CE=CE BE∴13=3BE∴BE =9 ∴AB =AE +BE =10 ∴⊙O 的半径为5(2)∵AĈ=AD ̂=CF ̂ ∴∠ACD =∠ADC =∠CDF ,且DE =DE ,∠AED =∠NED =90° ∴△ADE ≌△NDE (ASA ) ∴∠DAN =∠DNA ,AE =EN∵∠DAB =∠DFB ,∠AND =∠FNB∴∠FNB =∠DFB ∴BN =BF , ∴△BNF 是等腰三角形 (3)如图2,连接AC ,CE ,CO ,DO , ∵MD 是切线, ∴MD ⊥DO ,∴∠MDO=∠DEO=90°,∠DOE=∠DOE ∴△MDO∽△DEO∴OEOD =ODOM∴OD2=OE•OM∵AE=EN,CD⊥AO∴∠ANC=∠CAN,∴∠CAP=∠CNO,∵AĈ=CF̂∴∠AOC=∠ABF∵CO∥BF∴∠PCO=∠PFB∵四边形ACFB是圆内接四边形∴∠PAC=∠PFB∴∠PAC=∠PFB=∠PCO=∠CNO,且∠POC=∠COE ∴△CNO∽△PCO∴NOCO =COPO∴CO2=PO•NO,∴ON•OP=OE•OM.。

2013中考全国100份试卷分类汇编:解直角三角形(三角函数应用)

2013中考全国100份试卷分类汇编:解直角三角形(三角函数应用)

2013中考全国100份试卷分类汇编解直角三角形(三角函数应用)1、(绵阳市2013年)如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60º,又从A 点测得D点的俯角β为30º,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( A )A .20米B .米C .米D .米[解析]GE//AB//CD ,BC=2GC ,GE=15米,AB=2GE=30米,AF=BC=AB•cot ∠ACB=30×cot60º=10 3 米,DF=AF •tan30º=10 3 ×33=10米,CD=AB-DF=30-10=20米。

2、(2013杭州)在Rt △ABC 中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( )A .B .C .D .考点:解直角三角形.专题:计算题.分析:在直角三角形ABC 中,由AB 与sinA 的值,求出BC 的长,根据勾股定理求出AC 的长,根据面积法求出CD 的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt △ABC 中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S △ABC =AC •BC=AB •CD ,∴CD==. 故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.3、(2013•绥化)如图,在△ABC 中,AD ⊥BC 于点D ,AB=8,∠ABD=30°,∠CAD=45°,求BC 的长.AB=4BD=AD=4+44、(2013•鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10cm.OP=5、(2013安顺)在Rt△ABC中,∠C=90°,,BC=8,则△ABC的面积为.考点:解直角三角形.专题:计算题.分析:根据tanA的值及BC的长度可求出AC的长度,然后利用三角形的面积公式进行计算即可.解答:解:∵tanA==,∴AC=6,∴△ABC的面积为×6×8=24.故答案为:24.点评:本题考查解直角三角形的知识,比较简单,关键是掌握在直角三角形中正切的表示形式,从而得出三角形的两条直角边,进而得出三角形的面积.6、(11-4解直角三角形的实际应用·2013东营中考)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60︒,在教学楼三楼D处测得旗杆顶部的仰角为30︒,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.15. 9.解析:过B 作B E ⊥CD 于点E ,设旗杆AB 的高度为x ,在Rt ABC ∆中,tan AB ACB AC ∠=,所以tan tan 60AB x AC x ACB ====∠︒,在Rt BDE ∆中,BE AC x ==,60BOE ∠=︒,tan BE BDE DE ∠=,所以1tan 3BE DE x BDE===∠,因为CE=AB=x ,所以163DC CE DE x x =-=-=,所以x=9,故旗杆的高度为9米.7、(2013•常德)如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=,AD=1.(1)求BC 的长;(2)求tan ∠DAE 的值.,sinB=AB=BD==2BC=BD+DC=2+1CE=BC=+﹣DAE==﹣8、(13年山东青岛、20)如图,马路的两边CF 、DE 互相平行,线段CD 为人行横道,马路两侧的A 、B 两点分别表示车站和超市。

