九年级数学下册第三单元测试卷

合集下载

北师大版数学九年级下册第三章 圆 单元测试卷

北师大版数学九年级下册第三章 圆 单元测试卷

第三章 圆 单元测试卷一、选择题(本大题10小题,每小题3分,共30分)1. 已知AB 是半径为5的圆的一条弦,则AB 的长不可能是( )A .4B .8C .10D .122.如图,在⊙O 中,AB =AC ,若∠ABC =57.5°,则∠BOC 的度数为( )A. 132.5° B .130° C .122.5° D .115°第2题图 第4题图 第5题图 第6题图 第7题图3.在平面直角坐标系xOy 中,若点P (4,3)在⊙O 内,则⊙O 的半径r 的取值范围是( )A .0<r <4B .3<r <4C .4<r <5D .r >54.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠CDA =122°,则∠C 的度数为( )A .22°B .26°C .28°D .30°5.如图,正方形ABCD 内接于⊙O ,AB =22,则的长是( ) A. π B .23π C .2π D .21π 6.如图所示方格纸中,点A ,B ,C ,D ,O 均为格点,则点O 是( )A .△ABC 的内心B .△ABC 的外心 C .△ACD 的内心 D .△ACD 的外心7.一把直尺、含60°角的直角三角尺和光盘如图所示摆放,A 为60°角与直尺的交点,B 为直尺与光盘的切点.若AB =3,则光盘的直径是( )A .3B .33C .6D .63第8题图 第9题图 第10题图8.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A ,与y 轴交于B ,C 两点,M 的坐标为(3,5),则B 的坐标为( )A .(0,5)B .(0,7)C .(0,8)D .(0,9)9.如图,一个扇形纸片的圆心角为90°,半径为6.将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .6π﹣293 B .6π﹣93 C .12π﹣293 D .49 10.如图,在等边三角形ABC 中,点O 在边AB 上,⊙O 过点B 且分别与边AB ,BC 相交于点D ,E ,F 是AC 上的点,下列说法错误的是( )A .若EF ⊥AC ,则EF 是⊙O 的切线B .若EF 是⊙O 的切线,则EF ⊥ACC .若BE =EC ,则AC 是⊙O 的切线D .若BE =23EC ,则AC 是⊙O 的切线 二、填空题(本大题6小题,每小题4分,共24分)11. 如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE = °.第11题图 第13题图 第14题图 第15题图 第16题图12.已知⊙O 的半径为3 cm ,点A ,B ,C 是直线l 上的三个点,点A ,B ,C 到圆心O 的距离分别为2 cm ,3 cm ,5 cm ,则直线l 与⊙O 的位置是 .13.如图,点 A ,B ,C 均在6×6的正方形网格格点上,过A ,B ,C 三点的圆除经过A ,B ,C 三点外还能经过的格点数为 .14. 如图,Rt △ABC 的内切圆⊙I 分别与斜边AB ,直角边BC ,CA 切于点D ,E ,F ,AD=3,BD=2,则Rt △ABC 的面积为 .15.木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O 于点A ,并使较长边与⊙O 相切于点C .记角尺的直角顶点为B ,量得AB =2 cm ,BC =4 cm ,则⊙O 的半径是 cm .16.如图,⊙O 的直径为25 cm ,弦AB ⊥弦CD 于点E ,连接AD ,BC ,若AD =4 cm ,则BC 的长为 cm .三、解答题(本大题7小题,共66分)17.(6分)如图,AB 为⊙O 的直径,C ,D 是⊙O 上的两点,且BD ∥OC ,求证:=.第17题图 第18题图 第19题图18. (8分)如图,I 是△ABC 的内心,AI 的延长线交△ABC 的外接圆于点D ,试判断DB 与DI 相等吗?说明理由.19. (8分)一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10 mm 的小钢球紧贴在孔道边缘,测得钢球顶端离孔道口的距离为8 mm ,求这个孔道的直径AB .20.(10分)如图,以等边三角形ABC 的边AB 为直径的圆,与另两边BC ,AC 分别交于点E ,F ,请仅用无刻度的直尺作出△ABC 的边AB 上的高CD .第20题图 第21题图 第22题图21.(10分)如图,四边形ABCD是⊙O的内接四边形,延长DC,AB交于点E,且BE=BC.(1)求证:△ADE是等腰三角形;(2)若∠D=90°,⊙O的半径为5,BC∶DC=1∶2,求△CBE的周长.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,C是⊙O外一点且∠DBC=∠A,连接OE并延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.23.(12分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE 交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.①②③第23题图第24题图24.我们知道,如图①,AB是⊙O的弦,F是的中点,过点F作EF⊥AB于点E,易得E是AB的中点,即AE=EB.若⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图②),过点F作EF⊥AC于点E,求证:E是“折弦ACB”的中点,即AE=EC+CB;(2)当点C在弦AB的下方时(如图③),其他条件不变,则上述结论是否仍然成立?若成立,说明理由;若不成立,那么AE,EC,CB满足怎样的数量关系?(直接写出,不必证明.)第三章 圆 单元测试卷 参考答案 答案详解 10.C 提示:连接OE ,如图所示,则OB =OE.因为∠B =60°,所以∠BOE =60°.因为∠BAC =60°,所以∠BOE =∠BAC.所以OE ∥AC.因为EF ⊥AC ,所以OE ⊥EF.所以EF 是⊙O 的切线.选项A 正确;因为EF 是⊙O 的切线,所以OE ⊥EF.由A 知OE ∥AC ,所以AC ⊥EF. 选项B 正确;因为∠B =60°,OB =OE ,所以BE =OB.因为BE =CE ,所以BC =AB =2BO.所以AO =OB.如图,过点O 作OH ⊥AC 于点H ,所以∠OHA=90°.因为∠BAC =60°,所以∠AOH=30°. 在Rt △OAH 中 ,由勾股定理,得OH =22OA AH -= 222OA OA ⎛⎫- ⎪⎝⎭=23AO ≠OB. 选项C 错误;因为BE =23EC ,所以CE =332BE.因为AB =BC ,BO =BE ,所以AO =CE =332OB. 在Rt △OAH 中 ,由勾股定理,得OH =22OA AH -=23AO =OB.所以AC 是⊙O 的切线. 选项D 正确.16.2 提示:如图,作直径DH ,连接AH ,CH ,AC .因为DH 是直径,所以∠DCH =∠DAH =90°.因为AB ⊥CD ,所以∠AED =∠DCH =90°.所以CH ∥AB.所以∠CAB =∠ACH.所以=.所以AH =BC. 在Rt △ADH 中,AH =22224)52(-=-AD DH =2(cm ),所以BC =AH =2 cm .三、17.证明:因为OB =OD ,所以∠D =∠B.因为BD ∥OC ,所以∠D =∠COD ,∠AOC =∠B.所以∠AOC =∠COD.所以=.18.解:DB =DI.理由:连接BI.由圆周角定理,得∠DBC =∠DAC.因为I 是△ABC 的内心,所以∠ABI =∠CBI ,∠BAD =∠CAD. 由三角形的外角的性质,知∠DIB =∠IBA+∠BAI.又∠DBI =∠DBC+∠IBC ,所以∠DIB =∠DBI.所以DB =DI .19.解:连接OA ,过点O 作OD ⊥AB 于点D ,则AB =2AD.答案速览一、1. D 2.B 3.D 4.B 5.A 6.D 7. D 8.D 9.A 10.C二、11. n 12.相交 13.5 14. 6 15.5 16.2三、解答题见“答案详解”因为钢球的直径是10 mm ,所以钢球的半径是5 mm ,即OA=5 mm.因为钢球顶端离孔道口的距离为8 mm ,所以OD =3 mm.在Rt △AOD 中,由勾股定理,得AD =222235-=-OD OA =4(mm ), 所以AB =8 mm . 20.解:如图所示,CD 即为所求.21.(1)证明:因为四边形ABCD 是⊙O 的内接四边形,所以∠A+∠DCB=180°.又∠DCB+∠BCE=180°,所以∠A =∠BCE.因为BE =BC ,所以∠BCE =∠E.所以∠A =∠E.所以DA =DE ,即△ADE 是等腰三角形.(2)解:连接AC.设BC =k ,则CD =2k.因为∠D =90°,所以∠CBE =90°,AC 是⊙O 的直径.因为BE =BC ,所以∠E =45°.所以BE =BC =k ,EC =2k.所以DA=DE =22k.在Rt △DAC 中,由勾股定理,得AC =10k.因为⊙O 的半径为5,所以10k =10,解得k =10.所以BC+BE+CE=210+25,即△CBE 的周长为210+25.22.(1)证明:连接OB.因为E 是弦BD 的中点,所以BE =DE ,OE ⊥BD ,=12.所以∠BOE =∠A ,∠OBE+∠BOE =90°.因为∠DBC =∠A ,所以∠BOE =∠DBC.所以∠OBE+∠DBC =90°.所以∠OBC =90°,即BC ⊥OB.所以BC 是⊙O 的切线.(2)解:因为OB =6,BC =8,BC ⊥OB ,所以OC =22BC OB +=10.因为△OBC 的面积=12OC •BE =12OB •BC ,所以BE =OB BC OC ⋅=6810⨯=4.8.所以BD =2BE =9.6,即弦BD 的长为9.6. 23.证明:(1)因为AB 是⊙O 的直径,所以∠ADB =90°.所以∠A+∠ABD =90°.因为∠A =∠DEB ,∠DEB =∠DBC ,所以∠A =∠DBC.所以∠DBC+∠ABD =90°.所以BC 是⊙O 的切线.(2)连接OD.因为BF =BC =2,∠ADB =90°,所以∠CBD =∠FBD.因为OE ∥BD ,所以∠FBD =∠OEB.因为OE =OB ,所以∠OEB =∠OBE.所以∠OBE=∠FBD.所以∠CBD =∠FBD =∠OBE =13∠ABC =13×90°=30°.所以∠C =60°,∠A =30°.所以AC=4. 在Rt △ABC 中,由勾股定理,得AB =22AC BC -=23,所以⊙O 的半径为3.因为OA=OD ,所以∠ODA =∠A=30°.所以∠DOB=60°. 在Rt △ABD 中,由勾股定理,得AD=22AB BD -=3.所以S 阴影=S 扇形DOB -S △DOB =61π×(3)2-12×12×3×3=2π-433. 24.(1)证明:在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,如图①所示.因为F 是的中点,所以FA=FB.在△FAG和△FBC中,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩,,,所以△FAG≌△FBC(SAS).所以FG=FC.因为FE⊥AC,所以EG=EC.所以AE=AG+EG=BC+CE. (2)解:结论AE=EC+CB不成立,新结论为CE=BC+AE.理由:在CA上截取CG=CB,连接FA,FB,FC,如图②所示.因为F 是的中点,所以FA=FB ,.所以∠FCG=∠FCB.在△FCG和△FCB中,CG CBFCG FCBFC FC=⎧⎪∠=∠⎨⎪=⎩,,,所以△FCG≌△FCB(SAS).所以FG=FB.所以FA=FG.因为FE⊥AC,所以AE=GE.所以CE=CG+GE=BC+AE.①②第24题图。

(好题)初中数学九年级数学下册第三单元《圆》测试卷(包含答案解析)(1)

(好题)初中数学九年级数学下册第三单元《圆》测试卷(包含答案解析)(1)

一、选择题1.如图,点A 、B 、C 在⊙O 上,点D 是AB 延长线上一点,若∠CBD =65°,则∠AOC 的度数为( )A .115°B .125°C .130°D .135° 2.以坐标原点O 为圆心,1为半径作圆,直线y x b =-+与O 相交,则b 的取值范围是( )A .11b -<<B .22b -<<C .20b -<<D .02b << 3.若一个圆锥的底面半径为3cm ,高为62cm ,则圆锥的侧面展开图中圆心角的度数为( )A .120︒B .100︒C .80︒D .150︒ 4.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .125.探究性学习小组的同学接受了测量同样型号圆柱工件直径的任务.他们使用的工具是有一个角是60°的直角三角板和刻度尺.小明的测量方法如图甲所示.测得PC=12cm .小亮的测量方法如图乙所示.则与QA 的值最接近的是( )A .8cmB .7 cmC .6 cmD .5 cm6.如图,已知,ABC O △为AC 上一点,以OB 为半径的圆经过点A ,且与BC OC 、交于点E D 、,设,C a A β∠=∠=,则( )A .若70αβ+=︒,则弧DE 的度数为20︒B .若70αβ+=︒,则弧DE 的度数为40︒C .若70αβ-=︒,则弧DE 的度数为20︒D .若70αβ-=︒,则弧DE 的度数为40︒ 7.如图,两个正六边形ABCDEF 、EDGHIJ 的顶点A 、B 、H 、I 在同一个圆上,点P 在ABI 上,则tan ∠API 的值是( )A .3B .2C .2D .18.如图,P 是⊙O 外一点,射线PA 、PB 分别切⊙O 于点A 、点B ,CD 切⊙O 于点E ,分别交PA 、PB 于点D 、点C ,若PB =4,则△PCD 的周长( )A .4B .6C .8D .109.如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的个数有( )①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PCB ∽△△;⑤CF CP ⋅为定值A .2个B .3个C .4个D .5个 10.下列事件是随机事件的是( )A .一个图形平移后所得的图形与原来的图形全等B .直径是圆中最长的弦C .方程2210ax x ++=是一元二次方程D .任意画一个三角形,其内角和是360︒11.如图,AB 是O 的直径,C 、D 分别是O 上的两点.若33BAC ∠=︒,则D∠的度数等于( )A .57︒B .60︒C .66︒D .67︒ 12.如图,△ABC 中,AB=AC ,∠ABC=70°,点O 是△ABC 的内心,则∠BOC 的度数为( )A .120°B .110°C .115°D .130°二、填空题13.如图,一次函数3233y x =-+的图象与x 轴交于点A ,与y 轴交于点B ,若向ABO 的外接圆C 内随机抛掷一枚小针,则针尖落在阴影部分的概率是_____________.14.如图,点M 为O 的半径OA 的中点,弦BC 过点M 且垂直于AO ,若4AO =,则弦BC 的长为______.15.如图,PA ,PB 是圆O 的切线,切点为A 、B ,∠P =50°,点C 是圆O 上异于A ,B 的点,则∠ACB 等于_____.16.如图,已知AB 为O 直径,若CD 是O 内接正n 边形的一边,AD 是O 内接正()4n +边形的一边,BD AC =,则n =_____.17.如图,菱形ABCD 中,已知2AB =,60DAB ∠=︒将它绕着点A 逆时针旋转得到菱形ADEF ,使AB 与AD 重合,则点C 运动的路线CE 的长为________.18.如图,点A 、B 的坐标分别为()3,0A ,()0,4B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则的最大值为________.19.如图,AB 是O 的直径,C 为半圆上一点,且30ABC ︒∠=,点P 为O 上的动点,D 为弦AP 的中点,若2AB =,则线段CD 的最大值为__________.20.在ABC 中,∠BAC =100°,AB =AC ,D 为ABC 形外一点,且AD =AC ,则∠BDC =________°.三、解答题21.如图,ABC 的外角BAD ∠的平分线与它的外接圆相交于点E ,连接BE ,CE .求证:(1)BE CE =;(2)若4BC =,6tan EAB ∠=,求O 的半径.22.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 相交于点D ,且DE ⊥AC ,垂足为E .(1)求证:DE 是⊙O 的切线;(2)∠A=45º,⊙O 的半径为5,求图中阴影部分的面积.23.定义:把经过三角形的一个顶点并与其对边所在直线相切的圆叫做三角形的“切接圆”.根据上述定义解决下列问题,在△ABC 中,AB=AC=5, BC=6,设△ABC 的“切接圆”的半径为r .(1)如图1,△ABC 的“切接圆”的圆心D 在边AB 上,求r ;(2)如图2,请确定r 的最小值,并说明理由;(3)如图3,把△ABC 放在平面直角坐标系中,使点B 与原点O 重合,点C 落在x 轴正半轴上. 求证:以抛物线21(3)28y x =-+上任意一点为圆心都可以作△ABC 的“切接圆”. 24.已知:在O 中,四边形ABCD 的边AD 与O 相切于点A ,点B ,C 在O 上,//AD BC .(1)如图1,求证:AB AC =;(2)如图2,延长DC 交O 于点E ,连接AE 交BC 于点F ,若AD BC =,求证:AF BF =;(3)如图3,在(2)的条件下,连接BO 并延长交O 于点G ,交CD 于点H ,若724GH AD =,求tan ABG ∠的值.25.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD △△;(2)若8BD =,1tan 2B =,求⊙O 的半径. 26.在学了“过任意三角形的三个顶点都可以作一个外接圆”之后,张华同学对“过任意四边形的四个顶点能否作一个外接圆?”进行了探究,下面是他的探究过程,请帮他补充完整. (1)动手实践:张华先画出了3个不同的四边形,如图所示.接着,他在所画出的图①,图②中,分别任选三个顶点用尺规各作了一个圆.请仿照张华的作法在图③中任选三个顶点作一个圆(要求尺规作图,保留作图痕迹,不写作法)(2)观察、发现:观察所作的图形,你发现:过任意四边形的四个顶点 能作一个外接圆;(选填“一定”或“不一定”)(3)测量、猜想:分别测量(1)中3个不同四边形的各个内角,猜想:如果过一个四边形的四个顶点能作一个圆,那么它相对的两个内角之间存在怎样的数量关系?请写出你的猜想.(4)证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出∠ABC ,再求出它所对的弧对的圆心角,即可求∠AOC .【详解】解:∵∠CBD =65°,∴∠ABC=180°-65°=115°,优弧AC 所对的圆心角的度数为:115°×2=230°,∠AOC=360°-230°=130°,故选:C .【点睛】本题考查了圆周角的性质,解题关键是求出圆周角,根据同弧所对的圆周角和圆心角的关系求角.2.B解析:B【分析】求出直线y x b =-+与圆相切时,函数经过一、二、四象限和当直线y x b =-+与圆相切时,函数经过二、三、四象限b 的值,则b 的值在相交时与相切时两个b 之间;【详解】当直线y x b =-+与圆相切时,函数经过一、二、四象限,如图所示:在y x b =-+中,令x=0,y=b ,则与y 轴的交点为B(0,b),令x=b ,y=0,则与x 轴的交点为A(b ,0),则OA=OB ,即△AOB 是等腰直角三角形,连接圆心O 与切点C ,则OC=1,∴ △BOC 也是等腰直角三角形,∴ BC=OC=1,∴ 22112BO =+= ,同理当直线y x b =-+与圆相切时且函数经过二、三、四象限,b=2- ,∴ 当直线y x b =-+与圆相交时,b 的取值范围是22b -<< ;故选:B .【点睛】本题主要考查了直线与圆的关系的综合,解题的关键是根据题意找到直线与圆相切时b 的值.3.A解析:A【分析】根据勾股定理求出圆锥的母线长,根据弧长公式计算,得到答案.【详解】解:设圆锥的侧面展开图的圆心角为n °,()22362+9(cm ),∴圆锥的侧面展开图扇形的半径为9cm ,扇形弧长为2×3π=6π(cm),∴9180n π⨯=6π, 解得,n =120,故选:A .【点睛】 本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.4.C解析:C【分析】当经过点O、P的弦是直径时,弦最长为10;当弦与OP是垂直时,弦最短为8;判断即可.【详解】当经过点O、P的弦是直径时,弦最长为10;当弦与OP垂直时,根据垂径定理,得半弦长= 2253=4,所以最短弦为8;所以符合题意的弦长为8到10,故选C.【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.5.B解析:B【分析】先计算出QA的长,由于图甲测得PC=12cm,即圆的半径等于12cm,在图乙中直角三角形OAQ中利用30度角的三角函数可求得tan30°=33=12AQ,解得AQ的值为43.先估计3的近似值,再求解.【详解】解:如图甲,连结OP,并设⊙O与x轴相切于点D,图乙,连结OQ、OA,并设⊙O与x 轴相切于点E,∴由切线定义及圆性质可得四边形OPCD是正方形,∴OQ=OP=PC=12cm,由题意可知:∠QAO=(180°-∠BAC)÷2=60°,∴∠QOA=90°-∠QAO=30°,∴tan ∠QOA=AQ÷OQ ,即tan30°=3=12AQ , 解得AQ=43.∵1.5<3<2,∴6<43<8.故选B .【点睛】本题考查的是切线的性质,解直角三角形和无理数的估算.估算无理数的近似值在实际生活中有着广泛的应用,我们应熟练掌握.6.B解析:B【分析】连接BD ,根据直径所对的圆周角是直角,可求得∠ABD =90°,又由A β∠=,可求得∠ADB =90β︒-,再根据∠ADB =∠DBC +∠C ,可得∠DBC =90βα︒--,从而求出弧DE 的度数.【详解】解:连接BD ,∵AD 是直径,∴90ABD ∠=︒,∴90A ADB ∠+∠=︒,∴90ADB β∠=︒-,又∵∠ADB =∠DBC +∠C ,∴()90DBC αβ∠=︒-+,若70αβ+=︒,则()90907020DBC αβ∠=︒-+=︒-︒=︒,∴弧DE 的度数20240=︒⨯=︒,故选B .【点睛】此题主要考查了圆周角定理及推论、三角形外角的性质,熟练掌握圆周角定理、构造直径所对圆周角是解题的关键.7.A解析:A【分析】连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M ,证明90AIH ∠=︒,设HI JI JE a ===,求出AI 即可.【详解】解:如图,连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M .∵ABCDEF 是正六边形,∴∠DEF =∠F =120°,∵FA =FE ,∴∠FEA =∠FAE =30°,∴∠AED =90°,同法可证,∠DEI =∠EIH =90°,∴∠AED +∠DEI =180°,∴A ,E ,I 共线,设HI JI JE a ===,∵JM ⊥EI ,∴EM =MI 3, ∴AI =2EI =3a ,∵∠API =∠AHI ,∴tan ∠API =tan ∠AHI =AI HI 2323a = 故选:A .【点睛】本题考查了正多边形和圆,解直角三角形,圆周角定理等知识,解题关键是正确添加辅助线,构造直角三角形解决问题. 8.C解析:C【分析】由切线长定理可求得PA =PB ,BC =CE ,AD =ED ,则可求得答案.【详解】解:∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA=PB=4,BC=EC,AD=ED,∴PC+CD+PD=PC+CE+DE+PD=PC+BC+PD+AD=PB+PA=4+4=8,即△PCD的周长为8,故选:C.【点睛】本题考查了切线长定理以及三角形的周长,熟练掌握切线长定理是解题的关键;9.B解析:B【分析】①连接AC,并延长AC,与BD的延长线交于点H,若PD=PB,得出P为AM的中点,与实际不符,即可判定正误;②先求出∠BOC,再由弧长公式求得BC的长度,进而判断正误;③由∠BOC=60°,得△OBC为等边三角形,再根据三线合一性质得∠OBE,再由角的和差关系得∠DBE,便可判断正误;④证明∠CPB=∠CBF=30°,∠PCB=∠BCF,可得△BCF∽△PCB相似;⑤由等边△OBC得BC=OB=4,再由相似三角形得CF•CP=BC2,便可判断正误.【详解】解:①连接AC,并延长AC,与BD的延长线交于点H,如图1,∵M,C是半圆上的三等分点,∴∠BAH=30°,∵BD与半圆O相切于点B.∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP,∠ACP=∠DCH,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD=90°-∠ABP,若∠PDB=∠PBD,则∠ABP+60°=90°-∠ABP,∴∠ABP=15°,∴P点为AM的中点,这与P为AM上的一动点不完全吻合,∴∠PDB不一定等于∠ABD,∴PB不一定等于PD,故①错误;②∵M ,C 是半圆上的三等分点,∴∠BOC=13×180°=60°, ∵直径AB=8,∴OB=OC=4, ∴BC 的长度=41806043ππ⨯=, 故②正确;③∵∠BOC=60°,OB=OC ,∴∠ABC=60°,OB=OC=BC ,∵BE ⊥OC ,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M 、C 是AB 的三等分点,∴∠BPC=30°,∵∠CBF=30°,∠PCB=∠BCF ,∴△BCF ∽△PCB故④正确;⑤∵∠CBF=∠CPB=30°,∠BCF=∠PCB ,∴△BCF ∽△PCB , ∴CB CF CP CB=, ∴CF•CP=CB 2, ∵CB =OB =OC =12AB =4, ∴CF•CP=16,故⑤正确.故选:B .【点睛】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,相似三角形的性质与判定,关键是熟练掌握这些性质,并能灵活应用. 10.C解析:C【分析】根据随机事件是可能发生也可能不发生的事件判断即可.解:A 、是必然事件,选项不符合题意;B 、是必然事件,选项不符合题意;C 、是随机事件,选项符合题意;D 、是不可能事件,选项不符合题意.故选:C .【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 11.A解析:A【分析】连接OC ,根据圆周角定理计算即可;【详解】连接OC ,∵33BAC ∠=︒,∴266BOC AOC ∠=∠=︒,又∵180DOC AOC ∠+∠=︒,∴180114AOC BOC ∠=︒-∠=︒, ∴1572D AOC ∠=∠=︒; 故答案选A .【点睛】本题主要考查了圆周角定理,准确计算是解题的关键.12.B解析:B【分析】根据内心的定义即可求得∠OBC+∠OCB ,然后根据三角形内角和定理即可求解.解:∵AB=AC ,∠ABC=70°,∴∠ACB=70°,∵点O 是△ABC 的内心,∴∠OBC=12∠ABC=35°,∠OCB=12∠ACB=35°, ∴∠OBC+∠OCB=70°,∴∠BOC=180°-(∠OBC+∠OCB )=110°.故选:B .【点睛】此题主要考查了三角形的内切圆与内心,正确理解∠OBC=12∠ABC=35°,∠OCB=12∠ACB=35°是关键. 二、填空题13.【分析】利用一次函数解析式求出点AB 的坐标即可得由勾股定理求出求出则可得是等边三角形可得根据圆周角定理求出扇形圆心角的度数并由三角形中线将三角形可分为面积相等的两个三角形得可求出阴影部分的面积及圆的 解析:13【分析】利用一次函数解析式求出点A 、B 的坐标,即可得6OA =,OB =AB =,求出BC OC AC ===OBC 是等边三角形,可得60OBA ∠=︒,根据圆周角定理求出扇形圆心角的度数,并由三角形中线将三角形可分为面积相等的两个三角形得OBC OAC SS =,可求出阴影部分的面积及圆的面积,利用面积比即可求出结论.【详解】解:∵一次函数y x =-+的图象与x 轴交于点A ,与y 轴交于点B , 令0y =,则6x =,∴()6,0A -,令0x =,则y =∴(0,B ,∴6OA =,OB =在Rt AOB 中,由勾股定理得:AB ==,∴23BC OC AC ===,∴BC OC OB ==,∴OBC 是等边三角形,∴60OBA ∠=︒, ∴120ACO ∠=︒,∵OC 是AB 边上的中线,∴OBC OAC S S =, ∴()2120=234360ACO S S ππ==阴影扇形,()22312C S ππ==,∴针尖落在阴影部分的概率41123P ππ==. 故答案为:13. 【点睛】 此题考查了几何概率,掌握几何概率的计算方法及求出阴影部分的面积是解题的关键. 14.【分析】连接BO 先求出OM=2再由勾股定理求出BM 的长即可得到结论【详解】解:连接BO 如图则∵M 是OA 的中点∴∵∴△是直角三角形BC=2BM ∴∴故答案为【点睛】本题考查的是垂径定理勾股定理掌握垂径定 解析:43【分析】连接BO ,先求出OM=2,再由勾股定理求出BM 的长即可得到结论.【详解】解:连接BO ,如图,则4BO OA ==∵M 是OA 的中点∴2OM =∵BC OA ⊥∴△OBM 是直角三角形,BC=2BM∴22224223BM OB OM =-=-=∴222343BC BM==⨯=故答案为43【点睛】本题考查的是垂径定理,勾股定理,掌握垂径定理是解题的关键.15.65°或115°【分析】连接OAOB进而求出∠AOB=130°再分两种情况:当C在劣弧AB上当C在劣弧AB上理由圆周角定理和圆内接四边形的性质即可得出结论【详解】解:如图连接OAOB∵PAPB分别切解析:65°或115°.【分析】连接OA,OB,进而求出∠AOB=130°,再分两种情况:当C在劣弧AB上,当C在劣弧AB 上,理由圆周角定理和圆内接四边形的性质,即可得出结论.【详解】解:如图,连接OA、OB,∵PA、PB分别切⊙O于点A、B,则∠OAP=∠OBP=90°;在四边形APBO中,∠P=50°,∴∠AOB=360°﹣∠OAP﹣∠P﹣∠OBP=360°﹣50°﹣90°﹣90°=130°①当点C在优弧AB上时,∠ACB=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠ACB=65°;当点C在劣弧AB上时,记作C',由①知,∠ACB=65°,∵四边形ACBC'是⊙O的内接四边形,∴∠AC'B=180°﹣∠ACB=180°﹣65°=115°,故答案为:65°或115°.【点睛】本题考查了切线的性质,圆周角定理,圆内接四边形的性质,求出∠AOB是解本题的关键.16.【分析】连接ODOCBC根据题意首先证明∠AOD=∠BOC再根据题意分别用含n的式子表示出∠AOD和∠COD建立关于n的方程求解即可【详解】如图连接ODOCBC∵AB为直径∴∠ADB=∠BCA=90解析:4【分析】连接OD ,OC ,BC ,根据题意首先证明∠AOD=∠BOC ,再根据题意,分别用含n 的式子表示出∠AOD 和∠COD ,建立关于n 的方程求解即可.【详解】如图,连接OD ,OC ,BC ,∵AB 为直径,∴∠ADB=∠BCA=90°,又∵BD AC =,∴Rt △ABD ≌Rt △BAC (HL ),∴AD=BC ,∠AOD=∠BOC ,∵CD 是O 内接正n 边形的一边, ∴360COD n ︒∠=, 同理:AD 是O 内接正()4n +边形的一边, ∴3604AOD BOC n ︒∠=∠=+, 由180AOD BOC COD ∠+∠+∠=︒, 得:36036021804n n︒︒⨯+=︒+, 解得:4n =,或2n =-(不符合题意,舍去) 经检验,4n =是原分式方程的解,故答案为:4.【点睛】本题主要考查了正多边形与圆,理解正多边形与圆的关系是解题关键.17.【分析】连接ACBD 交于点O 由菱形的性质得出AC 的长由旋转的性质∠EAC=60゜再根据弧长公式求解即可【详解】解:连接ACBD 交于点O 如图∵四边形ABCD 是菱形∴AC ⊥BDOA=OC ∠BAC=∠DA23 【分析】连接AC ,BD 交于点O ,由菱形的性质得出AC 的长,由旋转的性质∠EAC=60゜,再根据弧长公式求解即可.【详解】解:连接AC ,BD 交于点O ,如图,∵四边形ABCD 是菱形∴AC ⊥BD ,OA=OC ,∠BAC=12∠DAB=30゜ ∴ 112OB AB == 由勾股定理得,3OA =∴23AC =连接AE , 当AB 与AD 重合时,旋转了60゜,则∠EAC=60゜ ∴602323CE π== 23 【点睛】此题主要考查了旋转的性质、菱形的性质以及求弧长,运用菱形的性质求出AC 是解答此题的关键.18.3【分析】根据同圆的半径相等可知:点C 在半径为1的⊙B 上通过画图可知C 在BD 与圆B 的交点时OM 最小在DB 的延长线上时OM 最大根据三角形的中位线定理可得结论【详解】解:如图∵点C 为坐标平面内一点BC = 解析:3【分析】根据同圆的半径相等可知:点C 在半径为1的⊙B 上,通过画图可知,C 在BD 与圆B 的交点时,OM 最小,在DB 的延长线上时,OM 最大,根据三角形的中位线定理可得结论.【详解】解:如图,∵点C 为坐标平面内一点,BC =1,∴C 在⊙B 上,且半径为1,取OD =OA =3,连接CD ,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=4,OD=3,∠BOD=90°,∴BD=5,∴CD=6,∴OM=12CD=3,即OM的最大值为3;故答案为:3.【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.19.【分析】连结OCOP过C作CE⊥AB于E连接DEAC由B为直径可求AB=60°由OC=OA可得△ACO为等边三角形由CE⊥AB可知E为AO的中点AE=OE=在Rt△OCE中由勾股定理CE=由点D为A31+【分析】连结OC、OP,过C作CE⊥AB于E,连接DE,AC,由B为直径,可求AB=60°,由OC=OA,可得△ACO为等边三角形,由CE⊥AB,可知E为AO的中点,AE=OE=111 OA=AB= 242,在Rt△OCE中,由勾股定理223OC OE-=,由点D为AP的中点,ED为△AOP的中位线,可求ED=111OP=AB=242,根据三边关系在△CED中CD CE ED<+,可得C、D、E三点共线时,CD最大=CE +ED=313+1+=222即可.【详解】解:连结OC、OP,过C作CE⊥AB于E,连接DE,AC,∵AB为直径,∴∠ACB=90°,∴∠CAB=90°-∠CBA=90°-30°=60°,∵OC=OA,∴△ACO为等边三角形,∵CE⊥AB,∴E为AO的中点,AE=OE=111OA=AB=242,在Rt△OCE中,由勾股定理CE=22221312OC OE⎛⎫-=-=⎪⎝⎭,∵点D为AP的中点,ED为△AOP的中位线,∴ED=111OP=AB=242,在△CEP中CD CE ED<+,∴C、D、E三点共线时,CD最大=CE +ED=313+1+=2.故答案为:3+1 2.【点睛】本题考查圆周角性质,等边三角形判定与性质,等腰三角形三线合一性质,中位线性质,勾股定理,掌握圆周角性质,等边三角形判定与性质,等腰三角形三线合一性质,中位线性质,勾股定理,关键是通过引辅助线构造准确的图形.20.50°或130°【分析】以点A为圆心AB长为半径作圆由AB=AC=AD可知点DC 在圆A上由∠BAC=100°点D为ABC形外一点由点D在优弧上时∠BDC=∠BAC=50°由点D在劣弧上时∠BDC=(解析:50°或130°.【分析】以点A为圆心,AB长为半径作圆,由AB=AC=AD,可知点D、C在圆A上,由∠BAC=100°,点D为ABC形外一点,由点D在优弧上时,∠BDC=12∠BAC=50°,由点D在劣弧BC上时,∠BDC=12(360°-∠BAC)=130°.【详解】解:以点A为圆心,AB长为半径作圆,∵AB=AC=AD,∴点B、D、C在圆A上,∵∠BAC=100°,∵点D为ABC形外一点,当点D在优弧上∴∠BDC=12∠BAC=50°,当点D在劣弧BC上时∴∠BDC=12(360°-∠BAC)=130°,故答案为:50°或130°.【点睛】本题考查圆周角定理,点D在优弧与劣弧不同位置时圆周角,解题关键是引辅助元解决问题.三、解答题21.(1)见解析;(2)56 r=【分析】(1)根据圆内接四边形的性质得到DAE EBC∠=∠,根据角平分线的性质得到DAE EAB∠=∠,再根据同弧所对的圆周角相等得到EAB ECB∠=∠,则EBC ECB∠=∠,即可得到BE CE=(2)连接EO,并延长交BC于H,连接OB,OC,可知EH垂直平分BC,根据6tan EAB ∠=,EAB ECB ∠=∠,可求出EH 的长,再设圆O 的半径为r ,利用勾股定理即可求解 【详解】 (1)由题意可得DAE ∠为圆内接四边形AEBC 的外角∴DAE EBC ∠=∠AE 平分DAB ∠ ∴DAE EAB ∠=∠EAB ∠与ECB ∠是同弧所对的圆周角∴EAB ECB ∠=∠∴EBC ECB ∠=∠∴BE CE =(2)连接EO ,并延长交BC 于H ,连接OB ,OC,OB OC BE CE ==∴ EH 垂直平分BC , 4BC =122CH BC ∴== EAB ECB ∠=∠,6tan EAB ∠ ∴在Rt EHC 中,6tan EH ECB CH ∠==62EH ∴= 6EH ∴=设⊙O 的半径为r ,则6OH r =∴在Rt OHC △中,由勾股定理可得:222OC OH CH =+)22262r r ∴=+解得:56r =【点睛】本题考查了圆的内接四边形的性质,角平分线的性质,勾股定理,三角函数等知识,解题关键是正确作出辅助线,构造直角三角形.22.(1)见解析;(2)S 阴影【分析】(1)连接OD ,由题意可得∠B=∠C ,由半径OB 和OD 可得∠B=∠ODB ,从而∠C=∠ODB ,在Rt △DEC 中可知∠C +∠CDE=90º,则∠OBD +∠CDE=90º,从而得出∠ODE=90º,即可得证DE 是⊙O 的切线;(2)连接OD ,过点D 作DG ⊥AB ,垂足为G ,设AC 与⊙O 交于点H ,连接OH ,分别求解OAH S △,OAH S 扇形,OBD S △,OBD S 扇形,然后根据OAH OBD OAH OBD S S S S S ∆∆=+--阴影扇形扇形求解即可得到阴影部分的面积.【详解】(1)证明:连接OD .∵AB=AC ,∴∠B=∠C ,∵OB=OD ,∴∠B=∠ODB ,∴∠C=∠ODB ,∵DE ⊥AC ,∴∠C +∠CDE=90º,∴∠OBD +∠CDE=90º,∵∠BDC=180º,∴∠ODE=90º,∴OD ⊥DE ,∴DE 是⊙O 的切线.(2)连接OD ,过点D 作DG ⊥AB ,垂足为G .设AC 与⊙O 交于点H ,连接OH ,∵∠A=45º,∴∠OAH=∠BOH=90º,∵OH=OA=5, ∴112555222OAH S OA OH ∆=⋅=⨯⨯=, 2905253604OAH S ππ⨯==扇形, ∵OD ⊥DE ,DE ⊥AC ,∴OD ∥AC ,∴∠BOD=∠A=45º,又∵DG ⊥AB ,OD=5,∴DG=52cm , ∴115225252224OBD S OB DG ∆=⋅=⨯⨯=, 2455253608OBD S ππ⨯==扇形, ∴OAH OBD OAH OBD S S S S S ∆∆=+--阴影扇形扇形,=254π+258π-252-252, =751005028π--.【点睛】本题主要考查了圆的切线的判定,以及与扇形面积相关的不规则阴影部分面积求解问题,灵活添加辅助线将不规则图形转换为规则图形的面积表示是解题关键.23.(1)209r =;(2)最小值2r =;(3)证明过程见解析; 【分析】(1)作DE BC ⊥,AM BC ⊥,根据勾股定理和相似三角形的性质计算即可; (2)判断出r 的最小值范围,根据等面积法确定计算即可;(3)设抛物线21(3)28y x =-+上任意一点为()00,P x y ,证明P 到x 轴的距离与PA 的距离相等即可;【详解】(1)如图所示,作DE BC ⊥,AM BC ⊥,∵AM ∥DE ,DE r =,AB=AC ,∴3BM MC ==, ∴22534AM =-=,由题可知△△BDE BAM , ∴BD DE BA AM =, ∴554r r -=, ∴2045r r -=, ∴209r =. (2)由几何关系得,当这个图的直径是三角形的一条高时,最短;∵A 到BC 的距离为4,∴124r =,12r =;设C 到AB 的距离是m , 则1122S AM BC CD m =⨯⨯=⨯⨯, ∴24 4.85m ==, ∴22 4.8r =,2 2.4r =,∵2r >1r ,∴1r 为最小值,∴最小值2r =;(3)设抛物线21(3)28y x =-+上任意一点为()00,P x y ,因为抛物线的开口向上,顶点坐标为(3,2),所以对于抛物线上任意一点来说,纵坐标均为正数, 则P 到x 轴的距离为0h y =, ()()22220000003469816PA x y x x y y =-+-=-++-+,∵()2001328y x =-+, ∴220008625y x x =-+, ∴20006825x x y -=-,将上式代入①得,0PA y ==, ∴PA h =,即说明抛物线上任意一点P 均是△ABC 的切接圆圆心.【点睛】本题主要考查了与圆有关的计算,结合相似三角形的性质、勾股定理计算是解题的关键. 24.(1)见解析;(2)见解析;(3)3tan 4ABG ∠=【分析】(1)在O 中,连接AO 并延长交BC 于T ,由AD 与O 相切,可知AO AD ⊥,又因为//AD BC ,即可判断AT BC ⊥,故而即可证明;(2)由题意可知四边形ABCD 是平行四边形,再由=BE BE ,可推出BAE B ∠=∠,即可求证BF AF =;(3)令BH 与AE 的交点为M ,连接CG ,OA ,OC ,OE ,由题意可知AOC BOE ∠=∠,又因为=AB AC ,即可证得AOB BOE ∠=∠,再根据直径所对圆周角为直角可证90GCH BCE ∠+∠=︒,继而再利用锐角三角函数可令24BM m =,则7FM m =,根据BF =25718AM m m m =-=,即可求解;【详解】(1)证明:如图1 在O 中,连接AO 并延长交BC 于T , ∵AD 与O 相切于点A , ∴AO AD ⊥,∵//AD BC ,∴90OAD ATB ∠=∠=︒,∴AT BC ⊥,∴=AB AC ;(2)∵AD BC =,//AD BC ,∴四边形ABCD 是平行四边形,∴ABC D ∠=∠ ,∵//AD BC ,∴D BCE ∠=∠ ,∴ABC BCE ∠=∠,∵=BE BE ,∴BAE BCE ∠=∠,∴BAE B ∠=∠,∴BF AF =,(3)解:如图3 令BH 与AE 的交点为M ,连接CG ,OA ,OC ,OE∵2AOC ABC =∠∠ ,2BOE BAF ∠=∠, ABC BAF ∠=∠ ,∴AOC BOE ∠=∠,∵=AB AC ,∴AOB AOC ∠=∠ ,∴AOB BOE ∠=∠,∵180AOB AOH ∠+∠=︒ , 180BOE EOH ∠+∠=︒,∴AOH EOH ∠=∠,∵AO OE = ,∴OM AE ⊥,∴90EMH ∠=︒ ,∴90EHM MEH ∠+∠=︒,∵BG 为O 的直径,∴90BCG ∠=︒,∴90GCH BCE ∠+∠=︒,∵MEH ABC BCE ∠=∠=∠,∴EHM GCH ∠=∠,∴CG GH =, ∵724GH AD = ,AD BC =, ∴724CG GH BC ==, 在Rt BCG 中,7tan 24CG CBG BC ∠==, 在Rt BFM 中,7tan 24FM FBM BM ∠==, 令24BM m = , 则7FM m =,25BF m ===, ∴25AF BF ==m , ∴25718AM m m m =-=,在Rt ABM 中,183tan 244AM m ABG BM m ∠===;【点睛】本题考查了圆周角定理、切线的性质、锐角三角函数、勾股定理、平行四边形的性质,,正确掌握知识点是解题的关键;25.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】(1)①如图所示,连接AO ,由BC 是直径得90BAC ∠=,∵ OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC AC DB DA AB==, ∵1tan 2B = ,∴1tan 2AC B AB == , ∴12DA DC DB DA ==, 则2AD CD = , 即182AD AD BD == , 得AD=4, ∴ 122CD AD == , ∴ BC=BD-CD=8-2=6,∴半径3r =;【点睛】 本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;26.(1)见解析;(2)不一定;(3)猜想:如果过一个四边形的四个顶点能作一个圆,那么其相对的两个内角互补;(4)见解析【分析】(1)作两边的垂直平分线找到圆心,再以这点到其中一边任意一个端点的距离为半径,作圆即可;(2)通过作图可发现过任意四边形的四个顶点不一定能作一个外接圆;(3)根据度量的对角的度数,进行猜想即可;(4)先写出已知,求证,再根据圆周角的性质证明即可.【详解】解:(1)作图如下:图③(2)不一定(3)猜想:如果过一个四边形的四个顶点能作一个圆,那么其相对的两个内角互补 (4)如图,已知四边形ABCD 的顶点A 、B 、C 、D 均在O 上.求证:180A C ∠+∠=︒.证明:连接BO 、DO . 112A ∠=∠,122C ∠=∠1(12)2A C ∴∠+∠=∠+∠ 12360∠+∠=︒,180A C ∴∠+∠=︒.【点睛】本题考查了过不在同一直线上的三点作圆,圆周角的性质,解题关键是根据题意准确画图,合理猜想,并能够正确证明.。

