吴茱萸碱对大鼠摄食及下丘脑摄食肽表达的影响

合集下载

吴茱萸生物碱类抑制大鼠血管平滑肌细胞增殖作用的比较

吴茱萸生物碱类抑制大鼠血管平滑肌细胞增殖作用的比较
性物质 , 对 防 治 心 脑 血 管 疾 病 具 有 重 要 意 义 。吴 茱 萸 E v o d i a m o l ・ L ( 6个 浓 度 ) 组和 E T A 3 X 1 0~ 一3 X 1 0~ g・ L 组 。 t a e c a r p a ( J u s s . ) B e n t h . 为 芸 香 科 植 物 吴 茱 萸 干燥 的 近 成 熟 果 实 , E v o 、 R u t 和E T A各试药组分别合用 A n g I I 。
. 3 溶媒及各试 药对 V S MC s 毒性 的观察 相 差倒置显微镜 下观 药用始 于《 神农本 草经》, 具有 散寒止 痛 、 降逆 止呕 、 助 阳止 泻之 2 功效 。近几年 的药理研究 表明 , 吴茱萸提取物具有 广泛的心血管 察 , 溶媒 和未经 A n gⅡ处理 的各 试药 高 浓度 组 与正 常对 照组 比 作用 。 。近期我室研究发现吴茱萸提 取物具有 抑制 V S MC s 增 较 , 以排 除各试药对 细胞的毒性 作用。
L I S H I Z H E N M E D I C I N E A N D M A T E R I A M E D I C A R E S E A R C H 2 0 1 3 V O L . 2 4 N O . 9
时珍 国医国药 2 0 1 3年第 2 4卷第 9期
吴 茱 萸 生 物 碱 类 抑 制 大 鼠血 管 平 滑 肌 细胞 增 殖作 用 的 比较
徐 洋 , 侯 化化 , 李 强 , 张婧怡 , 孙安盛
( 遵义 医学院药 理 学教研 室/ 贵州 省基 础药 理重 点实 验室 , 贵州 遵 义 5 6 3 0 0 0 )
摘要: 目的 比较吴茱萸总碱、 吴茱萸碱和吴茱萸次碱抑制血管平滑肌细胞( V S M C s ) 增殖的作用。方法 采用 s D大鼠胸

吴茱萸碱对大鼠下丘脑弓状核NPYmRNA的影响

吴茱萸碱对大鼠下丘脑弓状核NPYmRNA的影响
1 3 3 Re l . . a —T me P R i C N Y( e B n c e- P G n a k a cs
sn O N 021) i :N . M 16 4 引物 F r ad G T G T A o ow r : C A G A .
C AAAC AAT CGG. e e s :C G G R v re ACA G T GAAG GG —
盘 爱
实街 研舞
;一 _ : 点 群
吴茱萸 碱 对 大 鼠下丘 脑 弓状 核 N Y m N P R A的影 响
施京 红 闫剑群 丁 辉
(. 1 陕西 中医学院医学技术 系, 陕西 成 阳 7 2 4 ;. 10 6 2 西安 交大医学 院生理与病理生理 系, 陕西 西安 70 6 ; 10 1 3 西安 交 大 附属 二 院 消 化科 , 西 西 安 70 0 ) . 陕 10 4 摘 要: 目的 研究吴茱萸碱 ( vda ieE o 对大鼠下丘脑 弓状核神 经肽 Y( erppi N Y 基 因表达 eo i n ,v ) m n uoet eY, P ) d 水平的影响 。方 法 采用荧光 实时定量 P R( el ieP R) 方法 , 察 E o干预 后下 丘脑 弓状核促 食欲 肽 C R a —Tm C 的 观 v N Ym N P R A的表达, 讨吴茱萸碱在 大鼠体 重控制 中的可 能机 制。结景 吴 茱萸碱 4 s k 探 0m / g灌 胃干预后 , 下丘脑 弓状核 N Y基 因水平显著降低 。结论 E o可降低 大鼠下丘脑 弓状核 促食欲肽 N Y m N P v P R A水平 , 示下丘脑 可能 提
T T C A C,Po ut i : 8 b 。 按 A pi c rA G rd c z 2 8 p s e ml Q ( a.N :6 8 2 试 剂 盒 要 求 构 建 P R反 应 体 Ct o200 ) C 系 , 于 A I RS 00荧光 定量 P R仪 中按 下 置 B IM 70 P C 述 反应 条件进 行 扩增 。同 时用 去 离子 水 代替 反 转

吴茱萸碱诱导肿瘤细胞凋亡的分子机制研究进展

吴茱萸碱诱导肿瘤细胞凋亡的分子机制研究进展

吴茱萸碱诱导肿瘤细胞凋亡的分子机制研究进展
吴茱萸碱是一种具有强烈抗肿瘤活性的天然药物,已被广泛用于临床治疗各种恶性肿瘤。

近年来,科学家们对其抗肿瘤作用的分子机制进行了深入研究,发现吴茱萸碱可以诱导肿瘤细胞凋亡,通过影响多个信号通路实现其抗肿瘤作用。

吴茱萸碱可以通过多种方式诱导肿瘤细胞凋亡,其中最常见的是通过调节细胞内的信号通路。

吴茱萸碱可以抑制蛋白激酶B (AKT)信号通路,这一通路常常被激活在多种癌症中,从而抑制癌细胞生长和增殖。

吴茱萸碱还可以通过调节线粒体信号通路,促进线粒体膜电位下降、释放细胞色素C等促进肿瘤细胞凋亡的作用。

此外,吴茱萸碱还可以通过调节细胞周期蛋白和凋亡抑制蛋白的表达,实现对肿瘤细胞的生长和增殖的抑制。

吴茱萸碱可以抑制细胞周期蛋白D1的表达,从而导致肿瘤细胞停滞在
G0/G1期,限制肿瘤细胞的复制。

此外,吴茱萸碱还可以抑制B细胞淋巴瘤/白血病-2(BCL-2)的表达,从而促进肿瘤细胞的凋亡。

吴茱萸碱的抗肿瘤作用还和细胞增殖信号通路(MAPK)的抑制有关。

吴茱萸碱可以抑制表皮生长因子受体(EGFR)信号通路、血小板衍生生长因子受体(PDGFR)信号通路等细胞增殖信号通路,从而实现对肿瘤细胞增殖的抑制。

总之,吴茱萸碱作为一种天然药物,具有较强的抗肿瘤活性。

其分子机制包括通过抑制AKT信号通路、调节线粒体信号通
路、抑制细胞周期蛋白和凋亡抑制蛋白的表达、抑制MAPK
信号通路等多个方面来诱导肿瘤细胞凋亡和抑制其生长和增殖。

未来的研究有望深化对吴茱萸碱抗肿瘤作用机制的理解,为其在临床治疗中的应用提供更加可靠的理论依据。

吴茱萸碱对大鼠肝癌细胞缝隙连接细胞通讯功能及连接蛋白表达的影响

吴茱萸碱对大鼠肝癌细胞缝隙连接细胞通讯功能及连接蛋白表达的影响

G I) JC 功能及 连接 蛋 白(o n xn C ) c n e i , x 表达 的影 响 。
为传 统 中药抗癌 机制 的研究 和 临床应 用提 供理 论和
实验 依据 。
1 材 料
C R 9 9细 胞株 : 自中 山 大学 实 验 动 物 中 B H7 1 购 心; 吴茱 萸碱 ( 号 10 0 —0 5 4 : 国药 品 生 物 批 1 8 22 0 0 ) 中
接 细胞 通讯 ( a u cin l necl lr o g pjn t a itrel a mmu i t n G I ) 能 ; o u c nc i , JC 功 ao 异硫 氰 酸 荧光 素 间接 免 疫 荧光 法检 测 连接 蛋 白(o n xn C ) 6 Cx 2表 达 的 变化 。结 果 与 空 白对 照 组相 比 , cn ei, x 2 、 3 吴莱 萸碱 各 浓 度 组 C RH7 1 B 99
吴 茱萸 始载 于《 神农 本草 经 》 列为 中 品 , , 其药 性
辛 , 热 , 小 毒 。归肝 、 、 肾经 。其 功 效 主 要 苦 有 脾 胃、
为温 中止呕 、 散寒止 痛 、 阳止 泻[ 。吴茱 萸 中含 有 助 _ 1 ]
9 ; 氏 黄 C 和 罗 丹 明 B: 为 Sg 8 罗 H 均 ima公 司产
品; 兔抗 大 鼠 C 2 x 6多克 隆抗 体 : 汉 博士 德 生物 工 武 程有 限公 司 产 品 ; 异硫 氰 酸 荧 光 素 (lo eci i — f rsen s u o
tic a ae F TC 标记 的 山羊抗兔 二抗 为 KP ho y n t , I ) I公 司 产 品 ; 鼠抗 大 鼠 C 3 小 x 2单 克 隆抗体 和 Alx l e aF u o 8 r 8荧 光 标 记 的 山羊 抗 小 鼠 二抗 :n i o e 4 I vt g n公 r 司产 品 。

吴茱萸次碱药理作用研究进展

吴茱萸次碱药理作用研究进展
以中性粒 细胞及小胶质 细胞 为对象 的实验显示 。 包括吴茱萸 次碱在 内的四种吴茱萸萃取物的涪 l 生 成分均体现 出抗炎作用 , 其可能 机制是通过抑制 N D H氧化酶或 N A P O合成酶 而早先则有学者提出吴 。 茱萸次碱的抗炎原 理是 因为它能够较强地抑制前 列腺 素 E 2的合成f。 l O l 此外吴茱萸 次碱还具有抗皮肤炎症 的作 用 . 通过培养角质形成细胞 的 研究 . 发现吴 茱萸次碱 能减轻 中波紫外 线 ( w ) 导 的前列腺素 E u 诱 2 的释放 : 还能有效抑制 烟酸 甲酯所诱发 的皮肤红斑_。对于病原微生 l l 1 物诱 发的炎症吴茱 萸次 碱也有 可能会 产生抑制作用 , 因为有文献 提出 吴茱萸次碱 或以其 为主要成分 的生药提 取物能抑制金黄色葡萄球菌 、 大肠杆菌 、 绿假单胞菌 的生长 : 铜 同时其还能抑制病毒 所诱导 的细胞 迁移[ I 13 21 I
管降低 血压、 抗炎、 影响药物代谢、 影响 内分泌 系统、 影响免疫及过敏反应等。特 别是在 心血 管 系统方面的药理作 用极具 临床意义 的。本文就昊 莱萸次碱 的药理作用方面的研究进展作一综述。
【 关键 词】 吴莱萸次碱 ; 药理 ; 研究进展
吴茱萸 为芸香科植物 吴茱萸 E oi r acr usB n . 虎 vd t a a Js )et 、 a ue p . h石 E oi uacraJs.B nhVt f ia aD d ) ag或 疏毛吴 茱萸 v darteap ( s e t. . wnl (oeHun u 1 ao i E o i rteap ( s. e t.a. dneiD d ) ag的干 燥 近 成 熟 vda uacraJ sB nhV r 0 iir oeHun u ) b ( 果实 。 始载 于《 神农本草经》 在 临床应用 已有数 千年历史 , 理学效 应 , 药 广泛 . 如舒张血管 、 抑制血小板聚集 、 抗血栓形 成、 抗炎 、 抗肿瘤等 。吴 茱萸 的主要 活性成 分吴茱萸 次碱 ( acri , u) mt a n R t为一种 吲哚喹 唑 e pe 啉类生物碱 . 具有广泛 的药理学意义 。

吴茱萸药理作用及其物质基础研究概况_杨志欣

吴茱萸药理作用及其物质基础研究概况_杨志欣

中华中医药学刊吴茱萸药理作用及其物质基础研究概况杨志欣,孟永海,王秋红,杨炳友,匡海学(黑龙江中医药大学北药基础与应用研究省部共建教育部重点实验室、黑龙江省中药及天然药物药效物质基础研究重点实验室,黑龙江哈尔滨150040)摘要:吴茱萸是我国应用历史悠久的中药材,始载于《本经》,云:味辛,温。

对近年来有关吴茱萸的药理作用进行概述,并进一步分析了其药理作用特点、物质基础和作用机理等,为研制、开发、生产以中药吴茱萸为原料的制剂产品奠定基础。

关键词:吴茱萸;药理作用;综述;作用机理中图分类号:R282.710.5文献标识码:A文章编号:1673-7717(2011)11-2415-03Study of the Pharmacological Effects and Material Basis of Fructus EvodiaeYANG Zhi-xin ,MENG Yong-hai ,WANG Qiu-hong ,YANG Bing-you ,KUANG Hai-xue(Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine ),Ministry ofEducation ,Heilongjang key Laboratory of TCM Pharmacodynamic Material Bases ,Harbin 150040,Heilongjiang ,China )Abstract :Fructus Evodiae is a traditional Chinese medicine with long application history in China ,and was recorded in Benjing Ben Jing firstly ,which nature is pungent and warm.In this paper ,the recent overview of the pharmacological effects of Fructus Evodiae ,and further analysis of the characteristics of its pharmacological effects ,as well as the material basis and effect mechanism are studied ,providing the foundation for development and production of Chinese medicine Fructus Evodiae products as raw materials preparation.Key words :Fructus Evodiae ;pharmacological effects ;review ;effect mechanism收稿日期:2011-07-13基金项目:国家重点基础研究发展计划(973计划)资助项目(2006CB504708)作者简介:杨志欣(1974-),女,副教授,硕士研究生导师,博士,研究方向:中药性味理论研究、药物新剂型及中药新药开发研究。

吴茱萸碱降低2型糖尿病大鼠血糖水平

吴茱萸碱降低2型糖尿病大鼠血糖水平
1 材料与方法
11 实验材料 111 实验动物:清洁级 SD大鼠 50只,雌性(郑州大学实 验动物中心,合格证号:SCXK20150003)。 112 实验试剂:吴茱萸碱(阿拉丁试剂有限公司);葡糖氧 化酶试剂盒(西安舟鼎国化学试剂有限公司);胰岛素放免试 剂盒(上海信裕生物科技有限 公 司);NFκB与 TLR4抗 体 (SantaCruz公司);其余试剂为国产试剂纯。 12 实验方法 121 大鼠分组及处理:将大鼠分为对照组、2型糖尿病大 鼠模型组[3]和吴茱萸碱低、中及高剂量干预组,分别用吴茱 萸碱 10、20和 40mg/kg灌胃,1次 /d,连续给药 4周。 122 生化指标的检测:用试剂盒每周 1次检测空腹血糖 与血清胰岛素水平。 123 糖耐量 的 测 定 (OGTT):末 次 给 药 后,各 组 大 鼠 禁 食 3h,鼠尾采血测定血糖值;大鼠口服葡萄糖(20g/kg),测定 30、60与 120min的血糖值,绘制糖耐量曲线,观察吴茱萸碱 对糖尿病大鼠糖耐量水平的影响。 124 HE染色观察肝脏组织:常规切片观察。 125 免 疫 印 迹 法:末 次 给 药 后,分 离 肝 脏,剪 碎,冰 上 匀 浆,加入裂解液 30min,4℃12000×g离心 5min,取上清液, 提取总蛋白并测定蛋白浓度,每道加入 50μg蛋白进行 SDS PAGE电泳,电转至 PVDF膜上,用含 10%脱脂奶粉的 PBS 缓冲液封闭 1h,加入相应一抗,4℃孵育过夜,再加入相应二 抗,室温孵育 1h,化学发光法显色,成像扫描分析系统保存 图像。
收稿日期:20170515 修回日期:20171009 通信作者(correspondingauthor):123263052@qq.com
linicalMedicine
201838(10)