2013中考全国100份试卷分类汇编:整式、代数式

2013中考全国100份试卷分类汇编:整式、代数式

2013中考全国100份试卷分类汇编代数式1、(2013济宁)如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.6考点:多项式.专题:计算题.分析:根据题意得到n﹣2=3,即可求出n的值.解答:解:由题意得:n﹣2=3,解得:n=5.故选C点评:此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.2、(2013凉山州)如果单项式﹣x a+1y3与是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b的值.解答:解:根据题意得:,则a=1,b=3.故选C.点评:考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点3、(2013•宁波)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()4、(2013浙江丽水)化简a a 32+-的结果是A. a -B. aC. a 5D. a 5-6、(2013聊城)把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm ,那么钢丝大约需要加长( )A .102cmB .104cmC .106cmD .108cm 考点:整式的加减;圆的认识.分析:根据圆的周长公式分别求出半径变化前后的钢丝长度,进而得出答案. 解答:解:设地球半径为:rcm , 则地球的周长为:2πrcm ,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm , 故此时钢丝围成的圆形的周长变为:2π(r+16)cm ,∴钢丝大约需要加长:2π(r+16)﹣2πr ≈100(cm )=102(cm ). 故选:A . 点评:此题主要考查了圆的面积公式应用以及科学记数法等知识,根据已知得出图形变化前后的周长是解题关键.7、(2013•苏州)已知x ﹣=3,则4﹣x 2+x 的值为( )﹣(=.229、(2013•常州)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可3212、(2013年佛山市)多项式2321xy xy -+的次数及最高次项的系数分别是( )A .3 3-,B .3 2-,C .3 5-,D .3 2, 分析:根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy 2,系数是数字因数,故为﹣3.解:多项式1+2xy ﹣3xy 2的次数是3,最高次项是﹣3xy 2,系数是﹣3; 故选:A .点评:此题主要考查了多项式,关键是掌握多项式次数的计算方法与单项式的区别13、(2013台湾、4)若一多项式除以2x 2﹣3,得到的商式为7x ﹣4,余式为﹣5x+2,则此多项式为何?( )A .14x 3﹣8x 2﹣26x+14 B .14x 3﹣8x 2﹣26x ﹣10C .﹣10x 3+4x 2﹣8x ﹣10D .﹣10x 3+4x 2+22x ﹣10 考点:整式的除法. 专题:计算题.分析:根据题意列出关系式,计算即可得到结果.解答:解:根据题意得:(2x 2﹣3)(7x ﹣4)+(﹣5x+2)=14x 3﹣8x 2﹣21x+12﹣5x+2=14x3﹣8x 2﹣26x+14. 故选A点评:此题考查了整式的除法,涉及的知识有:多项式乘多项式法则,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.14、(13年安徽省4分、4)下列运算正确的是( )A 、2x+3y=5xyB 、5m 2·m 3=5m 5C 、(a —b )2=a 2—b 2D 、m 2·m 3=m615、(2013年河北)如图2,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y = A.2 B.3C.6 D.x+3答案:B解析:依题可得:262xy x+=-=3,故选B。

试卷分类汇编_圆的垂径定理

试卷分类汇编_圆的垂径定理

圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A.95 B. 245 C. 185 D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE=,所以,CE =125,AE =95,所以,AD =1853、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF (C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。

由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。

因为ABC ADC ∠∠和所对的弧是劣弧 AC ,根据同弧所对的圆周角相等可知(D )一定正确。

【答案】C 4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,cm B cm cm 或cm D cm 或cm BOM==3cm==4==2cm5、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm BcmAB=4cmAB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()BABABOB==8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()2BE===6CE===29、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()B的长为=2=210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()==511、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O 的半径()OB===14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()4BAC=∠可得出=BAC=∠∴=15、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键16、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确...的是()A、当弦PB最长时,ΔAPC是等腰三角形。

中考数学垂径定理

中考数学垂径定理

中考数学垂径定理
一、垂径定理基本形式
垂径定理是圆的基本性质之一,它指出:通过圆心且垂直于任意弦的直径将该弦平分。

用数学语言表示就是:如果一条直径通过圆心O,并且垂直于弦AB,那么它将弦AB平分于点C。

即 AC = CB。

二、圆心到弦的垂线性质
根据垂径定理,我们可以推导出圆心到弦的垂线性质。

如果一条弦通过圆心O,且圆心到弦的垂线交弦于点C,那么这条垂线将弦分为两段相等的部分。

即 AC = CB。

同时,这条垂线也是该弦所对的圆周角平分线。

三、圆心到切线的性质
圆心到切线的性质是指:通过圆心的直线与圆的切线垂直。

如果一条直线通过圆心O,且与圆相切于点P,那么这条直线与切线垂直。

即OP与AP垂直。

同时,切线与过切点的半径也垂直。

四、切线长定理
切线长定理是指:过圆上一点作圆的切线,则切线长相等。

具体来说,如果圆上有点A,且过点A分
别作圆的两条切线AB和AC,那么这两条切线的长度相等。

即 AB = AC。

这个定理可以用来证明一些与切线相关的几何问题。

2013年全国数学中考真题分类汇编—圆(带答案)

2013年全国数学中考真题分类汇编—圆(带答案)