(常考题)人教版初中数学九年级数学下册第三单元《锐角三角函数》测试(含答案解析)(3)

(常考题)人教版初中数学九年级数学下册第三单元《锐角三角函数》测试(含答案解析)(3)

一、选择题1.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .43 2.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒ C .75︒ D .105︒ 3.在△ABC 中,∠C=90º,AC=3,AB=4,则下列结论正确的是( )A .34sinA =B .34cos A =C .34tan A =D .34cot A = 4.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m5.如图,在矩形ABCD 中,AB =3,做BD 的垂直平分线E ,F ,分别与AD 、BC 交于点E 、F ,连接BE ,DF ,若EF =AE +FC ,则边BC 的长为( )A .3B .33C .63D 9326.如图,在Rt △ABC 中,∠B=90°,AB=5,BC=12,将△ABC 绕点A 逆时针旋转得到△ADE ,使得点D 落在AC 上,则tan ∠ECD 的值为( )A .23B .32C .255D .3557.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60︒方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .1002mC .1003mD .2003m 38.如图,ABC ∆的三个项点均在格点上,则tan A 的值为( )A .12B .5C .2D .25 9.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A 2B 5C 5D .210.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x 11.如图,在△ABC 中,∠ABC =90°,D 为BC 的中点,点E 在AB 上,AD ,CE 交于点F ,AE =EF =4,FC =9,则cos ∠ACB 的值为( )A .35B .59C .512D .4512.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( ) A .513 B .1213 C .512 D .125二、填空题13.如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =54cm ,且与闸机侧立面夹角∠PCA =∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为________cm .14.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。

(好题)初中数学九年级数学下册第三单元《圆》检测(包含答案解析)(1)

(好题)初中数学九年级数学下册第三单元《圆》检测(包含答案解析)(1)