吴茱萸次碱对胰岛素抵抗骨骼肌细胞炎症因子表达的影响

吴茱萸次碱对胰岛素抵抗骨骼肌细胞炎症因子表达的影响

吴茱萸次碱对胰岛素抵抗骨骼肌细胞炎症因子表达的影响探讨吴茱萸次碱(rutecarpine,Rut)对胰岛素抵抗原代骨骼肌细胞(insulin resistant primary skeletal muscle cells,IR-PSMC)中炎症因子的影响。

培养原代大鼠骨骼肌细胞,显微镜下观察细胞形态学变化,MTT法观察Rut对原代骨骼肌细胞增殖的影响。

用棕榈酸(PA)诱导建立IR-PSMC细胞,氧化酶-过氧化物酶(GOD-POD)法检测培养基中葡萄糖浓度,并检测Rut对IR-PSMC细胞中炎症因子IL-1,IL-6,TNF-α的影响。

原代骨骼肌细胞培养7 d后,细胞长满培养皿,Rut在0~180.0 μmol·L-1,对原代骨骼肌细胞增殖无明显影响。

用0.6 mmol·L-1PA培养24 h可建立IR-PSMC细胞,Rut在20~180 μmol·L-1抑制IR-PSMC细胞中IL-1,IL-6,TNF-α生成,且具良好的量效关系。

Rut可能通过抗炎来促进IR-PSMC细胞葡萄糖吸收及改善胰岛素抵抗。

标签:原代骨骼肌细胞;吴茱萸次碱;胰岛素抵抗;炎症因子;葡萄糖消耗IR是代谢综合征(metabolic syndrome,MS)最核心的发病机制,它是糖尿病(diabetes mellitus,DM)、肥胖、心血管疾病(cardiovascular disease,CVD)以及动脉粥样硬化(atherosclerosis,AS)等多种代谢性疾病的共同病理生理基础。