2013年全国数学中考真题分类汇编—圆1.如果圆柱的母线长为5 cm ,底面半径为2 cm ,那么这个圆柱的侧面积是 ( ) A .10 cm 2B .10π cm 2C .20 cm 2D .20π cm 2解析 根据圆柱的侧面积计算公式可得π×2×2×5=20π cm 2,故选D. 答案 D2.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为( )A .πB .1C .2D.23π 解析 设扇形的半径为r ,根据扇形面积公式得S =12lr =12r 2=2.故选C.答案 C3.在Rt △ABC 中,∠C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为 ( )A.258π B.254π C.2516πD.2532π 解析 ∵Rt △ABC 中,∠ACB =90°,AC =8,BC =6,∴AB =82+62=10,∴S 阴影部分=90π×52360=254π.答案 B4.将直径为30 cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( )A .5 cmB .15 cmC .20 cmD .150 cm解析 根据将直径为30 cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),∴直径为30 cm 的圆形铁皮,被分成三个圆心角是120°,半径为15的扇形, 假设每个圆锥容器的底面半径为r ,∴120×π×15180=2πr ,解得:r =5,故选A.答案 A5.小刚用一张半径为24 cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10 cm ,那么这张扇形纸板的面积是( )A .120π cm 2B .240π cm 2C .260π cm 2D .480π cm 2解析 根据圆的周长公式,得圆的底面周长=2π ×10=20π,即扇形的弧长是20π,所以扇形的面积=12lr =12×20π×24=240π,故选B.答案 B6.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ′,则图中阴影部分的面积是( )A .3πB .6πC .5πD .4π解析 设AB ′与半圆周交于C ,半圆圆心为O ,连接OC .∵∠B ′AB =60°,OA =OC ,∴△AOC 是等边三角形,∠AOC =60°, ∠BOC =120°,S 扇形ABB ′=60360π×62=6π,∴S 阴影=S 半圆AB ′+S 扇形AB ′B -S 半圆AB =S 扇形AB ′B =6π. 答案 B7.如图所示,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论正确的是( )①弦AB 的长等于圆内接正六边形的边长 ②弦AC 的长等于圆内接正十二边形的边长 ③⌒AC =⌒CB④∠BAC =30°A .①②④B .①③④C .②③④D .①②③解析 ∵在⊙O 中,OC ⊥AB ,∴⌒AC =⌒BC,故③正确;∠AOC =∠BOC =12∠AOB ,∵OA =OB ,OA =AB , ∴OA =OB =AB , ∴∠AOB =60°,∴弦AB 的长等于圆内接正六边形的边长,故①正确; ∠AOC =∠BOC =12∠AOB =30°,∴弦AC 的长等于圆内接正十二边形的边长,故②正确; ∴∠BAC =12∠BOC =15°,故④错误.∴结论正确的有①②③.故选D. 答案 D8.圆锥的底面半径为14 cm ,母线长为21 cm ,则该圆锥的侧面展开图的圆心角为________度. 解析 由题意知:弧长=圆锥底面周长=2×14π=28π cm ,扇形的圆心角=弧长×180÷母线长÷π=28π×180÷21π=240°.故答案为:240. 答案 2409.若正多边形的一个外角是45°,则该正多边形的边数是________.解析 根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数. 答案 810.如图,平面上两个正三角形与正五边形都有一条公共边,则∠α等于________.解析 正五边形的一个内角为108°,正三角形的每个内角是60°,所以∠α=360°-108°-60°-60°=132°. 答案 132°11.如图,在Rt △ABC 中,∠C =90°,CA =CB =4,分别以A 、B 、C 为圆心,以12AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是________.解析 ∵∠C =90°,CA =CB =4,∴12AC =2,S △ABC =12×4×4=8, ∵三条弧所对的圆心角的和为180°, 三个扇形的面积和S =180·π·22360=2π,∴三条弧与边AB 所围成的阴影部分的面积=S △ABC -S =8-2π. 故答案为8-2π. 答案 8-2π12.如图所示,半圆AB 平移到半圆CD 的位置时所扫过的面积为________.解析 半圆AB 平移到半圆CD 的位置时所扫过的部分是一个矩形,根据矩形的面积公式计算即可. 答案 613.如图,在标有刻度的直线l 上,从点A 开始,以AB =1为直径画半圆,记为第1个半圆;以BC =2为直径画半圆,记为第2个半圆;以CD =4为直径画半圆,记为第3个半圆;以DE =8为直径画半圆,记为第4个半圆,…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的________倍,第n 个半圆的面积为________(结果保留π).解析 ∵以AB =1为直径画半圆,记为第1个半圆; 以BC =2为直径画半圆,记为第2个半圆; 以CD =4为直径画半圆,记为第3个半圆; 以DE =8为直径画半圆,记为第4个半圆, ∴第4个半圆的面积为:π×422=8π,第3个半圆面积为:π×222=2π,∴第4个半圆的面积是第3个半圆面积的8π2π=4倍;根据已知可得出第n 个半圆的直径为:2n -1,则第n 个半圆的半径为:2n -12=2n -2,第n 个半圆的面积为:π×(2n -2)22=22n -5π.答案 4 22n -5π14.如图所示,AB 为半圆的直径,C 为半圆上一点,且弧AC 为半圆的13,设扇形AOC 、△COB ,弓形BMC 的面积分别为S 1、S 2、S 3,则S 1、S 2、S 3的大小关系式是________.解析 根据△AOC 的面积=△BOC 的面积,得S 2<S 1,再根据题意,知S 1占半圆面积的13,S 3大于半圆面积的13,∴S 3>S 1.答案 S 2<S 1<S 315.圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是母线BC 上一点,且PC =23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .(4+6π) cmB .5 cmC .3 5 cmD .7 cm解析 首先画出圆柱的侧面展开图,根据高BC =6 cm ,PC =23BC ,求出PC =23×6=4 cm ,在R t △ACP中,根据勾股定理求出AP 的长. 答案 B16.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正方形与其外接圆之间形成的阴影部分的面积为________.解析 首先连接AC ,交EF 于M 则可证得△AEM ∽△CFM ,根据相似三角形的对应边成比例,即可求得EM 与FM 的长,然后由勾股定理求得AM 与CM 的长,则可求得正方形与圆的面积,则问题得解.答案 80π-160。

2013中考全国100份试卷分类汇编 与圆有关的计算

2013中考全国100份试卷分类汇编  与圆有关的计算

2013中考全国100份试卷分类汇编 与圆有关的计算1、(2013年武汉)如图,⊙A 与⊙B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点,若∠CED =x °,∠ECD =y °,⊙B 的半径为R ,则⋂DE 的长度是( ) A .()9090R x -π B .()9090R y -π C .()180180R x -π D .()180180R y -π 答案:B解析:由切线长定理,知:PE =PD =PC ,设∠PEC =z ° 所以,∠PED =∠PDE =(x +z )°,∠PCE =∠PEC =z °,∠PDC =∠PCD =(y +z )°,∠DPE =(180-2x -2z )°,∠DPC =(180-2y -2z )°,在△PEC 中,2z °+(180-2x -2z )°+(180-2y -2z )°=180°,化简,得:z =(90-x -y )°,在四边形PEBD 中,∠EBD =(180°-∠DPE )=180°-(180-2x -2z )°=(2x +2z )°=(2x +180-2x -2y )=(180-2y )°,所以,弧DE 的长为:(1802)180y R π-=()9090R y -π 选B 。