一、选择题1.如图,ABC 是O 的内接三角形,BD 为O 的直径.若10BD =,2ABD C ∠=∠,则AB 的长度为( )A .4B .5C .5.5D .6 2.如图,已知⊙O 的半径为5,弦,AB CD ⊥垂足为E ,且8AB CD ==,则OE 的长为( )A .3B .32C .4D .42 3.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒ 4.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=的是( )A .30B ∠=︒ B .60BAD ∠=︒C .23BD = D .23AB = 5.如图.PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,连接OA ,OB ,OP ,AB .若 OA =1,∠APB =60°,则△PAB 的周长为( )A .23B .4C .33D .23+2 6.如图,点A ,B ,C ,D 为O 上的四个点,AC 平分BAD ∠,AC 交BD 于点E ,4CE =,6CD =,则AC 的长为( )A .7B .8C .9D .10 7.已知O 的半径为8cm ,如果一点P 和圆心O 的距离为8cm ,那么点P 与O 的位置关系是( )A .点P 在O 内 B .点P 在O 上 C .点P 在O 外 D .不能确定 8.如图,O 的直径为10,弦AB 的长为6,P 为弦AB 上的动点,则线段OP 长的取值范围是( )A .35OP ≤≤B .45OP <<C .45OP ≤≤D .35OP <<9.图中的三块阴影部分由两个半径为1的圆及其外公切线分割而成,如果中间一块阴影的面积等于上下两块面积之和,则这两圆的公共弦长是( )A .52B .62C .21252π-D .21162π- 10.如图,ABC 中,10,8,4AB AC BC ===,以点A 为圆心,AB 为半径作圆,交BC 的延长线于点D ,则CD 长为( )A .10B .9C .45D .8 11.已知正六边形ABCDEF 内接于O ,若O 的直径为2,则该正六边形的周长是( )A .12B .63C .6D .3312.如图,四边形OABC 是平行四边形,以点O 为圆心,OA 为半径的⊙O 与BC 相切于点B ,CO 的延长线交⊙O 于点E ,连接AE ,若AB =2,则图中阴影的面积为( ).A .2πB .πC .22πD 2π二、填空题13.如图,一次函数3233y x =-+的图象与x 轴交于点A ,与y 轴交于点B ,若向ABO 的外接圆C 内随机抛掷一枚小针,则针尖落在阴影部分的概率是_____________.14.如图,有一圆形木制艺术品,记为⊙O ,其半径为12cm ,在距离圆心8cm 的点A 处发生虫蛀,现需沿过点A 的直线PQ 将圆形艺术品裁掉一部分,然后用美化材料沿PQ 进行粘贴,则美化材料(即弦PQ 的长)最少需要_____cm .15.如图,C 的半径为1,圆心坐标为()3,4C ,点()P m n ,是C 内或C 上的一个动点,则22m n +的最小值是__________.16.一个边长为4的正多边形的内角和是其外角和的2倍,则这个正多边形的半径_______.17.圆锥的表面展开图由一个扇形和一个圆组成,已知扇形的半径为9,圆心角为120°,则圆锥的底面圆的半径为__________.18.如图,在ABC 中,D 是边BC 上的一点,以AD 为直径的O 交AC 于点E ,连接DE .若O 与BC 相切,55ADE ∠=︒,则C ∠的度数为______19.如图,在平面直角坐标系中,D 是直线6y x =-+上的一个动点,O 的半径为2,过点D 作O 的切线,切点为A ,则AD 长度的最小值为____________.20.已知圆锥的母线长为10cm ,高为8cm ,则该圆锥的展开图(扇形)的弧长为______(结果保留π).三、解答题21.如图,在△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,点D 在BC 上,AD 的延长线交⊙O 于点E ,连接CE .(1)求证:∠ADC =∠ACE ;(2)若⊙O 的半径为23,AB 的度数为90°,DE =2,求AD 的长.22.已知,如图,在ABC 中,90C ∠=︒,D 为BC 边中点.(1)尺规作图:以AC 为直径作O ,交AB 于点E (保留作图痕迹,不需写作法); (2)连接DE ,求证:DE 为O 的切线. 23.如图,BD 为ABC 外接圆O 的直径,且BAE C ∠=∠.(1)求证:AE 与O 相切于点A ;(2)若//AE BC ,23BC =,2AC =,求O 的直径. 24.如图所示的网格由小菱形组成,每个小菱形的边长均为Ⅰ个单位长度,且较小的内角为60°,ABC 的顶点都在网格的格点上,将ABC 绕点C 按顺时针方向旋转60°,得到11A B C .(1)画出旋转后的11A B C ;(2)直接写出在旋转过程中,点B 旋转到点1B 所经过的路径长;25.如图,已知BC 是O 的直径,AC 切O 于点C ,AB 交O 于点D ,E 为AC 的中点,连接CD ,DE .(1)求证:DE 是O 的切线;(2)若8BD =,6CD =,求AC 的长.26.如图,在平面直角坐标系中,正方形网格中每个小正方形的边长是一个单位长度,其中点B 的坐标为()2,1.(1)在平面直角坐标系中画出OAB ∆先向左平移4个单位长度,再向下平移3个单位长度后得到111O A B ∆.并写出点1B 的坐标.(2)在平面直角坐标系中画出OAB ∆绕点O 逆时针旋转90︒得到22OA B ∆,并求出旋转过程中线段OA 所扫过的面积(结果保留π).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接OA ,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB 是等边三角形,进一步得出结论.【详解】解:∵BD 是圆O 的直径,且BD=10∴OB=5连接OA ,如图,∵BD 是圆O 的直径,∴90ACB ABD ∠+∠=︒又2ABD C ∠=∠∴3∠C=90°,即∠C=30°,∴∠AOB=60°∴△AOB 是等边三角形,∴AB=OB=5故选:B .【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.2.B解析:B【分析】连接OB ,作OP ⊥AB 于E ,OF ⊥CD 于F ,根据弦、弧、圆心角、弦心距的关系定理得到OP=OF ,得到矩形PEFO 为正方形,根据正方形的性质得到OP=PC ,根据垂径定理和勾股定理求出OP ,根据勾股定理计算即可.【详解】解:连接OB ,作OP ⊥AB 于E ,OF ⊥CD 于F ,则BP=12AB=4,四边形PEFO 为矩形, ∵AB=CD ,OP ⊥AB ,OF ⊥CD ,∴OP=OF ,∴矩形PEFO 为正方形,∴OP=PC ,在Rt △OPB 中,222254OB BP --,∴OE=22OP PC +=32,故选:B .【点睛】本题考查了垂径定理以及勾股定理、矩形的判定与性质等知识,正确得出O 到AB ,CD 的距离是解题关键.3.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.4.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD 的度数,然后利用含30度的直角三角形三边的关系求出BD 、AB 的长即可.【详解】解:∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A 、B 不符合题意,在Rt △ADB 中,3,3故选项C 符合题意,选项D 不符合题意,故选:C.【点睛】本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.5.C解析:C【分析】根据切线的性质和切线长定理证明△PAB是等边三角形,PA⊥AO,根据直角三角形性质求出PA,问题得解.【详解】解:∵PA,PB是⊙O的两条切线,∠APB=60°,∴PA=PB,∠APO=1∠APB=30°,PA⊥AO,2∴△PAB是等边三角形,∵PA⊥AO,∠APO==30°,∴OP=2OA=2,∴PA=∴△PAB的周长为故选:C【点睛】本题考查了切线长定理,切线的性质,等边三角形的判定,含30°角直角三角形性质,勾股定理等知识,考查知识点较多,熟知相关定理并能熟练运用是解题关键.6.C解析:C【分析】首先连接BC,由AC平分∠BAD,易证得∠BDC=∠CAD,继而证得△CDE∽△CAD,然后由相似三角形的对应边成比例求得AE的长,进而求出AC的长.【详解】解:∵AC平分∠BAD,∴∠BAC=∠CAD∴=BC CD,∴∠BDC=∠CAD,∵∠ACD=∠DCE,∴△CDE∽△CAD,∴CD:AC=CE:CD,∴CD2=AC•CE,∴62=4(4+AE),∴AE=5,∴AC=AE+CE=9,故选:C.【点睛】此题考查了圆周角定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.B解析:B【分析】根据点与圆的位置关系进行判断即可;【详解】∵圆的半径为8cm,P到圆心O的距离为8cm,即OP=8,∴点P在圆上故选:B.【点睛】本题考查了点与圆的位置关系,点与圆的位置关系有3种:设OO的半径为r,点P到圆心的距离OP=d,则有:点P在圆外→d>r;点P在圆上→d=r;点P在圆内→d<r;8.C解析:C【分析】由垂线段最短可知当OP⊥AB时最短,当OP是半径时最长.根据垂径定理求最短长度.【详解】解:如图,连接OA,作OP⊥AB于P,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OP⊥AB于P,∴AP=BP,∵AB=6,∴AP=3,在Rt△AOP中,OP=222594-=-=;OA AP此时OP最短,所以OP长的取值范围是4≤OP≤5.故选:C.【点睛】本题考查了垂径定理、勾股定理,解题的关键是确定OP 的最小值,所以求OP 的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r ,弦长为a ,这条弦的弦心距为d ,则有等式r 2=d 2+(2a )2成立,知道这三个量中的任意两个,就可以求出另外一个. 9.D解析:D【分析】由题意得到四边形ABCD 为矩形,BC=2,再根据中间一块阴影的面积等于上下两块面积之和,得到BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,可求出AB=2π,则OP=12AB=4π,在Rt △OEP 中,利用勾股定理可计算出EP ,即可得到两圆的公共弦长EF . 【详解】解:∵AB ,CD 为两等圆的公切线,∴四边形ABCD 为矩形,BC=2,设中间一块阴影的面积为S ,∵中间一块阴影的面积等于上下两块面积之和,∴BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,∴AB=2π. 如图,EF 为公共弦,PO ⊥EF ,OP=12AB=4π, ∴22OE OF -222161()4ππ--=, ∴21162π-. 故选:D .【点睛】本题考查了垂径定理、勾股定理,公切线,连心线的性质,熟练掌握相关知识是解题的关键.10.B解析:B【分析】如图,过点A作AE⊥BD于点E,连接AD,可得AD=AB=10,根据垂径定理可得DE=BE,得CE=BE-BC=DE-4,再根据勾股定理即可求得DE的长,进而可得CD的长.【详解】解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=10,根据垂径定理,得DE=BE,∴CE=BE-BC=DE-4,根据勾股定理,得AD2-DE2=AC2-CE2,102-DE2=82-(DE-4)2,解得DE=132,∴CD=DE+CE=2DE-4=9,故选:B.【点睛】本题考查了垂径定理,解决本题的关键是掌握垂径定理.11.C解析:C【分析】如图,连接OA、OB,由正六边形ABCDEF内接于O可得∠AOB=60°,即可证明△AOB 是等边三角形,根据O直径可得OA的长,进而可得正六边形的周长.【详解】如图,连接OA、OB,∵O的直径为2,∴OA=1,∵正六边形ABCDEF内接于O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=1,∴该正六边形的周长是1×6=6,故选:C .【点睛】本题考查正多边形和圆,正确得出∠AOB=60°是解题关键.12.A解析:A【分析】连接OB ,根据平行四边形的判定及平行线的性质得出2OF ⊥BE 于F ,根据=()OBE OEA OBE S S SS S ---阴扇扇OEA 求解即可.【详解】 解:连接OB ,∴OB=OE=OA ,∵BC 与⊙O 相切于B ,∴OB ⊥BC ,∵四边形ABCD 是平行四边形,∴BC ∥OA ,OC ∥AB ,∴∠BOA=∠OBC=90°,∵OB=OA ,AB=2,∴∠OAB=∠OBA=45°,2,即2作OF ⊥BE 于F ,∵OA ∥BC ,∴∠COB=∠OBA=45°,∴∠EOB=180°-∠COB=180°-45°=135°, ∴2135(2)33604OBE S ππ==扇形,112sin 22sin(135)222OBE S ab C ==︒=,2452)13604OEA S ππ==扇形, ∴=()OBE OEA OBE S S SS S ---阴扇扇OEA =32124242ππ--+=21=42ππ, 故选A .【点睛】本题考查了平行线的性质,平行四边形的判定与性质,解题的关键是正确作出辅助线.二、填空题13.【分析】利用一次函数解析式求出点AB 的坐标即可得由勾股定理求出求出则可得是等边三角形可得根据圆周角定理求出扇形圆心角的度数并由三角形中线将三角形可分为面积相等的两个三角形得可求出阴影部分的面积及圆的 解析:13【分析】利用一次函数解析式求出点A 、B 的坐标,即可得6OA =,3OB =2243AB OA OB +=,求出23BC OC AC ===OBC 是等边三角形,可得60OBA ∠=︒,根据圆周角定理求出扇形圆心角的度数,并由三角形中线将三角形可分为面积相等的两个三角形得OBC OAC SS =,可求出阴影部分的面积及圆的面积,利用面积比即可求出结论.【详解】解:∵一次函数3233y x =-+的图象与x 轴交于点A ,与y 轴交于点B , 令0y =,则6x =,∴()6,0A -,令0x =,则23y = ∴(0,23B ,∴6OA =,3OB =在Rt AOB 中,由勾股定理得:2243AB OA OB =+=, ∴23BC OC AC ===,∴BC OC OB ==, ∴OBC 是等边三角形,∴60OBA ∠=︒,∴120ACO ∠=︒,∵OC 是AB 边上的中线,∴OBC OAC S S =, ∴()2120=234360ACO S S ππ==阴影扇形, ()22312C S ππ==, ∴针尖落在阴影部分的概率41123P ππ==. 故答案为:13. 【点睛】 此题考查了几何概率,掌握几何概率的计算方法及求出阴影部分的面积是解题的关键. 14.8【分析】如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小利用勾股定理以及垂径定理求解即可【详解】解:如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小在Rt △OA解析:85【分析】如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.利用勾股定理以及垂径定理求解即可.【详解】解:如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.在Rt △OAQ ′中,AQ ′22OQ OA '-22128-=5cm ),∵OA ⊥P ′Q ′,∴AQ ′=AP ′,∴P ′Q ′=2AQ ′=5cm ),故答案为:5【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.15.16【分析】由于圆心C 的坐标为()点P 的坐标为利用勾股定理求出OC的长这样把理解为点P 到原点的距离的平方利用图形可以得到当点P 运动到线段OC 上时点P 离原点最近即最小然后求出此时的PC 长即可解答【详解 解析:16【分析】由于圆心C 的坐标为(3、4),点P 的坐标为(),m n 利用勾股定理求出OC 的长, 222OP m n =+,这样把22m n +理解为点P 到原点的距离的平方,利用图形可以得到当点P 运动到线段OC 上时点P 离原点最近,即 22m n +最小,然后求出此时的PC 长即可解答【详解】连接OC 交圆O 于点P '圆心C 的坐标为(3、4),点P 的坐标为(),m n22345OC ∴=+=,222OP m n =+∴22m n +是点P 到原点的距离的平方∴当点P 运动到线段OC 上时,即P '处,点P 离原点最近,即 22m n +最小此时514OP OC PC =-=-=∴2216m n +=故答案为:16.【点睛】本题考查了点与圆的位置关系,以及勾股定理和坐标与图形的关系,熟练掌握点与圆的位置关系是解题关键.16.【分析】先求出正多边形边数为6再根据正六边形性质即可求解【详解】解:设正多边形的边数为n 由题意得解得n=6∴正多边形为正六边形∵边长为4的正六边形可以分成六个边长为4的正三角形∴该正多边形的半径等于 解析:4【分析】先求出正多边形边数为6,再根据正六边形性质即可求解.【详解】解:设正多边形的边数为n ,由题意得()21803602n -︒=︒⨯,解得 n=6∴正多边形为正六边形,∵边长为4的正六边形可以分成六个边长为4的正三角形,∴该正多边形的半径等于4.故答案为:4【点睛】本题考查了正多边形的相关概念,和正六边形的性质,熟知相关概念是解题关键.17.3【分析】根据弧长公式求出扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长再利用圆周长的公式求解即可【详解】扇形的半径为9圆心角为120°扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆解析:3【分析】根据弧长公式求出扇形的弧长,圆锥侧面展开扇形的弧长等于圆锥底面圆的周长,再利用圆周长的公式求解即可【详解】扇形的半径为9,圆心角为120°∴扇形的弧长12096 180180n rlπππ⨯===圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆锥底面圆的半径为r26rππ∴=3r∴=故答案为:3.【点睛】本题考查了圆锥侧面展开图与底面圆之间的关系,弧长的计算,解题关键是熟知圆锥侧面展开扇形的弧长等于圆锥底面圆的周长.18.55°【分析】由直径所对的圆周角为直角得∠AED=90°由切线的性质得∠ADC=90°然后由同角的余角相等得∠C=∠ADE=55°【详解】解:∵AD为的直径∴∠AED=90°∴∠ADE+∠DAE=9解析:55°【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质得∠ADC=90°,然后由同角的余角相等得∠C=∠ADE=55°.【详解】解:∵AD为O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°,∵O与BC相切,∴∠ADC=90°,∴∠DAE+∠C=90°,∴∠C=∠ADE=55°.故答案为55°.【点睛】本题考查了切线的性质,圆的相关概念及性质,互余关系等知识点.掌握圆的相关性质是解题的关键.19.4【分析】当OD 与直线y=-x+6垂直时连接AOAD 此时OD 最小AD 也最小根据等腰直角三角形的性质得到OD 根据勾股定理即可得到结论【详解】解:如图∵DA 为切线∴OA ⊥DAOA=∴当OD 最小时AD 的值解析:4【分析】当OD 与直线y=-x+6垂直时,连接AO ,AD ,此时OD 最小,AD 也最小,根据等腰直角三角形的性质得到OD ,根据勾股定理即可得到结论.【详解】解:如图∵DA 为切线,∴OA ⊥DA ,2∴当OD 最小时,AD 的值最小.∴当OD 与直线y=−x+6垂直时,AD 的值最小,如图,设y=−x+6交x ,y 轴于B ,C ,B(6,0),C(0,6),∴OB=OC=6.∵∠BOC= 90°,∴△OBC 为等腰直角三角形,∴22OB OC +2 ,∴OD=122 即OD 的最小值为2在Rt △OAD 中,AD 最小值22OD OA -()()22322164-==故答案为:4【点睛】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.20.【分析】根据勾股定理先求出圆锥的底面圆的半径然后根据圆锥的展开图为扇形其弧长等于圆锥底面圆的周长利用圆的周长公式即可计算【详解】设圆锥底面圆的半径为:由勾股定理得:圆锥底面圆的周长为:圆锥的展开图为 解析:12π【分析】根据勾股定理先求出圆锥的底面圆的半径,然后根据圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,利用圆的周长公式即可计算.【详解】设圆锥底面圆的半径为:r ,由勾股定理得:6r ==,∴圆锥底面圆的周长为:22612r πππ=⨯⨯=,圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,∴该圆锥展开图的弧长为:12π,故答案为:12π.【点睛】本题考查了圆锥的计算,要掌握圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,利用勾股定理求出圆锥底面圆的半径是解题关键.三、解答题21.(1)见详解;(2)AD=4【分析】(1)由题意易得AEC ACD ∠=∠,然后可得△ACD ∽△AEC ,进而根据相似三角形的性质可求证;(2)由(1)得△ACD ∽△AEC ,则有2AC AD AE =⋅,进而可得△ABC 是等腰直角三角形,BC 为⊙O 的直径,然后可得AC =AD=x ,则由DE=2可得AE=2+x ,最后问题可求解.【详解】(1)证明:∵AB=AC ,∴AB AC =,∴AEC ACD ∠=∠,∵∠EAC=∠EAC ,∴△ACD ∽△AEC ,∴∠ADC=∠ACE ;(2)解:由题意可得如图所示:由(1)得△ACD ∽△AEC , ∴AC AD AE AC=,即2AC AD AE =⋅, ∵AB 的度数为90°,∴45ACB ∠=︒,∵AB=AC ,∴45ACB ABC ∠=∠=︒,∴90BAC ∠=︒,∴△ABC 是等腰直角三角形,BC 为⊙O 的直径,∵⊙O 的半径为3 ∴43BC = ∴26AC =设AD=x ,则由DE=2可得AE=2+x ,∴()224x x +=,解得:124,6x x ==-,∴AD=4.【点睛】本题主要考查圆的基本性质及相似三角形的性质与判定,熟练掌握圆的基本性质及相似三角形的性质与判定是解题的关键.22.(1)作图见解析;(2)见解析.【分析】(1)先作AC 的中垂线,找到AC 的中点O ,然后以AC 为直径作圆,与AB 的交点即为所求;(2)由题意可知DE 为Rt BEC △斜边BC 上的中线,从而得到CD=DE ,即=∠∠ECD DEC ,由OC=OE 得到OEC OCE ∠=∠,再由90ACB ∠=︒即可得到OE ⊥DE ,即可得证.【详解】(1)作图如图所示.(2)证明:如上图,连结OE ,CE , AC 为直径,90AEC ∴∠=︒, D 为BC 边中点,DE ∴为Rt BEC △斜边BC 上的中线,12DE DC DB BC ∴===, ECD DEC ∴∠=∠,OC OE =,OEC OCE ∴∠=∠,90OED OEC CED OCE DCE ACB ∴∠=∠+∠=∠+∠=∠=︒OD DE ∴⊥,DE ∴为O 的切线.【点睛】本题考查了尺规作图以及切线的判定,正确找到垂直条件是判断切线的关键. 23.(1)见解析;(2)14【分析】(1)连接OA ,根据圆周角定理、等腰三角形的性质和已知求出∠DAO=∠BAE ,∠DAB=90°,求出OAE=90,根据切线的判定得出即可;(2)根据垂径定理求出BF ,根据勾股定理求出AF ,再根据勾股定理求出OB 即可.【详解】(1)连接OA ,交BC 于点F .∴OA OD =.∴D DAO ∠=∠.∵D C ∠=∠,∴C DAO ∠=∠.∵BAE C ∠=∠,∴BAE DAO ∠=∠.∵BD 是O 的直径,∴90BAD ∠=︒,即90DAO BAO ∠+∠=︒,∴90BAE BAO ∠+∠=︒,即90OAE ∠=︒,∴AE OA ⊥.又∵OA 为O 的半径, ∴AE 与O 相切于点A .(2)∵//AE BC ,AE OA ⊥,∴OA BC ⊥,∴AB AC =,12FB BC =,AB AC =. ∵27BC =22AC = ∴7BF =22AB =∴在Rt ABF 中,()()22222271AF AB BF =-=-=, ∴在Rt OFB △中,()222OB BF OB AF =+-,∴4OB =,∴8BD =,∴在Rt △ABD 中,2264856214AD BD AB =--= 【点睛】本题考查了三角形的外接圆与外心,切线的判定,勾股定理,等腰三角形的性质,平行线的性质,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键. 24.(1)见解析;(2)23π 【分析】(1)根据旋转的性质,作出与点A 、B 、C 相对应的点A 1、B 1、C 1依次连接即可 (2)结合题意直接用弧长公式求解即可【详解】(1)画图(2)点B 旋转到点B 1所经过的路径长为:60221801803n r l πππ⨯⨯=== 【点睛】 本题考查了作图——=旋转变换,等边三角形的判定与性质,弧长公式,菱形的性质,以及点运动的轨迹,综合运用以上知识是解题关键.25.(1)证明见解析;(2)152 【分析】(1)连接OD ,根据切线的性质和直角三角形斜边的中线以及等腰三角形的性质得出,EDC ECD ∠=∠,ODC OCD ∠=∠,然后利用等量代换即可得出DE OD ⊥,从而证明结论;(2)首先根据勾股定理求出BC 的长度,然后证明BCD BAC ∽△△,最后利用CD BD AC BC=求解即可. 【详解】(1)证明:连接OD ,如图,∵BC 是O 的直径,∴90BDC ∠=︒,∴90ADC ∠=︒,∵E 为AC 的中点,∴12DE EC AC ==,∴EDC ECD ∠=∠,∵OD OC = ,∴ODC OCD ∠=∠,∵AC 切O 于点C ,∴AC OC ⊥,∴90EDC ODC ECD OCD ∠+∠=∠+∠=︒,∴DE OD ⊥,∴DE 是O 的切线;(2)解:在Rt BCD 中,∵8BD =,6CD =,∴10BC ==∵90BDC BCA ∠=∠=︒,B B ∠=∠,∴BCD BAC ∽△△, ∴CD BD AC BC=, 即6810AC =, ∴152AC =. 【点睛】 本题主要考查圆的综合问题,掌握切线的判定及性质,相似三角形的判定及性质是解题的关键.26.(1)见详解;(2)134π,图形见详解 【分析】(1)分别画出OAB ∆各个顶点的对应点,再顺次连接起来,即可;(2)分别画出OAB ∆各个顶点绕点O 逆时针旋转90︒后的对应点,再顺次连接起来,最后利用扇形的面积公式,即可求解.【详解】(1)111O A B ∆如图所示,点1B 的坐标为(-2,-2),(2)22OA B ∆如图所示,∵,∴线段OA 所扫过的面积=290360π⨯=134π,【点睛】本题主要考查平移和旋转变换以及扇形的面积公式,掌握扇形的面积公式,是解题的关键.。

北师版九年级数学下册 第三章 圆 单元测试卷及答案

北师版九年级数学下册 第三章 圆 单元测试卷及答案

北师版九年级数学下册 第三章 圆 单元测试卷及答案满分:120分 时间:100分钟一、选择题(本大题共10小题,每小题3分,共30分) 1.下列说法错误的是( )A .直径是弦B .相等的圆心角所对的弧相等C .弦的垂直平分线一定经过圆心D .平分弧的半径垂直于弧所对的弦2.⊙O 与点P 在同一平面内,⊙O 的半径为5,PO =4,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定3.已知AB 是半径为6的圆的一条弦,则AB 的长不可能是( )A .8B .10C .12D .144.如图,AB 是⊙O 的直径,∠ABC =60°,则tan ∠BAC 的值是( )A. 3B .1C.32D.33(第4题) (第5题) (第7题)5.如图是一圆柱形输水管的横截面,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则该输水管的半径为( ) A .3 cmB .4 cmC .5 cmD .6 cm6.在⊙O 中,AB ︵=2CD ︵,则AB 和2CD 的大小关系是( )A .AB >2CD B .AB =2CDC .AB <2CDD .不能确定7.如图,P A ,PB 分别切⊙O 于点A ,B ,MN 切⊙O 于点C ,且分别交P A ,PB于点M ,N ,若P A =7.5 cm ,则△PMN 的周长是( )A .7.5 cmB .10 cmC .12.5 cmD .15 cm8.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =( )A .125°B .115°C .110°D .130°(第8题) (第9题) (第10题)9.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A (8,0),与y 轴交于点B (0,4)和点C (0,16),则圆心M 到坐标原点O 的距离是( ) A .10 B .8 2 C .4 13D .2 4110.如图,正方形ABCD 的边长为1,BD ︵和AC ︵都是以1为半径的圆弧,图中两个阴影部分的面积分别记为S 1和S 2,则S 1-S 2等于( ) A.π2-1 B .1-π4 C.π3-1D .1-π6二、填空题(本大题共5小题,每小题3分,共15分)11.已知△ABC 的三边长分别是6,8,10,则△ABC 外接圆的直径是________. 12.已知某扇形的圆心角为150°,弧长为20π cm ,则该扇形的面积为________cm 2. 13.如图,⊙O 是四边形ABCD 的内切圆,若AB =10,CD =12,则四边形ABCD的周长为________.(第13题) (第14题) (第15题)14.如图,△ABC 是⊙O 的内接三角形,∠C =45°,AB =6,则⊙O 的半径为________.15.如图,在平面直角坐标系中,C (0,4),A (3,0),⊙A 的半径为2,P 为⊙A上任意一点,E 是PC 的中点,则OE 的最小值是________. 三、解答题(一)(本大题共3小题,每小题8分,共24分)16.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC =150°,求∠EBC 的度数.(第16题)17.如图,AB 、CD 是⊙O 的两条直径,CE ∥AB ,求证:BC ︵=AE ︵.(第17题)18.如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2). (1)经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标为__________; (2)⊙M 的半径为________;(3)判断点D(5,-2)与⊙M的位置关系.(第18题)四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,AB是⊙O的直径,弦CD⊥AB于点M,连接CO,CB.(1)若AM=2,BM=8,求CD的长度;(2)若CO平分∠DCB,求证:CB=CD.(第19题)20.如图,直线AB、BC、CD分别与⊙O相切于点E、F、G,且AB∥CD,OB =6 cm,OC=8 cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.(第20题)21.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接BF,求∠ABF的度数.(第21题)五、解答题(三)(本大题共2小题,每小题12分,共24分)22.如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F.(1)求证:AC 平分∠DAB ; (2)求证:△PCF 是等腰三角形;(3)若AF =6,EF =2 5,求⊙O 的半径.(第22题)23.(1)如图①,△ABC 是⊙O 的内接正三角形,点P 为BC ︵上一动点,求证:P A=PB +PC ;(2)如图②,四边形ABCD 是⊙O 的内接正四边形,点P 为BC ︵上一动点,求证:P A =PC +2PB ;(3)如图③,六边形ABCDEF 是⊙O 的内接正六边形,点P 为BC ︵上一动点,请直接写出P A 、PB 、PC 三者之间的数量关系.(第23题)答案一、1.B 2.A 3.D4.D5.C6.C7.D 8.A9.D10.A二、11.1012.240π13.4414.3215.1.5三、16.解:由圆周角定理得∠ADC =12∠AOC =12×150°=75°.∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°.又∵∠ABC +∠EBC =180°,∴∠EBC =∠ADC =75°.(第17题)17.证明:连接OE ,如图,∵CE ∥AB ,∴∠BOC =∠C ,∠AOE =∠E ,∵OC =OE ,∴∠C =∠E ,∴∠BOC =∠AOE ,∴BC ︵=AE ︵.18.解:(1)(2,0)(2)25(3)点D (5,-2)在⊙M 内.四、19.(1)解:∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CM =DM ,∵AM =2,BM =8,∴AB =10,∴OA =OC =5.∴OM =5-2=3.∴CM =OC 2-OM 2=52-32=4,∴CD =8.(2)证明:过点O 作ON ⊥BC ,垂足为N ,如图.(第19题)∵CO 平分∠DCB ,ON ⊥BC ,CD ⊥AB ,∴OM =ON ,∴易得CB =CD .20.解:(1)∵直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,∴易得∠OBF =∠OBE ,∠OCF =∠OCG .∵AB ∥CD ,∴∠ABC +∠BCD =180°,∴∠OBF +∠OCF =90°,∴∠BOC =90°.(2)∵OB =6cm ,OC =8cm ,∠BOC =90°,∴BC =OB 2+OC 2=10cm ,∵直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,∴BE =BF ,CF =CG .∴BE +CG =BF +CF =BC =10cm.(3)连接OF ,则OF ⊥BC ,∴S △OBC =12OF ×BC =12OB ×OC ,即12OF ×10=12×6×8.∴OF =4.8cm.即⊙O 的半径为4.8cm.21.(1)证明:连接OB ,如图.(第21题)∵OB =OA ,CE =CB ,∴∠OAB =∠OBA ,∠CEB =∠ABC .∵CD ⊥OA ,∴∠OAB +∠AED =90°,∴∠OAB +∠CEB =90°.∴∠OBA +∠ABC =90°,即∠OBC =90°.∴OB⊥BC,∴BC是⊙O的切线.(2)解:连接OF,AF,∵DA=DO,CD⊥OA,∴AF=OF,又∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°,∴∠ABF=12∠AOF=30°.五、22.(1)证明:如图,连接OC.∵PD为⊙O的切线,∴OC⊥DP,又∵AD⊥DP,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=∠DAC,∴AC平分∠DAB.(2)证明:如图,连接OE.∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°.(第22题)∴∠BOE=2∠BCE=90°,∴∠OFE+∠OEF=90°,又∵∠OFE=∠CFP,∴∠CFP+∠OEF=90°,∵OC⊥PD,∴∠OCP=90°,即∠OCF+∠PCF=90°,∵OC=OE,∴∠OCF=∠OEF,∴∠PCF=∠CFP,∴CP=FP,∴△PCF是等腰三角形.(3)解:设⊙O的半径为r,则OE=r,OF=6-r,在Rt△EOF中,∵OE2+OF2=EF2,∴r2+(6-r)2=(25)2,解得r1=4,r2=2.当r=4时,OF=6-r=2,符合题意;当r=2时,OF=6-r=4,不合题意,舍去.∴⊙O的半径为4.23.(1)证明:延长BP至E,使PE=PC,连接CE.∵四边形ABPC是⊙O的内接四边形,∴∠BAC+∠BPC=180°,又∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE.∵△ABC是正三角形,∴AC=BC,∠BAC=∠ACB=60°,∴∠CPE=60°.又∵PE=PC,∴△PCE是正三角形,∴CE=PC,∠E=∠PCE=60°.∴易得∠BCE=∠ACP.在△BEC和△APC中,=PC,BCE=∠ACP,=AC,∴△BEC≌△APC,∴PA=BE=PB+PE=PB+PC.(2)证明:连接OA,OB,过点B作BE⊥PB交PA于E,如图.∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∠ABC=90°,AB=BC.∴∠1+∠2=90°,∠APB=45°,又∵∠2+∠3=90°,∴∠1=∠3.又∵∠BAP=∠BCP,∴△ABE≌△CBP.∴AE=CP.∵∠EBP=90°,∠APB=45°,∴PE=2PB.∴PA=AE+PE=PC+2PB.(3)解:PA=PC+3PB.(第23题)11。