1993年,《Science》杂志的一篇文章首先引出了肿瘤坏死因子(TNF)和肥胖的关系,并引出了炎症和胰岛素抵抗的关系[1]。

近年来大量研究显示[2-3],炎症是导致IR的重要因素之一。

炎症学说也越来越受关注。

炎症因子如IL-1,IL-6,TNF-α等可以通过血液和(或)旁分泌的作用影响胰岛素的敏感性和胰岛β细胞功能,进而引起IR。

吴茱萸次碱对局灶性脑缺血模型大鼠脑组织病理、免疫失衡和氧化应

吴茱萸次碱对局灶性脑缺血模型大鼠脑组织病理、免疫失衡和氧化应

doi:10.3969/j.issn.1000⁃484X.2020.06.008吴茱萸次碱对局灶性脑缺血模型大鼠脑组织病理㊁免疫失衡和氧化应激的调节作用及机制研究①周海燕 周俐红 张彩霞 周 立② 韩玉华 (新乡市中心医院神经内二科,新乡453000) 中图分类号 R743.3 文献标志码 A 文章编号 1000⁃484X (2020)06⁃0677⁃05①本文为河南省科技攻关计划基金资助项目(2015072521)㊂②新乡医学院人体解剖学教研室,新乡453000㊂作者简介:周海燕,女,副主任医师,主要从事神经内科方面的研究,E⁃mail:zhydxyyhm@㊂[摘 要] 目的:探究吴茱萸次碱(Rut)对局灶性脑缺血模型大鼠脑组织病理,免疫失衡和氧化应激的调节作用及机制研究㊂方法:大鼠随机分为空对照(Control)组,局灶性脑缺血模型(CI /R)组,Rut 5㊁10㊁20mg /kg 组,经过对应剂量的Rut 灌胃处理后,除Control 组外其余各组建立大鼠CI /R 模型,进行神经功能评分,记录大鼠双侧贴纸去除时间,平衡木过杆时间,HE 染色检测脑组织病理性改变,TUNEL 染色检测脑组织细胞凋亡,RT⁃PCR 检测Bax㊁Bcl⁃2基因表达,试剂盒检测白细胞介素6(IL⁃6)㊁IL⁃1β㊁IL⁃4㊁IL⁃10浓度及超氧化物歧化酶(SOD)㊁丙二醛(MDA)㊁乳酸脱氢酶(LDH)㊁活性氧(ROS)浓度,Western blot 检测Caspase⁃3㊁核因子E2相关因子(Nrf2)㊁血红素氧化酶1(HO⁃1)㊁依赖还原型辅酶Ⅰ/Ⅱ醌氧化还原酶1(NQO1)蛋白表达㊂结果:与Control 组比较,CI /R 组大鼠神经功能评分㊁双侧贴纸去除时间㊁平衡木过杆时间增加,脑组织发生明显病理性改变并且细胞凋亡增加,IL⁃6㊁IL⁃1β浓度升高,IL⁃4㊁IL⁃10浓度降低,SOD 浓度降低,MDA㊁LDH㊁ROS 浓度升高,Nrf2/HO⁃1/NQO1通路受到抑制;与CI /R 组比较,Rut 5㊁10㊁20mg /kg 组神经功能损伤㊁病理性改变得到明显缓解,细胞凋亡减少,IL⁃6㊁IL⁃1β㊁MDA㊁LDH㊁ROS 浓度降低,IL⁃4㊁IL⁃10㊁SOD 浓度升高,Nrf2/HO⁃1/NQO1通路激活㊂结论:Rut 对局灶性脑缺血具有脑组织保护作用,并缓解免疫失衡和氧化应激,其机制可能是通过Nrf2/HO⁃1/NQO1通路激活实现㊂[关键词] 局灶性脑缺血;吴茱萸次碱;脑中风;Nrf2/HO⁃1/NQO1Regulatory effect and mechanism of rutaecarpine on brain histopathology ,immune imbalance and oxidative stress in rats with focal cerebral ischemiaZHOU Hai⁃Yan ,ZHOU Li⁃Hong ,ZHANG Cai⁃Xia ,ZHOU Li ,HAN Yu⁃Hua .The Second Department of Neurology ,Xinxiang Central Hospital ,Xinxiang 453000,China[Abstract ] Objective :To investigate the regulation and mechanism of rutaecarpine (Rut)on brain histopathology,immune imbalance and oxidative stress in rats with focal cerebral ischemia.Methods :Rats were divided into Control,focal cerebral ischemia model(CI /R),Rut 5,10,20mg /kg group,after treated with corresponding dose of Rut,CI /R model rats were established,neurological function score were determined,sticker removal and balance beam walking test were carried out,the pathological changes of brain tissue were observed by HE staining,and apoptosis of brain tissue were detected by TUNEL staining,RT⁃PCR was used to detect the gene ex⁃pression of Bax and Bcl⁃2,the concentrations of IL⁃6,IL⁃1β,IL⁃4,IL⁃10as well as superoxide dismutase (SOD),malondialdehyde (MDA),lactate dehydrogenase(LDH)and reactive oxygen species(ROS)were measured by kit,Western blot was used to detect the protein levels of Caspase⁃3,nuclear factor E2related factor(Nrf2),heme oxidase1(HO⁃1)and NAD(P)H quinone oxidoreductase 1(NQO1).Results :Compared with Control group,in CI /R group the neurological function score as well as the time of sticker removal and balance beam walking test were increased,significant pathological change of brain was occurred and cell apoptosis was increased,the concentrations of IL⁃6,IL⁃1β,MDA,LDH,ROS were increased,and concentrations of IL⁃4,IL⁃10,SOD were decreased,the activation of Nrf2/HO⁃1/NQO1pathway was pared with CI /R group,in Rut 5,10,20mg /kg group the neurological damage and pathological change were significantly relieved,the cell apoptosis was decreased,the concentrations of IL⁃6,IL⁃1β,MDA,LDH,ROS were decreased,and concentrations of IL⁃4,IL⁃10,SOD were increased,the activation of Nrf2/HO⁃1/NQO1pathway was activated.Conclusion :Rut has protective effects on brain tissue in focal cerebral ischemia,and alleviation role to immune imbalance and oxidative stress,which may be achieved through activation of Nrf2/HO⁃1/NQO1pathway.[Key words ] Focal cerebral ischemia;Rutaecarpine;Stroke;Nrf2/HO⁃1/NQO1 脑中风是一种非常常见的脑血管疾病,是由于颅内脑血管阻塞或破裂引起的急性脑损伤,在中老年群体中具有高发生率㊁高致死率和高致残率,超过70%的脑中风是由局灶性脑缺血引起的[1,2]㊂而最终脑梗死面积以及神经功能的结果依赖许多因素,例如局部缺血的持续时间㊁严重性㊁侧支血流量㊁全身血压㊁梗死病因以及定位,同时也与年龄㊁性别㊁并存疾病等背景因素有关[3]㊂近期研究表明,氧化应激和神经炎症引起的内皮功能紊乱是缺血性脑中风导致脑细胞损伤和死亡的关键因素,通过药物干涉降低局灶性脑缺血的氧化应激和炎症水平能够有效阻止脑缺血造成的细胞损伤[4,5]㊂吴茱萸次碱(Rutaecarpine,Rut)是我国传统中药吴茱萸的一种主要活性成分,是一种吲哚喹唑啉类生物碱,具有广泛的药理学效应[6]㊂有研究表明吴茱萸次碱在脑缺血性疾病中具有保护性作用,然而Rut对局灶性脑缺血保护作用的生物学机制尚有很多空缺之处[7,8]㊂本研究通过建立大鼠局灶性脑缺血模型(CI/R),在Rut对局灶性脑缺血组织损伤㊁氧化应激以及炎症中发挥作用的机制进行了初步探究㊂1 材料与方法1.1 材料1.1.1 主要试剂 Rut,纯度98%,购自南京泽郎科技有限公司;HE染色液㊁TUNEL细胞凋亡试剂盒㊁Trizol试剂㊁RIPA试剂购自上海碧云天生物技术有限公司;反转录试剂盒SsoFast Eva⁃Green Supermix试剂盒购自美国Bio⁃Rad公司;白细胞介素6(IL⁃6)㊁IL⁃1β㊁IL⁃4㊁IL⁃10ELISA试剂盒㊁超氧化物歧化酶(SOD)㊁丙二醛(MDA)㊁乳酸脱氢酶(LDH)㊁活性氧(ROS)检测试剂盒购自南京建成生物有限公司;半胱天冬酶3(Caspase⁃3)㊁核因子E2相关因子(nuclear factor E2related factor2,Nrf2)㊁血红素氧化酶1(heme oxygenase1,HO⁃1)㊁依赖还原型辅酶Ⅰ/Ⅱ醌氧化还原酶1[NAD(P)H quinone oxidoreductase1,NQO1]一抗购自美国Santa Cruz公司;二抗购自北京中杉金桥生物技术有限公司;所用引物由上海生工生物工程股份有限公司合成㊂1.1.2 实验动物 30只清洁级SD大鼠(体质量280~320g)购自上海斯莱克实验动物有限公司,常温㊁标准温度和湿度㊁12h昼夜交替的封闭环境下喂养1周,期间水和食料正常供给㊂1.2 方法1.2.1 分组及模型建立方法 大鼠随机分为空对照(Control)组,CI/R组,Rut5㊁10㊁20mg/kg组,每组6只,Rut5㊁10㊁20mg/kg组大鼠术前按照对应组别的剂量连续灌胃给药10d,每天1次㊂最后1次灌胃治疗24h后,Control组大鼠仅切开皮肤并分离血管,不做其他处理,其余各组腹腔注射戊巴比妥麻醉,结扎颈外动脉远端,并在颈外动脉切口,将涂抹了少许硅胶的0.25mm尼龙线插入颈内动脉,深度20mm,并结扎4h,缓缓抽出线栓,缝合伤口,建立大鼠CI/R模型㊂术后24h参照Bederson评分法对各组大鼠进行神经功能评分,评分标准为:0分,无神经损伤症状;1分,对侧前肢无法完全伸展;2分,前肢抵抗对侧推力能力下降;3分,向对侧转圈㊂1.2.2 贴纸去除实验 模型建立24h后,将大鼠置于圆筒中60s适应新环境,使用黏性贴纸贴在大鼠前肢掌面,记录大鼠撕除前肢纸片的时间㊂1.2.3 平衡木行走实验 将长度80cm,宽度2.5cm的平衡木放置于高于地面10cm,让大鼠从平衡木经过,记录大鼠通过平衡木所经过的时间㊂1.2.4 HE染色检测脑组织病理性改变 神经功能测试结束后,将大鼠断头取脑,摘除嗅球㊁小脑和低位脑干等部位,4%多聚甲醛固定,清洗后使用70%~100%乙醇梯度脱水,二甲苯透明,石蜡包埋并切成2μm切片,二甲苯脱蜡,100%~70%乙醇梯度水化,使用HE染色液进行染色后封片,光学显微镜观察脑组织病理性改变㊂1.2.5 TUNEL染色检测脑组织细胞凋亡 脑组织进行石蜡包埋切片后,二甲苯脱蜡,100%~70%乙醇梯度水化,蛋白酶K去除组织蛋白,清洗后使用2%过氧化氢室温反应,TdT反应液孵育,过氧化物酶标记的抗地高辛抗体反应,0.05%DAB溶液显色,封片后光学显微镜观察细胞凋亡,每张切片选取6个视野,计数凋亡细胞数目在视野总细胞数目中所占的百分比作为凋亡率㊂1.2.6 RT⁃PCR检测基因表达 Trizol试剂盒提取脑组织中总RNA,反转录合成cDNA,根据SsoFast TM Eva⁃Green®Supermix试剂盒的操作说明书,进行PCR反应,反应条件为0℃2min,95℃15s,60℃1min,循环次数40次,2-ΔΔCt法处理实验结果㊂1.2.7 ELISA检测血清细胞因子 血液离心收集血清,向预先包被细胞因子对应抗体的酶标孔中加入样品,再根据试剂盒的操作说明加入试剂盒预先配制的试剂进行反应,检测450nm吸光度,根据预先制作的标准曲线计算样品细胞因子的浓度㊂1.2.8 试剂盒检测氧化应激 血液离心收集血清,根据试剂盒的操作说明书依次加入试剂盒中提供的试剂进行反应,并检测与说明对应的吸光度值,其中SOD检测采用的原理是羟胺法,MDA检测采用的原理是TBA法,LDH检测采用的原理是比色法,ROS 检测的原理是化学荧光法㊂1.2.9 Western blot检测蛋白表达 RIPA试剂盒提取脑组织总蛋白,BCA试剂盒进行蛋白定量,根据定量结果,取每孔20μg的上样量进行点样,10%SDS⁃PAGE 电泳分离总蛋白,转膜至PVDF 膜,5%脱脂牛奶封闭,加入适量一抗4℃孵育过夜,TBST 清洗后适量二抗室温孵育2h,ECL 显色液显色,凝胶成像仪分析条带的灰度值进行相对定量㊂1.3 统计学方法 统计学软件SPSS19.0处理实验数据,计量资料以x ±s 表示,多组间比较采用单因素方差分析,两两比较采用SNK⁃q 检验,P <0.05认为差异有统计学意义㊂2 结果2.1 Rut 减轻大鼠CI /R 对神经功能的影响 结果见图1A,与Control 组比较,CI /R 组㊁Rut 5㊁10㊁20mg /kg 组大鼠神经功能评分显著升高(P <0.05),差异有统计学意义;与CI /R 组比较,Rut 10㊁20mg /kg 组大鼠神经功能评分显著降低(P <0.05),且呈现量效关系,差异有统计学意义㊂同时,与Control 组比较,CI /R 组㊁Rut 5㊁10㊁20mg /kg 组大鼠双侧贴纸去除时间㊁平衡木过杆时间均显著延长(P <0.05),差异有统计学意义;与CI /R 组比较,Rut 10㊁20mg /kg 组大鼠双侧贴纸去除时间㊁平衡木过杆时间显著缩短(P <0.05),且呈现量效关系,差异有统计学意义,见图1B㊁C㊂2.2 Rut 减轻CI /R 大鼠脑组织损伤 结果见图2A㊁B,Control 组大鼠大脑皮质结构完整,神经细胞形态正常,结构完整,排列整齐有序,无明显神经变性坏死及炎性细胞浸润等病理改变,CI /R 组皮质区域变性,细胞缩小,核固缩,细胞排列紊乱,神经元数目减少,同时相比于Control 组出现了明显的细胞凋亡(P <0.05),差异有统计学意义;Rut 5㊁10㊁20mg /kg图1 Rut 对CI /R 大鼠神经功能评分㊁双侧贴纸去除时间和平衡木过杆时间的影响Fig.1 Effects of Rut on neurologic function score ,remo⁃val time of double sticker and passing time of balance beam of CI /R ratNote:A.Neurologic function score of rat;B.Removal time of doublesticker test of rat;C.Passing time of balance beam test of rat,n =6.*.P <0.05versus control group;#.P <0.05versus CI /Rgroup.