2、(2013年黄石)已知直角三角形ABC 的一条直角边12AB cm =,另一条直角边5BC cm =,则以AB 为轴旋转一周,所得到的圆锥的表面积是A.290cm πB. 2209cm πC. 2155cm πD. 265cm π 答案:A解析:得到的是底面半径为5cm ,母线长为13cm 的圆锥,底面积为:25π,侧面积为:12513652ππ⨯⨯⨯=,所以,表面积为290cm π3、(2013•资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )A . πB . πC . πD . π考点: 扇形面积的计算;钟面角.分析: 从9点到9点30分分针扫过的扇形的圆心角是180°,利用扇形的面积公式即可求解. 解答: 解:从9点到9点30分分针扫过的扇形的圆心角是180°,则分针在钟面上扫过的面积是:=π.故选:A .点评: 本题考查了扇形的面积公式,正确理解公式是关键.E P A B C D 第10题图4、(2013达州)如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且O E⊥CD,垂足为F,OF=3003米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米答案:A解析:CF=300,OF=3003,所以,∠COF=30°,∠COD=60°,OC=600,因此,弧CD的长为:60600160π⨯=200π米5、(2013•攀枝花)一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120°D.180°考点:圆锥的计算.分析:要求其圆心角,就要根据弧长公式计算,首先明确侧面展开图是个扇形,即圆的周长就是弧长.解答:解:设底面圆的半径为r,则圆锥的母线长为2r,底面周长=2πr,侧面展开图是个扇形,弧长=2πr=,所以n=180°.故选D.点评:主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.6、(2013•眉山)用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cm B.2cm C.3cm D.4cm考点:圆锥的计算.分析:利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得.解答:解:设此圆锥的底面半径为r,由题意,得2πr=,解得r=2cm.故选B.点评:本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.(第8题图) A B C D 7、(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是( ) A . 90° B . 120° C . 150° D . 180°考点: 圆锥的计算.分析: 设正圆锥的底面半径是r ,则母线长是2r ,底面周长是2πr ,然后设正圆锥的侧面展开图的圆心角是n °,利用弧长的计算公式即可求解.解答: 解:设正圆锥的底面半径是r ,则母线长是2r ,底面周长是2πr ,设正圆锥的侧面展开图的圆心角是n °,则=2πr ,解得:n=180.故选D .点评: 正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8、(12-4圆的弧长与扇形面积·2013东营中考)如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( )A. a πB. 2a πC. 12a π D. 3a 8.A.解析:由题意得,树叶形图案的周长为两条相等的弧长,所以其周长为290180a l a ππ==.9、(2013•嘉兴)如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为( )A . cmB . cmC . cmD .7πcm考点: 弧长的计算.分析: 根据题意得出圆的半径,及弧所对的圆心角,代入公式计算即可.解答: 解:∵字样在罐头侧面所形成的弧的度数为45°,∴此弧所对的圆心角为90°,由题意可得,R=cm,则“蘑菇罐头”字样的长==π.故选B.点评:本题考查了弧长的计算,解答本题关键是根据题意得出圆心角,及半径,要求熟练记忆弧长的计算公式.10、(2013山西,1,2分)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( B )A.23π-32B.23π-3C.π-32D.π-3【答案】B【解析】扇形BEF的面积为:S1=604360π⨯=23π,菱形ABCD的面积为S ABCD=1223232⨯⨯⨯=,如右图,连结BD,易证:△BDP≌△BCQ,所以,△BCQ与△BAP的面积之和为△BAD的面积为:3,因为四边形BPDQ的面积为3,阴影部分的面积为:23π-311、(2013•遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A.2πcm B.1.5cm C.πcm D.1cm考点:圆锥的计算.分析:把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,解得:r=1cm.故选D.点评:主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.12、2013泰安)如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为()A.8 B.4 C.4π+4 D.4π﹣4考点:扇形面积的计算;圆与圆的位置关系.分析:首先根据已知得出正方形内空白面积,进而得出扇形COB中两空白面积相等,进而得出阴影部分面积.解答:解:如图所示:可得正方形EFMN,边长为2,正方形中两部分阴影面积为:4﹣π,∴正方形内空白面积为:4﹣2(4﹣π)=2π﹣4,∵⊙O的半径为2,∴O1,O2,O3,O4的半径为1,∴小圆的面积为:π×12=π,扇形COB的面积为:=π,∴扇形COB中两空白面积相等,∴阴影部分的面积为:π×22﹣2(2π﹣4)=8.故选:A.点评:此题主要考查了扇形的面积公式以及正方形面积公式,根据已知得出空白面积是解题关键.13、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A.B.C.D.32考点:圆锥的计算.分析:过O点作OC⊥AB,垂足为D,交⊙O于点C,由折叠的性质可知OD为半径的一半,而OA为半径,可求∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理求∠AOB,然后求得弧AB的长,利用弧长公式求得围成的圆锥的底面半径,最后利用勾股定理求得其高即可.解答:解:过O点作OC⊥AB,垂足为D,交⊙O于点C,由折叠的性质可知,OD=OC=OA,由此可得,在Rt△AOD中,∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理,得∠AOB=180°﹣∠A﹣∠B=120°∴弧AB的长为=2π设围成的圆锥的底面半径为r,则2πr=2π∴r=1cm∴圆锥的高为=2故选A.点评:本题考查了垂径定理,折叠的性质,特殊直角三角形的判断.关键是由折叠的性质得出含30°的直角三角形.14、(2013•德州)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.12D.考点:扇形面积的计算.分析:首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半圆+S△AOB﹣S扇形AOB可求出阴影部分的面积.解答:解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=12,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=12.故选C.点评:本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式,仔细观察图形,得出阴影部分面积的表达式.15、(2013•宁夏)如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B 恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为()A.B.C.D.考点:扇形面积的计算;相切两圆的性质.分析:根据题意可判断⊙A与⊙B是等圆,再由直角三角形的两锐角互余,即可得到∠A+∠B=90°,根据扇形的面积公式即可求解.解答:解:∵⊙A与⊙B恰好外切,∴⊙A与⊙B是等圆,∵AC=2,△ABC是等腰直角三角形,∴AB=2,∴两个扇形(即阴影部分)的面积之和=+==πR2=.故选B.点评:本题考查了扇形的面积计算及相切两圆的性质,解答本题的关键是得出两扇形面积之和的表达式,难度一般.16、(2013•包头)用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为()A.B.C.D.考点:圆锥的计算.分析:设圆锥底面的半径为r,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,则2πr=,然后解方程即可.解答:解:设圆锥底面的半径为r,根据题意得2πr=,解得:r=.