(北师大版)初中数学九年级下册第三章综合测试03含答案解析

(北师大版)初中数学九年级下册第三章综合测试03含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第三章综合测试一、选择题1.如下图,AB 是O ⊙的直径,点C D 、在O ⊙上,且105AB AC CD ===,,则ABD ∠的度数为( )A .30°B .45°C .50°D .60°2.如下图,AC BD 、是O ⊙的两条相交弦,60ACB CDB AC ∠=∠=︒=,O ⊙的直径是( )A .2B .4CD .3.如下图,O ⊙中,弦AB CD ⊥,垂足为E F ,为CBD 的中点,连接AF BF AC AF 、、,交CD 于M ,过F 作FH AC ⊥,垂足为G ,以下结论:①CF DF =;②HC BF =:③MF FC =:④DF AH BF AF +=+,其中成立的个数是( )A .1个B .2个C .3个D .4个4.若四边形ABCD 的对角线AC BD ,相交于O AOB BOC COD DOA ,△,△,△,△的周长相等,且AOB BOC COD △,△,△的内切圆半径分别为3,4,6,则DOA △的内切圆半径是( )A .92B .32C .72D .以上答案均不正确5.如下图,AB 是O ⊙的直径,10AB P =,是半径OA 上的一动点,PC AB ⊥交O ⊙于点C ,在半径OB 上取点Q ,使得OQ CP DQ AB =⊥,交O ⊙于点D ,点C D ,位于AB 两侧,连接CD 交AB 于点F ,点P 从点A 出发沿AO 向终点O 运动,在整个运动过程中,CFP △与DFQ △的面积和的变化情况是( )A .一直减小B .一直不变C .先变大后变小D .先变小后变大6.如下图,PA PB 、是O ⊙切线,A B 、为切点,AC 是直径,40P ∠=︒,则BAC ∠=( )A .40°B .80°C .20°D .10°7.如下图,AB 是O ⊙的直径,EF EB ,是O ⊙的弦,且EF EB EF =,与AB 交于点C ,连接OF ,若40AOF ∠=︒,则OFE ∠的度数是( )A .30°B .20°C .40°D .35°8.如下图,AB 是O ⊙的直径,C 和D 是O ⊙上两点,连接AC BC BD CD 、、、,若36CDB ∠=︒,则ABC ∠=( )A .36°B .44°C .54°D .72°9.如下图,点D E ,分别是O ⊙的内接正三角形ABC 的AB AC ,边的中点,若1DE =,则O ⊙的直径为( )ABC D 10.如下图,已知AB 是圆O 的直径,弦CD 与AB 垂直,垂足为M E ,是CD 延长线上一点,且10AB =,8CD =,34DE OM =,过F 做作圆O 的切线EF BF ,交CD 于G .则以下说法其中正确的是( )A .3MB =B .EF =C .FD AB ∥D .EF EG =二、填空题11.如下图,O ⊙是ABC △的外接圆,半径为2cm ,若2cm BC =,则A ∠的度数为________.12.如下图,已知O ⊙的半径为5,弦AB CD 、所对的圆心角分别是AOB COD ∠∠、,若AOB ∠与COD ∠互补,弦6CD =,则点O 到弦AB 的距离为________.13.如下图,B C 、两点在以AD 为直径的半圆O 上,若4ABC D ∠=∠,且3CD BC =,则A ∠的度数为________.14.点P 为O ⊙外一点,PA 为O ⊙的切线,A 为切点,PO 交O ⊙于点304B P BP ︒∠==,,,则线段AP 的长为________.15.如下图,矩形ABCD 中,48AB AD ==,,点E F ,分别在边AD BC ,上,且点B F ,关于过点E 的直线对称,如果EF 与以CD 为直径的圆恰好相切,那么AE =________.16.如下图,在扇形OAB 中,902AOB OA OB ∠=︒==,,将扇形OAB 绕边OB 的中点D 顺时针旋转90°得到扇形O A B ''',弧A B ''交OA 于点E ,则图中阴影部分的面积为________.三、解答题17.如下图,ABC △内接于60O B CD ∠=︒⊙,,是O ⊙的直径,点P 是CD 延长线上的一点且AP AC =.(1)求证:PA 是O ⊙的切线;(2)若24AB BC ==,求O ⊙的半径.18.如下图,ABC △是O ⊙的内接三角形,BC 是O ⊙的直径,过点O 作OF BC ⊥,交AC 于点E ,连接AF ,且AF 是O ⊙的切线.(1)求证:AF EF =.(2)若O ⊙的半径为5,AB =AF 的长.19.如下图,AB 为O ⊙的直径,C D ,为O ⊙上的两点,BAC DAC ∠=∠,过点C 做直线EF AD ⊥,交AD 的延长线于点E ,连接BC .(1)求证:EF 是O ⊙的切线;(2)若302BAC DAC BC ︒∠=∠==,,求劣弧BC 的长l .20.如下图所示,AB 是O ⊙的直径,AD 和BC 分别切O ⊙于A B ,两点,CD 与O ⊙有公共点E ,且AD DE =.(1)求证:CD 是O ⊙的切线;(2)若124AB BC ==,,求AD 的长.21.如下图,直线l 与O ⊙相离,OA l ⊥于点A ,与O ⊙相交于点10P OA =,.C 是直线l 上一点,连结CP 并延长交O ⊙于另一点B ,且AB AC =.(1)求证:AB 是O ⊙的切线;(2)若O ⊙的半径为6,求线段BP 的长.22.如下图,四边形ABCD 内接于O AC ⊙,是直径,AB BC =,连接BD ,过点D 的直线与CA 的延长线相交于点E ,且EDA ACD ∠=∠.(1)求证:直线DE 是O ⊙的切线;(2)若68AD CD ==,,求BD 的长.23.如下图,O ⊙为ABC △的外接圆,D 为OC 与AB 的交点,E 为线段OC 延长线上一点,且EAC ABC ∠=∠.(1)求证:直线AE 是O ⊙的切线.(2)若D 为AB 的中点,616CD AB ==, ①求O ⊙的半径;②求ABC △的内心到点O 的距离.第三章综合测试答案解析一、 1.【答案】D【解析】解:连接OC OD 、,如下图所示:1552OC OD OA AB AC CD ======∵,, OA AC OC CD OD ====∴, AOC ∴△和COD △是等边三角形,60AOC COD ︒∠=∠=∴, 6060120AOD ︒︒︒∠=+=∴,1602ABD AOD ︒∠=∠=∴;故选:D .2.【答案】B【解析】解:连接OB ,作OE BC ⊥于E ,如下图所示:6060A CDB ACB CDB ︒︒∠=∠=∠=∠=∵,, 60A ACB ︒∠=∠=∴, ACB ∴△为等边三角形,30BC AC OBE ︒==∠=∴, OE BC ⊥∵,12BE BC ==∴122OE OB OE ====∴,, O ∴⊙的直径24OB ==;故选:B .3.【答案】C【解析】解:F ∵为CBD 的中点,CF DF =∴,故①正确,FCM FAC ∠=∠∴,FCG ACM GCM AME FMC ACM FAC ∠=∠+∠∠=∠=∠+∠∵,, AME FMC FCG FCM ∠=∠=∠∠∴>, FC FM ∴>,故③错误, AB CD FH AC ⊥⊥∵,,90AEM CGF ︒∠=∠=∴,9090CFH FCG BAF AME ︒︒∠+∠=∠+∠=∴,, CFH BAF ∠=∠∴, CH BF =∴,HC BF =∴,故②正确,90AGF ︒∠=∵, 90CAF AFH ︒∠+∠=∴, AH ∴的度数CF +的度数°180=, CH ∴的度数AF +的度数°180=,AH CF AH DF CH AF AF BF +=+=+=+∴,故④正确,故选:C .4.【答案】A【解析】解:设DOA △的内切圆半径为r AOB BOC COD DOA ,△,△,△,△的周长为L , 则131113426322222AOB BOC COD DOA S L L S L L S L L S Lr =======△△△△,,,, AOB COD COD DOA S S S S =△△△△∵,313222L L L Lr =∴,92r =∴. 故选:A . 5.【答案】B【解析】解:连接OC OD PD CQ ,,,.设PC x OP y OF a ===,,,PC AB QD AB ⊥⊥∵,, 90CPO OQD ︒∠=∠=∴,PC OQ OC OD ==∵,, OPC DQO ∴≌Rt △Rt △,OP DQ y ==∴,()()()()211112222PFD CFQ PCQD S S S S x y y a y x a x xy a y x =−−=+−−−+=+−△△阴四边形∴, PC DQ ∵∥, PC PFDQ FQ =∴, x y a y a x −=+∴, a y x =−∴, ()()221125222S xy y x y x x y =+−−=+=阴∴()故选:B . 6.【答案】C【解析】解:连接OB ,PA PB ∵、是O ⊙切线,A B 、为切点,90OAP OBP ︒∠=∠=∴, 40P ︒∠=∵,360140AOB OAP P OBP ︒︒∠=−∠−∠−∠=∴, OA OB =∵,()1180202BAC OBA AOB ︒︒∠=∠=−∠=∴, 故选:C .7.【答案】D 【解析】解:如图,连接BF OE ,.EF EB OE OE OF OB ===∵,,,()OEF OEB SSS ∴△≌△,OFE OBE ∠=∠∴,OE OB OF ==∵,OEF OFE OEB OBE OFB OBF ∠=∠=∠=∠∠=∠∴,,1202ABF AOF ︒∠=∠=∵, 20OFB OBE ︒∠=∠=∴,180OFB OBF OFE OBE BEF ︒∠+∠+∠+∠+∠=∵,440180EFO ︒︒∠+=∴,35OFE ︒∠=∴,故选:D .8.【答案】C【解析】解:AB ∵是O ⊙的直径,90ACB ∠=︒∴,36A D ︒∠=∠=∵,903654ABC ︒︒︒∠=−=∴,故选:C .9.【答案】D【解析】解:连接OB OC 、,作OF BC ⊥于F ,则12BF CF BC ==, ∵点D E ,分别AB AC ,边的中点,22BC DE ==∴,由圆周角定理得,2120BOC A ︒∠=∠=,30OBF ︒∠=∴,cos BF OB OBF ===∠∴ O ∴⊙故选:D .10.【答案】D【解析】解:连接OC ,AB ∵是圆O 的直径,弦CD 与AB 垂直,90OMC CM DM ︒∠==∴,,108AB CD ==∵,,54OC CM ==∴,,3OM =∴,2BM =∴,故A 选项错误;连接AF OF ,,90AFB ︒∠=∴,∵过F 作圆O 的切线EF ,90OFE ︒∠=∴,AFO EFG ∠=∠∴,90A B B BGM ︒∠+∠=∠+∠=∵,BGM A ∠=∠∴,A AFO BGM DGF ∠=∠∠=∠∵,,EFG EGF ∠=∠∴,EF EG =∴,故D 选项正确;34DE OM =∵,412DE CE ==∴,,248EF DE CE ==∴,EF =∴,故B 选项错误;连接AD ,则BAD BFD ∠=∠,8GM EM EG =−=−∵41tan 4tan tan 82MG MD MBG BAD MBG BM MA ∠==−∠===≠∠∴, BAD MBG MBF BFD ∠≠∠∠≠∠∴,,FD ∴与AB 不平行,故C 选项错误,故选:D .二、11.【答案】30︒【解析】解:连接OB 和OC ,∵圆O 半径为22BC =,,OB OC BC ==∴,OBC ∴△为等边三角形,60BOC ︒∠=∴,1302A BOC ︒∠=∠=∴,12.【答案】3【解析】解:延长CO 交O ⊙于E ,连接DE ,过O 作OF DE ⊥于F OH CD ⊥,于H OG AB ⊥,于G ,线段OG 的长是点O 到弦AB 的距离,COD ∠∵和DOE ∠互补,COD ∠和AOB ∠互补,DOE AOB ∠=∠∴,DE AB OF OG ==∴,,6OH DC CD OH ⊥=∵,,过O ,13902DH HC DC OHD OHC ︒===∠=∠=∴,,由勾股定理得:4OH ==,4OC OE DH HC OH ===∵,,,28DE OH ==∴,OF DE OF ⊥∵,过O ,142DF EF DE ===∴,在DFO Rt △中,由勾股定理得:3OF ===,3OG OF ==∴,即点O 到AB 的距离是3,13.【答案】72︒【解析】解:连接OC OB ,.1804ABC D ABC D ︒∠+∠=∠=∠∵,,36D ︒∠=∴,OC DO =∵,36OCD D ︒∠=∠=∴,1803636108DOC ︒︒︒︒∠=−−=∴,3CD BC =∵,3COD BOC ∠=∠∴,36108144BOD ︒︒︒∠=+=∴,1722A DOB ︒∠=∠=∴.14.【答案】【解析】解:连接OA ,如图:PA ∵为O ⊙的切线,PA OA ⊥∴,90OAP ︒∠=∴,30P ︒∠=∵,22OP OA OB AP ===∴,,4OA OB BP ===∴,AP =∴;15.【答案】6【解析】解:如下图,设O ⊙与EF 相切于M ,连接EB ,作EH BC ⊥于H .由题意易知四边形AEHB 是矩形,设AE BH x ==,由切线长定理可知,ED EM FC FM ==,,B F ∵、关于EH 对称,882163HF BH x ED EM x FC FM x EF x ====−==−=−∴,,,,在EFH Rt △中,222EF EH HF =+∵,()2224163x x +=−∴,解得6x =或6(舍弃),故答案为:6.16.【答案】5112π− 【解析】解:延长EO 交O A ''于P ,则由902AOB OA OB ︒∠===,,D 为OB 中点,可得 2211144OPO S ππ'⨯=−=−阴影;1902O P OE EPO ︒''=∠=∵,,1cos 2EO P '∠=∴,60EO P EP ︒'∠==∴,,O PE A PE O A E S S S ''''=−△阴影扇形∴,2602113602π⨯=−,23π=−,25114312S πππ=−阴影∴+.故答案为5112π.三、17.【答案】(1)证明:连接OA ,60B ︒∠=∵,2120AOC B ︒∠=∠=∴,又OA OC =∵,30OAC OCA ︒∠=∠=∴,又AP AC =∵,30P ACP ︒∠=∠=∴,90OAP AOC P ︒∠=∠−∠=∴,OA PA ⊥∴,PA ∴是O ⊙的切线;(2)解:过点C 作CE AB ⊥于点E .在BCE Rt △中,604B BC ︒∠==,,122BE BC CE ===∴,,2AB =∵,AE AB BE =−=∴在ACE Rt △中,AC ==,AP AC ==∴在PAO Rt △中,12OA AP ==O ∴⊙的半径为2.18.【答案】解:(1)如下图,连接OA ,AF ∵为O ⊙的切线,90OAF ︒∠=∴,90OAC FAC ︒∠+∠=∴,FEA OEC OF BC ∠=∠⊥∵,,90OEC OCE ︒∠+∠=∴,OCE OAC ∠=∠∵,FAC FEA ∠=∠∴,AF EF =∴;(2)O ∵⊙的半径为5,10BC =∴,在ABC Rt △中,AB =AC == 90ECO BCA EOC CAB ︒∠=∠∠=∠=∵,,EOC BAC ∴△∽△,OE OCAB AC =∴=, 解得53OE =, 由(1)可知:AF EF =,设AF EF x ==,53OF EF OE x =+=+∴, 在AOF Rt △中,根据勾股定理,得222AF OA OF +=, 即222553x x ⎛⎫+=+ ⎪⎝⎭, 解得203x =. 答:AF 的长为203. 19.【答案】(1)证明:连接OC ,OA OC =∵,OAC DAC ∠=∠∴,DAC OCA ∠=∠∴,AD OC ∴∥,90AEC ︒∠=∵,90OCF AEC ︒∠=∠=∴,EF ∴是O ⊙的切线;(2)解:AB ∵为O ⊙的直径,90ACB ︒∠=∴,302BAC DAC BC ︒∠=∠==∵,,6024BOC AB BC ︒∠===∴,,122OB AB ==∴,BC ∴的长60221803ππ⨯==. 20.【答案】(1)证明:连接OD OE ,,AD ∵切O ⊙于A 点,AB 是O ⊙的直径,90DAB ︒∠=∴,AD DE OA OE OD OD ===∵,,,()ADO EDO SSS ∴△≌△,90OED OAD ︒∠=∠=∴,CD ∴是O ⊙的切线;(2)解:过C 作CH AD ⊥于H ,AB ∵是O ⊙的直径,AD 和BC 分别切O ⊙于A B ,两点, 90DAB ABC CHA ︒∠=∠=∠=∴,∴四边形ABCH 是矩形,124CH AB AH BC ====∴,,CD ∵是O ⊙的切线,AD DE CE BC ==∴,,44DH AD BC AD CD AD =−=−=+∴,,222CH DH CD +=∵,()()2221244AD AD +−=+∴, 9AD =∴.21.【答案】(1)证明:如下图,连结OB ,则OP OB =, OBP OPB CPA ∠=∠=∠∴,AB AC =,ACB ABC ∠=∠∴,而OA l ⊥,即90OAC ︒∠=,90ACB CPA ︒∠+∠=∴,即90ABP OBP ︒∠+∠=,90ABO ︒∠=∴,OB AB ⊥,故AB 是O ⊙的切线;(2)解:由(1)知:90ABO ︒∠=, 而106OA OB OP ===,,由勾股定理,得:8AB =,过O 作OD PB ⊥于D ,则PD DB =, 90OPD CPA ODP CAP ︒∠=∠∠=∠=∵,, ODP CAP ∴△∽△,PD OP PA CP=∴, 又84AC AB AP OA OP ===−=∵,,PC ==∴, 655OP PA PD CP ==∴2BP PD ==∴22.【答案】(1)证明:连接OD , OC OD =∵,OCD ODC ∠=∠∴,AC ∵是直径,90ADC ︒∠=∴,EDA ACD ∠=∠∵,90ADO ODC EDA ADO ︒∠+∠=∠+∠=∴, 90EDO EDA ADO ︒∠=∠+∠=∴, OD DE ⊥∴,OD ∵是半径,∴直线DE 是O ⊙的切线.(2)过点B 作BH BD ⊥交DC 延长线于点H .90DBH ︒∠=∴,AC ∵是直径,90ABC ︒∠=∴,9090ABD DBC CBH DBC ︒︒∠=−∠∠=−∠∵,ABD CBH ∠=∠∴,∵四边形ABCD 内接于O ⊙,180BAD BCD ︒∠+∠=∴,180BCD BCH ︒∠+∠=∵,BAD BCH ∠=∠∴,AB CB =∵,()ABD CBH ASA ∴△≌△,AD CH BD BH ==∴,,68AD CD ==∵,,14DH CD CH =+=∴,在BDH Rt △中,22298BD DH BH =−=∵,BD =∴23.【答案】解:(1)证明:连接AO ,并延长AO 交O ⊙于点F ,连接CFAF ∵是直径,90ACF ︒∠=∴,90F FAC ︒∠+∠=∴,F ABC ABC EAC ∠=∠∠=∠∵,,EAC F ∠=∠∴,90EAC FAC ∠+∠=︒∴90EAF ︒∠=∴,且AO 是半径,∴直线AE 是O ⊙的切线.(2)①如图,连接AO ,D ∵为AB 的中点,OD 过圆心,182OD AB AD BD AB ⊥===∴,, 222AO AD DO =+∵,()22286AO AO =+−∴, 253AO =∴, O ∴⊙的半径为253; ②如下图,作CAB ∠的平分线交CD 于点H ,连接BH ,过点H 作HM AC HN BC ⊥⊥,,OD AB AD BD ⊥=∵,,AC BC =∴,且AD BD =,CD ∴平分ACB ∠,且AH 平分CAB ∠,∴点H 是ABC △的内心,且HM AC HN BC HD AB ⊥⊥⊥,,,MH NH DH ==∴,在ACD Rt △中,10AC BC ===,ABC ACH ABH BCH S S S S =++△△△△∵,11111661016102222MH DH NH ⨯⨯=⨯⨯+⨯⨯+⨯⨯∴, 83DH =∴, ()OH CO CH CO CD DH =−=−−∵,2586533OH ⎛⎫=−−= ⎪⎝⎭∴.。

九年级下册数学单元测试卷-第三章 圆-北师大版(含答案)

九年级下册数学单元测试卷-第三章 圆-北师大版(含答案)

九年级下册数学单元测试卷-第三章圆-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有( )A.1个B.2个C.3个D.4个2、给出下面四个命题,其中真命题的个数有()⑴平分弦的直径垂直于这条弦,并且平分这条弦所对的弧;(2)90°的圆周角所对的弦是直径;(3)在同圆或等圆中,圆心角的度数是圆周角的度数的两倍;(4)如下图,顺次连接圆的任意两条直径的端点,所得的四边形一定是矩形.A.1个B.2个C.3个D.4个3、下列命题:①三点确定一个圆;②三角形的外心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦.其中假命题的个数是()A.1B.2C.3D.44、如图,与相切于点,若,则的度数为()A. B. C. D.5、若⊙O的弦AB等于半径,则AB所对的圆心角的度数是()A.30°B.60°C.90°D.120°6、已知⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD的距离为()A.2cmB.14cmC.2cm或14cmD.10cm或20cm7、如下图:⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有()A.3 个B.4个C.5个D.6个8、如图所示,直线CD与线段AB为直径的圆相切于点D,并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为A.90°B.60°C.45°D.30°9、⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含10、如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=110°,则∠B的度数是()A.110°B.70°C.60°D.55°11、如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则扇形BOC的面积为()A. B. C.π D.12、若点A的坐标为(3,4),⊙A的半径5,则点P(6,3)的位置为()A.P在⊙A内B.P在⊙A上C.P在⊙A外D.无法确定13、下列命题中,正确的是()A.圆心角相等,所对的弦相等B.三点确定一个圆C.长度相等的弧是等弧D.弦的垂直平分线必经过圆心14、如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OBB.CE=EOC.∠OCE=40°D.∠BOC=2∠BAD15、有一个三角形的外接圆的圆心在它的某一边上则这个三角形一定是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=________.17、如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP的长的范围是________。

九年级下册数学单元测试卷-第三章 圆-北师大版(含答案)

九年级下册数学单元测试卷-第三章 圆-北师大版(含答案)

九年级下册数学单元测试卷-第三章圆-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧AMB上一点,则sin∠APB的值为()A. B. C. D.12、已知⊙O的半径为5,两条平行弦AB、CD的长分别为6和8,求这两条平行弦AB与CD 之间的距离()A.3B.4C.1或7D.103、如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40o,则∠OCB的度数为( )A.40°B.50°C.65°D.75 °4、如图,以AB为直径的半圆圆心为O,AB=10,折叠半圆使点A,点B都与圆心O重合,折痕分别为CD,EF,连接DF,则图中阴影的面积为()A. B. C. D.5、⊙O的半径为3cm,如果圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是()A.相交B.相切C.相离D.不确定6、已知:⊙O是△ABC的外接圆,∠OAB=40°,则∠ACB的大小为()A.20°B.50°C.20°或160°D.50°或130°7、如图,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是()A.19°B.38°C.52°D.76°8、如图,AB是⊙O的直径,若∠BAC=42º,则么∠ABC=()A.42ºB.48ºC.58ºD.52º9、同一圆中,对于下列命题:①顶点在圆周上的角是圆周角;②圆周角的度数是圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等。

(好题)初中数学九年级数学下册第三单元《圆》测试(包含答案解析)

(好题)初中数学九年级数学下册第三单元《圆》测试(包含答案解析)