组相比于Control 组尽管也出现了病理性改变,但相比于CI /R 组明显减轻,同时细胞凋亡率也明显降低(P <0.05),差异有统计学意义㊂此外对细胞凋亡标志物Bax㊁Bcl⁃2㊁Caspase⁃3表达进行检测,见图2C㊁D,与Control 组比较,CI /R 组㊁Rut 5㊁10mg /kg 组大鼠脑组织中Bax 基因表达水平显著升高(P <0.05),Bcl⁃2基因表达水平显著降低(P <0.05),并且活化型Caspase⁃3蛋白水平也显著升高(P <0.05),差异有统计学意义;与CI /R 组比较,Rut 5㊁10㊁20mg /kg 组大鼠脑组织中Bax 基因表达水平显著降低(P <0.05),Bcl⁃2基因表达水平显著升高(P <0.05),活化型Caspase⁃3蛋白水平也显著降低(P <0.05),且具有量效关系,差异有统计学意义㊂2.3 Rut 对CI /R 大鼠血清细胞因子的调控作用 结果见图3A,与Control 组比较,CI /R 组㊁Rut 5㊁10mg /kg 组大鼠血清促炎细胞因子IL⁃6㊁IL⁃1β浓度显著升高(P <0.05),差异有统计学意义;与CI /R 组比较,Rut 5㊁10㊁20mg /kg 组大鼠血清IL⁃6㊁IL⁃1β浓度显著降低(P <0.05),且呈量效关系,差异有统计学意义;同时,与Control 组比较,CI /R 组㊁Rut 5mg /kg 组大鼠血清抑炎细胞因子IL⁃4㊁IL⁃10浓度显著降低(P <0.05),差异有统计学意义;与CI /R 组比较,Rut 5㊁10㊁20mg /kg 组大鼠血清IL⁃4㊁IL⁃10浓度显著升高(P <0.05),且呈量效关系,差异有统计学意义,见图3B㊂2.4 Rut 对CI /R 大鼠血清氧化应激指标的调控作用 结果见图4A ~D 所示,与Control 组比较,CI /R 图2 Rut 对CI /R 大鼠脑组织病理性改变及细胞凋亡的影响Fig.2 Effects of apoptotic rate in brain tissue of CI /R ratNote:A.HE staining to detect pathological changes in rat brain tissueand TUNEL staining to detect rat brain tissue cell apoptosis;B.CI /R apoptosis rate of rat brain tissue;C.Bax and Bcl⁃2gene ex⁃pressions in rat brain tissue detected by RT⁃PCR;D.Caspase⁃3protein level in rat brain tissue detected by western blot,n =6.*.P <0.05versus control group;#.P <0.05versus CI /R group.图3 Rut 对CI /R 大鼠血清细胞因子浓度的影响Fig.3 Effect of Rut on concentrations of serum cytokinein CI /R ratNote:A.Concentrations of serum inflammatory cytokine in rat;B:Con⁃centrations of serum anti⁃inflammatory cytokine in rat,n =6,*.P <0.05versus control group;#.P <0.05versus CI /Rgroup.图4 Rut 对CI /R 大鼠血清氧化应激标志物的影响Fig.4 Effect of Rut on serum oxidative stress marker inCI /R ratNote:A.Concentration of serum SOD in rat;B.Concentration of serumMDAinrat;C.ConcentrationofserumLDHinrat;D.Concentration of serum ROS in rat,n =6.*.P <0.05versus control group;#.P <0.05versus CI /R group.组㊁Rut 5㊁10mg /kg 组大鼠血清SOD 浓度显著降低(P <0.05),血清MDA㊁LDH㊁ROS 浓度显著升高(P <0.05),差异有统计学意义;与CI /R 组比较,Rut 5㊁10㊁20mg /kg 组大鼠血清SOD 浓度显著升高(P <0.05),血清MDA㊁LDH㊁ROS 浓度显著降低(P <0.05),差异有统计学意义㊂2.5 Rut 激活CI /R 大鼠Nrf2/HO⁃1/NQO1通路 结果见图5A㊁B,与Control 组比较,CI /R 组㊁Rut 5㊁10mg /kg 组大鼠脑组织中Nrf2㊁HO⁃1㊁NQO1蛋白水平显著降低(P <0.05),差异有统计学意义;与CI /R 组比较,Rut 5㊁10㊁20mg /kg 组大鼠脑组织中Nrf2㊁HO⁃1㊁NQO1蛋白水平显著升高(P <0.05),且呈量效关系,差异有统计学意义㊂3 讨论Rut 是传统中药吴茱萸的生物活性成分,在诸图5 Rut 对大鼠Nrf2/HO⁃1/NQO1通路的调控作用Fig.5 Effect of Rut on concentrations of serum cytokinein CI /R ratNote:A.Concentrations of serum inflammatory cytokine in rat;B.Concentrations of serum anti⁃inflammatory cytokine in rat,n =6.*.P <0.05versus control group;#.P <0.05versus CI /R group.如心血管㊁消化系统以及神经系统等方面的疾病中均表现出一定的药理作用[9]㊂有研究表明抗炎和抗氧化应激作用是Rut 发挥其药理作用的重要机制,Li 等[10]发现Rut 可通过调控内质网应激和核因子κB 通路减轻脓毒症诱导的腹膜巨噬细胞凋亡和炎症反应;Wang 等[11]发现Rut 可通过JNK /p38MAPK 信号通路以及干涉氧化应激反应减轻大鼠肾缺血再灌注损伤㊂炎症和氧化应激是局灶性脑缺血损伤的关键因素,推测Rut 在局灶性脑缺血损伤中发挥的保护性作用与这两个关键因素有关㊂为了探究其中可能存在的作用机制,本研究通过线栓法复制了大鼠CI /R 模型[12],并通过Rut 预处理治疗㊂本研究发现经过Rut 灌胃治疗的CI /R 大鼠,神经功能方面的指标得到明显好转,同时脑组织病理性改变和细胞凋亡率均显著减轻,并且变化具有量效关系㊂此外,对细胞凋亡关键因子Bax㊁Bcl⁃2㊁Caspase⁃3的检测结果显示,Rut 显著降低了组织中Bax 基因表达水平,提高了Bcl⁃2基因表达水平,并且活化型Caspase⁃3蛋白水平显著降低,Bax 和Bcl⁃2是Bcl⁃2家族中的一对凋亡相关调控因子,其中Bcl⁃2具有抑制凋亡的作用,Bax 具有促进凋亡的作用,而Caspase⁃3是细胞凋亡关键的执行因子,其表达量改变可反映出细胞凋亡水平[13]㊂上述结果表明,Rut 可减轻局灶性脑缺血造成的组织损伤,减少细胞凋亡,对脑神经功能具有保护性作用㊂当局灶性脑缺血发生时,浸润的白细胞以及包括神经元及神经胶质等脑细胞成员会释放出各种炎性介质,包括各种细胞因子,同时产生过量的活性氧自由基,造成组织损伤的发展[14]㊂通过药物作用降低炎症介质,释放及控制氧化应激是缓解局灶性脑缺血病情的常用手段㊂Gong 等[15]研究发现甘草甜素可通过调控脑缺血再灌注过程中产生的炎症㊁氧化应激和细胞凋亡,对大鼠脑组织发挥保护性作用㊂本研究发现经过Rut 治疗的CI /R 大鼠血清中IL⁃6和IL⁃1β浓度显著降低,IL⁃4和IL⁃10浓度显著升高,IL⁃6是体内重要的促炎细胞因子,IL⁃1β是体内应答感染时产生的细胞因子,广泛参与了脑血栓和粥样动脉硬化等疾病的病理过程[16]㊂而IL⁃4是一种具有调控小胶质细胞/巨噬细胞作用的细胞因子,在脑修复过程中起着不可替代的作用,IL⁃10是一种炎症和免疫抑制因子,在炎症反应中具有保护组织的作用[17,18]㊂此外,本研究发现经过Rut治疗的CI/R大鼠SOD浓度显著升高,MDA㊁LDH㊁ROS浓度均显著下降,SOD是体内清除ROS等成分的主要酶类,当氧化应激发生后,SOD不断消耗,同时ROS 大量积累,ROS造成细胞损伤,当脂质过氧化时会生成MDA,可反映出氧化应激的程度,LDH广泛存在于脑细胞中,损伤的细胞会释放出LDH[19]㊂结合上述结果表明,Rut可降低局灶性脑缺血的炎症和氧化应激,发挥保护性作用㊂Nrf2是调控细胞抗氧化应激的最主要的转录因子,Nrf2可进入细胞核与抗氧化反应元件结合,激活Nrf2下游的抗氧化基因表达,HO⁃1和NQO1是Nrf2下游对抗氧化应激的主要酶类,HO⁃1催化血红素分解的产物具有抗氧化的功能,NQO1与氢醌相关的耦联反应有关[20]㊂研究表明Nrf2/HO⁃1/ NQO1通路在脑损伤过程中具有保护性作用,Chen 等[21]研究表明Nrf2的激活可诱导抗氧化和解毒性酶表达从而抗氧化应激,对脑组织具有保护作用㊂有研究表明Rut具有调控Nrf2/HO⁃1/NQO1通路的作用[22],本研究发现经过Rut治疗的CI/R大鼠,脑组织中Nrf2㊁HO⁃1㊁NQO1的表达均明显恢复,表明Rut对局灶性脑缺血的保护作用与Nrf2/HO⁃1/ NQO1通路激活有关㊂综上所述,Rut可减轻局灶性脑缺血引起的炎症和氧化应激,减轻脑组织损伤,减少脑细胞凋亡,对脑功能具有保护性作用,其作用机制与Nrf2/HO⁃1/ NQO1通路激活有关㊂研究结果为Rut在缺血性脑中风治疗上的应用提供了理论依据㊂参考文献:[1] Sugunan S,Joseph DB,Rajanikant GK.Evolving therapeutictargets in ischemic stroke:a concise review[J].Curr Drug Targets, 2013,14:497⁃506.[2] Niu F,Song XY,Hu JF,et al.IMM⁃H004,a new coumarinderivative,improved focal cerebral ischemia via blood⁃brain barrier protection in rats[J].J Stroke Cerebrovasc Dis,2017,26(10): 2065⁃2073.[3] Sommer CJ.Ischemic stroke:experimental models and reality[J].Acta Neuropathol,2017,133(2):245⁃261.[4] Huang J,Upadhyay UM,Tamargo RJ,et al.Inflammation in strokeand focal cerebral ischemia[J].Surg Neurol,2006,66(3): 232⁃245.[5] Saito A,Maier CM,Narasimhan P,et al.Oxidative stress andneuronal death/survival signaling in cerebral ischemia[J].Mol Neurobiol,2005,31(1⁃3):105⁃116.[6] Son J,Chang HW,Jahng Y.Cheminform abstract:progress instudies on rutaecarpine.II.⁃synthesis and structure⁃biological activity relationships[J].Molecules,2015,20(6):10800⁃10821.[7] Yan C,Zhang J,Wang S,et al.Neuroprotective effects ofrutaecarpine on cerebral ischemia reperfusion injury[J].Neural Regen Res,2013,8(22):2030⁃2038.[8] 刘 勇,崔颖鹏,宋 涛,等.吴茱萸次碱促进脑组织降钙素基因相关肽释放减轻脑缺血再灌注损伤[J].中国医师杂志, 2005,7(5):589⁃591.Liu Y,Cui YP,Song T,et al.Rutaecarpine ameliorates cerebral ischemia⁃reperfusion injury by stimulating calcitonin gene⁃related peptide release in the rat brain[J].J Chin Physic,2005,7(5): 589⁃591.[9] 袁志坚,何文涓,胡 晶,等.吴茱萸次碱药理学研究进展[J].中国医药导报,2018,15(36):40⁃43.Yuan ZJ,He WJ,Hu J,et al.Progress in pharmacological studies on rutaecarpine[J].Chin Med Heral,2018,15(36):40⁃43. [10] Li Z,Yang M,Peng Y,et al.Rutaecarpine ameliorated sepsis⁃induced peritoneal resident macrophages apoptosis andinflammation responses[J].Life Sci,2019,228:11⁃20. [11] Wang C,Hao Z,Zhou J,et al.Rutaecarpine alleviates renalischemia reperfusion injury in rats by suppressing the JNK/p38MAPK signaling pathway and interfering with the oxidative stressresponse[J].Mol Med Rep,2017,16(1):922⁃928. [12] 窦万臣,王任直,张 波,等.大鼠局灶性脑缺血模型制作方法的改进[J].中国脑血管病杂志,2004,1(2):81⁃84.Dou WC,Wang RZ,Zhang B,et al.The modification of suturemethods for rat model of focal cerebral ischemia[J].Chin J CerebDis,2004,16(1):81⁃84.[13] 文玉玲,吴世栋.米非司酮对子宫内膜异位患者SOCS⁃3㊁Bcl⁃2㊁Bax㊁Caspase⁃3水平的影响[J].医学分子生物学杂志,2018,15(5):348⁃351.Wen YL,Wu SD.Effect of mifepristone on the levels of SOCS⁃3,Bcl⁃2,Bax and Caspase⁃3in patients with endometriosis[J].JMed Mol Biol,2018,15(5):348⁃351.[14] Amantea D,Nappi G,Bernardi G,et al.Post⁃ischemic braindamage:pathophysiology and role of inflammatory mediators[J].FEBS,276:13⁃26.[15] Gong G,Xiang L,Yuan L,et al.Protective effect of glycyrrhizin,adirect HMGB1inhibitor,on focal cerebral ischemia/reperfusion⁃induced inflammation,oxidative stress,and apoptosis in rats[J].PLoS One,2014,9(3):e89450.[16] Hao Y,Qi Z,Ding Y,et al.Effect of interventional therapy on IL⁃1β,IL⁃6,and neutrophil⁃lymphocyte ratio(NLR)levels andoutcomes in patients with ischemic cerebrovascular disease[J].Med Sci Monit,2019,25:610⁃617.[17] Liu X,Liu J,Zhao S,et al.Interleukin⁃4essential for microglia/macrophage M2polarization and long⁃term recovery after cerebralischemia[J].Stroke,2016,47(2):498⁃504.[18] Tukhovskaya EA,Turovsky EA,Turovskaya MV,et al.Anti⁃inflammatory cytokine interleukin⁃10increases resistance to brainischemia through modulation of ischemia⁃induced intracellularCa2+response[J].Neurosci Lett,2014,571:55⁃60. [19] Cadenas S,Aragones J,Landazuri MO.Mitochondrial reprogramm⁃ing through cardiac oxygen sensors in ischaemic heart disease[J].Cardiovasc Res,2010,88:219⁃228.[20] Smith RE,Tran K,Smith CC,et al.The role of the Nrf2/ARE an⁃tioxidant system in preventing cardiovascular diseases[J].Diseases,2016,4(4):E34.[21] Chen G,Fang Q,Zhang J,et al.Role of the Nrf2⁃ARE pathway inearly brain injury after experimental subarachnoid hemorrhage[J].J Neurosci Res,2011,89(4):515⁃523.[22] Jin SW,Hwang YP,Choi CY,et al.Protective effect ofrutaecarpine against t⁃BHP⁃induced hepatotoxicity by upregulatingantioxidant enzymes via the CaMKII⁃Akt and Nrf2/ARE pathways[J].Food Chem Toxicol,2017,100:138⁃148.[收稿2019⁃10⁃28](编辑 刘格格)。