故选D.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.17、(2013•淮安)若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3πB.4πC.5πD.6π考点:弧长的计算.分析:根据弧长的公式l=进行计算即可.解答:解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长==4π.故选B.点评:本题考查了弧长的计算.此题属于基础题,只需熟记弧长公式即可.18、(2013•湖州)在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是()A.4πB.3πC.2πD.2π考点:圆锥的计算.分析:首先根据勾股定理计算出母线的长,再根据圆锥的侧面积为:S=•2πr•l=πrl,代入侧数进行计算即可.解答:解:∵底面半径为1,高为2,∴母线长==3.底面圆的周长为:2π×1=2π.∴圆锥的侧面积为:S侧=•2πr•l=πrl=×2π×3=3π.故选B.点评:此题主要考查了圆锥的计算,关键是掌握圆锥的侧面积公式:S=•2πr•l=πrl.侧19、(2013•荆门)若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是()A.l=2r B.l=3r C.l=r D.考点:圆锥的计算.分析:根据圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面圆的周长,扇形的半径为圆锥的母线长有2π•r=π•l,即可得到r与l的比值.解答:解:∵圆锥的侧面展开图是半圆,∴2π•r=π•l,∴r:l=1:2.则l=2r.故选A..点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面圆的周长,扇形的半径为圆锥的母线长.20、2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.考点:动点问题的函数图象;多边形内角与外角;切线的性质;切线长定理;扇形面积的计算;锐角三角函数的定义.专题:计算题.分析:连接OB、OC、OA,求出∠BOC的度数,求出AB、AC的长,求出四边形OBAC 和扇形OBC的面积,即可求出答案.解答:解:连接OB、OC、OA,∵圆O切AM于B,切AN于C,∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC∴∠BOC=360°﹣90°﹣90°﹣α=(180﹣α)°,∵AO平分∠MAN,∴∠BAO=∠CAO=α,AB=AC=,∴阴影部分的面积是:S四边形BACO﹣S扇形OBC=2×××r﹣=(﹣)r2,∵r>0,∴S与r之间是二次函数关系.故选C.点评:本题主要考查对切线的性质,切线长定理,三角形和扇形的面积,锐角三角函数的定义,四边形的内角和定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.21、(2013•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为()A.B.C.π+1 D.考点:扇形面积的计算;正方形的性质;旋转的性质.分析:画出示意图,结合图形及扇形的面积公式即可计算出点A运动的路径线与x轴围成的面积.解答:解:如图所示:点A 运动的路径线与x 轴围成的面积=S 1+S 2+S 3+2a=+++2×(×1×1)=π+1. 故选C .点评: 本题考查了扇形的面积计算,解答本题如果不能直观想象出图形,可以画出图形再求解,注意熟练掌握扇形的面积计算公式.22、(2013•牡丹江)一个圆锥的母线长是9,底面圆的半径是6,则这个圆锥的侧面积是( )A . 81πB . 27πC . 54πD .18π考点: 圆锥的计算.分析: 圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.解答: 解:圆锥的侧面积=2π×6×9÷2=54π.故选C .点评: 本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.23、(2013年河北)如图7,AB 是⊙O 的直径,弦CD ⊥AB ,∠C = 30°,CD = 23.则S 阴影=A .πB .2πC .23 3D .23π 答案:D解析:∠AOD =2∠C =60°,可证:△EAC ≌△EOD ,因此阴影部分的面积就是扇形AOD的面积,半径OD =2,S 扇形AOD =2602360π⨯=23π24、(2013•遵义)如图,将边长为1cm 的等边三角形ABC 沿直线l 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为( )A.cm B.(2+π)cmC.cmD.3cm考点:弧长的计算;等边三角形的性质;旋转的性质.分析:通过观察图形,可得从开始到结束经过两次翻动,求出点B两次划过的弧长,即可得出所经过路径的长度.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∴∠AC(A)=120°,点B两次翻动划过的弧长相等,则点B经过的路径长=2×=π.故选C.点评:本题考查了弧长的计算,解答本题的关键是仔细观察图形,得到点B运动的路径,注意熟练掌握弧长的计算公式.25、(2013•南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150πcm2考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.26、(德阳市2013年)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是___答案:4 3解析:扇形的周长为:1204821803Rπππ⨯==,所以R=4327、(2013•广安)如图,如果从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是3cm.考点:圆锥的计算.分析:因为圆锥的高,底面半径,母线构成直角三角形,则留下的扇形的弧长==8π,所以圆锥的底面半径r==4cm,利用勾股定理求圆锥的高即可;解答:解:∵从半径为5cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==8π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==4cm,∴圆锥的高为=3cm故答案为:3.点评:此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解此类题目要根据所构成的直角三角形的勾股定理作为等量关系求解.28、(2013•巴中)底面半径为1,母线长为2的圆锥的侧面积等于2π.考点:圆锥的计算.分析:根据圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可解决问题.解答:解:圆锥的侧面积=2×2π÷2=2π.故答案为:2π.点评:本题主要考查了圆锥的侧面积的计算公式.熟练掌握圆锥侧面积公式是解题关键.29、(2013•衢州)如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为+2.考点:扇形面积的计算.专题:数形结合.分析:在Rt△OBC中求出OB、BC,然后求出扇形OAB及△OBC的面积即可得出答案.解答:解:∵∠AOB=120°,∴∠BOC=60°,在Rt△OBC中,OC=2cm,∠BOC=60°,∴∠OBC=30°,∴OB=4cm,BC=2cm,则S扇形OAB==,S△OBC=OC×BC=2,故S重叠=S扇形OAB+S△OBC=+2.故答案为:+2.点评:本题考查了扇形的面积计算,解答本题关键是求出扇形的半径,注意熟练掌握扇形的面积公式,难度一般.30、(2013四川南充,13,3分)点A,B,C是半径为15cm的圆上三点,∠BAC=36°,则弧BC的长为__________cm.答案:6π解析:设圆心为O,则∠BOC=72°,所以,弧BC的长为7215180π⨯=6π31、(2013济宁)如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为cm.考点:旋转的性质;弧长的计算.分析:根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.解答:解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根据旋转的性质知,A′C=AC,∴A′C=AB=5cm,∴点A′是斜边AB的中点,∴AA′=AB=5cm,∴AA′=A′C=AC,∴∠A′CA=60°,∴CA′旋转所构成的扇形的弧长为:=(cm).故答案是:.点评:本题考查了弧长的计算、旋转的性质.解题的难点是推知点A′是斜边AB的中点,同时,这也是解题的关键.32、(2013聊城)已知一个扇形的半径为60cm,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为cm.考点:圆锥的计算.分析:首先利用扇形的弧长公式求得扇形的弧长,然后利用圆的周长公式即可求解.解答:解:扇形的弧长是:=50πcm,设底面半径是rcm,则2πr=50π,解得:r=25.