一、选择题1.如图,AB 是半圆的直径,CD 为半圆的弦,且CD//AB ,∠ACD=26°,则∠B 等于( )A .26°B .36°C .64°D .74°2.将一枚飞镖投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A .12B .25C .35D .233.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .24.如图,矩形ABCD 中,10AB =,4=AD ,点P 是CD 上的动点,当90APB ∠=︒时,线段DP 的长应是( )A .2B .6C .2或6D .2或85.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D E 、,则CDE △面积的最小值为( )A .2B .2.5C .3D .346.如图,30MAN ∠=︒,O 是MAN ∠内部一点,O 与MAN ∠的边AN 相切于点B ,与边AM 相交于点C ,D ,52AB =,作OE CD ⊥于E ,3OB OE =,则弦CD 的长是( )A .22B .23C .4D .267.如图,在ABC 中,5AB AC ==,6BC =,D ,E 分别为线段AB ,AC 上一点,且AD AE =,连接BE 、CD 交于点G ,延长AG 交BC 于点F .以下四个结论正确的是( )①BF CF =;②若BE AC ⊥,则CF DF =; ③若BE 平分ABC ∠,则32FG =;④连结EF ,若BE AC ⊥,则2DFE ABE ∠=∠. A .①②③B .③④C .①②④D .①②③④8.如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的个数有( )①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PCB ∽△△;⑤CF CP ⋅为定值 A .2个 B .3个C .4个D .5个9.已知正六边形ABCDEF 内接于O ,若O 的直径为2,则该正六边形的周长是( ) A .12B .63C .6D .3310.如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则cos ∠ADC 的值为( )A .21313B .1313C .31313D .2311.如图,在扇形BOC 中,∠BOC =60°,点D 为弧BC 的中点,点E 为半径OB 上一动点,若OB =2,则阴影部分周长的最小值为( )A .2+6π B .323+3π C .322+6πD .2+3π 12.如图,AB 为⊙0的直径,点C 在⊙0上,且CO ⊥AB 于点O ,弦CD 与AB 相交于点E ,若∠BEC= 68°,则∠ABD 的度数为( )A .20°B .23°C .25°D .34°二、填空题13.如图,ABC 在中,125BIC ∠=︒,I 是内心,O 是外心,则BOC ∠=__________.14.如图,正方形ABCD 的边AB =2,P 是边AB 上一动点,过B 点作直线CP 的垂线,垂足为Q ,当点P 从点A 运动到点B 时,点Q 的运动路径长为_____.15.如图,把一只篮球放在高为16cm 的长方体纸盒中,发现篮球的一部分露出盒,其截图如图所示.若量得EF =24cm ,则该篮球的半径为_____cm .16.如图平面直角坐标系中,⊙O 的半径5AB 的长为4,过点O 做OC ⊥AB 于点C ,⊙O 内一点D 的坐标为(﹣4,3),当弦AB 绕点O 顺时针旋转时,点D 到AB 的距离的最小值是_____.17.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,8AB =,将Rt ABC △绕点C 顺时针旋转,使斜边A B ''过B 点,则线段CA 扫过的面积为______.18.如图,半径为2的O 中有弦AB ,以AB 为折痕对折,劣弧恰好经过圆心O ,则弦AB 的长度为__________.19.点E 在正方形ABCD 的内部,BCE 是以EC 为底边的等腰三角形,1AB =,则DE 的最小值为_________.20.如图,在△ABC 中,BC =9,AC =12,AB =15,D 为直线AB 上方一点,连接AD ,BD ,且∠ADB =90°,过D 作直线BC 的垂线,垂足为E ,则线段BE 的长度的最大值为_____.三、解答题21.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠P =44°.(1)如图①,若点C 为优弧AB 上一点,求∠ACB 的度数;(2)如图②,在(1)的条件下,若点D 为劣弧AC 上一点,求∠PAD +∠C 的度数. 22.如图,AB 是O 的弦,半径OE AB ⊥,交AB 于点,G P 为AB 延长线上一点,PC 与O 相切于点,C CE 与AB 交于点F .(1)求证:PC PF =;(2)连接,OB BC ,若3//,32,tan 4OB PC BC P ==,求FB 的长.23.如图,在ABC 中,90C ∠=︒,ABC ∠的平分线BE 交AC 于点E ,过点E 作BE 的垂线交AB 于点F ,O 是BEF 的外接圆,BC 与O 交于点D .(1)求证:AC 是O 的切线;(2)过点E 作EH AB ⊥于点H ,求证:CD HF =.24.如图,ABC 中,D 为AB 边上一点,连接CD ,BD CD =.以AC 为直径作O ,过点O 作OE AC ⊥ 交BC 于点E ,连接DE ,BDE CDE ∠=∠.(1)求证:AB 为O 的切线;(2)若16AB =,8AC =,求BD 的长. 25.如图,已知BC 是O 的直径,AC 切O 于点C ,AB 交O 于点D ,E 为AC 的中点,连接CD ,DE .(1)求证:DE 是O 的切线;(2)若8BD =,6CD =,求AC 的长.26.(概念认识)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)如图1,已知在垂等四边形ABCD 中,对角线AC 与BD 交于点E ,若AB AD ⊥,4AB =cm ,4cos 5ABD ∠=,求AC 的长度,(数学理解)(2)在探究如何画“圆内接垂等四边形”的活动中,小李与同学讨论出了如下方法:如图2,在O 中,已知AB 是O 的弦,只需作OD OA ⊥,OC OB ,分别交O 于点D和点C ,即可得到垂等四边形ABCD ,请你写出证明过程. (问题解决) (3)如图3,已知A 是O 上一定点,B 为O 上一动点,以AB 为一边作出O 的内接垂等四边形(A 、B 不重合且A 、B 、O 三点不共线),对角线AC 与BD 交于点E ,O 的半径为2,当点E 到AD 3AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用平行线的性质,得∠ACD=∠CAB=26°,根据直径上的圆周角为直角,得∠ACB=90°,利用直角三角形的性质计算即可. 【详解】∵CD //AB ,∠ACD=26°,∴∠ACD=∠CAB=26°, ∵AB 是半圆的直径, ∴∠ACB=90°, ∴∠B=64°, 故选C . 【点睛】本题考查了平行线的性质,圆周角的原理,直角三角形的性质,熟练掌握性质,并灵活运用是解题的关键.2.A解析:A 【分析】算出白色区域的面积与整个图形的面积之比即为所求概率. 【详解】解:如图,过点A 作AG BF ⊥于点G∵ 六边形ABCDEF 为正六边形,∴BAF=120∠︒,=60FAG ∠︒ 设正六边形的边长为a ,则3232a a AG FG a ==⨯=,BF=2∴ 空白部分的面积为:2133333224ABF a a S S a ==⨯⨯⨯=△空白 正六边形的面积为:223336S a a =⨯=六 ∴飞镖落在白色区域的概率为:2233a 14=233S P S a ==空白六 故选:A【点睛】本题考查概率的求解,确定白色区域面积占整个图形面积的占比是解题的关键.3.B解析:B 【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可. 【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒, ∴AB 和BC 所对的圆心角都是60︒, ∵AD 是直径,∴CD 所对的圆心角也是60︒, ∴30CAD ∠=︒,在Rt ACD △中,3cos308432AC AD =⋅︒=⨯=. 故选:B . 【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法.4.D解析:D 【分析】以AB 的中点O 为圆心,AB 的一半5为半径作圆,交CD 于点P ,点P 即为所求;设PC=x ,则PD=10-x ,证△ADP ∽△PCB ,对应边成比例列方程,解之可得答案. 【详解】如图,以AB 的中点O 为圆心,AB 的一半5为半径作圆,交CD 于点P ,点P 即为所求;设PC= x ,则PD= 10- x , ∵四边形A BCD 是矩形, ∴∠D=∠C= 90° ∴∠DAP+∠APD= 90° ∵∠APB= 90°, ∴∠APD +∠BPC= 90° ∴∠DAP=∠CPB , ∴△ADP ∽△PCB ,∴AD DPPC CB = 即4104x x -=, 解得: x = 2或8, PD= 10-x= 2或8, 即PD = 2或8. 故选: D. 【点睛】本题主要考查圆周角定理和相似三角形的判定与性质及矩形的性质,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.5.A解析:A【分析】连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,先证明点C 的运动轨迹是以点(1,0)M 为圆心,1为半径的M ,设M 交MN 于点C ',解得直线DE 与坐标轴的交点,即可解得OD OE 、的长,再由勾股定理解得DE 的长,接着证明DNM DOE 解得MN 的长,最后当点C 与点C '重合时, 此时CDE △面积的最小值,据此解题.【详解】解:如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,,AC CB AM OM ==112MC OB ∴== C ∴的运动轨迹是以点(1,0)M 为圆心、半径为1的圆,设M 交MN 于点C ', 直线DE 的解析式为334y x =-, 令0x =,得3y =- (0,3)E ∴-令0y =,得4x =(4,0)D ∴3,4,OE OD ∴==3DM =22345DE ∴+=,MDN ODE MND DOE ∠=∠∠=∠DNM DOE ∴MN DM OE DE ∴= 335MN ∴= 95MN ∴= 94155C N '∴=-= 当点C 与点C '重合时,此时CDE △面积的最小值11452225DE C N '=⋅=⨯⨯= 故选:A .【点睛】本题考查圆的综合题,涉及一次函数与坐标轴的交点、勾股定理、相似三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键. 6.C解析:C【分析】延长BO 交AM 点F ,计算BF ,后计算OB ,OC ,OE ,最后,运用垂径定理计算即可.【详解】如图,延长BO 交AM 点F ,连接OC ,∵O 与MAN ∠的边AN 相切,∴∠ABF=90°,∵30MAN ∠=︒,AB =∴BF=3,∠AFB=60°,∠FOE=30°,设EF=x ,则OF=2x ,, ∵OB =, ∴OB=3x ,∴BF=OB+OF=5x ,∴,∴ ∴,,∵OE CD ⊥,∴在直角三角形OCE 中,CE=2262-=-=2,OC OE根据垂径定理,得CD=2CE=4,故选C.【点睛】本题考查了切线的性质,直角三角形的性质,垂径定理,会用延长线段BO构造特殊的直角三角形是解题的关键.7.D解析:D【分析】先证明∆BAE≅ ∆CAD,再证明∆ABG≅ ∆ACG,得AF是∠BAC的平分线,进而即可判断①;先证明BDC=∠CEB=90°,根据直角三角形的性质,即可判断②;根据角平分线的性质,得点G到∆ABC的三边距离都相等,结合“等积法”即可判断③;先证明B,C,D,E在以点F为圆心的圆上,进而即可判断④.【详解】∵AB=AC,∠BAE=∠CAD,AE=AD,∴∆BAE≅ ∆CAD,∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC-∠ABE=∠ACB-∠ACD,即:∠GBC=∠GCB,∴BG=CG,∴∆ABG≅ ∆ACG,∴∠BAG=∠CAG,即AF是∠BAC的平分线,=,故①正确;∴BF CF⊥,∵BE AC∴∠CEB=90°,由①可知:BD=CE,∠ABC=∠ACB,又∵BC=CB ,∴∆BDC ≅∆CEB ,∴∠BDC=∠CEB=90°,∵点F 是BC 的中点,∴CF DF =,故②正确;∵BE 平分ABC ∠,AF 平分∠BAC ,∴点G 是角平分线的交点,∴点G 到∆ABC 的三边距离都相等,且等于FG ,∵5AB AC ==,6BC =,AF ⊥BC ,∴AF=22AB BF -= 22534-=, ∴S ∆ABC =12(AB+AC+BC)∙FG=12×16FG=8FG ,S ∆ABC =12BC∙AF=12, ∴8FG=12,即:32FG =,故③正确; ∵BE AC ⊥,由①可知:CD ⊥AB , ∴B ,C ,D ,E 在以点F 为圆心的圆上,∴2DFE ABE ∠=∠,故④正确. 故选D .【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,角平分线的性质,圆周角定理,熟练掌握“等腰三角形三线合一”,“直角三角形,斜边上的中线等于斜边的一半”,是解题的关键.8.B解析:B【分析】①连接AC ,并延长AC ,与BD 的延长线交于点H ,若PD=PB ,得出P 为AM 的中点,与实际不符,即可判定正误;②先求出∠BOC ,再由弧长公式求得BC 的长度,进而判断正误;③由∠BOC=60°,得△OBC 为等边三角形,再根据三线合一性质得∠OBE ,再由角的和差关系得∠DBE ,便可判断正误;④证明∠CPB=∠CBF=30°,∠PCB=∠BCF ,可得△BCF ∽△PCB 相似;⑤由等边△OBC 得BC=OB=4,再由相似三角形得CF•CP=BC 2,便可判断正误.【详解】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1,∵M ,C 是半圆上的三等分点,∴∠BAH=30°,∵BD 与半圆O 相切于点B .∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP ,∠ACP=∠DCH ,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD=90°-∠ABP ,若∠PDB=∠PBD ,则∠ABP+60°=90°-∠ABP ,∴∠ABP=15°,∴P 点为AM 的中点,这与P 为AM 上的一动点不完全吻合,∴∠PDB 不一定等于∠ABD ,∴PB 不一定等于PD ,故①错误;②∵M ,C 是半圆上的三等分点,∴∠BOC=13×180°=60°, ∵直径AB=8,∴OB=OC=4, ∴BC 的长度=41806043ππ⨯=, 故②正确;③∵∠BOC=60°,OB=OC ,∴∠ABC=60°,OB=OC=BC ,∵BE ⊥OC ,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M、C是AB的三等分点,∴∠BPC=30°,∵∠CBF=30°,∠PCB=∠BCF,∴△BCF∽△PCB故④正确;⑤∵∠CBF=∠CPB=30°,∠BCF=∠PCB,∴△BCF∽△PCB,∴CB CF,CP CB∴CF•CP=CB2,∵CB=OB=OC=1AB=4,2∴CF•CP=16,故⑤正确.故选:B.【点睛】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,相似三角形的性质与判定,关键是熟练掌握这些性质,并能灵活应用.9.C解析:C【分析】如图,连接OA、OB,由正六边形ABCDEF内接于O可得∠AOB=60°,即可证明△AOB 是等边三角形,根据O直径可得OA的长,进而可得正六边形的周长.【详解】如图,连接OA、OB,∵O的直径为2,∴OA=1,∵正六边形ABCDEF内接于O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=1,∴该正六边形的周长是1×6=6,故选:C .【点睛】本题考查正多边形和圆,正确得出∠AOB=60°是解题关键.10.C解析:C【分析】根据圆周角定理得到ADC ABC ∠=∠,再根据余弦的定义计算即可;【详解】由图可知ADC ABC ∠=∠,在Rt △ABC 中,2AC =,3BC =, ∴223213AB +=∴cos ∠ADC 3313cos 1313BC ABC AB =∠===; 故答案选C .【点睛】本题主要考查了圆周角定理、余弦定理、勾股定理,准确计算是解题的关键. 11.D解析:D【分析】作点C 关于OB 对称点点A ,连接AD 与OB 的交点即为E ,此时CE+ED 最小,进而得到阴影部分的周长最小,再由勾股定理求出AD 的长,由弧长公式求出弧CD 的长.【详解】解:阴影部分的周长=CE+ED+弧CD 的长,由于C 和D 均为定点,E 为动点,故只要CE+ED 最小即可,作C 点关于OB 的对称点A ,连接DA ,此时即为阴影部分周长的最小值,如下图所示:∵A 、C 两点关于OB 对称,∴CE=AE ,∴CE+DE=AE+DE=AD ,又D 为弧BC 的中点,∠COB=60°,∴∠DOA=∠DOB+∠BOA=30°+60°=90°,在Rt △ODA 中,2222=+=DA OD OA ,弧CD 的长为302=1803ππ⨯⨯, ∴阴影部分周长的最小值为22+3π,故选:D .【点睛】 本题考查了轴对称图形求线段的最小值,弧长公式,勾股定理等,本题的关键是找出阴影部分周长最小值时点E 的位置进而求解.12.B解析:B【分析】连接OD ,可得∠ODC=∠OCD=22°,从而可求得∠AOD=46°,结合圆周角定理,即可求解.【详解】连接OD ,∵CO ⊥AB ,∠BEC= 68°,∴∠OCD=90°-68°=22°,∵CO=CD ,∴∠ODC=∠OCD=22°,∴∠COD=180°-22°-22°=136°,∴∠AOD=136°-90°=46°,∴∠ABD=12∠AOD=23°, 故选B .【点睛】本题主要考查圆周角定理以及等腰三角形的性质,掌握“同弧或等弧所对的圆周角等于圆心角的一半”,是解题的关键. 二、填空题13.140°【分析】根据三角形的内心得出根据三角形内角和定理求出进而可求得的度数根据圆周角定理即可求得∠BOC 【详解】解:在△ABC 中∠BIC=125°I 是内心∴∴∴∴∵O 是外心∴故答案为:140°【点解析:140°【分析】 根据三角形的内心得出11,22IBC ABC ICB ACB ∠=∠∠∠=,根据三角形内角和定理求出55IBC ICB ∠+∠=︒,进而可求得A ∠的度数,根据圆周角定理即可求得∠BOC .【详解】解:在△ABC 中,∠BIC =125°,I 是内心, ∴11,22IBC ABC ICB ACB ∠=∠∠∠=, ∴18055IBC ICB BIC ︒∠+∠=-∠=︒,∴222()110,ABC ACB IBC ICB IBC ICB ∠+∠=∠+∠=∠∠=︒+∴180()70A ABC ACB ∠=︒-∠+∠=︒,∵O 是外心,∴2140BOC A ∠=∠=︒,故答案为:140°.【点睛】本题考查了三角形的内切圆和三角形的外接圆,圆周角定理,三角形的内角和定理等知识点.正确识别图中相关角是解题关键.14.【分析】如图连接ACBD 交于点G 连接OG 首先说明点P 从点A 运动到点B 时点Q 的运动路径长为求出圆心角半径即可解决问题【详解】解:如图取BC 的中点O 连接ACBD 交于点G 连接OG ∵BQ ⊥CP ∴∠BQC=9 解析:2π 【分析】如图,连接AC 、BD 交于点G ,连接OG .首先说明点P 从点A 运动到点B 时,点Q 的运动路径长为BG ,求出圆心角,半径即可解决问题.【详解】解:如图,取BC 的中点O ,连接AC 、BD 交于点G ,连接OG .∵BQ ⊥CP ,∴∠BQC=90°,∴点Q 的运动轨迹在以边长BC 为直径的⊙O 上,当点P 从点A 运动到点B 时,点G 的运动路径长为BG ,∵四边形ABCD 是正方形,∴AB=BC=CD=AD=2,∵∠ABC=90°,∴∠BCG=45°,∴∠BOG=90°,∴BG 的长9011820ππ⨯⨯==. 故答案为:2π. 【点睛】本题考查了正方形的性质、弧长公式等知识,解题的关键是正确寻找点Q 的运动轨迹,属于中考常考题型. 15.5【分析】取EF 的中点M 作MN ⊥AD 于点M 取MN 上的球心O 连接OF 设OF=x 则OM=16-xMF=12在Rt △MOF 中利用勾股定理求得OF 的长即可【详解】取EF 的中点M 作MN ⊥AD 于点M 取MN 上的球解析:5【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=16-x ,MF=12,在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=16cm,设OF=x cm,则ON=OF,∴OM=MN-ON=16-x,MF=12cm,在Rt△MOF中,OM2+MF2=OF2,即:(16-x)2+122=x2,解得:x=12.5 (cm),故答案为:12.5.【点睛】本题主考查垂径定理、矩形的性质及勾股定理的应用,正确作出辅助线构造直角三角形是解题的关键.16.6【分析】连接OB如图利用垂径定理得到AC=BC=2则利用勾股定理可计算出OC=11利用垂线段最短当OC经过点D时点D到AB的距离的最小然后计算出OD的长从而得到点D到AB的距离的最小值【详解】解:解析:6【分析】连接OB,如图,利用垂径定理得到AC=BC=2,则利用勾股定理可计算出OC=11,利用垂线段最短,当OC经过点D时,点D到AB的距离的最小,然后计算出OD的长,从而得到点D到AB的距离的最小值.【详解】解:连接OB,如图,∵OC⊥AB,∴AC=BC=1AB=2,2在Rt △OBC 中,11==,当OC 经过点D 时,点D 到AB 的距离最小,∵,∴点D 到AB 的距离的最小值为11-5=6.故答案为6.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.17.【分析】线段CA 形成的是以C 为圆心以C 为半径的扇形求出其圆心角按照扇形面积公式计算即可【详解】∵∴BC=4CA==;根据旋转的性质得∴△是等边三角形∴∴∴∴=8π故答案为:8π【点睛】本题考查了旋转解析:8π.【分析】线段CA 形成的是以C 为圆心,以C 为半径的扇形,求出其圆心角,按照扇形面积公式计算即可.【详解】∵90ACB ∠=︒,30A ∠=︒,8AB =,∴BC=4,根据旋转的性质,得60B '∠=︒,CB CB '=,∴△CBB '是等边三角形,∴60B CB '∠=︒,∴30BCA '∠=︒,∴60A CA '∠=︒,∴22n r 60=360360S ππ⨯⨯=扇形=8π. 故答案为:8π.【点睛】本题考查了旋转问题,扇形面积问题,勾股定理,熟练掌握旋转的性质,灵活运用公式是解题的关键.18.【分析】如果过O 作OC ⊥AB 于D 交折叠前的于C 根据折叠后劣弧恰好经过圆心O 根据垂径定理及勾股定理即可求出AD 的长进而求出AB 的长【详解】解:如图过O 作OC ⊥AB 于D 交折叠前的于C ∵的半径为又∵折叠后解析:【分析】如果过O 作OC ⊥AB 于D ,交折叠前的AB 于C ,根据折叠后劣弧恰好经过圆心O ,根据垂径定理及勾股定理即可求出AD 的长,进而求出AB 的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB于C,∵O的半径为2,又∵折叠后劣弧恰好经过圆心O,∴OA=OC=2,∴OD=CD=1,在Rt△OAD中,∵OA=2,OD=1,∴2222OA OD-=-213AB=2AD=3故答案为:3【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.19.-1【分析】根据△BCE是以CE为底边的等腰三角形推出点E在以B为圆心AB长为半径的圆弧AC上根据圆的基本性质得到DE最小时点E的位置从而利用BD-BE计算出结果【详解】解:如图正方形ABCD中∵△2-1【分析】根据△BCE是以CE为底边的等腰三角形推出点E在以B为圆心,AB长为半径的圆弧AC 上,根据圆的基本性质得到DE最小时点E的位置,从而利用BD-BE计算出结果.【详解】解:如图,正方形ABCD中,∵△BCE是以CE为底边的等腰三角形,∴BE=BC,∴点E在以B为圆心,AB长为半径的圆弧AC上,连接BD,与弧AC交于点E,则此时DE最小,∵AB=1,∴BE=1,22+2,11∴2-1,故答案为:2-1.【点睛】本题考查了圆的基本性质,正方形的性质,等腰三角形的性质,解题的关键是根据题意得到点E 在弧AC 上.20.【分析】依题意得所以是直角三角形又因为∠ADB =90°所以点ADCB 在以AB 为直径的圆上依题意可知当时BE 最大据此求解即可【详解】解:在△ABC 中BC =9AC =12AB =15∵∠ADB =90°共圆取解析:【分析】依题意得222BC AC AB +=,所以ABC 是直角三角形,又因为∠ADB =90°,所以点A 、D 、C 、B 在以AB 为直径的圆上,依题意可知当//OD BC 时,BE 最大,据此求解即可.【详解】解:在△ABC 中,BC =9,AC =12,AB =15,22281,144,225BC AC AB ===,222BC AC AB ∴+=,90C ∴∠=︒,∵∠ADB =90°,A C DB ∴、、、共圆取AB 的中点O 连接DO ,过点O 作OF EB ⊥于点F如图,当//OD BC 时, BE 最大,此时OD AC ⊥,OD DE ⊥ ,119//,,9222OF AC OF OD BF BC ∴⊥==⨯=,∴四边形ODEF 是矩形, 111515222EF OD AB ∴===⨯=, 9151222BE BF EF ∴=+=+=, 故答案为:12.【点睛】本题考查了四点共圆,平行线的判定,垂径定理,矩形的判定和性质等知识,判定四点共圆是解题的关键.三、解答题21.(1)68°;(2)248°【分析】(1)根据切线的性质得到∠OAP =90°,∠OBP =90°,根据圆周角定理即可得到结论; (2)连接AB ,根据切线长的性质得到PA =PB ,得到∠PAB =∠PBA =68°,再根据圆内接四边形定理可求.【详解】解:(1)∵PA 、PB 是⊙O 的切线,∴∠OAP =90°,∠OBP =90°,∴∠AOB =360°﹣∠OAP ﹣∠OBP ﹣∠P =360°﹣90°﹣90°﹣44°=136°,∴∠ACB =12∠AOB =68°; (2)连接AB ,∵PA 、PB 是⊙O 的切线,∴PA =PB ,∵∠P =44°, ∴∠PAB =∠PBA =12(180°﹣44°)=68°, ∵∠DAB +∠C =180°,∴∠PAD +∠C =∠PAB +∠DAB +∠C =180°+68°=248°.【点睛】本题考查了切线长定理、切线的性质和圆周角定理,解题关键是熟练运用圆的有关知识,恰当的连接辅助线,建立角与角之间的联系.22.(1)见解析;(2)2FB =【分析】(1)由切线的性质可得∠OCP=90°,由等腰三角形的性质可得∠E=∠OCE ,可得∠CFP=∠FCP ,可得PC=PF ;(2)过点B 作BH ⊥PC ,垂足为H ,由题意可证四边形OCHB 是正方形,由勾股定理可得BH=CH=3,可求PH ,BP 的长,即可求BF 的长.【详解】解:(1)连接OC .OE AB ⊥,90EGF ∴∠=︒. PC 与C 相切于点C ,90OCP ∠=︒,90E EFG OCF PCF ∴∠+∠=∠+∠=︒.OE OC =,E OCF ∴∠=∠,EFG PCF ∴∠=∠.EFG PFC ∠=∠,PCF PFC ∴∠=∠,PC PF ∴=.(2)过点B 作BH PC ⊥于点H .//,90OB PC OCP ∠=︒,90BOC ∴∠=︒.OB OC =,∴四边形OCHB 是正方形,∴BH=CH ,∵BH 2+CH 2=BC 2,BC=32∴BH=CH=3,在Rt BHP 中,4tan BH PH P==,∴PF=PC=3+4=7,5BP =,752FB ∴=-=.【点睛】本题考查了切线的性质,勾股定理,等腰三角形的性质,正方形的判定与性质,平行线的性质,以及锐角三角函数等知识,需要学生灵活运用所学知识.23.(1)见解析;(2)见解析【分析】(1)连接OE ,根据角平分线证OE BC ∥,得90AEO C ∠=∠=︒,可证; (2)连接DE ,证CDE HFE △≌△即可.【详解】证明:(1)BE EF ⊥,90BEF ∴∠=︒,BF ∴是O 的直径.如图,连接OE , BE 平分ABC ∠,CBE OBE ∴∠=∠.OB OE =,OBE OEB ∴∠=∠.OEB CBE ∴∠=∠.OE BC ∴.90AEO C ∴∠=∠=︒,∴OE ⊥AC ,AC ∴是O 的切线.(2)如图,连接DECBE OBE ∠=∠,EC BC ⊥于C ,EH AB ⊥于H ,EC EH ∴=.180CDE BDE ∠∠+=︒,180HFE BDE ∠+∠=︒,CDE HFE ∴∠=∠.在CDE △与HFE 中,90CDE HFE C FHE EC EH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩CDE HFE ∴△≌△,CD HF ∴=.【点睛】本题考查了切线的判定、角平分线的性质、全等三角形的判定与性质,解题关键是恰当的作辅助线,准确的应用切线的判定定理和全等三角形的判定定理进行证明.24.(1)见解析;(2)10【分析】(1)根据等腰三角形的性质可证点E为BC的中点,在结合三角形中位线定理,证明OE AB,即可得到结论//△中利用勾股定理,列出关于x的方程即可求解(2)设BD=CD=x,在Rt ACD【详解】=(1)BD CD∴是等腰三角形BDC∠=∠.又BDE CDE∴=,BE EC=AO OC∴为ABC的中位线OE//∴,OE AB∴∠=∠BAC EOC⊥,OE ACBAC EOC∴∠=∠=︒90∴⊥,AB ACAC为O的直径,∴是O的切线AB=,(2)设BD x∴==,CD BD xAB=,16∴=-16AD xAC=在Rt ADC中,222+=,8AD AC DC()222∴-+=,x x168x=,解得:10∴=10BD【点睛】本题考查了圆切线的判定,等腰三角形的性质,以及勾股定理,解题关键是熟练掌握圆切线的判定定理,和等腰三角形性质的应用.25.(1)证明见解析;(2)152 【分析】(1)连接OD ,根据切线的性质和直角三角形斜边的中线以及等腰三角形的性质得出,EDC ECD ∠=∠,ODC OCD ∠=∠,然后利用等量代换即可得出DE OD ⊥,从而证明结论;(2)首先根据勾股定理求出BC 的长度,然后证明BCD BAC ∽△△,最后利用CD BD AC BC=求解即可. 【详解】(1)证明:连接OD ,如图,∵BC 是O 的直径,∴90BDC ∠=︒,∴90ADC ∠=︒,∵E 为AC 的中点,∴12DE EC AC ==, ∴EDC ECD ∠=∠, ∵OD OC = , ∴ODC OCD ∠=∠,∵AC 切O 于点C ,∴AC OC ⊥,∴90EDC ODC ECD OCD ∠+∠=∠+∠=︒,∴DE OD ⊥,∴DE 是O 的切线;(2)解:在Rt BCD 中,∵8BD =,6CD =,∴2210BC BD CD =+=∵90BDC BCA ∠=∠=︒,B B ∠=∠,∴BCD BAC ∽△△,∴CD BD AC BC=, 即6810AC =, ∴152AC =. 【点睛】 本题主要考查圆的综合问题,掌握切线的判定及性质,相似三角形的判定及性质是解题的关键.26.(1)5;(2)见解析;(3)【分析】(1)根据垂等四边形的定义列式求解即可;(2)连结AC ,DB 并相交于点E ,证明AC BD ⊥,得到AOC △≌BOD ,证明AC BD =,即可得到结果;(3)方法一:连接DO ,AO ,根据已知条件求出AD ,DE ,再根据相似三角形的性质列式计算即可;方法二:通过已知条件证明Rt AOD 和Rt ABE △是等腰直角三角形,在根据条件计算即可;【详解】(1)由垂等四边形的定义得AC BD =,又∵AB AD ⊥, ∴5cos AB DB ABD==∠, ∴5AC BD ==.(2)如图1,连结AC ,DB 并相交于点E ,∵OC OB ,OD OA ⊥, ∴1452ACD AOD ∠=∠=︒,1452BDC BOC ∠=∠=︒, ∴90DEC ∠=︒,即AC BD ⊥,∵AO DO =,BO CO =,AOC DOB ∠=∠,∴AOC △≌BOD ,∴AC BD =.∵AC BD =,AC BD ⊥,∴四边形ABCD 是垂等四边形.(3)方法一:连接DO ,AO ,由(2)可得等腰Rt AOD , ∴4AD =-,作EF AD ⊥,易证得Rt DFE △∽Rt EFA △,∴2FE DF AF =⋅,设DF x =,4AF x =-,可得方程()43-=x x ,解得11x =(如图2),23x =(如图3),∴2DE =或23, 作OG AB ⊥,∵12AOG AOB EDF ∠=∠=∠, ∴Rt DFE △∽Rt OGA , ∴AO AG DE EF=, ∴6AO EF AG DE⋅==或2, ∴226AB AG ==(如图2)或22(如图3).方法二:∵AC BD =且AC BD ⊥, ∴AC BD =,∴AD BC =,∴()1180452ABE BAE AEB ∠=∠=︒-∠=︒, ∴90AOD ∠=︒,∴Rt AOD 和Rt ABE △是等腰直角三角形,∴24AD ==由方法一得2DE =或322AE AD DE =-AE 23=2, ∴226AB AE =22【点睛】本题主要考查了圆的综合应用,结合相似三角形的判定与性质、三角函数的应用和四边形综合知识的计算是解题的关键.。

北师大版数学九年级下册+第3章+圆+综合测试卷(有答案)

北师大版数学九年级下册+第3章+圆+综合测试卷(有答案)

北师大版九年级下册第3章圆综合测试卷一.选择题(共10小题)1.下列说法正确的个数是()①垂直于弦的直线平分弦;②平分弦的直线垂直于弦;③圆的对称轴是直径;④圆的对称轴有无数条;⑤在同圆或等圆中,如果两条弦相等,那么这两条弦所对的优弧和劣弧分别相等.A.1个B.2个C.3个D.4个2.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为()cm2.A.3πB.πC.6πD.2π3.已知圆的直径是13cm,如果圆心到某直线的距离是6.5cm,则此直线与这个圆的位置关系是()A.相交B.相切C.相离D.无法确定4.如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8 B.12 C.16 D.205.如图,⊙O的半径是5,弦AB=6,OE⊥AB于E,则OE的长是()A.2 B.3 C.4 D.56.自行车车轮要做成圆形,实际上是根据圆的特征()A.圆是轴对称图形B.直径是圆中最长的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形7.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:B.2:3:4 C.1::2 D.1:2:3①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个A.S1>S2B.S1<S2C.S1=S2D.无法确定10.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2 B.1 C.D.11.一圆锥的母线长6cm,底面半径为2cm,则这个圆锥的表面积为cm2.12.如图,AB是圆O的直径,∠A=30°,BD平分∠ABC,CE⊥AB于E,若CD=6,则CE的长为.14.在半径为13的圆O中,弦AB平行于弦CD,弦AB和弦CD之间的距离为6,若AB=24,则CD长为.15.如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为.16.如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D 在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三.解答题(共7小题)17.如图,在平面直角坐标系中,⊙D与坐标轴分别相交于A(﹣,0),B(,0),C(0,3)三点.(1)求⊙D的半径;(2)E为优弧AB一动点(不与A,B,C三点重合),EN⊥N,求证:∠DMN=3∠MNE;(3)在(2)的条件下,当∠DMN=45°时,求E点的坐标.18.如图,在⊙O中,AB,BC为互相垂直且相等的两条弦,连接AC.求证:(1)AC是⊙O的直径;(2)作OD⊥AB于D,OE⊥BC于E,则四边形ODBE是正方形.19.如图,AB是⊙O直径,C是半圆上一点,连接BC、AC,过点O作OD ∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=3,CE=,求线段CE、BE与劣弧BC所围成的图形面积(结果保留根号和π).20.【发现】如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①).如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?请证明点D也不在⊙O内.【应用】利用【发现】和【思考】中的结论解决问题:(1)如图④,已知∠BCD=∠BAD,∠CAD=40°,求∠CBD的度数.(2)如图⑤,若四边形ABCD中,∠CAD=90°,作∠CDF=90°,交CA延长线于F,点E在AB上,∠AED=∠ADF,CD=3,EC=2,求ED的长.21.如图,半圆O的直径AB=12cm,射线BM从与线段AB重合的位置起,以每秒6°的旋转速度绕B点按顺时针方向旋转至BP的位置,BP交半圆于E,设旋转时间为ts(0<t<15),(1)求E点在圆弧上的运动速度(即每秒走过的弧长),结果保留π.(2)设点C始终为的中点,过C作CD⊥AB于D,AE交CD、CB分别于G、F,过F作FN∥CD,过C作圆的切线交FN于N.求证:①CN∥AE;②四边形CGFN为菱形;③是否存在这样的t值,使BE2=CF•CB?若存在,求t值;若不存在,说明理由.22.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=1寸,CD=10寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请帮助小智求出⊙O的直径.23.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.一.选择题1.B;2.A;3.B;4.C;5.C;6. C;7.D;8.D;9.B;10.B;二.填空题11.16π;12.3;13.51;14.8或4;15.115°;16. +1;三.解答题略。

初三数学下册试卷第三单元

初三数学下册试卷第三单元

一、选择题(每题4分,共20分)1. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2 - 4D. y = 52. 若函数f(x) = 2x + 3的图象与直线y = kx + b相交于点(1,5),则k和b 的值分别是()A. k = 2, b = 1B. k = 3, b = 2C. k = 4, b = 3D. k = 5, b = 43. 已知一次函数y = kx + b,当x = 2时,y = 5;当x = 4时,y = -1,则k 和b的值分别是()A. k = 2, b = 1B. k = -1, b = 3C. k = 1, b = 2D. k = -2, b = 54. 下列方程中,只有一个解的是()A. x^2 + 4 = 0B. x^2 - 1 = 0C. x^2 + 4x + 4 = 0D. x^2 - 2x - 3 = 05. 已知一元二次方程ax^2 + bx + c = 0(a ≠ 0),若a + b + c = 0,则方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定二、填空题(每题4分,共20分)6. 函数y = -3x^2的顶点坐标是______。