吴茱萸碱调节HMGB1

吴茱萸碱调节HMGB1

吴茱萸碱调节HMGB1/TLR4/NF-κB信号通路对脑梗死大鼠神经炎症的影响宋秀威,杨月君,王伟摘要目的:探讨吴茱萸碱调节高迁移率族蛋白B1(HMGB1)/Toll样受体4(TLR4)/核转录因子-κB(NF-κB)信号通路对脑梗死大鼠神经炎症的影响㊂方法:采用大脑中动脉栓塞法构建脑梗死大鼠模型,随机分为模型组㊁吴茱萸碱低剂量组㊁吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组㊁吴茱萸碱高剂量+HMGB1过表达组,每组15只,另选取15只健康大鼠设为假手术组,以吴茱萸碱和质粒分组处理后,采用改良神经功能缺损评分(mNSS)评估大鼠神经损伤;三苯基氯化四氮唑(TTC)染色检测大鼠脑梗死面积;末端脱氧核苷酸转移酶介导的dUTP缺口末端标记(TUNEL)染色检测大鼠海马神经元凋亡率;透射电镜观察大鼠海马神经元超微结构;酶联免疫吸附法(ELISA)检测大鼠血清及脑组织促炎因子环氧化酶-2(COX-2)㊁白细胞介素-18(IL-18)㊁诱导型一氧化氮合酶(iNOS)水平;蛋白免疫印迹法检测大鼠脑组织HMGB1/TLR4/NF-κB信号通路蛋白表达㊂结果:与假手术组比较,模型组大鼠海马神经元超微结构发生损伤,mNSS评分㊁脑梗死面积㊁海马神经元凋亡率㊁血清与脑组织COX-2㊁IL-18㊁iNOS水平㊁脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/NF-κB p65明显升高(P<0.05);与模型组比较,吴茱萸碱低剂量组㊁吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组大鼠海马神经元超微结构损伤均减轻,mNSS评分㊁脑梗死面积㊁海马神经元凋亡率㊁血清与脑组织COX-2㊁IL-18㊁iNOS水平㊁脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/NF-κB p65均降低(P<0.05);吴茱萸碱高剂量组大鼠海马神经元超微结构损伤较吴茱萸碱低剂量组进一步减轻,mNSS评分㊁脑梗死面积㊁海马神经元凋亡率㊁血清与脑组织COX-2㊁IL-18㊁iNOS水平㊁脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/NF-κB p65进一步降低(P<0.05)㊂与吴茱萸碱高剂量组比较,吴茱萸碱高剂量+ HMGB1过表达组大鼠海马神经元超微结构损伤加重,mNSS评分㊁脑梗死面积㊁海马神经元凋亡率㊁血清与脑组织COX-2㊁IL-18㊁iNOS水平㊁脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/NF-κB p65升高(P<0.05)㊂结论:吴茱萸碱可通过阻止HMGB1/TLR4/ NF-κB信号激活而降低促炎因子表达,从而抑制神经炎症,减轻脑梗死大鼠神经功能损伤㊂关键词脑梗死;吴茱萸碱;高迁移率族蛋白B1/Toll样受体4/核转录因子-κB信号通路;神经炎症;实验研究d o i:10.12102/j.i s s n.1672-1349.2024.07.013脑梗死(cerebral infarction,CI)是由脑动脉闭塞引起的脑组织缺血性坏死和神经元损伤凋亡,可导致偏瘫㊁认知能力下降,具有高死亡率㊁高致残率的特点[1-2]㊂过度的神经炎症是导致神经功能损伤的主要因素,抑制神经炎症可减少神经元凋亡,减轻认知功能损伤[3-4]㊂高迁移率族蛋白B1(high mobility group box1,HMGB1)/Toll样受体4(Toll-like receptor4, TLR4)/核转录因子-κB(nuclear transcription factor-κB, NF-κB)信号通路可通过调控促炎因子释放和小胶质细胞激活而介导神经炎症的发生发展,阻断该信号传导可抑制神经炎症[5-6]㊂吴茱萸碱可抑制NF-κB p65磷酸化,阻止小胶质细胞过度激活引起的神经炎症[7-8]㊂本研究以不同剂量吴茱萸碱处理脑梗死大鼠,探讨吴茱萸碱调节HMGB1/TLR4/NF-κB信号通路对脑梗死大鼠神经炎症的影响㊂作者单位保定市第二医院(河北保定071000),E-mail:**************引用信息宋秀威,杨月君,王伟.吴茱萸碱调节HMGB1/TLR4/NF-κB信号通路对脑梗死大鼠神经炎症的影响[J].中西医结合心脑血管病杂志, 2024,22(7):1240-1246.1材料与方法1.1材料1.1.1动物SD大鼠,雄性,无特定病原体(SPF)级,购于莱岸科技(广州)有限公司,生产许可证号SYXK(粤)2022-0283,体质量200~230g,6周龄左右,动物饲养房内保持屏障环境,分笼喂养,每笼不超过5只,所有操作符合3R 原则,并严格遵循‘实验动物管理条例“要求㊂1.1.2主要试剂及仪器吴茱萸碱[经高效液相色谱(HPLC)法测得纯度ȡ98%]㊁三苯基氯化四氮唑(triphenyltetrazolium chloride, TTC)㊁大鼠环氧化酶-2(cyclooxygenase-2,COX-2)㊁白细胞介素-18(interleukin-18,IL-18)酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)试剂盒购自北京索莱宝科技有限公司;大鼠诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS) ELISA试剂盒购自上海生工生物工程股份有限公司;末端脱氧核苷酸转移酶介导的dUTP缺口末端标记(TUNEL)检测试剂盒㊁兔源一抗β-actin㊁HMGB1㊁p-NF-κB p65㊁TLR4㊁NF-κB p65购自英国Abcam公司㊂VHX-7000光学显微镜(日本基恩士公司生产); JEM-2100Plus透射电子显微镜(深圳市蓝星宇电子科技有限公司生产);VarioskanLUX全自动酶标仪(赛默飞世尔科技中国有限公司生产)㊂1.2方法1.2.1脑梗死大鼠模型制备及分组处理参照文献[9]制备脑梗死大鼠模型:以50mg/kg 剂量的3%戊巴比妥钠腹腔内注射麻醉大鼠,以仰卧位固定在操作板上,剃除颈部毛发后消毒㊁备皮,切开左侧皮肤并分离肌肉组织,找到并游离颈动脉,将左侧颈总动脉和颈外动脉结扎,于颈总动脉处开孔插入线栓并前进至大脑中动脉,封闭血流2h后取出线栓恢复血流,缝合伤口并再灌注24h完成造模,然后从大鼠平衡㊁运动㊁感知和反射等方面对其神经功能缺损进行评定,评估标准参考文献[10],改良神经功能缺损评分(modified Neurological Severity Score,mNSS)总分18分,得分ȡ7分即为造模成功㊂随机分为模型组㊁吴茱萸碱低剂量组㊁吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组㊁吴茱萸碱高剂量+HMGB1过表达组,每组15只㊂另选取15只健康大鼠,设为假手术组,只游离颈动脉不进行缺血再灌注㊂将吴茱萸碱和空载质粒㊁HMGB1过表达质粒溶于生理盐水,吴茱萸碱低剂量组㊁吴茱萸碱高剂量组大鼠分别以35㊁70mg/kg的剂量灌胃(3.5㊁7.0mg/mL的吴茱萸碱药液10mL/kg,每日1次)[11],同时尾静脉注射与吴茱萸碱高剂量+HMGB1过表达组等剂量的生理盐水(每周2次);吴茱萸碱高剂量+空载质粒组㊁吴茱萸碱高剂量+HMGB1过表达组大鼠以70mg/kg的剂量灌胃(7.0mg/mL的吴茱萸碱药液10mL/kg,每日1次),同时分别尾静脉注射空载质粒㊁HMGB1过表达质粒(每周2次);假手术组㊁模型组大鼠灌胃10mL/kg 剂量的生理盐水(每日1次),同时尾静脉注射与吴茱萸碱高剂量+HMGB1过表达组等剂量的生理盐水(每周2次)㊂各组大鼠均处理2周㊂1.2.2检测大鼠神经功能损伤情况给药结束后24h,采用mNSS评估各组大鼠神经功能,得分越高表示大鼠神经功能缺损越严重㊂1.2.3TTC染色检测大鼠脑梗死面积各组大鼠于mNSS评分结束后以乙醚麻醉,采集颈动脉血离心,收集上清置于-80ħ备用㊂每组随机选取5只大鼠,断头剥离出大脑,切成厚度大致相同的冠状切片,以TTC溶液染色后固定,拍照后以Image pro 软件对图像进行分析,定量每只大鼠全脑切片面积和全脑切片中梗死面积,计算脑梗死面积,脑梗死面积=全脑切片中梗死面积/全脑切片面积ˑ100%㊂每组剩余的10只大鼠中,再次随机选取5只,断头剥离出大脑,使用手术剪剪下缺血半暗带脑组织0.4g 储存于液氮备用,剩余的脑组织置于4%多聚甲醛中固定后以梯度乙醇(50%㊁70%㊁80%㊁90%㊁100%)脱水㊁二甲苯透明㊁热石蜡包埋,置于石蜡切片机中固定切片,得到厚度约4μm的切片备用㊂每组剩余5只大鼠,断头剥离出大脑,使用手术剪剪下缺血半暗带脑组织0.4g,剪碎㊁匀浆㊁离心后以二喹啉甲酸(BCA)法测定上清中总蛋白浓度,最后将脑组织蛋白样品液置于-80ħ备用,剩余的脑组织依次置于2.5%戊二醛㊁2%四氧化锇中固定,以50%㊁70%㊁80%㊁90%㊁100%梯度乙醇依次脱水,然后浸透包埋后置于超薄切片机中固定切片,得到厚度约70 nm的切片备用㊂1.2.4TUNEL染色检测大鼠神经元凋亡情况选取1.2.3中无破损的厚度约4μm脑组织切片进行脱蜡㊁水化㊁TUNEL染色处理,在光学显微镜下观察并随机采集5个视野图像,以Image pro软件对图像进行分析,定量切片中海马神经元凋亡细胞数与海马神经元总细胞数,海马神经元凋亡率=海马神经元凋亡细胞数/海马神经元总细胞数ˑ100%㊂1.2.5大鼠海马神经元超微结构检测选取1.2.3中无破损的厚度约70nm的脑组织切片,以枸杞酸铅和醋酸铀双重染色后,采用透射电子显微镜观察海马神经元超微结构并采集图像㊂1.2.6ELISA检测大鼠血清及脑组织促炎因子COX-2㊁IL-18㊁iNOS水平取1.2.3中血清以冰水浴慢慢解冻,同时取出存在液氮中的脑组织剪碎㊁匀浆㊁离心后以BCA法测定上清中总蛋白浓度后,每组取出200μL脑组织蛋白样品液和200μL血清通过ELISA法测量其中COX-2㊁IL-18㊁iNOS水平,具体步骤参照各自ELISA试剂盒说明书进行㊂1.2.7蛋白免疫印迹法检测大鼠脑组织HMGB1/ TLR4/NF-κB通路蛋白表达取1.2.3中置于-80ħ的脑组织蛋白样品液以冰水浴慢慢解冻,根据蛋白浓度检测结果每组取出25μg 总蛋白,煮沸变性㊁电泳㊁转膜㊁封闭,将β-actin㊁HMGB1㊁TLR4㊁p-NF-κB p65㊁NF-κB p65蛋白自膜上剪下,以兔源一抗和辣根过氧化物酶(HRP)偶联羊抗兔二抗孵育进行抗原抗体反应,通过化学发光法显色后拍照,以Image pro软件对图像进行分析后量化各组蛋白相对表达量㊂1.3统计学处理以SPSS26.0软件进行统计学分析㊂符合正态分布的定量资料用均数ʃ标准差(xʃs)表示,两组间比较行t检验;多组间比较行单因素方差分析,两两之间进一步比较采用SNK-q检验㊂以P<0.05为差异有统计学意义㊂2结果2.1吴茱萸碱对脑梗死大鼠神经功能损伤的影响与假手术组比较,模型组大鼠mNSS评分㊁脑梗死面积明显升高(P<0.05);与模型组比较,吴茱萸碱低剂量组㊁吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组大鼠mNSS评分㊁脑梗死面积均降低(P< 0.05),吴茱萸碱高剂量组大鼠mNSS评分㊁脑梗死面积较吴茱萸碱低剂量组进一步降低(P<0.05);与吴茱萸碱高剂量组比较,吴茱萸碱高剂量+HMGB1过表达组大鼠mNSS评分㊁脑梗死面积升高(P<0.05),吴茱萸碱高剂量+空载质粒组大鼠mNSS评分㊁脑梗死面积无明显变化(P>0.05)㊂详见图1~图3㊂图1TTC染色检测各组大鼠脑梗死情况(A为假手术组;B为模型组;C为吴茱萸碱低剂量组;D为吴茱萸碱高剂量组; E为吴茱萸碱高剂量+空载质粒组;F为吴茱萸碱高剂量+HMGB1过表达组)图2各组大鼠mNSS评分比较(模型组与假手术组比较,*P<0.05;与模型组比较,#P<0.05;与吴茱萸碱低剂量组比较,әP<0.05;与吴茱萸碱高剂量组比较,һP<0.05)图3各组大鼠脑梗死面积比较(模型组与假手术组比较,*P<0.05;与模型组比较,#P<0.05;与吴茱萸碱低剂量组比较,әP<0.05;与吴茱萸碱高剂量组比较,һP<0.05)2.2吴茱萸碱对脑梗死大鼠海马神经元凋亡的影响与假手术组比较,模型组大鼠海马神经元凋亡率明显升高(P<0.05);与模型组比较,吴茱萸碱低剂量组㊁吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组大鼠海马神经元凋亡率均降低(P<0.05),吴茱萸碱高剂量组大鼠海马神经元凋亡率较吴茱萸碱低剂量组进一步降低(P<0.05);与吴茱萸碱高剂量组比较,吴茱萸碱高剂量+HMGB1过表达组大鼠海马神经元凋亡率升高(P<0.05);吴茱萸碱高剂量+空载质粒组大鼠海马神经元凋亡率无明显变化(P>0.05)㊂详见图4㊁图5㊂图4TUNEL染色检测各组大鼠海马神经元凋亡(ˑ400)图5各组大鼠海马神经元凋亡率比较(模型组与假手术组比较,*P<0.05;与模型组比较,#P<0.05;与吴茱萸碱低剂量组比较,әP<0.05;与吴茱萸碱高剂量组比较,һP<0.05)2.3吴茱萸碱对脑梗死大鼠海马神经元超微结构的影响假手术组海马神经元胞体形态大且完好,存在众多神经轴突,细胞器完整,细胞核边缘光滑且染色质均匀分布;模型组大鼠海马神经元超微结构受损严重,神经元形态受损不完整,神经轴突大量消失,细胞器结构破坏,细胞质内形成很多空泡及溶酶体,细胞核皱缩且染色质凝聚;与模型组比较,吴茱萸碱低剂量组㊁吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组大鼠海马神经元超微结构受损症状均减轻,相比吴茱萸碱低剂量组,吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组大鼠海马神经元超微结构受损症状进一步减轻;与吴茱萸碱高剂量组比较,吴茱萸碱高剂量+HMGB1过表达组大鼠海马神经元受损症状加重㊂详见图6㊂图6透射电镜观察各组大鼠海马神经元超微结构(ˑ15000)2.4吴茱萸碱对脑梗死大鼠脑组织促炎因子COX-2㊁IL-18㊁iNOS水平的影响与假手术组比较,模型组大鼠脑组织COX-2㊁IL-18㊁iNOS水平明显升高(P<0.05)㊂与模型组比较,吴茱萸碱低剂量组㊁吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组大鼠脑组织COX-2㊁IL-18㊁iNOS水平均降低(P<0.05),吴茱萸碱高剂量组大鼠脑组织COX-2㊁IL-18㊁iNOS水平相比吴茱萸碱低剂量组进一步降低(P<0.05);与吴茱萸碱高剂量组比较,吴茱萸碱高剂量+HMGB1过表达组大鼠脑组织COX-2㊁IL-18㊁iNOS水平升高(P<0.05);吴茱萸碱高剂量+空载质粒组大鼠脑组织COX-2㊁IL-18㊁iNOS水平无明显变化(P>0.05)㊂详见图7㊂图7各组大鼠脑组织COX-2㊁IL-18㊁iNOS水平比较(模型组与假手术组比较,*P<0.05;与模型组比较,#P<0.05;与吴茱萸碱低剂量组比较,әP<0.05;与吴茱萸碱高剂量组比较,һP<0.05)2.5吴茱萸碱对脑梗死大鼠血清促炎因子COX-2㊁IL-18㊁iNOS水平的影响与假手术组比较,模型组大鼠血清COX-2㊁IL-18㊁iNOS水平明显升高(P<0.05)㊂与模型组比较,吴茱萸碱低剂量组㊁吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组大鼠血清COX-2㊁IL-18㊁iNOS水平均降低(P<0.05),吴茱萸碱高剂量组大鼠血清COX-2㊁IL-18㊁iNOS水平较吴茱萸碱低剂量组进一步降低(P< 0.05);与吴茱萸碱高剂量组比较,吴茱萸碱高剂量+ HMGB1过表达组大鼠血清COX-2㊁IL-18㊁iNOS水平升高(P<0.05),吴茱萸碱高剂量+空载质粒组大鼠血清COX-2㊁IL-18㊁iNOS水平无明显变化(P>0.05)㊂详见图8~图10㊂图8各组大鼠血清COX-2水平比较(模型组与假手术组比较,*P<0.05;与模型组比较,#P<0.05;与吴茱萸碱低剂量组比较,әP<0.05;与吴茱萸碱高剂量组比较,һP<0.05)图9各组大鼠血清IL-18水平比较(模型组与假手术组比较,*P<0.05;与模型组比较,#P<0.05;与吴茱萸碱低剂量组比较,әP<0.05;与吴茱萸碱高剂量组比较,һP<0.05)图10各组大鼠血清iNOS水平比较(模型组与假手术组比较,*P<0.05;与模型组比较,#P<0.05;与吴茱萸碱低剂量组比较,әP<0.05;与吴茱萸碱高剂量组比较,һP<0.05)2.6吴茱萸碱对脑梗死大鼠脑组织HMGB1/TLR4/ NF-κB通路相关蛋白表达的影响与假手术组比较,模型组大鼠脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/NF-κB p65明显升高(P<0.05)㊂与模型组比较,吴茱萸碱低剂量组㊁吴茱萸碱高剂量组㊁吴茱萸碱高剂量+空载质粒组大鼠脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/NF-κB p65均降低(P<0.05),吴茱萸碱高剂量组大鼠脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/NF-κB p65较吴茱萸碱低剂量组进一步降低(P<0.05);与吴茱萸碱高剂量组比较,吴茱萸碱高剂量+HMGB1过表达组大鼠脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/ NF-κB p65升高(P<0.05),吴茱萸碱高剂量+空载质粒组大鼠脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/ NF-κB p65无明显变化(P>0.05)㊂详见图11㊁图12㊂图11免疫印迹法检测各组大鼠脑组织HMGB1/TLR4/NF-κB通路相关蛋白表达(A为假手术组;B为模型组;C为吴茱萸碱低剂量组;D为吴茱萸碱高剂量组;E为吴茱萸碱高剂量+空载质粒组;F为吴茱萸碱高剂量+HMGB1过表达组)图12各组大鼠脑组织HMGB1/TLR4/NF-κB通路相关蛋白表达比较(模型组与假手术组比较,*P<0.05;与模型组比较,#P<0.05;与吴茱萸碱低剂量组比较,әP<0.05;与吴茱萸碱高剂量组比较,һP<0.05)3讨论神经炎症是造成脑梗死神经损伤的致病因素,抑制神经炎症可减轻神经元凋亡,从而改善脑损伤[12-13]㊂吴茱萸碱是具有强烈抗菌㊁抗炎特性的生物碱,可通过减轻机体炎来缓解哮喘大鼠气道炎症[14]和小鼠溃疡性结肠炎症状[15]㊂本研究结果显示,不同剂量的吴茱萸碱可降低脑梗死大鼠mNSS评分,减少脑梗死面积,并降低海马神经元凋亡率及血清与脑组织COX-2㊁IL-18㊁iNOS水平,减轻海马神经元超微结构损伤,表明吴茱萸碱可降低促炎因子表达释放,抑制神经炎症发生发展,减轻海马神经元凋亡损伤,最终改善脑梗死大鼠神经功能,提示吴茱萸碱具有明显的脑保护作用㊂在炎症反应过程中,HMGB1作为TLR4的内源性配体,可以激活TLR4,然后激活NF-κB,促进一系列炎性因子的释放,导致过度和损伤性炎症,进而导致组织损伤㊂阻滞HMGB1/TLR4/NF-κB信号传导可降低炎性因子过量表达,减轻神经炎症,进而改善认知功能[16]㊂有研究显示,抑制HMGB1介导的TLR4/NF-κB 信号通路的激活可抑制神经炎症和氧化应激,减轻包括脑梗死在内的脑缺血疾病导致的脑损伤和神经功能缺损[17-18]㊂本研究发现脑梗死大鼠脑组织HMGB1㊁TLR4蛋白表达及p-NF-κB p65/NF-κB p65较假手术组大鼠明显升高,表明HMGB1/TLR4/NF-κB信号通路被激活,吴茱萸碱可逆转其变化趋势,提示HMGB1/ TLR4/NF-κB信号通路可能参与介导吴茱萸碱对脑梗死大鼠神经炎症的抑制过程㊂为了进一步验证吴茱萸碱的作用机制,本研究采用高剂量吴茱萸碱处理脑梗死大鼠的同时过表达HMGB1,结果发现上调HMGB1表达可激活TLR4/NF-κB信号传导,减弱吴茱萸碱对脑梗死大鼠神经炎症的抑制作用,拮抗其对海马神经元凋亡损伤的减轻作用,最终逆转吴茱萸碱对脑梗死大鼠神经功能的改善作用,揭示吴茱萸碱抑制脑梗死大鼠神经炎症是通过上调HMGB1实现的㊂总之,吴茱萸碱可减少促炎因子释放,抑制神经炎症反应,减轻脑梗死大鼠海马神经元超微结构损伤及凋亡,最终改善大鼠神经功能缺损,阻断HMGB1/ TLR4/NF-κB信号途径传导可能是其机制之一㊂本研究证实了吴茱萸碱对脑梗死大鼠具有治疗作用,为临床脑缺血疾病的治疗提供了新的药物选择㊂参考文献:[1]KONG F,HUANG X,SU L,et al.Risk factors for cerebral infarctionin takayasu arteritis:a single-centre case-control study[J].Rheumatology,2021,61(1):281-290.[2]TALERICO R,TOSONI A,PILATO F,et al.Cerebral infarctionfollowing cyanoacrylate endoscopic therapy of duodenal varicesin a patient with a patent foramen ovale:comment[J].Internaland Emergency Medicine,2021,16(7):2021-2022.[3]XIA Q,ZHAN G F,MAO M,et al.TRIM45causes neuronal damageby aggravating microglia-mediated neuroinflammation uponcerebral ischemia and reperfusion injury[J].Experimental&Molecular Medicine,2022,54:180-193.[4]LIU H,DAI Q M,YANG J,et al.Zuogui pill attenuatesneuroinflammation and improves cognitive function in cerebralischemia reperfusion-injured rats[J].Neuroimmunomodulation,2022,29(2):143-150.[5]XU X,PIAO H N,AOSAI F M,et al.Arctigenin protects againstdepression by inhibiting microglial activation and neuroinflammation viaHMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways[J].British Journal of Pharmacology,2020,177(22):5224-5245. [6]LI S,LUO L H,HE Y,et al.Dental pulp stem cell-derived exosomesalleviate cerebral ischaemia-reperfusion injury throughsuppressing inflammatory response[J].Cell Proliferation,2021,54(8):e13093.[7]抗晶晶,崔宁.吴茱萸碱类化合物对阿尔茨海默病及脑血管疾病的药理作用研究进展[J].南京师大学报(自然科学版),2021,44(3):137-141.[8]MENG T Y,FU S P,HE D W,et al.Evodiamine inhibitslipopolysaccharide(LPS)-induced inflammation in BV-2cells viaregulating AKT/Nrf2-HO-1/NF-κB signaling axis[J].Cellular andMolecular Neurobiology,2021,41(1):115-127.[9]肖志博,谢海,金辉,等.丙泊酚基于SIRT1/Foxo1信号缓解脑缺血再灌注造成血脑屏障损伤[J].微循环学杂志,2022,32(1):12-18.[10]崔连旭,江文康,陆大鸿,等.临床级人脐带间充质干细胞对创伤性脑损伤大鼠神经功能的改善作用[J].中国组织工程研究,2023,27(6):835-839.[11]CHOU C H,YANG C R.Neuroprotective studies of evodiamine inan okadaic acid-induced neurotoxicity[J].International Journal ofMolecular Sciences,2021,22(10):5347.[12]ZHENG K,ZHANG Y L,ZHANG C W,et al.PRMT8attenuatescerebral ischemia/reperfusion injury via modulating microgliaactivation and polarization to suppress neuroinflammation byupregulating Lin28a[J].ACS Chemical Neuroscience,2022,13(7):1096-1104.[13]SHAO Y J,ZHANG Y,WU R R,et work pharmacologyapproach to investigate the multitarget mechanisms of ZhishiRhubarb Soup on acute cerebral infarction[J].PharmaceuticalBiology,2022,60(1):1394-1406.[14]WANG Q,CUI Y B,WU X F,et al.Evodiamine protects againstairway remodelling and inflammation in asthmatic rats bymodulating the HMGB1/NF-κB/TLR-4signalling pathway[J].Pharmaceutical Biology,2021,59(1):192-199.[15]杨哲,孙荣蔚,王赛男,等.吴茱萸碱对DSS诱导小鼠急性溃疡性结肠炎的保护作用研究[J].中国野生植物资源,2021,40(1):1-8;14.[16]QIU C,WANG M,YU W,et al.Activation of the hippocampal LXRβimproves sleep-deprived cognitive impairment by inhibitingneuroinflammation[J].Molecular Neurobiology,2021,58(10):5272-5288.[17]YAN S H,FANG C Q,CAO L,et al.Protective effect of glycyrrhizicacid on cerebral ischemia/reperfusion injury via inhibitingHMGB1-mediated TLR4/NF-κB pathway[J].Biotechnology andApplied Biochemistry,2019,66(6):1024-1030.[18]BAO Z C,ZHANG S G,LI X L.MiR-5787attenuates macrophages-mediated inflammation by targeting TLR4/NF-κB in ischemiccerebral infarction[J].Neuro Molecular Medicine,2021,23(3):363-370.(收稿日期:2022-09-24)(本文编辑王丽)。

吴茱萸碱对大鼠体重及血清瘦素水平的影响

吴茱萸碱对大鼠体重及血清瘦素水平的影响

吴茱萸碱对大鼠体重及血清瘦素水平的影响
施京红;闫剑群;丁辉
【期刊名称】《陕西中医》
【年(卷),期】2009(030)010
【摘要】目的:研究中药对大鼠摄食量、体重及血清瘦素水平的影响.方法:通过测定大鼠的摄食量、体重及血清瘦素水平,探讨吴茱萸碱在大鼠体重控制中的可能机制.结果:吴茱萸碱40 mg/kg灌胃干预后,大鼠摄食量和体重显著降低,血清瘦素水平显著增高.结论:提示血清瘦素水平增高在吴茱萸碱调控摄食、体重的机制中发挥作用.
【总页数】2页(P1425-1426)
【作者】施京红;闫剑群;丁辉
【作者单位】陕西中医学院医疗技术系,咸阳,712046;西安交大医学院生理与病理生理系,西安,710061;西安交大附属二院消化科,西安,710004
【正文语种】中文
【相关文献】
1.体重指数及OGTT对血清瘦素水平的影响 [J], 丛丽;李强;张巾超;刘凤晨;孙予倩;梁玮
2.维糖平对糖尿病大鼠体重、内脏重量、血清游离脂肪酸及瘦素的影响 [J], 滕士超;余江毅;刘沈林
3.孕期体重指数及其增长对血清瘦素水平的影响 [J], 周俊;田聪贵
4.妊娠期血清瘦素水平及其对该期和产后体重的影响 [J], 高云; 朱绍敏; 高红; 许利