故答案是:25.点评:考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.33、(2013•呼和浩特)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是180°.考点:圆锥的计算.分析:根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.解答:解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=πR,∴n=180°.故答案为:180.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.34、(2013•泸州)如图,从半径为9cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为3cm.考点: 圆锥的计算.分析: 首先求得扇形的弧长,即圆锥的底面周长,则底面半径即可求得,然后利用勾股定理即可求得圆锥的高.解答: 解:圆心角是:360×(1﹣)=240°, 则弧长是:=12π(cm ),设圆锥的底面半径是r ,则2πr=12π,解得:r=6, 则圆锥的高是:=3(cm ).故答案是:3.点评: 正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.35、(2013河南省)已知扇形的半径为4㎝,圆心角为120°,则此扇形的弧长是 ㎝【解析】有扇形的弧长公式180n r l π=可得:弧长120481801803n r l πππ⨯⨯=== 【答案】83π36、(2013•徐州)已知扇形的圆心角为120°,弧长为10πcm ,则扇形的半径为 15 cm .考点: 弧长的计算.分析: 运用弧长计算公式,将其变形即可求出扇形的半径.解答: 解:扇形的弧长公式是L==, 解得:r=15.故答案为:15.点评: 此题主要考查了扇形的弧长公式的变形,难度不大,计算应认真.37、(2013•常州)已知扇形的半径为6cm ,圆心角为150°,则此扇形的弧长是 5π cm ,扇形的面积是 15π cm 2(结果保留π).考点:扇形面积的计算;弧长的计算.分析:根据扇形的弧长公式l=和扇形的面积=,分别进行计算即可.解答:解:∵扇形的半径为6cm,圆心角为150°,∴此扇形的弧长是:l==5π(cm),根据扇形的面积公式,得S扇==15π(cm2).故答案为:5π,15π.点评:此题主要考查了扇形弧长公式以及扇形面积公式的应用,熟练记忆运算公式进行计算是解题关键.38、(2013四川宜宾)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是4π.考点:弧长的计算;等边三角形的性质.分析:弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3,利用弧长的计算公式可以求得三条弧长,三条弧的和就是所求曲线的长.解答:解:弧CD的长是=,弧DE的长是:=,弧EF的长是:=2π,则曲线CDEF的长是:++2π=4π.故答案是:4π.点评:本题考查了弧长的计算公式,理解弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3是解题的关键.39、(2013•衡阳)如图,要制作一个母线长为8cm,底面圆周长是12πcm的圆锥形小漏斗,若不计损耗,则所需纸板的面积是48πcm2.考点:圆锥的计算.专题:计算题.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:圆锥形小漏斗的侧面积=×12π×8=48πcm2.故答案为48πcm2.点评:本题考查了圆锥的计算,圆锥的侧面积=×底面周长×母线长40、(2013•苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为π.(结果保留π)考点:切线的性质;含30度角的直角三角形;弧长的计算.专题:计算题.分析:连接OB,OC,由AB为圆的切线,利用切线的性质得到三角形AOB为直角三角形,根据30度所对的直角边等于斜边的一半,由OA求出OB的长,且∠AOB为60度,再由BC与OA平行,利用两直线平行内错角相等得到∠OBC为60度,又OB=OC,得到三角形BOC为等边三角形,确定出∠BOC为60度,利用弧长公式即可求出劣弧BC的长.解答:解:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为=π.故答案为:π点评:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.41、用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为8cm.考点:圆锥的计算.专题:计算题.分析:根据圆的周长公式和扇形的弧长公式解答.解答:解:如图:圆的周长即为扇形的弧长,列出关系式解答:=2πx,又∵n=216,r=10,∴(216×π×10)÷180=2πx,解得x=6,h==8.故答案为:8cm.点评:考查了圆锥的计算,先画出图形,建立起圆锥底边周长和扇形弧长的关系式,即可解答.42、(2013•遂宁)如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B逆时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则图中阴影部分的面积约是7.2.(π≈3.14,结果精确到0.1)考点:扇形面积的计算;旋转的性质.分析:扇形BAB'的面积减去△BB'C'的面积即可得出阴影部分的面积.解答:解:由题意可得,AB=BB'==,∠ABB'=90°,S扇形BAB'==,S△BB'C'=BC'×B'C'=3,则S阴影=S扇形BAB'﹣S△BB'C'=﹣3≈7.2.故答案为:7.2.点评:本题考查了扇形的面积计算,解答本题的关键是求出扇形的半径,及阴影部分面积的表达式.43、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.考点:扇形面积的计算;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:综合题.分析:根据弦AB=BC,弦CD=DE,可得∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG于点N,判断△CNG、△OMN为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.解答:解:∵弦AB=BC,弦CD=DE,∴点B是弧AC的中点,点D是弧CE的中点,∴∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,则BF=FG=2,CG=GD=2,∠FOG=45°,在四边形OFCG中,∠FCD=135°,过点C作CN∥OF,交OG于点N,则∠FCN=90°,∠NCG=135°﹣90°=45°,∴△CNG为等腰三角形,∴CG=NG=2,过点N作NM⊥OF于点M,则MN=FC=2,在等腰三角形MNO中,NO=MN=4,∴OG=ON+NG=6,在Rt△OGD中,OD===2,即圆O的半径为2,故S阴影=S扇形OBD==10π.故答案为:10π.点评:本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考察的知识点较多,解答本题的关键是求出圆0的半径,此题难度较大.44、(2013•昆明)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.考点:圆锥的计算.专题:计算题.分析:设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为⊙O的直径,则OB=AB=2cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.解答:解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为⊙O的直径,∴AB=4cm,∴OB=AB=2cm,∴扇形OAB的弧AB的长==π,∴2πr=π,∴r=(cm).故答案为.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.45、(2013•十堰)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是﹣1≤S<﹣.考点:扇形面积的计算;等边三角形的性质.分析:首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值范围.解答:解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1.在Rt△CDG中,由勾股定理得:DG==.设∠DCG=θ,则由题意可得:S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,∴S=﹣.当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.当r=时,DG==1,∵CG=1,故θ=45°,∴S=﹣=﹣1;若r=2,则DG==,∵CG=1,故θ=60°,∴S=﹣=﹣.。