7. 若一次函数y = kx + b的图象经过点(2,-3),则k + b = ______。

8. 一元二次方程x^2 - 4x + 3 = 0的解是______。

9. 若一元二次方程ax^2 + bx + c = 0的判别式Δ = b^2 - 4ac > 0,则方程的根的情况是______。

10. 函数y = √(x - 1)的定义域是______。

三、解答题(每题10分,共40分)11. 已知一次函数y = kx + b的图象经过点(-2,3)和(1,-1),求k和b的值。

12. 解方程:x^2 - 5x + 6 = 0。

(典型题)初中数学九年级数学下册第三单元《圆》检测卷(有答案解析)

(典型题)初中数学九年级数学下册第三单元《圆》检测卷(有答案解析)

一、选择题1.将一枚飞镖投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A .12B .25C .35D .232.下列命题:①任意三点确定一个圆;②平分弦(不是直径)的直径垂直于弦;③相等的圆心角所对的弦相等;④长度相等的弧是等弧.其中真命题的有( )A .0个B .1个C .2个D .3个3.如图,矩形ABCD 中,10AB =,4=AD ,点P 是CD 上的动点,当90APB ∠=︒时,线段DP 的长应是( )A .2B .6C .2或6D .2或8 4.如图,AB 是⊙O 的直径,C 是⊙O 上一点,BD 平分∠ABC 交⊙O 于点D ,交AC 于点E ,已知DE =2,DB =6,则阴影部分的面积为( )A .2π-33B .4π-63C .4π-33D .π-23 5.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .126.如图,已知,ABC O △为AC 上一点,以OB 为半径的圆经过点A ,且与BC OC 、交于点E D 、,设,C a A β∠=∠=,则( )A .若70αβ+=︒,则弧DE 的度数为20︒B .若70αβ+=︒,则弧DE 的度数为40︒C .若70αβ-=︒,则弧DE 的度数为20︒D .若70αβ-=︒,则弧DE 的度数为40︒ 7.下列关于正多边形的叙述,正确的是( )A .正七边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720︒C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形8.如图,点A ,B ,C ,D 为O 上的四个点,AC 平分BAD ∠,AC 交BD 于点E ,4CE =,6CD =,则AC 的长为( )A .7B .8C .9D .109.如图,两个正六边形ABCDEF 、EDGHIJ 的顶点A 、B 、H 、I 在同一个圆上,点P 在ABI 上,则tan ∠API 的值是( )A .3B .2C .2D .110.如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的个数有( )①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PCB ∽△△;⑤CF CP ⋅为定值A .2个B .3个C .4个D .5个 11.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=( )A .30B .36︒C .54︒D .45︒12.如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则cos ∠ADC 的值为( )A .213B .13C .313D .23二、填空题13.如图,有一圆形木制艺术品,记为⊙O ,其半径为12cm ,在距离圆心8cm 的点A 处发生虫蛀,现需沿过点A 的直线PQ 将圆形艺术品裁掉一部分,然后用美化材料沿PQ 进行粘贴,则美化材料(即弦PQ 的长)最少需要_____cm .14.如图,四边形ABCD 是O 的内接四边形,且AC BD ⊥, OF CD ⊥,垂足分别为E F 、,若52OF =,则AB =_____.15.在平面直角坐标系xOy 中,O 的半径为13,直线34y kx k =-+与O 交于B ,C 两点,则弦BC 长的最小值等于____.16.如图,在矩形ABCD 中,线段DF 平分ADC ∠交BC 边于点F ,点E 为BC 边上一动点,连接AE ,若在点E 移动的过程中,点B 关于AE 所在直线的对称点有且只有一次落在线段DF 上,则:BC AB =_____________.17.如图,在ABC ∆中,AB AC =,45ABC ∠=︒,以AB 为直径的O 交BC 于点D ,若4BC =,则图中阴影部分的面积为________.18.如图,C ∠是O 的圆周角,45C ∠=︒,则AOB ∠的度数为____.19.正六边形的半径为1,则正六边形的面积为________.20.如图,半圆O 的直径12,AB cm =弦6,AC cm AD =平分BAC ∠,则弧BD 的长为__.cm (结果用π表示)三、解答题21.如图,AB 是⊙O 的直径,BC ⊥AB ,弦AD ∥OC .(1)求证:DC 是⊙O 的切线;(2)已知AB =6,CB =4,求线段AD 的长.22.如图,矩形ABCD 中,22,4AB BC ==,以B 为圆心.BC 为半径画弧,交AD 于点E ,()1求ABE ∠的度数;()2求图中阴影部分的面积.23.如图,在△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 交于点D ,过D 作⊙O 的切线交AB 的延长线于E ,交BC 于F .(1)求证:DF ⊥BC ;(2)求证:DE 2=AE•BE .24.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD .(1)求证:BD 平分∠ABC ;(2)若OE =3,AO =5,求AC 的长.25.如图,已知圆锥的底面积为29cm π,高4AO cm =,求该圆锥的侧面展开图的面积(结果保留π).26.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD △△;(2)若8BD =,1tan 2B =,求⊙O 的半径.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】算出白色区域的面积与整个图形的面积之比即为所求概率.【详解】解:如图,过点A 作AG BF ⊥于点G∵ 六边形ABCDEF 为正六边形,∴BAF=120∠︒,=60FAG ∠︒设正六边形的边长为a ,则32322a a AG FG a ==⨯=,BF=2 ∴ 空白部分的面积为:213333322ABFa a S S a ==⨯⨯⨯=△空白 正六边形的面积为:223336S a a =⨯=六 ∴飞镖落在白色区域的概率为:2233a 14=2332S P S a ==空白六 故选:A【点睛】本题考查概率的求解,确定白色区域面积占整个图形面积的占比是解题的关键. 2.B解析:B【分析】依次判断真假命题即可,可以通过找到相应的反例,去论证命题的正确性.【详解】解:①假命题,当三点在同一条直线上时,就不能确定一个圆了,故此项错误; ②真命题,平分弦(不是直径)的直径垂直于弦,故此项正确;③假命题,在同圆或等圆中,相等的圆心角所对的弦相等,故此项错误;④假命题,在同圆或等圆中,长度相等的弧是等弧,故此项错误;综上所述,②正确.故选:B .【点睛】本题主要考查了确定圆的条件,垂径定理及圆周角定理等圆的一些基本的知识,解答此题的关键掌握理解圆的定义及性质.3.D【分析】以AB 的中点O 为圆心,AB 的一半5为半径作圆,交CD 于点P ,点P 即为所求;设PC=x ,则PD=10-x ,证△ADP ∽△PCB ,对应边成比例列方程,解之可得答案.【详解】如图,以AB 的中点O 为圆心,AB 的一半5为半径作圆,交CD 于点P ,点P 即为所求;设PC= x ,则PD= 10- x ,∵四边形A BCD 是矩形,∴∠D=∠C= 90°∴∠DAP+∠APD= 90°∵∠APB= 90°,∴∠APD +∠BPC= 90°∴∠DAP=∠CPB ,∴△ADP ∽△PCB , ∴AD DP PC CB= 即4104x x -=, 解得: x = 2或8,PD= 10-x= 2或8,即PD = 2或8.故选: D.【点睛】本题主要考查圆周角定理和相似三角形的判定与性质及矩形的性质,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.4.A解析:A【分析】证明△DAE ~△DBA ,求得DA 3=,由AB 是⊙O 的直径,利用勾股定理求得⊙O 的直径,求得∠ABD=30︒,∠COD=60︒,再利用OCD OCD S S S =-阴影扇形即可求解.连接OC 、OD 、AD ,∵BD 平分∠ABC ,∴AD CD =,∴∠DAC=∠DBA ,∴△DAE ~△DBA , ∴DA DE DB DA =,即26DA DA=, ∴212DA =,∴DA 23=,∵AB 是⊙O 的直径,∴∠ADB=90︒,∴222AD BD AB +=,∴AB=43∴⊙O 的半径为3∵DA=OA=OD 23=,∴△DOA 是等边三角形,∴∠COD=∠AOD=60︒,∴OCD OCD S S S =-阴影扇形(2602312323603602π⨯=-⨯︒233π=-故选:A .【点睛】本题考查了相似三角形的判定与性质、等边三角形的判定与性质、勾股定理、扇形与等边三角形的面积等知识点,熟练掌握相关性质及定理是解题的关键.5.C解析:C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长= 2253-=4,所以最短弦为8;所以符合题意的弦长为8到10,故选C.【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.6.B解析:B【分析】连接BD ,根据直径所对的圆周角是直角,可求得∠ABD =90°,又由A β∠=,可求得∠ADB =90β︒-,再根据∠ADB =∠DBC +∠C ,可得∠DBC =90βα︒--,从而求出弧DE 的度数.【详解】解:连接BD ,∵AD 是直径,∴90ABD ∠=︒,∴90A ADB ∠+∠=︒,∴90ADB β∠=︒-,又∵∠ADB =∠DBC +∠C ,∴()90DBC αβ∠=︒-+,若70αβ+=︒,则()90907020DBC αβ∠=︒-+=︒-︒=︒,∴弧DE 的度数20240=︒⨯=︒,故选B .【点睛】此题主要考查了圆周角定理及推论、三角形外角的性质,熟练掌握圆周角定理、构造直径所对圆周角是解题的关键.7.C解析:C根据中心对称图形、轴对称图形的定义、多边形外角和定理、正多边形的性质对各选项逐一判断即可得答案.【详解】A.正七边形是轴对称图形,不是中心对称图形,故该选项错误,B.任意多边形的外角和都等于360°,故该选项错误,C.任何正多边形都有一个外接圆,故该选项正确,D.∵正三角形的每个外角为120°,对应的每个内角为60°,∴存在每个外角都是对应每个内角两倍的正多边形,故该选项错误,故选:C .【点睛】本题考查正多边形的性质、中心对称图形、轴对称图形的定义及多边形外角和定理,熟练掌握相关性质及定理是解题关键.8.C解析:C【分析】首先连接BC ,由AC 平分∠BAD ,易证得∠BDC=∠CAD ,继而证得△CDE ∽△CAD ,然后由相似三角形的对应边成比例求得AE 的长,进而求出AC 的长.【详解】解:∵AC 平分∠BAD ,∴∠BAC=∠CAD∴=BC CD ,∴∠BDC=∠CAD ,∵∠ACD=∠DCE ,∴△CDE ∽△CAD ,∴CD :AC=CE :CD ,∴CD 2=AC•CE ,∴62=4(4+AE ),∴AE=5,∴AC=AE+CE=9,故选:C .【点睛】此题考查了圆周角定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.A解析:A【分析】连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M ,证明90AIH ∠=︒,设HI JI JE a ===,求出AI 即可.解:如图,连接AE,EI,AH,过点J作JM⊥EI于M.∵ABCDEF是正六边形,∴∠DEF=∠F=120°,∵FA=FE,∴∠FEA=∠FAE=30°,∴∠AED=90°,同法可证,∠DEI=∠EIH=90°,∴∠AED+∠DEI=180°,∴A,E,I共线,设HI JI JE a===,∵JM⊥EI,∴EM=MI=32a,∴AI=2EI=3a,∵∠API=∠AHI,∴tan∠API=tan∠AHI=AIHI =323aa=故选:A.【点睛】本题考查了正多边形和圆,解直角三角形,圆周角定理等知识,解题关键是正确添加辅助线,构造直角三角形解决问题.10.B解析:B【分析】①连接AC,并延长AC,与BD的延长线交于点H,若PD=PB,得出P为AM的中点,与实际不符,即可判定正误;②先求出∠BOC,再由弧长公式求得BC的长度,进而判断正误;③由∠BOC=60°,得△OBC为等边三角形,再根据三线合一性质得∠OBE,再由角的和差关系得∠DBE,便可判断正误;④证明∠CPB=∠CBF=30°,∠PCB=∠BCF ,可得△BCF ∽△PCB 相似;⑤由等边△OBC 得BC=OB=4,再由相似三角形得CF•CP=BC 2,便可判断正误.【详解】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1,∵M ,C 是半圆上的三等分点,∴∠BAH=30°,∵BD 与半圆O 相切于点B .∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP ,∠ACP=∠DCH ,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD=90°-∠ABP ,若∠PDB=∠PBD ,则∠ABP+60°=90°-∠ABP ,∴∠ABP=15°,∴P 点为AM 的中点,这与P 为AM 上的一动点不完全吻合,∴∠PDB 不一定等于∠ABD ,∴PB 不一定等于PD ,故①错误;②∵M ,C 是半圆上的三等分点,∴∠BOC=13×180°=60°, ∵直径AB=8,∴OB=OC=4, ∴BC 的长度=41806043ππ⨯=, 故②正确;③∵∠BOC=60°,OB=OC ,∴∠ABC=60°,OB=OC=BC ,∵BE ⊥OC ,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M、C是AB的三等分点,∴∠BPC=30°,∵∠CBF=30°,∠PCB=∠BCF,∴△BCF∽△PCB故④正确;⑤∵∠CBF=∠CPB=30°,∠BCF=∠PCB,∴△BCF∽△PCB,∴CB CF,CP CB∴CF•CP=CB2,∵CB=OB=OC=1AB=4,2∴CF•CP=16,故⑤正确.故选:B.【点睛】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,相似三角形的性质与判定,关键是熟练掌握这些性质,并能灵活应用.11.B解析:B【分析】连接OC,易得四边形CDOE是矩形,△DOE≌△CEO,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE,由矩形CDOE易得到△DOE≌△CEO,∴图中阴影部分的面积=扇形OBC的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36, ∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.12.C解析:C【分析】根据圆周角定理得到ADC ABC ∠=∠,再根据余弦的定义计算即可;【详解】由图可知ADC ABC ∠=∠,在Rt △ABC 中,2AC =,3BC =,∴223213AB =+=,∴cos ∠ADC 3313cos 13BC ABC AB =∠===; 故答案选C .【点睛】本题主要考查了圆周角定理、余弦定理、勾股定理,准确计算是解题的关键. 二、填空题13.8【分析】如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小利用勾股定理以及垂径定理求解即可【详解】解:如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小在Rt △OA解析:85【分析】如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.利用勾股定理以及垂径定理求解即可.【详解】解:如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.在Rt△OAQ′中,AQ′=cm),∵OA⊥P′Q′,∴AQ′=AP′,∴P′Q′=2AQ′=cm),故答案为:【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.【分析】连接DO并延长与⊙O相交于点G连接BGCG由AC⊥BDDG是直径可得∠DBG=90°=∠DCG可证AC∥BG可得可得AB=CG由OF⊥CD可证OF∥CG 可证△DOF∽△DGC由性质由OF=可解析:【分析】连接DO并延长,与⊙O相交于点G,连接BG,CG,由AC⊥BD, DG是直径,可得∠DBG=90°=∠DCG可证AC∥BG,可得AB CG=,可得AB=CG,由OF⊥CD,可证OF∥CG,可证△DOF∽△DGC,由性质DO OF1==DG CG2,由OF=52,可求CG5=2OF=2=52⨯即可.【详解】解:如图,连接DO并延长,与⊙O相交于点G,连接BG,CG,∵AC⊥BD,DG是直径,∴∠DBG=90°=∠DCG,∴BG⊥DB,∴AC∥BG,∴AB CG=,∴AB=CG,∵OF⊥CD,∴OF∥CG,∴∠DOG=∠DGC∴△DOF∽△DGC,,∴DO OF1==DG CG2,∵OF=52,∴CG5=2OF=2=52⨯,所以AB=CG=5.故答案为:5.【点睛】本题考查平行弦的性质,圆的性质,直径所对圆周角的性质,相似三角形的判定与性质,掌握平行弦的性质,圆的性质,直径所对圆周角的性质,相似三角形的判定与性质是解题关键.15.24【分析】根据直线y=kx-3k+4必过点D(34)求出最短的弦CB是过点D 且与该圆直径垂直的弦再求出OD的长再根据以原点O为圆心的圆过点A (130)求出OB的长再利用勾股定理求出BD即可得出答案解析:24【分析】根据直线y=kx-3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【详解】解:连接OB,∵直线y=kx-3k+4必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴223+4=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=2222--=12,OB OD=135∴BC=2BD=24,∴BC的长的最小值为24;故答案为:24.【点睛】此题考查的是垂径定理,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.16.:1【分析】先找到点B关于AE所在直线的对称点H由直角三角形的性质可求解【详解】解:如图以点A为圆心AB为半径的圆与DF相切于点H则点H 为点B关于AE所在直线的对称点∴AB=AHAH⊥DF∵DF平分解析:2:1【分析】先找到点B关于AE所在直线的对称点H,由直角三角形的性质可求解.【详解】解:如图,以点A为圆心,AB为半径的圆与DF相切于点H,则点H为点B关于AE所在直线的对称点,∴AB=AH,AH⊥DF,∵DF平分∠ADC,∴∠ADF=∠CDF=45°,∴∠ADF=∠DAH=45°,∴AH=DH,∴22AB,∴BC:2:1,21.【点睛】本题考查了矩形的性质,轴对称的性质,直角三角形的性质,灵活运用这些性质解决问题是解题的关键.17.【分析】首先证明△ABC是等腰直角三角形求出AB=AC继而求得BO=DO=∠B=∠BDO=45°∠DOA=∠BOD=90°然后根据分割法利用扇形和三角形的面积公式计算即可【详解】如图连接ODAD∵在解析:π12+ 【分析】 首先证明△ABC是等腰直角三角形,求出AB =AC ,继而求得BO=DO=2,∠B=∠BDO=45°,∠DOA=∠BOD=90°,然后根据分割法,利用扇形和三角形的面积公式计算即可.【详解】如图,连接OD 、AD ,∵在△ABC 中,AB=AC ,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∵BC=4,∴AC=AB=22,∵AB 为直径,∴∠ADB=90°,BD=AD=2,BO=DO=2,∵OD=OB ,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴S 阴影=S 扇形DOA +S △BOD=2901·3602r BO DO π⨯+ ()290212?23602π⨯⨯=+⨯12π=+故答案为:π12+【点睛】 本题考查了等腰直角三角形的判定和性质以及扇形的面积公式,熟练掌握等腰直角三角形的性质、扇形及三角形面积公式是解题的关键.18.【分析】根据圆周角定理计算即可;【详解】∵∴;故答案是【点睛】本题主要考查了圆周角定理准确分析计算是解题的关键解析:90︒【分析】根据圆周角定理计算即可;【详解】∵45C ∠=︒,∴290AOB C ∠=∠=︒;故答案是90︒. 【点睛】本题主要考查了圆周角定理,准确分析计算是解题的关键.19.【分析】正六边形的面积有6个全等的边长为1的等边三角形面积组成计算一个等边三角形的面积乘以6即可【详解】如图所示等边三角形ABC 的边长为1∵OC 是AB 上的高∴AC=CB=∠AOC=∠AOB=30°∴【分析】正六边形的面积有6个全等的边长为1的等边三角形面积组成,计算一个等边三角形的面积,乘以6即可.【详解】如图所示,等边三角形ABC 的边长为1,∵OC 是AB 上的高,∴AC=CB=12,∠AOC=12∠AOB=30°,∴== ∴12AOB SAB OC =⋅=112⨯=4,∴6=..【点睛】本题考查了正多边形的面积,熟练把多边形的面积转化为三角形面积的倍数计算是解题的关键.20.【分析】连接OCOD 可求得即△OAC 为等边三角形再根据角平分线的定义求得∠BAD=30°根据圆周角定理求得∠BOD=60°最后根据弧长公式计算即可【详解】解:如图连接OCOD ∵∴∴△OAC 为等边三角解析:2π【分析】连接OC ,OD ,可求得6AO OC AC cm ===,即△OAC 为等边三角形,再根据角平分线的定义求得∠BAD=30°,根据圆周角定理求得∠BOD=60°,最后根据弧长公式计算即可.【详解】解:如图,连接OC ,OD ,∵12,AB cm =6AC cm =,∴6OB AO OC AC cm ====,∴△OAC 为等边三角形,∠CAO=60°,∵AD 平分BAC ∠, ∴1302BAD CAO ∠=∠=︒, ∴260BOD BAD ∠=∠=︒, ∴弧BD 的长=6062180ππ⋅=. 故答案为:2π.【点睛】本题考查圆周角定理,等边三角形的性质和判定,弧长的计算.正确作出辅助线,得出△OAC 为等边三角形,从而由边的关系求出角度是解题关键.三、解答题21.(1)证明见详解;(2)185【分析】 (1)连接OD ,证明CBO △CDO ≌△,即可得到结论.(2)连接BD ,根据勾股定理求出OC ,根据直径所对的圆周角等于90︒,平行线的性质,可证OCB △ADB ∽△,即可求出AD 的长【详解】(1)如图:连接OD , //AD OC ,A COB ∴∠=∠,ADO COD ∠=∠,OA OD =,A ADO ∴∠=∠,COD COB ∴∠=∠, ∴在COD △和CBO 中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩,∴COD △≌CBO ,CDO CBO ∴∠=∠,CB AB ⊥,90CDO CBO ∴∠=∠=︒,OD CD ∴⊥,∴DC 是⊙O 的切线;(2)如图:连接BD//AD OCA COB ∴∠=∠ AB 为直径,CB AB ⊥90ADB OBC ∴∠=∠=︒∴ADB OBC ∽OC OB AB AD∴= 6,4AB BC ==132OB AB ∴== ∴在Rt OBC 中2222345OC OB BC =+=+=536AD∴= 185AD ∴= 【点睛】本题考查了圆切线的判定定理,平行线的性质,全等三角形的判定和性质,圆周角定理,相似三角形的判定和性质,熟练掌握这些定理和性质,正确作出辅助线是解题关键. 22.()145︒;()28242π-【分析】(1)由作图可知,BE=BC=4,勾股定理求出AE 长即可求ABE ∠的度数;(2)阴影部分的面积是矩形面积减去△ABE 面积再减去扇形EBC 面积.【详解】解:(1)由作图可知,BE=BC=4,∵∠A=90°,22AB = ∴22224(22)22AE BE AB =-=-=,∴AB=AE ,∴45ABE ∠=;(2)由(1)可知∠EBC=45°,ABE ABCD EBC S S S S =--△阴矩形扇形,()221454224222360S π⨯=⨯-⨯-︒阴, 8242π=--.【点睛】本题考查了勾股定理,扇形面积公式,等腰三角形的性质,解题关键是理解作图意义,熟练运用勾股定理和扇形面积公式.23.(1)见解析;(2)见解析【分析】(1)求出OD ∥BC ,根据切线的性质得出OD ⊥ED ,即可求出答案;(2)求出△DBE ∽△ADE ,根据相似得出比例式,即可得出答案.【详解】证明:(1)连接OD ,∵OA=OD ,AB=BC ,∴∠A=∠C ,∠A=∠ODA ,∴∠C=∠ODA ,∴OD ∥BC ,∴∠BFE=∠ODE ,∵DE 为⊙O 的切线,∴∠ODE=90°,∴∠BFE=90°,∴DF ⊥BC ;(2)连接BD ,∵AB 为⊙O 的直径,∴∠ADB=90°,∴∠A +∠ABD=90°,∵∠ODE=90°,∴∠ODB +∠BDE=90°,∵OD=OB ,∴∠ODB=∠ABD ,∴∠A=∠BDE ,∵∠E=∠E ,∴△DBE ∽△ADE , ∴AE DE DE BE=, ∴DE 2=AE•BE .【点睛】 本题考查了相似三角形的性质和判定,圆周角定理和切线的性质等知识点,能综合运用知识点进行推理是解此题的关键.24.(1)见解析;(2)8.【分析】(1)先根据垂径定理得出AD =CD ,再利用圆周角定理即可得出结论;(2)先根据垂径定理得出AE =12AC ,在Rt △AOE 中,利用勾股定理即可求出AE 的长,进而得出结论.【详解】(1)证明:∵OD ⊥AC ,∴AD =CD ,∴∠ABD =∠CBD ,即BD 平分∠ABC ;(2)解:∵OD ⊥AC ,∴AE =12AC ,∠OEA =90°, ∵OE =3,OA =5,∴在Rt △AOE 中,AE 2222534OE ,∴AC =2AE =8.【点睛】本题考查了垂径定理、圆周角性质等知识,熟练掌握垂径定理与圆周角的相关性质是解答此题的关键. 25.215cm π【分析】先求出圆锥底面圆的半径,再利用勾股定理求出AB 的长,利用扇形的面积公式即可求解【详解】由题意可知:29OB ππ⋅=,∴圆锥的底面半径3OB cm =, 4AO =5AB cm ∴==圆锥的侧面展开图的弧长等圆锥底面圆的周长∴圆锥的侧面展开图的弧长236l ππ=⨯=∴圆锥的侧面展开图的面积为11651522S l r ππ=⨯=⨯⨯=2cm 【点睛】 本题利用了圆周长公式和扇形的面积公式求解,熟练掌握圆锥侧面展开图与底面圆的关系,牢记公式是解题关键.26.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】 (1)①如图所示,连接AO ,由BC 是直径得90BAC ∠=,∵ OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD∴DA DC AC DB DA AB==, ∵1tan 2B =, ∴1tan 2AC B AB == , ∴12DA DC DB DA ==, 则2AD CD = ,即182 AD ADBD==,得AD=4,∴122CD AD==,∴ BC=BD-CD=8-2=6,∴半径3r=;【点睛】本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;。

厦门市九年级数学下册第三单元《锐角三角函数》测试卷(含答案解析)

厦门市九年级数学下册第三单元《锐角三角函数》测试卷(含答案解析)