5.城市居民血清瘦素水平及体重指数、体脂含量和生活方式对其分泌的影响 [J], 朱凤;徐贵发;李辉;赵秀兰;石劢
因版权原因,仅展示原文概要,查看原文内容请购买。

基因芯片检测吴茱萸碱对小鼠DC细胞功能调控相关基因表达的影响

基因芯片检测吴茱萸碱对小鼠DC细胞功能调控相关基因表达的影响

基因芯片检测吴茱萸碱对小鼠DC细胞功能调控相关基因表达的影响祝绚;梁华平;鲍依稀【期刊名称】《中国免疫学杂志》【年(卷),期】2008(024)007【摘要】目的:利用基因芯片技术检测吴茱萸碱对小鼠骨髓来源DC功能调控相关基因表达的影响.方法:分离BALB/c小鼠骨髓细胞,经GM-CSF体外诱导培养10天的未成熟DC细胞(iDC)经不同因素处理并分为:对照组(I)、吴茱萸碱组(EVO)(Ⅱ)、内毒素(LPS)组(Ⅲ)、EVO+LPS组(Ⅳ),24小时后收集各组细胞,抽提总RNA,利用SuperArray公司小鼠DC与抗原提呈细胞基因芯片MM-604对细胞功能相关基因进行检测.结果:Ⅱ/Ⅰ上调≥2倍基因7个,下调≥2倍基因10个;Ⅲ/Ⅰ上调≥2倍基因37个,下调≥2倍基因12个;Ⅳ/Ⅱ上调≥2倍基因46个,下调≥2倍基因7个;Ⅳ/Ⅲ上调≥2倍基因24个,下调≥2基因2个,对这些基因功能进行检索分类,主要涉及细胞因子分泌及其受体表达、抗原摄取、抗原提呈、细胞表面受体、信号传导.结论:吴茱萸碱对DC作用涉及多个基因的表达调控,这些基因控制并影响着DC 功能、分化和成熟,为进一步寻找药物靶点提供了线索.【总页数】4页(P597-600)【作者】祝绚;梁华平;鲍依稀【作者单位】重庆医科大学免疫学教研室临床检验诊断学省部共建教育部重点实验室,重庆,400016;第三军医大学大坪医院野战外科研究所,创伤、烧伤与复合伤国家重点实验室,重庆,400042;重庆医科大学免疫学教研室临床检验诊断学省部共建教育部重点实验室,重庆,400016【正文语种】中文【中图分类】R285.5;R286.91【相关文献】1.姜黄素对小鼠心脏发育相关基因表达的影响及其表观遗传调控机制 [J], 孙慧超;朱静;吕铁伟;吴晓云;黄国英;田杰2.利用生物芯片技术检测人参皂苷Rg1对小鼠树突状细胞功能调控相关基因表达的影响 [J], 周英武;彭桂英;顾立刚;殷胜骏3.Foxp3参与调节性T细胞功能相关基因表达调控的研究进展 [J], 薛剑;沈立松4.基因芯片检测灵芝提取物对白细胞中免疫相关基因表达的影响 [J], 丁晖;蔡彦宁;温玫;陈彪5.尾部悬吊对小鼠脾脏淋巴细胞功能及c-fos原癌基因表达的影响 [J], 张虹;胡平;温秀兰;黄宾因版权原因,仅展示原文概要,查看原文内容请购买。

吴茱萸碱作为多靶点化合物的药理学研究进展

吴茱萸碱作为多靶点化合物的药理学研究进展

吴茱萸碱作为多靶点化合物的药理学研究进展冯长梅(综述);王占黎;周立社(审校)【摘要】Evodiamine is a natural indole alkaloid and it is one of the main bioactive ingredients of evodiae fructus.More attention has been paid to its beneficial effects in cancer,obesity,pain,inflamma-tion,cardiovascular diseases,Alzheimer disease,and infectious diseases.It′s discovered that evodiamine has a superior ability to bind with various proteins,therefore can be used as multi-target drugs.Here is to make a review of the recent advances in the biological activity and pharmacokinetics studies of evodia-mine,so as to provide a direction for further multi-target drug design.%吴茱萸碱是一种天然存在的吲哚生物碱,也是中药吴茱萸的主要生物学活性成分。

当提及吴茱萸碱的药理学活性时人们往往关注其在肿瘤、肥胖、疼痛、炎症、心血管疾病、阿尔茨海默病、感染性疾病等方面的功效。

如今吴茱萸碱已被发现对多种蛋白有较好的结合能力,因此可作为多靶点化合物发挥多种生物学活性。

该文主要对吴茱萸碱生物学活性的研究进展进行综述,同时也对吴茱萸碱药动学及其与靶点相互作用方面进行讨论,以期对未来多靶点药物设计提供理论依据。

吴茱萸碱对大鼠下丘脑弓状核 NPY 蛋白表达的影响

吴茱萸碱对大鼠下丘脑弓状核 NPY 蛋白表达的影响

吴茱萸碱对大鼠下丘脑弓状核 NPY 蛋白表达的影响施京红;王萍;胥冰;张丽君;丁辉【期刊名称】《陕西医学杂志》【年(卷),期】2015(000)007【摘要】Objective:To investigate the effect of evodiamine (Evo) on the expresstion of peptide NPY in the arcuate nucleus (ARC) of the hypothalamus in rats .Methods:Male Sprague‐Dawley rats (5 weeksold ,n=36) were randomly divided into three groups (n=12) .Intragastric administration of Evo 40 mg/kg ,Evo 4 mg/kg or water was infused for 25 days ,once a day .We evaluated the effect of Evo on NPY peptide expression .NPY was de‐tected by immunohistochemistry in cytoplasm of the hypothalamic ARC .The expression of peptide NPY in hypotha‐lamic ARC was measured by Western Blotting .Results :The frequency of NPY‐IR neurons of Evo 40 mg/kg was significantly smaller than control group .The expression of orexigenic peptide NPY in hypothalamic ARC of the ani‐mals treated with Evo 40 mg/kg (Ratio of light density between NPY and GAPDH) had a noticeable drop compared with the controlgroup .Conclusion:Our results show that intragastric administration of Evo (40 mg/kg) decreased orexigenic NPY peptide level in the arcuate nucleus (ARC) of the hypothalamus .This is one of the most important mechanisms of Evo in the hypothalamus .%目的:研究吴茱萸碱(Evo)对大鼠下丘脑弓状核神经肽Y(NPY)蛋白表达水平的影响。

吴茱萸次碱对高血压大鼠血压的影响及作用机制

吴茱萸次碱对高血压大鼠血压的影响及作用机制

吴茱萸次碱对高血压大鼠血压的影响及作用机制及时雨;齐平建【期刊名称】《中国生化药物杂志》【年(卷),期】2012(033)003【摘要】Purpose To investigate the antihypertensive effect and mechanism of rutaecarpine (Rut) in hypertensive rats. Methods The spontaneously hypertensive rats(SHR) and two - kidney, one - clip (2K1C) hypertensive rats were used in our research. After dividing into normal group,model group,positive group and Rut( 10,20,40 mg/kg) , Rats of the drug groups were intragastrically administrated the corresponding drugs by once daily for 4 weeks,and pressure was measured once a week. After the last administration , the blood was collected from abdominal aorta to measure the plasma thromboxane B2 (TXB2) ,6-Keto-PGF1α,plasma renin activity(PRA),and atrial natriuretic peptide( ANP). Results Rut can decrease blood pressure in both SHR and 2K1C hypertensive rats,it can also reduce the TXB2 level, increase the 6-Keto-PGF1α level in SHR rats,and increase the PRA and ANP level in 2K1C rats. Conclusion The Rut can effectively decrease blood pressure. It's antihypertensive effect may be related to the regulation of plasma PGI2 and TXA2 level and the increase of plasma ANP.%目的观察吴茱萸次碱对高血压模型大鼠血压的影响,并初步探讨其作用机制.方法分别采用自发性高血压大鼠(SHR)及两肾一夹(2K1C)高血压大鼠模型,设正常对照组、模型组、卡托普利阳性组及吴茱萸次碱低、中、高剂量组( 10,20,40 mg/kg),每日灌胃给药1次,给药4周,每周测定1次血压,末次给药后,腹主动脉取血,分别测定血浆血栓素(TXB2)、6-酮-前列腺-F1α(6-Keto-PGF1α)、肾素活性(PRA)、心房钠肽(ANP)水平.结果在两个模型中吴茱萸次碱均有较好的降压作用,并能使SHR 大鼠血浆TXB2水平降低,6-Keto-PGF1α水平升高;使2K1C大鼠血浆PRA、ANP水平升高.结论吴茱萸次碱能明显降低SHR及2K1C大鼠血压,其降压效果可能通过调节PGI2和TXA2水平,改善血管内皮功能及增加舒血管物质ANP水平实现的.【总页数】4页(P237-240)【作者】及时雨;齐平建【作者单位】河南省南阳市中心医院神经外科一区,河南南阳473009;河南省南阳市中心医院神经外科一区,河南南阳473009【正文语种】中文【中图分类】R285.5【相关文献】1.沙格列汀降低自发性高血压大鼠血压的效果及作用机制 [J], 殷音2.菲诺贝特对高血压大鼠血管内皮收缩因子分泌的影响及其作用机制 [J], 屈晨;唐亮;祝岩3.中南大学研究吴茱萸次碱,寻求新作用机制的抗高血压药 [J], 无4.玄参提取物降低自发性高血压大鼠血压的作用机制 [J], 陈婵;陈长勋;吴喜民;王瑞;李医明5.不同强度运动对自发性高血压大鼠肾脏纤维化的影响及作用机制研究 [J], 付常喜;马刚;李平;彭朋因版权原因,仅展示原文概要,查看原文内容请购买。

吴茱萸碱对多囊卵巢综合征模型大鼠的影响

吴茱萸碱对多囊卵巢综合征模型大鼠的影响

吴茱萸碱对多囊卵巢综合征模型大鼠的影响
杜芳;姚珍薇
【期刊名称】《激光杂志》
【年(卷),期】2013(34)2
【摘要】目的:观察吴茱萸碱对PCOS大鼠的作用及其作用机制进行初步探讨。

方法:选用Poresky PCOS动物模型,观察大鼠体重、动情周期、血清胰岛素、性激素水平以及病理组织学的变化。

结果:吴茱萸碱能降低PCOS大鼠的体重、维持动情周期、降低血清T、LH和INS水平;卵巢卵泡壁颗粒细胞层数及黄体数量增加。

结论:吴茱萸碱具有降低体重、降低血清T、LH和INS水平、改善多囊卵巢征象和胰岛素抵抗、恢复排卵的作用。

【总页数】3页(P86-88)
【关键词】多囊卵巢综合征(PCOS);吴茱萸碱;PCOS动物模型
【作者】杜芳;姚珍薇
【作者单位】重庆医科大学附属第一医院妇产科
【正文语种】中文
【中图分类】R474
【相关文献】
1.小檗碱与吴茱萸碱配伍对高胆固醇血症大鼠小肠ACAT2、ApoB48和NPC1L1表达的影响 [J], 周昕;魏宏;沈涛;魏江平;任佳月;倪恒凡
2.吴茱萸次碱对大鼠心室肌细胞瞬时外向钾电流的影响 [J], 饶本龙;沙毛毛;匡怡;
任静娜;马宏昕;许正新
3.吴茱萸次碱对高糖诱导的阿尔茨海默病大鼠认知障碍的影响 [J], 陈建国;吴亚更;李响
4.吴茱萸次碱对大鼠急性肾损伤氧化应激的影响及机制研究 [J], 王春华;俞百元;余又新;方林森;徐庆连;梁朝朝
5.吴茱萸次碱对局灶性脑缺血模型大鼠脑组织病理、免疫失衡和氧化应激的调节作用及机制研究 [J], 周海燕; 周俐红; 张彩霞; 周立; 韩玉华
因版权原因,仅展示原文概要,查看原文内容请购买。

吴茱萸次碱对2型糖尿病肥胖大鼠的干预作用

吴茱萸次碱对2型糖尿病肥胖大鼠的干预作用

吴茱萸次碱对2型糖尿病肥胖大鼠的干预作用聂绪强;俞林花;陈怀红;赵同峰;卞卡【期刊名称】《中国药理学通报》【年(卷),期】2010(26)7【摘要】目的观察吴茱萸次碱(rutaecarpine,Rut)对2型糖尿病肥胖大鼠(T2DM)的干预作用.方法用高脂饲料喂养结合一次性尾静脉注射小剂量链脲佐菌素(streptozotocin,STZ)30 mg·kg-1建立2型糖尿病肥胖大鼠模型.用Rut干预治疗,以二甲双胍片作为阳性对照.给药7 wk后观察对大鼠空腹血糖(FBG)、甘油三脂(TG),总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)和血清炎症因子C-反应蛋白(CRP)等的影响,及肾脏、肝脏和胰脏的病理变化.结果Rut能明显降低T2DM的TC、TG和 LDL-C,升高HDL-C(P<0.05);Rut组CRP明显降低(P<0.05),病理切片观察Rut可以改善T2DM肥胖大鼠的肾、肝、胰的病理变化.但对血糖值没有明显降低(P>0.05),与二甲双胍组比较没有统计学意义(P>0.05).结论Rut能降低2型糖尿病肥胖大鼠的血脂,减轻炎症反应,改善肾、肝、胰的病理变化.Rut作为治疗T2DM代谢综合征的潜在药物值得进一步的研究.【总页数】5页(P872-876)【作者】聂绪强;俞林花;陈怀红;赵同峰;卞卡【作者单位】上海中医药大学穆拉德中药现代化研究中心,上海,201203;上海中医药大学穆拉德中药现代化研究中心,上海,201203;浙江大学医学院附属二院,浙江,杭州,310009;浙江大学医学院附属二院,浙江,杭州,310009;美国德克萨斯大学休斯敦医学院综合生物及药理学系,德克萨斯大学分子医学研究所,美国,休斯敦,TX77030【正文语种】中文【中图分类】R-332;R284.1;R587.1;R589.205;R972.6【相关文献】1.脂氧素A4干预幼年肥胖大鼠血管内皮功能损伤的作用研究 [J], 辛显芳;高莉莉;关凤军;吴晓露;艾凤婷2.吴茱萸次碱通过SIRT1通路干预氧化应激诱导血管平滑肌细胞增殖的作用 [J], 马懿;吴赛珠;阮云军;苏双3.针刺对肥胖大鼠胰岛素抵抗状态的干预作用 [J], 老锦雄;邓聪4.有氧运动与多糖干预对肥胖大鼠的血脂调节及抗炎作用 [J], 张静;沙继斌;张林;张成岗5.饮食对肥胖大鼠骨关节炎的辅助治疗干预作用研究 [J], 鲁琛;范清秋;胡张捷;刘艺因版权原因,仅展示原文概要,查看原文内容请购买。