2014中考数学100份试题分类汇编_圆的垂径定理

2014中考数学100份试题分类汇编_圆的垂径定理

2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ). A.24 B.28 C.52 D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =1853、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。

由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。

因为ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等可知(D )一定正确。

【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为( )Bcm cm cm或cm cm或cm==3cm==4cmAC===25、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm cmAC=AB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()AC=BC=∴AC=BC=OB==8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()==6==2.9、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()的长为=2π=210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O 的半径为()==511、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()=,正确,故本选项错误;13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()OB===14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()先根据∠BAC=∠BOD可得出=解:∵∠BAC=∠BOD,∴=∴DE=CD=415、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键16、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24 .18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确...的是()A、当弦PB最长时,ΔAPC是等腰三角形。

圆的垂径定理的应用

圆的垂径定理的应用

圆的垂径定理的应用嘿,朋友!想象一下,你正在一个热闹非凡的集市上闲逛。

人群熙熙攘攘,各种声音交织在一起,就像一场热闹的交响乐。

突然,你看到一个卖糖葫芦的小贩,他的摊位前竖着一根圆形的杆子,上面插满了诱人的糖葫芦。

这根杆子引起了你的注意,你发现它的形状是如此的规整,这不正是一个圆嘛!而这里面,可就隐藏着我们今天要说的圆的垂径定理的应用。

话说回来,啥是圆的垂径定理呢?简单来说,就是垂直于弦的直径平分弦且平分弦所对的两条弧。

这听起来有点复杂,对吧?但其实在我们的日常生活中,它的应用可广泛着呢!比如说,建筑工人在建造圆形的拱门时,就得用到这个定理。

他们要确保拱门的形状对称、美观,这时候垂径定理就派上用场啦。

想象一下,如果没有这个定理的指导,那拱门可能就歪歪扭扭,像个喝醉了的大汉,多难看呀!再看看我们身边的车轮,那也是个圆。

制造车轮的时候,工人们就得依靠垂径定理来保证车轮的均匀和平衡。

不然,你骑着一辆轮子歪七扭八的自行车,那不得颠簸得像在坐过山车?还有那美丽的圆形花坛,园丁们在规划和修建的时候,也得遵循这个定理。

不然,这花坛一边大一边小,就像个被压扁的气球,哪还有美感可言?“哎呀,这垂径定理真有这么重要?”你可能会这样问。

那当然啦!你想想,如果没有它,我们生活中的很多圆形的东西都会变得奇奇怪怪,不伦不类。

这就好比做饭没有盐,画画没有笔,那能行吗?就拿我们刚刚看到的糖葫芦杆子来说,小贩在制作这个杆子的时候,肯定也考虑到了垂径定理。

只有杆子的形状规整,糖葫芦才能插得整整齐齐,吸引更多的顾客。

在数学的世界里,圆的垂径定理就像是一把神奇的钥匙,能打开许多难题的大门。

它不仅帮助我们解决数学问题,还在实际生活中发挥着巨大的作用,让我们的世界变得更加有序和美好。

所以,别小看这圆的垂径定理,它可真是我们生活中的一位默默无闻的大功臣呢!。

圆的垂径定理

圆的垂径定理

垂径定理;根与系数的关系;勾股定理;矩形的性质;相似三角形的判定与性质.专题:代数几何综合题;压轴题;存在型.分析:(1)根据根与系数的关系写出OA+OB和OA•OB 的值.连接AB,根据90°的圆周角所对的弦是直径,再结合勾股定理列方程求解.
(2)若OC2=CD•CB,则三角形OCB相似于三角形DCO,则∠COD=∠CBO.又∠COD=∠CBA,则∠CBO=∠CBA,所以点C是弧OA的中点.连接O′C,根据垂径定理的推论,得O′C⊥OA.再进一步根据垂径定理和勾股定理进行计算即可.
(3)连接OD,根据S△ABD=2S△OBD.则需S△POD=2S△OBD.显然是不可能的.
解:(1)连接AB,∵∠BOA=90°,
∴AB为直径,根与系数关系得OA+OB=-k,OA•OB=60;
根据勾股定理,得OA2+OB2=169,
即(OA+OB)2-2OA•OB=169,
解得k2=289,∴k=±17(正值舍去).
则有方程x2-17x+60=0,x=12,或5.
又OA>OB,
∴OA=12,OB=5.
(2)若OC2=CD•CB,则△OCB∽△DCO,
∴∠COD=∠CBO,
又∵∠COD=∠CBA,
∴∠CBO=∠CBA,
所以点C是弧OA的中点.
连接O′C交OA于点E,根据垂径定理的推论,得O′C⊥OA,
根据垂径定理,得OE=6,
根据勾股定理,得O′E=2.5,
∴CE=4,即C(6,-4).
(3)连接OD,根据S△ABD=2S△OBD,
则需S△POD=2S△OBD,
显然是不可能的.点评:综合运用了相似三角形的判定和性质、圆周角定理的推论、勾股定理以及垂径定理及其推论.。

圆的垂径定理试题(附答案)

圆的垂径定理试题(附答案)

2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.542、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为 半径的圆与AB 交于点D ,则AD 的长为( )A.95B. 245C. 185D. 523、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是( )A. AG =BGB. AB ∥BFC.AD ∥BCD. ∠ABC =ADC4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )A. cmB. cmC. cm 或cmD. cm 或cm5、(2013•广安)如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为( )A. cmB. 5cmC. 4cmD. cm6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC 为5m,则水面宽AB为()A. 4mB. 5mC. 6mD. 8m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A. B. C. D.8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A. 2B.C.D.9、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A. B. C. D. 3210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O 的半径为()A. 10B. 8C. 5D. 311、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C.6D.812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A. B. AF=BF C. OF=CF D. ∠DBC=90°13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A. 5B. 10C. 8D. 614、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A. 4B. 5C. 4D. 315、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.716、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确...