一、选择题1.由世界知名建筑大师摩西·萨夫迪设计的重庆新地标“来福士广场”,广场上八幢塔楼临水北向,错落有致,宛若巨轮扬帆起航,成为我市新的地标性建筑—“朝天扬帆”.来福士广场T3N 塔楼核芯简于2017年12月11日完成结构封顶,高度刷新了重庆的天际线.小李为了测量T3N 塔楼的高度,他从塔楼底部B 出发,沿广场前进185米至点C .继而沿坡度为1:2.4i =的斜坡向下走65米到达码头D ,然后在浮桥上继续前行110米至趸船E ,在E 处小李操作一架无人勘测机,当无人勘测机飞行至点E 的正上方点F 时,测得码头D 的俯角为58°,楼项A 的仰角为30°,点A 、B 、C 、D 、E 、F 、O 在同一平面内.则T3N 塔楼AB 的高度约为( )(结果精确到1米,参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,3 1.73≈)A .319米B .335米C .342米D .356米 2.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( )A .5:1B .4:1C .3:1D .2:1 3.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8m ,坡面上的影长为4m .已知斜坡的坡角为30,同一时刻,一根长为2m 且垂直于地面放置的标杆在地面上的影长为4m ,则树的高度为( )A .10mB .12mC .(63m +D .(423m - 4.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下面四个结论:①CF=2AF ;②tan ∠CAD=22 ;③DF=DC ;④△AEF ∽△CAB ;⑤S 四边形CDEF =52S △ABF ,其中正确的结论有( )A .2个B .3个C .4个D .5个5.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,则sinB 的值等于( )A .43B .34C .45D .356.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A .34B .43C .35D .457.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A .2B .5C .5D .28.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .tan a b α+B .sin a b α+C .tan b a α+D .sin b a α+9.如图,平行四边形ABCD 中,AB ⊥AC ,AB =3,BC =7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为21,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A .①②④B .① ②C .①②③④D .② ③ ④ 10.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .111.如图,正方形ABCD 的边长为1,点A 与原点重合,B 在y 轴正半轴上,D 在x 轴负半轴上,将正方形ABCD 绕着点A 逆时针旋转30至AB C D ''',CD 与B C ''相交于点E ,则E 坐标为( )A .3⎛- ⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .3⎛- ⎝⎭D .21,3⎛⎫- ⎪⎝⎭ 12.河堤横断面如图所示,迎水坡10AB =米,迎水坡AB 的坡比为3坡比是坡面的铅直高度BC 与水平度AC 之比),则AC 的长是( )A.53米B.102米C.15米D.10米第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.如图,在边长为10的菱形ABCD中,AC为对角线,∠ABC=60°,M、N分别是边BC,CD上的点,BM=CN,连接MN交AC于P点,当MN最短时,PC长度为_____.14.已知在Rt△ABC中,∠C=90°,∠A=α,AB=m,那么边AB上的高为___.15.在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,BC=23,则AB=_____.16.在矩形纸片ABCD中,AB=6,BC=8.将矩形纸片折叠,使点C与点A重合,则折痕的长是______.17.如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB,BC长为6米,坡角β为45°,AD的坡角α为30°,则AD的长为 ________ 米(结果保留根号)18.如图,△ABC 是等边三角形,AB =3,点E 在AC 上,AE 23=AC ,D 是BC 延长线上一点,将线段DE 绕点E 逆时针旋转90°得到线段FE ,当AF ∥BD 时,线段AF 的长为____.19.已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.20.如图,在1OAA △中,130AOA ∠=︒,A 90∠=︒,11AA =,以1OA 为边作12Rt OA A △,使1230AOA ∠=︒,1290OA A ∠=︒;再以2OA 为边作23Rt OA A △,使2330A OA ∠=︒,2390OA A ∠=︒;再以3OA 为边作34Rt OA A △,使3430A OA ∠=︒,3490OA A ∠=︒,…,如此继续,可以依次得到12Rt OA A △,23Rt OA A △,34Rt OA A △,…,1n n Rt OA A -△,则2020OA =__________.三、解答题21.如图1,在Rt ABC 中,∠B =90°,AB =4,BC =2,点D ,E 分别是边BC ,AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AE BD= ; ②当α=180°时,AE BD = ; (2)拓展探究试判断当0°<α<360°时,AE BD的大小有无变化?请仅就图2的情形给出证明; (3)问题解决当CDE △绕点C 逆时针旋转至A ,B ,E 三点在同一条直线上时,求线段BD 的长.22.已知O 的半径为2r ,弦23AB =,点B 是CD 的中点,AB 与CD 交于点E .(1)求圆心O 到弦AB 的距离.(2)求AEC ∠的度数.23.如图,AD 是△ABC 的中线,12tan ,cos , 2.52B C AC === .求:(1)BC 的长;(2)∠ADC 的正弦值.24.计算:(﹣2)0+cos60°﹣|1﹣3|.25.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=33,若以点C 为圆心,CB 长为径的圆与AB 交于点D ,(1)求AD 的长.(2)求弧BD 的长.26.计算:22sin 45tan 60tan 30cos60︒︒-︒+⋅︒.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意可知CD 的垂直高度和水平宽度,即知道了BO 和OD 的长,从而得出OE 的长度,再根据正切函数和DE 长度可求出EF 长度, 正切函数和OE 长度可求出A 到F 的垂直高度,即可求出AB 的长度,即:tan30AB EF OE BO =+⨯︒-.【详解】由题意得:185BC m =,65CD m =,110DE m =,根据斜坡CD 的坡度1:2.4i =得CD 的垂直高度为25m ,水平宽度为60m , ∴25BO m =,11060185355OE m =++=.根据tan tan58110 1.6110176EF EDF ED m =∠⨯=︒⨯=⨯=,所以176tan30176355 1.73325356AB OE BO m =+⨯︒-=+⨯÷-≈故选D【点睛】本题考查解直角三角形,根据题意结合正切函数是解答本题的关键.2.A解析:A【分析】先根据菱形的性质求出菱形的边长,再根据菱形的高与边长的关系求出∠A ,进而可求出∠ADC ,从而可得答案.【详解】解:如图,DE 是菱形ABCD 的高,DE=1cm ,∵菱形ABCD 的周长是8cm ,∴AD=2cm ,在Rt △ADE 中,∵DE=12AD ,∴∠A=30°, ∵AB ∥DC ,∴∠A+∠ADC=180°,∴∠ADC=150°,∴∠ADC :∠A=150°:30°=5:1.故选:A .【点睛】本题考查了菱形的性质和30°角的直角三角形的性质,属于基本题型,熟练掌握上述知识是解题的关键.3.C解析:C【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC交BF延长线于D点,作CE⊥BD于E,则∠CFE=30°,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2(m),EF=4cos30°3m),在Rt△CED中,∵同一时刻,一根长为2m、垂直于地面放置的标杆在地面上的影长为4m,CE=2(m),则CE:DE=2:4=1:2,AB:BD=1:2,∴DE=4(m),∴3m),在Rt△ABD中,AB=12BD=1233m),故选:C.【点睛】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.4.D解析:D【分析】依据△AEF ∽△CBF ,即可得出CF=2AF ;依据△BAE ∽△ADC ,即可得到tan ∠CAD=2 ;过D 作DM ∥BE 交AC 于N ,依据DM 垂直平分CF ,即可得出DF=DC ;依据∠EAC=∠ACB ,∠ABC=∠AFE=90°,即可得到△AEF ∽△CAB ;设△AEF 的面积为s ,则△ABF 的面积为2s ,△CEF 的面积为2s ,△CDE 的面积为3s ,四边形CDEF 的面积为5s ,进而得出S 四边形CDEF =52S △ABF 【详解】解:∵AD ∥BC ,∴△AEF ∽△CBF , AE AF BC CF∴= ∵AE=12AD= 12BC , 12AF CF ∴= ∴CF=2AF ,故①正确;设AE=a ,AB=b ,则AD=2a ,∵BE ⊥AC ,∠BAD=90°,∴∠ABE=∠ADC ,而∠BAE=∠ADC=90°,∴△BAE ∽△ADC ,2b a a b∴=,即2b a ∴= 222CD tan CAD AD b a =∠=∴=,故②正确;如图,过D 作DM ∥BE 交AC 于N ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM=DE=12BC , ∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF=DC ,故③正确;∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故④正确;如图,连接CE ,由△AEF ∽△CBF ,可得12AF CFEF BF == 设△AEF 的面积为s ,则△ABF 的面积为2s ,△CEF 的面积为2s ,∴△ACE 的面积为3s ,∵E 是AD 的中点,∴△CDE 的面积为3s ,∴四边形CDEF 的面积为5s ,∴S 四边形CDEF =52S △ABF ,故⑤正确. 故选:D .【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例. 5.C解析:C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=45AC AB = , 故选C. 6.D解析:D【分析】根据锐角三角函数的定义得出cosα=BC AB 进而求出即可. 【详解】 解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα=45BC AB =. 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键. 7.B解析:B【分析】过A 点作AH ⊥BC 于H 点,先由sin ∠B 及AB=3算出AH 的长,再由tan ∠C 算出CH 的长,最后在Rt △ACH 中由勾股定理即可算出AC 的长.【详解】解:过A 点作AH ⊥BC 于H 点,如下图所示:由1sin =3∠=AH B AB ,且=3AB 可知,=1AH , 由tan =2∠=AH C CH ,且=1AH 可知,12CH =, ∴在Rt ACH ∆中,由勾股定理有:2222151()2=+=+=AC AH CH . 故选:B .【点睛】本题考查了解直角三角形及勾股定理等知识,如果图形中无直角三角形时,可以通过作垂线构造直角三角形进而求解.8.A解析:A【分析】延长CE 交AB 于F ,得四边形CDBF 为矩形,故CF=DB=b ,FB=CD=a ,在直角三角形ACF 中,利用CF 的长和已知的角的度数,利用正切函数可求得AF 的长,从而可求出旗杆AB 的长.【详解】延长CE 交AB 于F ,如图,根据题意得,四边形CDBF 为矩形,∴CF=DB=b ,FB=CD=a ,在Rt △ACF 中,∠ACF=α,CF=b ,tan ∠ACF=AF CF∴AF=tan tan CF ACF b α∠=,AB=AF+BF=tan a b α+,故选:A .【点睛】主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.9.A解析:A【分析】①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可; ④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵AB =3,BC=7,222AC BC AB ∴=-= ,112AO AC ∴== , 222OB AO AB ∴=+=,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 322177AB AC AG BC ⋅∴===, 11221()73227ABEF S AF BE AG ∴=+⋅==四边形,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin AB AOB OB ∠== , 60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.10.A解析:A【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC2即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH ∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠∴∴S △ODE =12DE·2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE′=12BC=12a 在Rt △OBE′中OE′=BE′·tan ∠OBE′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC ∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 ∵23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小 ∵3OE∴OE 最小时,DE 最小而OE 的最小值为3 ∴DE 33=12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.11.A解析:A【分析】连接AE,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=12∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】如图:连接AE∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB C D''',∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADE和Rt△A B′E中,∵AD AB AE AE'=⎧⎨=⎩∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=12∠B′AD=30°,∴DE=ADtan∠DAE=1×33=3 3∴点E的坐标为(-13故选:A【点睛】本题考查了正方形的性质、坐标与图形旋转.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.12.A解析:A根据迎水坡AB 的坡比 设,=BC x AC ,然后根据迎水坡AB=10米,利用勾股定理求出x 的值,即可求解.【详解】∵迎水坡AB 的坡比∴,==BC x AC,在Rt △ABC 中:222BC AC AB += ∴)222x 10+=∴x=5±∵0x >∴=5x ∴5===AC (米).故选:A【点睛】本题考查了根据坡度和坡角解直角三角形的知识,解答本题的关键是根据坡比设出各边的长度,然后根据勾股定理求解.二、填空题13.【分析】连接AMAN 证明△AMB ≌△ANC 推出△AMN 为等边三角形当AM ⊥BC 时AM 最短即MN 最短在Rt △ABM 中求出AM 的长在Rt △AMP 中求出AP 的长即可解决问题【详解】解:连接AMAN ∵ABC 解析:52【分析】连接AM ,AN ,证明△AMB ≌△ANC ,推出△AMN 为等边三角形,当AM ⊥BC 时,AM 最短,即MN 最短,在Rt △ABM 中求出AM 的长,在Rt △AMP 中求出AP 的长,即可解决问题.【详解】解:连接AM ,AN ,∵ABCD 是菱形,∠ABC=60°,∴△ABC 为等边三角形,∴∠BAC=60°,AB=AC=10,同理可证∠ACN=60°,在△AMB 和△ANC 中,AB AC B ACN BM NC =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△ANC ,∴AM=AN ,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN 为等边三角形,∴MN=AM ,∠MAN=60°,当AM ⊥BC 时,AM 最短,即MN 最短,∵sinB=AM AB , ∴AM=sin60°×10=53.∵∠ABC=60°,∴∠BAM=30°,∴∠MAC=30°,∴∠NAC=30°,∴AP ⊥MN .∵sin ∠AMN=AP AM, ∴AP=sin60°×53=152, ∴CP=10-152=52. 故答案为:52.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,以及锐角三角函数的知识,熟练掌握各知识点是解答本题的关键.14.msinαcosα【分析】利用直角三角形中的余弦三角函数的定义求得AC 的长度然后利用三角形的面积公式求得AB 边上的高的长度【详解】如图所示:根据题意可得:AC =mcosαBC =msinα∴AC•BC解析:m sinαcosα【分析】利用直角三角形中的余弦三角函数的定义求得AC的长度,然后利用三角形的面积公式求得AB边上的高的长度.【详解】如图所示:根据题意可得:AC=m cosα,BC=m sinα,∴12AC•BC=12mh,即h=m sinαcosα,故答案是:m sinαcosα.【点睛】考查了解直角三角形.解题关键利用了三角函数的定义求得直角三角形两条直角边的长.15.4【解析】分析:由CE所在直线垂直平分线段AD可得出CE平分∠ACD进而可得出∠ACE=∠DCE由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB结合∠ACB=90°可求出∠ACE∠A的度解析:4【解析】分析:由CE所在直线垂直平分线段AD可得出CE平分∠ACD,进而可得出∠ACE=∠DCE,由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB,结合∠ACB=90°可求出∠ACE、∠A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度.详解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=13∠ACB=30°,∴∠A=60°,∴AB=23603BCsin=︒=4.故答案为4.点睛:本题考查了线段垂直平分线的性质、角平分线的性质以及特殊角的三角函数值,通过角的计算找出∠A=60°是解题的关键.16.【分析】先利用勾股定理得出AC 根据翻折变换的性质可得AC ⊥EFOC=AC 然后利用∠ACB 的正切列式求出OF 再求出△AOE 和△COF 全等根据全等三角形对应边相等可得OE=OF 从而求出折痕的长【详解】解 解析:152【分析】 先利用勾股定理得出AC ,根据翻折变换的性质可得AC ⊥EF ,OC=12AC ,然后利用∠ACB 的正切列式求出OF ,再求出△AOE 和△COF 全等,根据全等三角形对应边相等可得OE=OF ,从而求出折痕的长.【详解】解:如图∵AB=6,BC=8,∴AC==10,∵折叠后点C 与点A 重合,∴AC ⊥EF ,OC=12AC=12×10=5, ∵tan ∠ACB=OF CO =AB CB , ∴OF 5=68, 解得OF=154, ∵矩形对边AD ∥BC ,∴∠OAE=∠OCF ,在△AOE 和△COF 中OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ),∴OE=OF=154,∴EF=152 故答案为152 【点睛】 本题考查了翻折变换的性质,矩形的性质,勾股定理,锐角三角函数的定义,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.17.【分析】过C 作CE ⊥AB 于EDF ⊥AB 于F 分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解【详解】解:过C 作CE ⊥AB 于EDF ⊥AB 于F 可得矩形CEFD 和Rt △CEB 与Rt △DFA ∵BC=6∴解析:62【分析】过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解.【详解】解:过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,可得矩形CEFD 和Rt △CEB 与Rt △DFA , ∵BC=6,∴CE=2sin 456322BC ︒=⨯=, ∴DF=CE=32,∴62sin 30DF AD ==︒, 故答案为:62.【点睛】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.18.1【分析】过点E 作EM ⊥AF 于M 交BD 于N 根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN 的长再依据△EMF ≌△DNE (AAS )得出MF=EN 据此可得当AF ∥BD 时线段AF 的解析:13+. 【分析】过点E 作EM ⊥AF 于M ,交BD 于N ,根据30°直角三角形的性质求出AM =1,再根据∠60°的三角函数值求出EN的长,再依据△EMF≌△DNE(AAS)得出MF=EN3=,据此可得,当AF∥BD时,线段AF的长为13 +.【详解】如图过点E作EM⊥AF于M,交BD于N.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ACB=60°.∵AE23=AC,∴AE=2,EC=1.∵AF∥BD,∴∠EAM=∠ACB=60°.∵EM⊥AF,∴∠AME=90°,∴∠AEM=30°,∴AM12=AE=1.∵AF∥BD,EM⊥AF,∴EN⊥BC,∴EN=EC•sin60°3=∵∠EMF=∠END=∠FED=90°,∴∠MEF+∠MFE=90°,∠MEF+∠DEN=90°,∴∠EFM=∠DEN.∵ED=EF,∴△EMF≌△DNE(AAS),∴MF=EN3=∴AF=AM+MF=132+.故答案为:13.【点评】本题主要考查了直角三角形的性质、特殊角的三角函数值和全等三角形的判定的综合运用,解题的关键是作辅助线构造直角三角形和全等三角形,熟记特殊角的三角函数值. 19.【分析】由直角三角形中30°角所对的直角边等于斜边的一半可求出30°角对应的直角边再由勾股定理可知求出另一直角边进而求出斜边上的高【详解】解:如下图所示BC=4∠B=30°∠C=60°由直角三角形中 解析:3【分析】由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.【详解】 解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2 由勾股定理知:2222=422 3.-=-=AB BC AC在Rt △ABH 中,AH=123. 3【点睛】本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键. 20.【分析】在直角三角形中已知一个角是30°一边边长根据特殊角三角函数解直角三角形依次求出OA1OA2OA3OA4OA5OA6然后找到规律即可求出的值【详解】∵∴=∵∴∵∴∵∴∵∴同理可得综上所述∴故答解析:1010233【分析】在直角三角形中,已知一个角是30°,一边边长,根据特殊角三角函数解直角三角形,依次求出OA 1、OA 2、OA 3、OA 4、OA 5、OA 6,然后找到规律,即可求出2020OA 的值.【详解】∵130AOA ∠=︒,A 90∠=︒,11AA =∴1223OA ===∵1230AOA ∠=︒,1290OA A ∠=︒∴12cos30332OA OA ====︒ ∵2330A OA ∠=︒,2390OA A ∠=︒∴233282cos3033OA OA ====︒ ∵3430A OA ∠=︒,3490OA A ∠=︒∴348cos30OA OA ====︒∵4330A OA ∠=︒,4590OA A ∠=︒∴4232cos30935OA OA ====︒同理可得5632cos30OA OA ====︒综上所述,23n OA =∴2020OA =故答案为:101023【点睛】本题考查了特殊角三角函数解直角三角形,是一道找规律题,本题根据已知多求出几个直角三角形斜边,然后从中找到规律是解题的关键.三、解答题21.(1)①5,②5;(2)不变,见解析;(3)355或5【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的AEBD值是多少.②α=180°时,可得AB∥DE,然后根据ACAE=BCDB,求出AEBD的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据ECDC=ACBC=5,判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情形:①如图3﹣1中,当点E在AB的延长线上时,②如图3﹣2中,当点E在线段AB上时,分别求解即可.【详解】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=22AB BC+=2224+=25,∵点D、E分别是边BC、AC的中点,∴AE=12AC=5,BD=12BC=1,∴AEBD=5.②如图1中,当α=180°时,可得AB∥DE,∵ACAE =BCBD,∴AEBD =ACBC=5.故答案为:①5,②5.(2)如图2,当0°≤α<360°时,AEBD的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵ECDC=ACBC=5,∴△ECA∽△DCB,∴AEBD =ECDC=5.(3)①如图3﹣1中,当点E在AB的延长线上时,在Rt△BCE中,CE5BC=2,∴BE22EC BC-54-=1,∴AE=AB+BE=5,∵AEBD5∴BD55②如图3﹣2中,当点E在线段AB上时,BE=22EC BC-=54-=1,AE=AB-BE =4﹣1=3,∵AEBD=5,∴BD=35,综上所述,满足条件的BD的长为35或5.【点睛】本题属于几何变换综合题,考查了旋转变换,相似三角形的判定和性质,平行线的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22.(1)1;(2)60°【分析】(1)过点O作OF⊥AB,垂足为点F,连接OB,交CD于点H,根据垂径定理可得BF=AF =3,再利用勾股定理即可求得答案;(2)由1sin2OFOBFOB∠==可得∠OBF=30°,再由点B是CD的中点可得OB⊥CD,进而即可求得AEC∠的度数.【详解】解:(1)过点O作OF⊥AB,垂足为点F,连接OB,交CD于点H,∵OF⊥AB,23AB=∴BF=AF3在Rt OBF 中,22OF OB BF =-222(3)1=-=,∴圆心O 到弦AB 的距离为1;(2)∵在Rt OBF 中,1sin 2OF OBF OB ∠==, ∴∠OBF =30°,∵点B 是CD 的中点,∴OB ⊥CD ,∴∠CHB =90°,∴∠AEC =∠BEH =90°-∠OBF =60°,∴AEC ∠的度数为60°.【点睛】本题考查了垂径定理的应用及推论,勾股定理,锐角三角函数的应用,熟练掌握垂径定理的应用及推论是解决本题的关键.23.(1)6;(2)5 【分析】(1)过点A 作AH BC ⊥于点H ,利用锐角三角函数求出CH 的长,再算出AH 的长,再根据tan B 求出BH 的长,最后求出BC 的长;(2)利用勾股定理求出AD 的长,∠ADC 的正弦值等于AH AD . 【详解】解:(1)如图,过点A 作AH BC ⊥于点H ,在Rt ACH 中,∵2cos 2CH C AC ==,2AC =, ∴1CH =,∴221AH AC CH =-=在Rt ABH 中, ∵1tan 5AH B BH ==, ∴5BH =,∴6BC BH CH =+=;(2)∵BD CD =,∴3CD =,2DH =,∴AD ==,在Rt ADH中,sin AH ADH AD ∠==, ∴ADC ∠. 【点睛】本题考查锐角三角函数,解题的关键是掌握利用锐角三角函数求三角形边长的方法,和已知三角形边长求锐角三角函数的方法.24.52-【分析】原式利用零指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【详解】)0+cos60°﹣|1|=1+121) =1+12=52【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键. 25.(1)3;(2)3π【分析】(1)在Rt ABC 中,根据三角函数求出BAC ∠的度数,再求出AB 的长,连接CD ,得到BCD △是等边三角形,可以得到BD 的长,最后求出AD 的长;(2)利用弧长公式求出弧BD 的长.【详解】解:(1)如图,连接CD ,在Rt ABC 中,3BC =,AC =tan 3BC BAC AC ∠==, ∴30BAC ∠=︒,∴60ABC ∠=︒, 361sin 2BC AB BAC ===∠, ∵CD CB =,∴BCD △是等边三角形,∴3BD BC CD ===,∴633AD AB BD =-=-=;(2)∵60BCD ∠=︒,3BC =, ∴26033180BD ππ⨯==. 【点睛】本题考查圆的基本性质和弧长公式,以及锐角三角函数,解题的关键是掌握这些几何的性质定理和公式.26.32【分析】直接利用特殊角的三角函数值代入进而计算得出答案.【详解】 解:原式22312(32=⨯+ 1112=+- 32=. 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.。

九年级数学下册第三单元测试卷

九年级数学下册第三单元测试卷

九年级数学下册第三单元测试卷时间:45分钟 满分:120分一、 选择题(每小题5分,共40分)1.下列说法正确的是( )A .经过三个点一定可以作圆B .任意一个圆一定有内接三角形,并且只有一个内接三角形C .任意一个三角形一定有一个外接圆,并且只有一个外接圆D .三角形的外心到三角形各边的距离相等 2.下列说法中正确的是( )A .长度相等的弧是等弧B .弦是直径C .过圆心的直线是直径D .两个半径相等的圆是等圆 3.如图,MN 是⊙O 的直径,弦 AB ⊥MN ,垂足 为C ,则下列结论中错误的是( ) A .=B .AN =BNC .AC =CBD .OC =CM4.在⊙O 中,AB 、CD 是两条相等的弦,则下 列说法中错误的是( )A .AB 、CD 所对的弧一定相等 B .AB 、CD 所对的圆心角一定相等C .△AOB 和△COD 能完全重合 D .点O 到AB 、CD 的距离一定相等 5.如图,⊙O 的直径AB 与AC 的夹角为30°, 切线CD 与AB 的延长线交于点D ,若⊙O 的 半径为3,则CD 的长为( ) A .6 B .3 C .3 D .336.下列物体的三视图中,左视图与俯视图一定一致的是A .圆锥B .圆柱C .长方体D .球7.已知圆锥的侧面展开图的面积是15πcm 2,母线长是5cm ,则圆锥的底面半径为( )A .cm 23B .3cmC .4cmD .6cm8.如图,⊙O 的直径为AB ,周长为P 1,在⊙O 内 的n 个圆心在AB 上且依次相外切的等圆,且其 中左、右两侧的等圆分别与⊙O 内切于A 、B , 若这n 个等圆的周长之和为P 2,则P 1和P 2的大 小关系是( )A .P 1< P 2B .P 1= P 2C .P 1> P 2D .不能确定二、 填空题(每小题5分,共25分)9.⊙O 的直径为10,点P 的坐标为(4,-3),圆心O 的坐标为(0,0),则点P 在圆 .(填“内”、“外”、“上”)10.半径为R 的圆中,有一弦恰好等于半径,则弦所对的圆心角为 . 11.如图,正方形ABCD 内接于⊙O ,点P 在AD 上,则∠BPC= .12.⊙O 1与⊙O 2相交,⊙O 1的半径r 1为3㎝, ⊙O 2的半径r 2为5㎝,圆心距d 的取值范围为 .13.如图,正方形ABCD 的边长为1,点E 为 AB 的中点,以E 为圆心,1为半径作圆, 分别交AD 、BC 于M 、N 两点,与DC 切于点 P ,则图中阴影部分的面积是 。

初三下数学第三单元试卷

初三下数学第三单元试卷

一、选择题(每题4分,共40分)1. 下列各数中,属于有理数的是()A. √2B. πC. -3D. 0.1010010001…2. 已知 a > 0,且a² - 3a + 2 = 0,则 a 的值为()A. 1B. 2C. 1 或 2D. 1 或 33. 下列函数中,与y = x² - 2x + 1 是同一个函数的是()A. y = (x - 1)²B. y = x² - 4x + 4C. y = x² - 2x + 3D. y = x² - 2x + 1 + 24. 在直角坐标系中,点 A(-2, 3),点 B(4, -1),则线段 AB 的中点坐标为()A. (1, 1)B. (1, -1)C. (-1, 1)D. (-1, -1)5. 若等差数列 {an} 的前三项分别为 2, 5, 8,则第 10 项 an 等于()A. 19B. 22C. 25D. 286. 下列命题中,正确的是()A. 若a² = b²,则 a = bB. 若a² = b²,则 a = ±bC. 若 a = b,则a² = b²D. 若a² =b²,则 |a| = |b|7. 在锐角三角形 ABC 中,角 A、B、C 的度数分别为30°、60°、90°,则 sinA + cosB 的值为()A. √3/2B. 1C. √3/2 + 1D. √3/2 - 18. 下列函数中,单调递减的是()A. y = 2x + 1B. y = x²C. y = -xD. y = 3x³9. 已知函数 f(x) = 2x - 3,则 f(2) + f(-1) 的值为()A. 1B. 3C. 5D. 710. 在等腰三角形 ABC 中,底边 BC 的长度为 4,腰 AC 的长度为 6,则底角 A 的度数为()A. 30°B. 45°C. 60°D. 90°二、填空题(每题4分,共20分)11. 若 a = -3,b = 2,则a² - 2ab + b² 的值为 ________。

(必考题)初中数学九年级数学下册第三单元《圆》测试卷(有答案解析)

(必考题)初中数学九年级数学下册第三单元《圆》测试卷(有答案解析)