吴茱萸次碱对大鼠动脉增龄性改变的干预影响

吴茱萸次碱对大鼠动脉增龄性改变的干预影响

吴茱萸次碱对大鼠动脉增龄性改变的干预影响马懿;吴赛珠;龚勋;莫颖莉【期刊名称】《中华老年心脑血管病杂志》【年(卷),期】2014(016)007【摘要】目的观察吴茱萸次碱对大鼠动脉增龄性变化的影响,并探讨其作用机制.方法选择Wistar大鼠32只,分为3月龄组、12月龄组、18月龄组和干预组,每组8只.各组检测超氧化物歧化酶(SOD)、丙二醛以及谷胱甘肽(GSH)含量;实时PCR 法检测内皮型一氧化氮合酶(eNOS) mRNA表达;Western blot法测eNOS蛋白和磷酸化蛋白表达.结果与12月龄组比较,18月龄组丙二醛水平明显升高,SOD、GSH、eNOS mRNA、磷酸化eNOS和eNOS蛋白表达明显降低(P<0.05);与18月龄组比较,干预组丙二醛[(4.96±0.22)nmol/mg vs (7.26±0.35)nmol/mg]水平明显降低,SOD[(232.07±11.16)U/mg vs (149.88±13.77)U/mg]、GSH[(12.27±1.42)μg/mg vs(5.40±0.79) μg/mg]、eNOS mRNA[(1.39±0.15) vs (0.74±0.18)]、磷酸化eNOS[(204.67±3.07) vs(121.45±2.54)]和eNOS蛋白[(591.44±2.98) vs (469.57±1.79)]表达明显升高(P<0.05);3月龄组与12月龄组上述指标比较,差异无统计学意义(P>0.05).结论吴茱萸次碱可以提高自然增龄大鼠动脉血管的抗氧化能力,增加eNOS的表达,从而发挥延缓大鼠血管衰老的作用.【总页数】4页(P743-746)【作者】马懿;吴赛珠;龚勋;莫颖莉【作者单位】510515 广州,南方医科大学南方医院心血管内科;510515 广州,南方医科大学南方医院心血管内科;510515 广州,南方医科大学南方医院心血管内科;510515 广州,南方医科大学南方医院心血管内科【正文语种】中文【相关文献】1.老年及高龄老人记忆及认知功能生理增龄性及整体增龄性动态改变的研究 [J], 马永兴;竺越;陈韵美;孔争琦;朱秀英;吴素芬;谢素珍;顾跃娣;俞正炎;叶荣真;杨俭英;王赞舜2.不同水平抑制肾素-血管紧张素系统对大鼠肾脏增龄性改变的影响 [J], 张利;陈香美;刘航;彭丽霞;张雪光;洪权3.外源性HGF对增龄和动脉硬化大鼠HGF和TGF-β1平衡的影响 [J], 赵晟昊;李彤;王凡4.自发性高血压大鼠肾α-adducin基因表达的增龄性改变和盐摄入的影响 [J], 孙超峰;郝丽娜;吕颖;殷艳蓉;高海燕;程功5.SD大鼠心脏结构和功能增龄性改变及与炎症因子表达的相关性 [J], 刘海娘;付浩燃;于勤因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Intragastric Administration of Evodiamine Reduces NPY and AGRP Gene Expression in The Hypothalamus andDecreases Food Intake in Rats1Shi Jinghong,Yan Jianqun *,Lei Qi,Zhao Junjie,Chen Ke,Yang Dejun,Zhao XiaolinDepartment of Physiology and Pathophysiology,Key Laboratory of Environment and Genes Related to Diseases,Ministry of Education,Xi’an Jiaotong University School of Medicine,Xi’an(710061)E-mail:jqyan@AbstractEvodiamine (Evo), an alkaloidal component extracted from the fruit of Evodiae fructus (Evodia rutaecarpa Benth., Rutaceae), decreases the body weight of rats through a poorly defined mechanism. The hypothalamus is responsible for controlling food intake and energy expenditure. We postulate that Evo mediates this activity by modulating feeding-related peptides in the hypothalamus. We investigated the effects of Evo on food intake, body weight and the mRNA expression of hypothalamic NPY, AGRP, Pmch, POMC, CART, and MC4R, in male rats. Evo (40 mg/kg or 4 mg/kg) was intragastrically administrated for 25 days, and the food intake and body weight of rats were recorded daily. Blood samples were collected for leptin radioimmunoassay (RIA). Real-Time PCR was used to analyze the mRNA expression. Our results show that intragastric administration of Evo (40 mg/kg) inhibits food intake, decreases body weight and reduces the mRNA expression of NPY and AGRP in the hypothalamus, while it increases the circulating level of leptin. Our results indicate that Evo decreases food intake, and therefore body weight, partly by down-regulating NPY and AGRP mRNA expression in the hypothalamus.Keywords:evodiamine,leptin,NPY,AGRP,food intake1. IntroductionEvodiamine (Evo) is a major alkaloidal component of the dried, unripe fruit of Evodia rutaecarpa Bentham (Rutaceae), and is an agonist of vanilloid receptor1 (VR1) and has no perceivable taste (including a peppery hot taste). Previous investigations have indicated that Evo has a number of pharmacological actions such as decreasing body weight, regulating body temperature, anti-tumor activity, pain relief, heart protection, decreasing blood pressure and inducing endocrine effects [1-6]. Previous study demonstrated that Evo exhibits Capsaicin-like anti-obese actions which may stimulate VR1 in the primary sensory neurons. Evo significantly decreased the body weight, perirenal fat weight and epididymal fat weight of rats on a high-fat diet. Also, the level of serum free fatty acid, total lipids, triglyceride, and cholesterol in the liver were significantly reduced as compared with the control diet group. Furthermore, both lipolytic activity in the perirenal fat tissue and specific GDP binding in brown adipose tissue mitochondria, as the biological index of enhanced heat production, were significantly increased in the Evo fed rats. The researchers concluded that Evo exerts anti-obesity effects by increasing energy expenditure and preventing the accumulation of perivisceral fat. They also thought that the anti-obesity effects of Evo may depend on the enhancement of UCP1 thermogenesis [1].Wang et al reported recently that dietary supplementation with Evo could ameliorate diet-induced obesity in mice and inhibit adipogenesis. They indicated that Evo inhibits adipogenesis by stimulating ERK/MAPK signaling which down-regulates the expression of adipocyte transcription factors and insulin-induced Akt signaling. Because Evo clearly showed anti-obesity effects in UCP1-deficient mice, this suggests that Evo triggered an UCP1-independent mechanism to prevent diet-induced obesity. Evo1This project was supported by the grants from National Natural Science Foundation of China (No.30670691) and from Ministry of Education of China (No.20060698046)。