的是()19、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.图20 图21 图2220、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB= 度.22、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.图23 图24 图25 图26 图27 图2823、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.24、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O 的半径为52,CD=4,则弦AC的长为.26、(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD= .27、(2013•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC= 度.28、(2013陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.Θ29、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ的半径为13,则点P的坐标为____________. 与x轴交于O,A两点,点A的坐标为(6,0),P30、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考全国100份试卷分类汇编 圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =185 3、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。

由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。

因为ABC ADC ∠∠和所对的弧是劣弧 AC ,根据同弧所对的圆周角相等可知(D )一定正确。

【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )B.cm .cm .cm或cm D cm或cmOM==AC==4cm==2cm5、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为().cm cmAB=4cmAC=故半径为cm6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()AD=AD==7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()...ABAB=8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()BE===6CE===29、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()...=2=210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()OC==511、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是().、=13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O 的半径()OB===14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()BAC=∠可得出=BAC=∠∴=15、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键16、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正..确.的是()A、当弦PB最长时,ΔAPC是等腰三角形。

B、当ΔAPC是等腰三角形时,PO⊥AC。

C、当PO⊥AC时,∠ACP=300.D、当∠ACP=300,ΔPBC是直角三角形。

19、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.,MN=FC=2,NO===2,=20、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm.AD===AB=2AD=21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB= 28度.中点,由圆周角定理可得∠ADB=∠=,ADB=∠22、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC 的度数是48度.23、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.CM=所在圆的半径为:故答案为:.24、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为2.OC=1AB=2AD=2=2=2.25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O 的半径为52,CD=4,则弦AC的长为.考点:垂径定理;勾股定理。

切线的性质。

分析::本题考查的是垂径定理的应用切线的性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键。

解答:连接OA,作OE⊥CD于E,易得OA⊥AB,CE=DE=2,由于CD∥AB得EOA三点共线,连OC,在直角三角形OEC中,由勾股定理得OE=32,从而AE=4,再直角三角形AEC中由勾股定理得AC=26、(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.中点,由圆周角定理可得∠=,27、(2013•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=52°度.,根据垂径定理的即可求得:= =,28、(2013陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.角的关系,及扇形的面积及弧长的计算公式等知识点。

解析:本题考查圆心角与圆周角的关系应用,中位线及最值问题。

连接OA,OB,因为∠ACB=30°,所以∠AOB=60°,所以OA=OB=AB=7,因为E、F中AC、BC的中点,所以EF=AB21=3.5,因为GE+FH=GH-EF,要使GE+FH最大,而EF为定值,所以GH取最大值时GE+FH有最大值,所以当GH为直径时,GE+FH的最大值为14-3.5=10.529、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为13,则点P的坐标为____________.分析:过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,第16题图∴PD===2,∴P(3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键30、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。

小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径。

解析:(2013•白银)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.(1)若OC=5,AB=8,求tan∠BAC;(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.=3BAC===31、(2013•黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.根据可以确定∠,即==,=32、(2013•恩施州)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C 作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.,AF=1AD=,:AG=233、(2013•资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.ACr,再根据翻折的性质得到所对的圆周角,然后根据∠等于所对的圆周角减去AC=×r(;根据翻折的性质,所对的圆周角等于所对的圆周角,。

相关文档
最新文档