also improve leptin resistance and insulin sensitivity in the mice [2]. Evo increased the plasma concentration of CCK in a dose-dependent manner and inhibited both gastric emptying and gastrointestinal transit [7]. CCK is obviously implicated as a factor regulating feeding and obesity. The mechanism involved in the process is not clear yet and needs further investigation.VR1, or the transient receptor potential vanilloid subtype 1 channel (TRPV1), was the first member characterized of a family of six vanilloid receptors named TRPV1–6, which are themselves part of a larger superfamily of calcium permeable cation channels. VR1 is not only expressed in primary sensory neurons, but has rather widespread distribution in mouse, rat and human brain tissue. Mezey et al observed VR1-expressing neurons throughout the neuroaxis in the rat, including several areas of the hypothalamus. There were immunopositive cells in the suprachiasmatic nucleus, numerous weakly immunostained cells in anterior hypothalamic nuclei, the paraventricular nuclei among the magnocellular hypothalamic neurons, the dorsomedial hypothalamic nucleus, and also the arcuate nuclei [8]. Jennifer et al reported that VR1 expression was densely localized in the arcuate, the dorsal medial hypothalamic nucleus, periventricular and ventromedial hypothalamic nuclei in the mouse. In contrast, there was very little binding in the paraventricular hypothalamic nucleus [9]. Some studies indicated that capsaicin has a number of pharmacological actions in the brain. In the hypothalamus, the capsaicin-sensitive neurons are thought to carry 5-hydroxytryptamine receptors [10]. Capsaicin was shown to evoke glutamate release from slices of hypothalamus [11] and deplete the β-endorphin content of the hypothalamus [12], an effect which might be mediated through the VR1 receptors in the arcuate nucleus. Evo has some pharmacological effects same as those of capsaicin. However, the effects of Evo in the brain, especially in the hypothalamus, have not yet been reported. The expression area for VR1 and NPY, AGRP peptides are similarly widespread and very similar in their distribution in the hypothalamus. We postulated that Evo not only acts on peripheral sensory neurons, but also on the neural centers.The hypothalamus and its neural circuits play an important role in regulating feeding behavior and responding to signaling in the homeostatic system [13,14]. The hypothalamus is the center responsible for regulating food intake and energy expenditure. Hypothalamic nuclei and other areas, such as the arcuate, ventromedial, dorsomedial, paraventricular nuclei and lateral hypothalamic areas, are associated with regulation of energy balance. The hypothalamus regulates many aspects of energy homeostasis, adjusting both the drive to eat and expenditure of energy in response to a wide range of nutritional and other signals. It is becoming clear that various neural circuits operate to different degrees and probably serve specific functions under particular conditions of altered feeding behavior [14]. Furthermore, long-term energy-related signals (insulin and leptin) and short-term signals (intestinal nutrients) are transmitted to balance and control energy metabolism, food intake and endocrine response.The hypothalamus has numerous neuropeptides regulating appetite [14,15,16] these include; orexinergic factors; NPY, AGRP, orexin, MCH, and ghrelin, and anti-orexinergic factors; leptin, α-MSH, urocortin, and CART. Arcuate nuclei are the most important hypothalamic nuclei regulating food intake and body weight, and involve several neural functional areas that stimulate or inhibit feeding. Williams et al [14] described both neuropeptide Y (NPY) and agouti gene-related protein (AGRP), as potent stimulators of food intake, and are co-localized in a population of neurons in the ARC [17,18]. Meanwhile pro-opiomelanocortin (POMC; the precursor of a-melanocyte-stimulating hormone [a-MSH]) and cocaine- and amphetamine-regulated transcript (CART), which induce an anorexic response, are co-localized in an adjacent subset of ARC neurons [19,20]. Leptin inhibits food intake and increases energy expenditure through interactions with its specific receptors in the hypothalamus. Hypothalamic α-MSH is implicated strongly in the control of food intake and body weight through binding with high affinity to melanocortin receptor-3 (MC3) and MC4 [21,22]. AGRP is a MC4 antagonist and binds with MC4 receptors to compete with α-MSH to enhance the effect ofNPY [23]. The PVN is an integrating center involving many neural pathways that influence energy homeostasis. It is richly supplied by axons projecting from the ARC-NPY/AGRP and POMC/CART neurons and from the orexin neurons of the lateral hypothalamus [24,25]. PVN is very sensitive to feeding-related peptides such as NPY and α-MSH. MCH is mainly expressed in the lateral hypothalamus, and the central administration of MCH may stimulate feeding [26]. MCH over expression in the hypothalamus results in obesity [27]. MCH is an antagonist of melanocortin. MCH and NPY interact with anorexic neural peptides in the hypothalamus [28]. Orexic peptides interact with anorexic peptides to balance energy metabolism.Here, we examined the mRNA expression levels of hypothalamic NPY, AGRP, Pmch, POMC, CART, and MC4R in rats after Evo administration. We wanted to investigate what role the hypothalamus plays in the previously observed anti-obesity effects of Evo.2. Methods and Materials2.1. AnimalsMale Sprague-Dawley rats (70 g) were housed in individual cages with access to water and chow pellets, and maintained at 20–22°C with a dark: light cycle of 12-hours light, 12-hours dark (lights on at 8:00 AM). Animals acclimatized to these conditions and were handled frequently one week before the beginning of the experiment. Animals (n = 9) were randomly divided into three treatment groups; (1) Evo-treated with 40 mg/kg; (2) Evo-treated with 4 mg/kg; (3) control treatment. Evodiamine (Shaanxi Huisheng Medical Technology Co. Ltd, China) was prepared as a suspension using double-distilled water. The food intake and body weight of the rats were recorded daily at 9:00 AM. Intragastric administration of Evo, or water for controls, was performed at 10:00 AM. The intragastric administration was done once a day for 25 days according to the weight of the rats at the solution volume of 1ml/100g. The animals were maintained in accordance with the principles of The Council of Xi’an Jiaotong University Communities.After 25 days of treatment, animals were sacrificed and anesthetized with urethane (1.2 g/kg, ip) between 10:00 AM and 12:00 noon. Next, 4 ml blood was collected from abdominal aorta and allowed to clot on ice. Serum was obtained and stored at -80°C until analysis. The hypothalamus was dissected en bloc under a binocular microscope and stored at -80°C until analysis.2.2. Serum leptin assaySerum leptin was measured by radioimmunoassay (RIA) (rat leptin RIA kit: No. R-28,Beijing Puerweiye BioTech Co. Ltd, China). The sensitivity of the assay was 0.4 ng/ml.2.3. RNA extractionTotal RNA was extracted from the hypothalamus using Trizol reagent (Invitrogen, USA), according to manufacturer’s recommendations. Pellets were suspended in 20–30 µl of DEPC-treated water. The quantity and integrity of isolated RNA was determined for each sample by using UV absorbance (260/280) as well as 1% agarose gel electrophoresis.2.4. Reverse transcription and Real-Time quantitative PCRTotal RNA from the hypothalamus was reverse transcribed using a commercial RT-PCR Kit (AmpliQ, Cat. No.: 260802, Germany). Total RNA from the hypothalamus (2 µg) was reverse transcribed in a final volume of 25 µl. In a sterile RNase-free microcentrifuge tube, we added 2 µg total RNA, 1 µg random hexamer (1 µg/µl) in a total volume of 15 µl of RNase free water. We heated the tube to 70°C for 10 minutes to melt secondary structures within the template. Then the following components were added: 20 units RT Enzyme (20 U/µl), 2.0 µl dNTP mixture (12.5 mM), 0.6 µlRNasin Inhibitor (40 units/µl) and 2.5µl 10× RT Buffer, to a total volume of 25 µl with RNase free water. After incubation (42°C, 45 minutes), the mixture was heated (95°C, 3 min). RT-PCR (AmpliQ, Cat. No.: 260802, Germany) was performed in 25 µl containing 1 µl of the RT reaction, 12.5 µl 2× master mix, 1 µl of each forward and reverse primer, 3.5 µl Green DNA dye I (1:2000) and 6 µl dH2O. The AmpliQ Real Time PCR master mix included TEMPase Hot Start DNA polymerase, a modified Taq DNA polymerase with hot start capabilities. Each forward and reverse primer for hypothalamic neuropeptides and internal are shown in Table 1. Thermal cycling parameters were as follows: 1 cycle of 95°C for 10 minutes followed by 40–45 cycles of 95°C for 30 seconds, 58–60°C for 1 minute, 72°C for 30 seconds, performed on ABI Prism 7000.2.5. Statistical analysisData are presented as the mean ± S.E.M. One-way ANOVA followed by Post Hoc test was used to detect significance among groups. P < 0.05 was considered to be statistically significant. The formula used to calculate the normalized expression of quantitive PCR target genes was as the follows: Normalized expression = (E target)∆Ct target (control – sample) /(E ref)∆Ct ref (control – sample)E target represents the expression of the target gene; E ref the expression of the reference gene ; ∆Ct the difference between the experimental group and the control group; Ct the Cross Threshold. The significance of comparison between the experimental group and the control group is analyzed by one-way ANOV A. The analysis of results of RT-PCR is carried out by randomization test using REST software specially made for quantitive PRC analysis [29]. P < 0.05 was considered to be statistically significant.3.Results3.1.The effect of Evo on food intakeAfter treatment with Evo, the food intake of the rats decreased (Fig. 1). The group treated with Evo 40 mg/kg had a significant decrease in food intake from the 12th day compared with the control. The group treated with Evo 4 mg/kg had a decrease in food intake during the middle and the last medication period but with no significant difference. The result was shown once every three days according to food intake.3.2.The effect of Evo on body weightAfter treatment with Evo, the body weight of the rats decreased (Fig. 2). The group treated with Evo 40 mg/kg had a noticeable fall in the body weight from the 15th day. The group treated with Evo 4 mg/kg had no change in body weights during the early medication period, however as the medication period extended, the body weight of the rats has some decrease but with no significant difference. The result was shown once every five days according to body weight.3.3.The effect of Evo on mRNA expressionThe results are shown in Fig. 3. After treatment with Evo 40 mg/kg, the expression of hypothalamic orexigenic peptides, NPY and AGRP mRNA had a noticeable fall in comparison with the control group (P < 0.05, P < 0.01 respectively). Expression of Pmch mRNA has a slight fall but it was not significant. The expression of anorexigenic peptide POMC mRNA increased and there was no significant difference in comparison with the control group (P > 0.05). The expression of anorexigenic factors CART and MC4R mRNA decreased and there was no significant difference in comparison with the control group (P > 0.05).After treatment with Evo 4 mg/kg, the expression of POMC mRNA increased remarkably in comparison with the control group (P < 0.05). The expression of hypothalamic NPY, AGRP and Pmch mRNA decreases and there was no remarkable difference in comparison with the control group (P >0.05). The expression of hypothalamic CART and MC4R mRNA dropped and there was no remarkable difference in comparison with the control group (P > 0.05).3.4.The effect of Evo on serum leptin levelsAfter treatment with Evo 40 mg/kg, the serum leptin level of the rats increased dramatically in comparison with the control group (P < 0.05) and the group treated with 4 mg/kg (P < 0.01). The administration of Evo 4 mg/kg down-regulated the serum leptin levels and indicated no significant difference compared with the control group (P > 0.05). The result is illustrated in Fig. 4.4.DiscussionEvodiamine (Evo) is an alkaloidal component extracted from the fruit of Evodiae fructus (Evodia rutaecarpa Benth., Rutaceae). Evo decreases body weight through a poorly defined mechanism. The hypothalamus is the center that controls food intake and energy expenditure. It is reasonable to postulate that the hypothalamus is the main site through which Evo mediates its body weight decreasing activity.Our results showed that treatment with Evo 40 mg/kg significantly reduced food intake, body weight and gene expression of NPY and AGRP in the hypothalamus, while it significantly increased the circulating leptin level compared with the control group. In the Evo 40mg/kg group, food intake significantly reduced from the 12th day and body weight significantly decreased from the 15th day. Evo suppressing hypothalamic NPY and AGRP mRNA expression plays a key role in inhibiting food intake. Although Evo up-regulated POMC mRNA and down-regulated CART and MC4R mRNA, there was no significant difference compared with the control group. The anorexic effect is stronger than the orexic effect when they interact with each other. In the end, food intake was reduced and therefore body weight decreased. This correlates with previous investigations [32,33,34].Treatment with Evo 4mg/kg significantly increased the gene expression of POMC in the hypothalamus. NPY and AGRP mRNA expression decreased but there was no significant difference compared with the control group. Other anorexic factors, CART and MC4R mRNA expression and the circulating leptin level, decreased without significant difference. We thought that the effects of up-regulated POMC mRNA might have been counteracted with other orexic peptides. The decreased serum leptin level did not efficiently depress the hypothalamic mRNA expression of NPY and AGRP. The interaction between orexic peptides and anorexic peptides did not affect food intake and body weight. Therefore, we indicated that Evo must have some dosage-pharmacodynamic action in regulating feeding. The dosage and time course of Evo in decreasing body weight needs further investigation. Evo significantly reduced gene expression of NPY and AGRP in the hypothalamus, while significantly increasing the circulating leptin level. Leptin restrains the ARC-NPY/AGRP neurons which are consistent with known roles of leptin [35,42].It has been demonstrated that NPY plays a pivotal role in the control of food intake and body weight within the hypothalamus. NPY is a potent orexigenic factor which stimulates feeding and reduces energy expenditure. Infusion of NPY into the brain of satiated rats may elicit a ravenous food intake and repeated infusions may lead to obesity [30,31]. Therefore, NPY over expression results in obesity. Knocking out NPY gene in ob/ob mice effectively inhibits hyperphagia and obesity by reducing food intake and increasing energy expenditure [32]. A primary central nervous site of leptin for control of energy balance is the hypothalamus. Ob-Rb has been co-localized with NPY/AGRP and POMC/CART in the ARC neurons and with MCH and orexins in the lateral hypothalamus neurons [33-36]. Leptin inhibits expression of orexigenic NPY/AGRP hypothalamic neurons, while stimulating anorexigenic POMC/CART hypothalamic neurons in ARC. The gene mutation of leptin, or its receptor, defects inhibition of ARC-NPY neurons through which NPY activity over expression results in hyperphagia and obesity [37,38]. AGRP over expression also results in obesity [39] and AGRP isup-regulated in diabetic mutant mice [40]. Leptin decreases AGRP mRNA levels in the hypothalamus [41-44]. These findings suggest that AGRP inhibition may be an important mechanism by which leptin can enhance its anorectic effect in the hypothalamus. We indicted that Evo down regulated hypothalamic NPY and AGRP mRNA levels by enhancing the inhibition of leptin, therefore causing decreases in food intake and body weight.Although NPY immunoreactivity is widely distributed throughout the hypothalamus [45,46], in situ hybridization histochemistry revealed that NPY expressing neurons are primarily localized in the arcuate nucleus (ARC) and the dorsomedial hypothalamus (DMH) [47-49]. Leptin directly acts on ARC NPY neurons but not on DMH NPY neurons. NPY and OB-Rb are co-expressed in ARC neurons, but NPY and OB-Rb gene are expressed in different neuronal populations to DMH [47]. DMH NPY may play an important role in maintaining energy homeostasis in response to long-term alterations in energy balance. DMH was the brain site most sensitive to the feeding inhibitory effects of administration of exogenous CCK [50]. Double immunostaining experiments revealed that NPY and CCK1 receptors were co-localized and CCK1 receptor staining was found on the surface of NPY neurons in DMH neurons [51]. DMH parenchymal injections of CCK significantly reduced NPY mRNA levels and 30 min food intake [51]. OLETF rats lacking CCK1 receptors become hyperphagic and obese mediated by DMH NPY over expression [52]. These data suggested that CCK acting through DMH CCK1 receptors regulates DMH NPY gene expression to affect feeding behavior. Evo induces CCK release in a dose-dependent manner and inhibits both gastric emptying and gastrointestinal transit [7]. The selective CCK1 receptor antagonists, devazepide and lorglumide, effectively attenuated the Evo-induced inhibition of gastric emptying and gastrointestinal transit [7]. CCK is a well known feeding inhibitor. We thought that because Evo depresses DMH NPY gene expression by inducing CCK releasing, this partly causes decreased food intake and body weight in the Evo-treated rats.Leptin and cholecystokinin (CCK) have a synergistic interaction in the suppression of food intake and body weight [53-57]. Retrospective administration of subthreshold doses of leptin and CCK did not reduce food intake, whereas central or peripheral administration of leptin effectively inhibited food intake in combination with peripheral injections of CCK. Koletsky (fak/fak) rats, which develop severe obesity due to a leptin receptor–deficiency, have markedly increased meal sizes and reduced satiety in response to CCK. This suggests a critical role for leptin signaling in response to endogenous signals that promote meal termination [58]. Synergistic interaction between CCK and leptin to induce satiety is mediated by intracelluar crosstalk between SRC and STAT3 pathways [59]. CCK co-injected with leptin, potentiated Fos expression selectively in the areas of the postrema, NTS and paraventricular nucleus of the hypothalamus (PVN). This suggests that the PVN, as part of the afferent and efferent limbs of the circuitry, is involved in the synergistic interaction between leptin and CCK [60]. The synergistic interaction between leptin and CCK may integrate short-term meal-related input signals into long-term control of energy balance and persist in reducing food intake.Our research proves that the hypothalamus is the primary central nervous site where Evo inhibits food intake and body weight of rats. Evo performs its function of regulating and controlling food intake and reducing body weight through significantly increasing the serum leptin level and decreasing the mRNA expression of hypothalamic feeding-related peptides NPY and AGRP. This is one of the most important mechanisms of Evo in the hypothalamus.References[1] Kobayashi Y, Nakano Y, Kizaki M, et al (2001) Capsaicin-like anti-obese activities of evodiamine fromfruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Med 67:628-633[2] Wang T, Wang Y, Kontani Y, et al (2008) Evodiamine improves diet-induced obesity in aUCP1-independent manner: Involvement of anti-adipogenic mechanism and ERK/MAPK signaling.Endocrinology 149: 358-366[3] Takada Y, Kobayashi Y, Aggarwal BB (2005) Evodiamine abolishes constitutive and inducible NF-kappaBactivation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulatedantiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion. J BiolChem280:17203–17212[4] Chiou WF, Chou CJ, Shum AY, et al (1992) The vasorelaxant effect of evodiamine in rat isolated mesentericarteries: mode of action. Eur J Pharmacol 215:277–283[5] Huang DM, Guh JH, Huang YT, et al (2005) Induction of mitotic arrest and apoptosis in human prostatecancer pc-3 cells by evodiamine. J Urol 173:256–261[6] Kan SF, Yu CH, Pu HF, et al (2007) Anti-proliferative effects of evodiamine on human prostate cancer celllines DU145 and PC3. J Cell Biochem 101:44–56[7] Wu CL, Hung CR, Chang FY, et al (2002) Effects of evodiamine on gastrointestinal motility in male rats.Eur J Pharmacol 457:169–176[8] Mezey E., Toth ZE, Cortright DN, et al (2000) Distribution of mRNA for vanilloid receptor subtype 1(VR1), and VR1–like immunoreactivity, in the central nervous system of the rat and human. Proc NatlAcad Sci USA 97:3655–3660[9] Roberts JC, Davis JB, Benham CD (2004) [3H] Resiniferatoxin autoradiography in the CNS of wild-typeand TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res 995:176–183[10] Hori T, Shibata M, Kiyohara T, et al (1988) Responses of anterior hypothalamic-preoptic thermosensitiveneurons to locally applied capsaicin. Neuropharmacology 27:135–142[11] Sasamura T, Sasaki M, Tohda C, et al (1998) Existence of capsaicin-sensitive glutamatergic terminals in rathypothalamus. Neuroreport 9:2045–2048[12] Panerai AE, Martini A, Locatelli V, et al (1983) Capsaicin decreases B-endorphin hypothalamicconcentrations in the rat . Pharmacol Res Commun 15:825–832[13] Clifford BS, Thomas CC, Joel KE (2002) The Need to Feed: Homeostatic and Hedonic Control of Eating.Neuron 36:199–221[14] Williams G, Bing C, Cai XJ, et al (2001) The hypothalamus and the control of energy homeostasis:Different circuits, different purposes. Physiology & Behavior 74: 683-701[15] Schwartz MW, Woods SC, Porte JD, et al (2000) Central nervous system control of food intake. Nature404:661–671[16] Arora S, Anubhuti (2006) Role of neuropeptides in appetite regulation and obesity – a review.Neuropeptides 40:375–401 [17] Hahn T, Breininger J, Baskin D, et al (1998) Coexpression of AGRP and NPY in fasting-activatedhypothalamic neurons. Nat Neurosci 1:271–272[18] Broberger C, Johansen J, Johasson C, et al (1998) The neuropeptide Y/agouti gene-related protein (AGRP)brain circuitry in normal, anorectic and monosodium glutamate-treated mice. Proc Natl Acad Sci USA95:15043–15048[19] Kristensen P, Judge ME, Thim L, et al (1998) Hypothalamic CART is a new anorectic peptide regulated byleptin. Nature 393:72–76[20] Elias CF, Lee C, Kelly J, et al (1998) Leptin activates hypothalamic CART neurons projecting to the spinalcord. Neuron 21:1375– 1385[21] Cone RD, Lu D, Koppula S, et al (1996) The melanocortin receptors: agonists, antagonists, and thehormonal control of pigmentation. Recent Prog Horm Res 51:287–317[22] Cone RD (1999) The central melanocortin system and energy homeostasis. Trends Endocrinol Metab10:211–216[23] Ollmann MM, Wilson BD, Yang YK, et al (1997) Antagonism of central melanocortin receptors in vitroand in vivo by agouti-related protein. Science 278:135–138[24] Elmquist JK, Bjorbaek C, Ahima RS, et al (1998) Distributions of leptin receptor mRNA isoforms inthe rat brain. J Comp Neurol 395:535–547[25] Elmquist JK, Elias C, Saper C (1999) From lesions to leptin: hypothalamic control of food intake and bodyweight. Neuron 22:221– 232[26] Rossi M, Choi SJ, O’shea D, et al (1997) Melanin-concentrating hormone acutelystimulates feeding, but chronic administration has no effect on body weight.Endocrinology 138:351–355[27] Ludwig DS, Tritos NA, Mastaitis JW, et al (2001) Melanin-concentrating hormone overexpression intransgenic mice leads to obesity and insulin resistance. J Clin Invest 107:379-386[28] Tritos NA, Vicent D, Gillette J, et al (1998) Functional interactions between melanin-concentratinghormone, neuropeptide Y, and anorectic neuropeptides in the rat hypothalamus. Diabetes 47:1687–1692[29] Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wisecomparison and statistical analysis of relative expression results in real-time PCR. J Nucleic Acids Res30(9):e36[30] Stanley BG, Kyrkouli SE, Lampert S, et al (1986) NPY chronically injected into the hypothalamus: apowerful neurochemical inducer of hyperphagia and obesity. Peptides 7:1189–1192[31] Sternberger LA, Sternberger NH (1986) The unlabeled antibody method: comparison ofperoxidase-antiperoxidase with avidin-biotin complex by a new method of quantification. J HistochemCytochem 34:509–605[32] Erickson JC, Clegg KE, Palmiter RD (1996) Sensitivity to leptin and susceptibility to seizures of micelacking neuropeptide Y. Nature381: 415–8[33] Mercer JG, Moar KM, Rayner VD, et al (1997) Regulation of leptin receptor and NPY gene expression in。

相关文档
最新文档