一、选择题1.如图,AB 是半圆的直径,CD 为半圆的弦,且CD//AB ,∠ACD=26°,则∠B 等于( )A .26°B .36°C .64°D .74°2.如图,EM 经过圆心O ,EM ⊥CD 于M ,若CD=4,EM=6,则弧CED 所在圆的半径为( )A .3B .4C .83D .1033.若点A 在O 内,点B 在O 外,3OA =,5OB =,则O 的半径r 的取值范围是( )A .03r <<B .28r <<C .35r <<D .5r > 4.如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,则PC 的长为( )A .6B .5C .210D .2145.边长为2的正六边形的边心距为( ) A .1B .2C 3D .36.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=的是( )A .30B ∠=︒ B .60BAD ∠=︒C .23BD = D .23AB = 7.如图,AB 为半圆O 的直径,C 是半圆上一点,且60COA ∠=º,设扇形AOC 、COB △、弓形BmC 的面积为1S 、2S 、3S ,则他们之间的关系是( )A .123S S S <<B .213S S S <<C .132S S S <<D .321S S S <<8.图中的三块阴影部分由两个半径为1的圆及其外公切线分割而成,如果中间一块阴影的面积等于上下两块面积之和,则这两圆的公共弦长是( )A .5B .6C .21252π-D .21162π- 9.如图,两个正六边形ABCDEF 、EDGHIJ 的顶点A 、B 、H 、I 在同一个圆上,点P 在ABI 上,则tan ∠API 的值是( )A .3B .2C .2D .110.如图,在平面直角坐标系中,以原点O 为圆心,6为半径的O 与直线(0)y x b b =-+>交于A ,B 两点,连接,OA OB ,以,OA OB 为邻边作平行四边形OACB ,若点C 恰好在O 上,则b 的值为( )A .33B .23C .32D .2211.如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则cos ∠ADC 的值为( )A .21313B .1313C .313D .2312.下列说法正确的是( )A .有一组邻边相等的平行四边形是菱形B .平分弦的直径垂直于弦C .两条边对应成比例且有一个内角相等的两个三角形相似D .对角线相等的四边形是矩形二、填空题13.如图,点P 为⊙O 外一点,PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =90°.若⊙O 的半径为2,则图中阴影部分的面积为_____(结果保留π).14.如图,O 与抛物线212y x =交于,A B 两点,且4AB =,则O 的半径等于___________.15.如图,在平面直角坐标系中,过点()11,0A 作x 轴的垂线交直线y x =于点B ,以О为圆心,1OB 为半径作弧,交x 轴于点2A ;过点2A 作x 轴的垂线交直线y x =于点2B ,以O 为圆心,2OB 为半径作弧,交x 轴于点3A ;过点3A 作x 轴的垂线交直线y x =于点3B ,以О为圆心,3OB 为半径作弧,交x 轴于点4A ,……,按此做法进行下去,设由11A B ,12A A ,弧21A B 围成的图形面积记为1S ,由22A B ,23A A ,弧32A B 围成的图形面积记为2S ,由33A B ,34A A ,弧43A B 围成的图形面积记为3S ,……,那么2020S 为_______:16.如图,等腰BAC 中,120ABC ∠=︒,4BA BC ==,以BC 为直径作半圆,则阴影部分的面积为________.17.如图,半径为2的O 中有弦AB ,以AB 为折痕对折,劣弧恰好经过圆心O ,则弦AB 的长度为__________.18.如图,ABC 内接于O ,70B ∠=︒,50OCB ∠=︒,点P 是O 上一个动点(不与图中已知点重合),若ACP △时等腰三角形,则ACP ∠的度数为___.19.如图,圆锥底面半径为rcm ,母线长为5cm ,侧面展开图是圆心角为216°的扇形,则r 为_____cm .20.已知圆锥的母线长为10cm ,高为8cm ,则该圆锥的展开图(扇形)的弧长为______(结果保留π).三、解答题21.如图,ABC 的边AB 是O 的直径,边AC 交O 于,D 边BC 与O 相切于点B ,点E 为O 上一点,连接BD BE DE 、、.()1求证:CBD E ∠=∠.()2已知3,22cos E CD ∠==,求半径的长. 22.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,连接AC ,若CA =CP ,∠A =30°.(1)求证:CP 是⊙O 的切线;(2)若OA =1,求弦AC 的长.23.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的ABC ∆,且90B ∠=︒.(1)将ABC ∆绕点O 顺时针旋转90°后得到EFG ∆(其中,,A B C 三点旋转后的对应点分别是,,E F G ),画出EFG ∆.(2)设EFG ∆的内切圆的半径为r ,EFG ∆的外接圆的半径为R ,则r R=__________.24.如图,AB 是O 的直径,AC 是弦,OD AC ⊥于点D ,过点A 作O 的切线AP ,AP 与OD 的延长线交于点P ,连接PC 、BC .(1)猜想:线段OD 与BC 有何数量和位置关系,并证明你的结论.(2)求证:PC 是O 的切线.25.将图中的破轮子复原,已知弧上三点A ,B ,C .(1)用尺规作出该轮的圆心O ,并保留作图痕迹;(2)若ABC 是等腰三角形,设底边8BC =,腰5AB =,求圆片的半径R .26.(概念认识)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)如图1,已知在垂等四边形ABCD 中,对角线AC 与BD 交于点E ,若AB AD ⊥,4AB =cm ,4cos 5ABD ∠=,求AC 的长度,(数学理解)(2)在探究如何画“圆内接垂等四边形”的活动中,小李与同学讨论出了如下方法:如图2,在O 中,已知AB 是O 的弦,只需作OD OA ⊥,OC OB ,分别交O 于点D 和点C ,即可得到垂等四边形ABCD ,请你写出证明过程.(问题解决)(3)如图3,已知A是O上一定点,B为O上一动点,以AB为一边作出O的内接垂等四边形(A、B不重合且A、B、O三点不共线),对角线AC与BD交于点E,O的半径为22,当点E到AD的距离为3时,求弦AB的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用平行线的性质,得∠ACD=∠CAB=26°,根据直径上的圆周角为直角,得∠ACB=90°,利用直角三角形的性质计算即可.【详解】∵CD//AB,∠ACD=26°,∴∠ACD=∠CAB=26°,∵AB是半圆的直径,∴∠ACB=90°,∴∠B=64°,故选C.【点睛】本题考查了平行线的性质,圆周角的原理,直角三角形的性质,熟练掌握性质,并灵活运用是解题的关键.2.D解析:D【分析】连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6−R,根据垂径定理求出CM,根据勾股定理得出方程,求出即可.【详解】解:连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6−R,∵EM经过圆心O,EM⊥CD于M,CD=4,∴CM=DM=2,在Rt△OMC中,由勾股定理得:OC2=OM2+CM2,R2=(6−R)2+22,R=103,故选:D.【点睛】本题考查了勾股定理,垂径定理的应用,用了方程思想,题目比较典型,难度适中.3.C解析:C【分析】根据点和圆的位置关系可判断.【详解】解:∵点A在O内,3OA=,∴3r<,∵点B在O外,5OB=,∴5r<,O的半径r的取值范围是35r<<,故选:C.【点睛】本题考查了点和圆的位置关系,解题关键是熟知点和圆的位置关系是由半径和点到圆心的距离决定.4.D解析:D【分析】延长AO交⊙O于B,连接AC,证明△PAC∽△PCB,进而得到PC2=PA•PB即可求出PC的长.【详解】解:如下图所示:连接OC,延长AO交⊙O于B,连接AC,BC,∵AB 为直径,∴∠1+∠2=90°,∵OC=OA ,∴∠1=∠3,∵PC 为圆的切线,∴∠3+∠4=90°,∴∠2=∠4,又∠P=∠P ,∴△PCA ∽△PBC , ∴=PC PA PB PC,即24(104)56=⨯=⨯+=PC PA PB , ∴214=PC ,故选:D . 【点睛】本题考查了相似三角形的性质和判定,圆的切线及圆周角定理等,熟练掌握圆的性质及相似三角形的性质和判定是解决本题的关键.5.C解析:C【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用勾股定理即可求出.【详解】 解:连接OA ,作OM ⊥AB ,垂足为M ,连接OB ,∵六边形ABCDEF 是正六边形∴△AOB 是等边三角形∴∠AOM =30°,AO =AB∵正六边形ABCDEF 的边长为2,∴AM =12AB =12×2=1,OA =2. ∴正六边形的边心距是OM 2222213OA AM -=-=故选:C .【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算. 6.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD 的度数,然后利用含30度的直角三角形三边的关系求出BD 、AB 的长即可.【详解】解:∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A 、B 不符合题意,在Rt △ADB 中,,故选项C 符合题意,选项D 不符合题意,故选:C .【点睛】本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.7.B解析:B【分析】设出半径,作出△COB 底边BC 上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.【详解】解:作OD ⊥BC 交BC 与点D ,∵∠COA =60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =22603606ππ=R R ; S 扇形BOC =221203603ππ=R R . 在三角形OCD 中,∠OCD =30°,∴OD =2R ,CD =2,BC ,∴S △OBC =24,S 弓形=2234R π-=2(412π-R ,2(433)12π-R >26πR >234R , ∴S 2<S 1<S 3.故选:B .【点睛】此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形﹣三角形的关系求出弓形的面积,进行比较得出它们的面积关系.8.D解析:D【分析】由题意得到四边形ABCD 为矩形,BC=2,再根据中间一块阴影的面积等于上下两块面积之和,得到BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,可求出AB=2π,则OP=12AB=4π,在Rt △OEP 中,利用勾股定理可计算出EP ,即可得到两圆的公共弦长EF . 【详解】解:∵AB ,CD 为两等圆的公切线,∴四边形ABCD 为矩形,BC=2,设中间一块阴影的面积为S ,∵中间一块阴影的面积等于上下两块面积之和,∴BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,∴AB=2π. 如图,EF 为公共弦,PO ⊥EF ,OP=12AB=4π,∴EP=22OE OF -=222161()44ππ--=, ∴EF=2EP=21162π-. 故选:D .【点睛】本题考查了垂径定理、勾股定理,公切线,连心线的性质,熟练掌握相关知识是解题的关键.9.A解析:A【分析】连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M ,证明90AIH ∠=︒,设HI JI JE a ===,求出AI 即可.【详解】解:如图,连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M .∵ABCDEF 是正六边形,∴∠DEF =∠F =120°,∵FA =FE , ∴∠FEA =∠FAE =30°,∴∠AED =90°,同法可证,∠DEI =∠EIH =90°,∴∠AED +∠DEI =180°,∴A ,E ,I 共线,设HI JI JE a ===,∵JM ⊥EI ,∴EM =MI =32a , ∴AI =2EI =3a ,∵∠API =∠AHI ,∴tan ∠API =tan ∠AHI =AI HI =323a a=故选:A.【点睛】本题考查了正多边形和圆,解直角三角形,圆周角定理等知识,解题关键是正确添加辅助线,构造直角三角形解决问题.10.C解析:C【分析】如图,连接OC交AB于T.想办法求出点T的坐标,利用待定系数法即可解决问题.【详解】解:如图,连接OC交AB于T,设直线AB交x轴于M,交y轴于N.∵直线AB的解析式为y=-x+b,∴N(0,b),M(b,0),∴OM=ON,∴∠OMN=45°,∵四边形OACB是平行四边形,OA=OB,∴四边形OACB是菱形,∴OC⊥AB,∴∠COM=45°,∵OC=6,∴C(3232∵OT=TC,∴T(322,322),把T点坐标代入y=-x+b,可得b=32故选:C.【点睛】本题考查圆周角定理,平行四边形的性质,菱形的判定,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.C解析:C【分析】根据圆周角定理得到ADC ABC ∠=∠,再根据余弦的定义计算即可;【详解】由图可知ADC ABC ∠=∠,在Rt △ABC 中,2AC =,3BC =, ∴AB =∴cos ∠ADC 3cos13BC ABC AB =∠===; 故答案选C .【点睛】本题主要考查了圆周角定理、余弦定理、勾股定理,准确计算是解题的关键. 12.A解析:A【分析】根据菱形的判定定理、垂径定理的推论、相似三角形的判定定理、矩形的判定定理依次对选项进行判断即可.【详解】A :根据菱形的判定定理可知,有一组邻边相等的平行四边形是菱形,故此选项符合题意;B :根据垂径定理可知,平分弦的直径不一定垂直于弦,但垂直于弦的直径一定平分这条弦,故此选项不符合题意;C :根据三角形相似的判定定理可知,两条边对应成比例且夹角相等的两个三角形相似,故此选项不符合题意;D :对角线相等且平分的四边形是矩形,故此选项不符合题意;故选:A .【点睛】本题考查矩形、菱形、相似三角形的判定定理及垂径定理的推论,掌握各判定定理是解题的关键.二、填空题13.4-π【分析】连接OAOB 由S 阴影=S 正方形OBPA-S 扇形AOB 则可求得结果【详解】解:连接OAOB ∵PAPB 分别与⊙O 相切于点AB ∴OA ⊥APOB ⊥PBPA=PB ∴∠OAP=∠OBP=90°=∠解析:4-π【分析】连接OA ,OB ,由S 阴影=S 正方形OBPA -S 扇形AOB 则可求得结果.【详解】解:连接OA ,OB ,∵PA ,PB 分别与⊙O 相切于点A ,B ,∴OA ⊥AP ,OB ⊥PB ,PA=PB ,∴∠OAP=∠OBP=90°=∠BPA ,∴四边形OBPA 是正方形,∴∠AOB=90°,∴阴影部分的面积=S 正方形OBPA -S 扇形AOB 则=22-904360π⨯⨯=4-π. 故答案为:4-π.【点睛】此题考查了切线长定理,正方形的判定与性质,扇形面积公式等知识.解题关键是连接半径,构造正方形,把阴影部分面积转化为正方形面积与扇形面积差.14.【分析】连接OA 设AB 与y 轴交于点C 由抛物线的对称性和圆的对称性得y 轴⊥AB 可得出点AB 的横坐标分别为−22再代入抛物线即可得出点AB 的坐标再根据勾股定理得出⊙O 的半径【详解】解:连接OA 设AB 与y解析:22【分析】连接OA ,设AB 与y 轴交于点C ,由抛物线的对称性和圆的对称性得y 轴⊥AB ,可得出点A ,B 的横坐标分别为−2,2.再代入抛物线212y x =即可得出点A ,B 的坐标,再根据勾股定理得出⊙O 的半径.【详解】解:连接OA ,设AB 与y 轴交于点C ,由抛物线的对称性和圆的对称性得y 轴⊥AB ,∵AB =4,∴点A ,B 的横坐标分别为−2,2.∵⊙O 与抛物线212y x =交于A ,B 两点, ∴点A ,B 的坐标分别为(-2,2),(2,2),在Rt △OAC 中,由勾股定理得OA ==,∴⊙O 的半径为故答案为:【点睛】本题考查了垂径定理、勾股定理以及二次函数图象上点的特征,求得点A 的坐标是解题的关键.15.【分析】根据点A 的取法罗列出部分点A 的横坐标由此可发现规律即的横坐标为:再结合已知即可得到答案【详解】观察发现规律:的横坐标为:的横坐标为:的横坐标为:的横坐标为:的横坐标为:故答案为:【点睛】本题 解析:2017201822π-【分析】根据点A 的取法,罗列出部分点A 的横坐标,由此可发现规律,即n A 的横坐标为:1n -,再结合已知即可得到答案.【详解】观察,发现规律:1A 的横坐标为:1,2A 3A 的横坐标为:2,⋯,∴n A 的横坐标为:1n -n B ∴的横坐标为:1n -404020192019201720182020451223602S ππ⨯⨯∴=-⨯⨯=⋅-故答案为:2017201822π⋅-.【点睛】本题考查了一次函数图像上点的坐标特征以及规律型中的点的变换,解题关键是找出n A 的横坐标为:1n -这一规律.16.【分析】连接BD 作半径OD 先求出BDCD 长△OCD 面积再求出扇形OCD 面积即可求出阴影面积【详解】解:如图连接BD 作半径OD ∵BC 为直径∴BD ⊥AC ∵BA=BC=4∴∠ACB=∠A=30°∴BD=∴解析:433π- 【分析】 连接BD ,作半径OD ,先求出BD 、CD 长,△OCD 面积,再求出扇形OCD 面积,即可求出阴影面积.【详解】解:如图,连接BD ,作半径OD ,∵BC 为直径,∴BD ⊥AC ,∵BA=BC=4,120ABC ∠=︒,∴∠ACB=∠A=30°,∴BD=1BC=22, ∴CD=2223BC BD -=,∵O 为BC 中点,∴1112233222ODC BDC S S ==⨯⨯⨯=△△, ∵OD=OC ,∠ACB=30°,∴∠COD=120°,∵直径BC=4,∴半径OC=2, ∴2120423603OCD S ππ=⨯⨯=扇形, ∴阴影部分面积为433π-.故答案为:433π【点睛】 本题考查了等腰三角形性质,直角三角形性质,勾股定理,、圆周角定理推论、扇形面积的求法,弓形面积求法等知识,理解割补法是求不规则图形面积的一般方式是解题关键. 17.【分析】如果过O 作OC ⊥AB 于D 交折叠前的于C 根据折叠后劣弧恰好经过圆心O 根据垂径定理及勾股定理即可求出AD 的长进而求出AB 的长【详解】解:如图过O 作OC ⊥AB 于D 交折叠前的于C ∵的半径为又∵折叠后解析:23【分析】如果过O作OC⊥AB于D,交折叠前的AB于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB于C,∵O的半径为2,又∵折叠后劣弧恰好经过圆心O,∴OA=OC=2,∴OD=CD=1,在Rt△OAD中,∵OA=2,OD=1,∴2222-=-213OA ODAB=2AD=3故答案为:3【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.18.或或【分析】根据题意分三种情况讨论即可得∠ACP的度数【详解】解:如图连接OAOB∵∠OCB=50°∴∠OBC=50°∴∠BOC=180°-50°-50°=80°∵∠B=70°∴∠OBA=∠OAB=解析:35︒或40︒或55︒【分析】根据题意分三种情况讨论即可得∠ACP的度数.【详解】解:如图,连接OA,OB,∵∠OCB=50°,∴∠OBC=50°,∴∠BOC=180°-50°-50°=80°.∵∠B=70°,∴∠OBA=∠OAB=20°,∴∠AOB=140°,∴∠AOC=360°-80°-140°=140°,∴∠OAC=∠OCA=20°,∴∠ACB=50°+20°=70°,∴AB=AC.当AP′=AC时,此时点P′与点B重合,不符合题意;当AP=PC时,∵∠B=70°,∴∠APC=180°-70°=110°,∴∠ACP=∠CAP=1(180°-110°)=35°;2当AP′=P′C时,∠P′AC=∠P′CA=1(180°-70)=55°;2当AC=P′C时,∠ACP′=180°-70°-70°=40°.故答案为:35°或40°或55°.【点评】本题考查了三角形的外接圆与外心、圆周角定理、等腰三角形的性质,解决本题的关键是综合运用以上知识进行分类讨论.19.3【分析】利用圆锥的侧面展开图为扇形这个扇形的弧长等于圆锥底面的周长得到2πr=然后解关于r的方程即可【详解】解:根据题意得2πr=解得:r=3故答案为3【点睛】本题考查了圆锥的计算:圆锥的侧面展开解析:3【分析】利用圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,得到2πr=2165180π⨯⨯,然后解关于r 的方程即可. 【详解】解:根据题意得2πr =2165180π⨯⨯, 解得:r =3.故答案为3.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 20.【分析】根据勾股定理先求出圆锥的底面圆的半径然后根据圆锥的展开图为扇形其弧长等于圆锥底面圆的周长利用圆的周长公式即可计算【详解】设圆锥底面圆的半径为:由勾股定理得:圆锥底面圆的周长为:圆锥的展开图为 解析:12π【分析】根据勾股定理先求出圆锥的底面圆的半径,然后根据圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,利用圆的周长公式即可计算.【详解】设圆锥底面圆的半径为:r ,由勾股定理得:6r ==,∴圆锥底面圆的周长为:22612r πππ=⨯⨯=,圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,∴该圆锥展开图的弧长为:12π,故答案为:12π.【点睛】本题考查了圆锥的计算,要掌握圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,利用勾股定理求出圆锥底面圆的半径是解题关键.三、解答题21.(1)见解析;(2)【分析】(1)先由切线的性质得90ABC ∠=︒ ,通过同角的余角相等证明∠A CBD =∠,最后由同弧对的圆周角相等证明∠E A =∠即可得到结论;(2)由30°的角所对直角边等于斜边的一半求出BC 和AC 的长,再由勾股定理求出AB 的长即可得到O 的半径. 【详解】解:∵AB 是O 的直径,BC 与O 相切于点B ,∴∠90,90ABC ADB ︒︒=∠=∵∠90A ABD ︒+∠=∴∠A CBD =∠∵∠E A =∠∴∠CBD E =∠(2)∵3cos E ∠= ∴∠30E ︒=由(1)知,∠A E CBD =∠=∠∴∠30A CBD ︒=∠=∵∠90ADB ︒=∴∠18090BDC ADB ︒︒=-∠=∴24BC CD ==在Rt ABC ∆中,∠30A ︒=∴28AC BC ==∴2243AB AC BC =-= ∴O 的半径1232AB == 【点睛】此题主要考查了切线的性质以及圆周角定理等知识,解题的关键是灵活运用有关定理来分析、判断、推理或解答.22.(1)见解析;(2)AC =3.【分析】(1)连接OC ,由等腰三角形的性质得出∠A=∠ACO=30°,∠P=30°,求出∠ACP 的度数,则可求出答案;(2)连接BC ,由勾股定理可求出答案.【详解】解:(1)证明:连接OC ,如图1,∵OA =OC ,∠A =30°,∴∠A=∠ACO=30°,∵CA=CP,∴∠A=∠P=30°,∴∠ACP=180°﹣∠A﹣∠P=180°﹣30°﹣30°=120°,∴∠OCP=∠ACP﹣∠ACO=120°﹣30°=90°,∴OC⊥CP,∴CP是⊙O的切线;(2)解:如图2,连接BC,∵OA=OB=1,∴AB=2,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=30°,∴BC=12AB=1,∴AC22AB BC-3【点睛】本题考查了切线的判定,等腰三角形的性质,勾股定理,圆周角定理,直角三角形的性质,熟练掌握切线的判定是解题的关键.23.(1)见解析;(2)2 5【分析】(1)根据旋转的性质,作出点A、B、C的对应点,依次连接即可(2)结合图形,EG为外接圆的直径,用勾股定理求出EG,则可求R,根据三角形内切圆的性质,和切线长定理可求得r,进而可求得答案【详解】解(1)EFG∆如图所示,(2)EFG ∆的内切圆的半径为r ,2EF FG EG r +-∴=4,3EF FG ==,2222435EG EF FG =++=43512r +-∴== EFG ∆的外接圆的半径为R1522R EG ∴== 25r R ∴= 【点睛】本题考查了旋转图形的画法,勾股定理,三角形内心性质,切线长定理,解题关键是熟练掌握基本知识,是中考常考题.24.(1)//OD BC ,12CD BC =,证明见解析;(2)见解析 【分析】(1)根据垂径定理可得点D 是AC 的中点,则OD 是△ABC 的中位线,根据三角形中位线定理即可求证结论;(2)连接OC ,设OP 与O 交于点E ,根据全等三角形的判定证得OAP △≌OCP △,利用全等三角形对应角相等可得OCP OAP ∠=∠,继而根据切线的性质和判定定理即可求证结论.【详解】(1)猜想://OD BC ,12CD BC =证明:∵OD AC ⊥,∴AD =DC ,∵AB 是O 的直径,∴OA OB =,∴OD 是△ABC 的中位线,∴//OD BC ,12CD BC =. (2)证明:连接OC ,设OP 与O 交于点E .∵OD AC ⊥,OD 经过圆心O ,∴AE CE =,即∠AOE =∠COE ,在OAP △和OCP △中,∵OA OC =,OP OP =,∠AOE =∠COE ,∴OAP △≌OCP △,∴OCP OAP ∠=∠,∵PA 是O 的切线,∴90OAP ∠=︒.∴90OCP ∠=︒,即OC PC ⊥,∴PC 是O 的切线. 【点睛】本题考查切线的性质定理和判定定理,三角形中位线定理,涉及到全等三角形的判定和性质,解题的关键是熟练掌握切线的有关知识.25.(1)见解析;(2)256【分析】(1)根据垂径定理,分别作弦AB 和AC 的垂直平分线交点即为所求;(2)连接AO ,OB ,利用垂径定理和勾股定理可求出圆片的半径R .【详解】(1)如图所示:分别作弦AB 和AC 的垂直平分线,交于点O ,点O 即为所求的圆心(2)连接AO ,OB ,BC∵BC=8cm ,∴BD=4cm ,∵AB=5cm ,∴AD=22AB BD -=3cm ,设圆片的半径为R ,在Rt △BOD 中,OD=(R-3)cm ,∴R 2=42+(R-3)2,解得:R=256, ∴圆片的半径R 为256.【点睛】本题考查了垂径定理的推论,我们可以把垂径定理的题设和结论这样叙述:一条直线①过圆心,②垂直于弦,③平分弦,④平分优弧,⑤平分劣弧.在应用垂径定理解题时,只要具备上述5条中任意2条,则其他3条成立. 26.(1)5;(2)见解析;(3)262【分析】(1)根据垂等四边形的定义列式求解即可;(2)连结AC ,DB 并相交于点E ,证明AC BD ⊥,得到AOC △≌BOD ,证明AC BD =,即可得到结果;(3)方法一:连接DO ,AO ,根据已知条件求出AD ,DE ,再根据相似三角形的性质列式计算即可;方法二:通过已知条件证明Rt AOD 和Rt ABE △是等腰直角三角形,在根据条件计算即可;【详解】(1)由垂等四边形的定义得AC BD =,又∵AB AD ⊥,∴5cos AB DB ABD==∠, ∴5AC BD ==.(2)如图1,连结AC ,DB 并相交于点E ,∵OC OB ,OD OA ⊥,∴1452ACD AOD ∠=∠=︒,1452BDC BOC ∠=∠=︒, ∴90DEC ∠=︒,即AC BD ⊥,∵AO DO =,BO CO =,AOC DOB ∠=∠,∴AOC △≌BOD ,∴AC BD =.∵AC BD =,AC BD ⊥,∴四边形ABCD 是垂等四边形.(3)方法一:连接DO ,AO ,由(2)可得等腰Rt AOD ,∴24AD AO =-,作EF AD ⊥,易证得Rt DFE △∽Rt EFA △,∴2FE DF AF =⋅,设DF x =,4AF x =-,可得方程()43-=x x ,解得11x =(如图2),23x =(如图3),∴2DE =或23,作OG AB ⊥,∵12AOG AOB EDF ∠=∠=∠, ∴Rt DFE △∽Rt OGA ,∴AO AG DE EF=, ∴6AO EF AG DE ⋅==或2, ∴226AB AG ==(如图2)或22(如图3).方法二:∵AC BD =且AC BD ⊥,∴AC BD =,∴AD BC =,∴()1180452ABE BAE AEB ∠=∠=︒-∠=︒, ∴90AOD ∠=︒,△是等腰直角三角形,∴Rt AOD和Rt ABE∴AD==4DE=或AE=AE=2,由方法一得2∴AB=【点睛】本题主要考查了圆的综合应用,结合相似三角形的判定与性质、三角函数的应用和四边形综合知识的计算是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学下册第三单元测试卷
时间:45分钟 满分:120分
一、 选择题(每小题5分,共40分)
1.下列说法正确的是( )
A .经过三个点一定可以作圆
B .任意一个圆一定有内接三角形,并且只有一个内接三角形
C .任意一个三角形一定有一个外接圆,并且只有一个外接圆
D .三角形的外心到三角形各边的距离相等 2.下列说法中正确的是( )
A .长度相等的弧是等弧
B .弦是直径
C .过圆心的直线是直径
D .两个半径相等的圆是等圆 3.如图,MN 是⊙O 的直径,弦 AB ⊥MN ,垂足 为C ,则下列结论中错误的是( ) A .

B .AN =BN
C .AC =CB
D .OC =CM
4.在⊙O 中,AB 、CD 是两条相等的弦,则下 列说法中错误的是( )
A .A
B 、CD 所对的弧一定相等 B .AB 、CD 所对的圆心角一定相等
C .△AOB 和△CO
D 能完全重合 D .点O 到AB 、CD 的距离一定相等 5.如图,⊙O 的直径AB 与AC 的夹角为30°, 切线CD 与AB 的延长线交于点D ,若⊙O 的 半径为3,则CD 的长为( ) A .6 B .3 C .3 D .33
6.下列物体的三视图中,左视图与俯视图一定一致的是
A .圆锥
B .圆柱
C .长方体
D .球
7.已知圆锥的侧面展开图的面积是15πcm 2,母线长是5cm ,则圆锥的底面半径为( )
A .cm 2
3
B .3cm
C .4cm
D .6cm
8.如图,⊙O 的直径为AB ,周长为P 1,在⊙O 内 的n 个圆心在AB 上且依次相外切的等圆,且其 中左、右两侧的等圆分别与⊙O 内切于A 、B , 若这n 个等圆的周长之和为P 2,则P 1和P 2的大 小关系是( )
A .P 1< P 2
B .P 1= P 2
C .P 1> P 2
D .不能确定
二、 填空题(每小题5分,共25分)
9.⊙O 的直径为10,点P 的坐标为(4,-3),圆心O 的坐标为(0,0),则点P 在圆 .(填“内”、“外”、“上”)
10.半径为R 的圆中,有一弦恰好等于半径,则弦所对的圆心角为 . 11.如图,正方形ABCD 内接于⊙O ,点P 在AD 上,则∠BPC= .
12.⊙O 1与⊙O 2相交,⊙O 1的半径r 1为3㎝, ⊙O 2的半径r 2为5㎝,圆心距d 的取值范
围为 .
13.如图,正方形ABCD 的边长为1,点E 为 AB 的中点,以E 为圆心,1为半径作圆, 分别交AD 、BC 于M 、N 两点,与DC 切于点 P ,则图中阴影部分的面积是 。

三、解答题(共55分)
14.(本小题12分)如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD ,
求证:OC=OD
13题
11题
15.(本小题13分)上海市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰
和小丽沿湖边选取A ,B ,C 三根木柱,使得A ,B 之间的距离与A ,C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图所示.请你帮他们求出滴水湖的半径.
16.(本小题14分)如图,在平面直角坐标系中,⊙C 与y 轴相切,且C 点坐标为
(1,0),直线l 过点A (—1,0),与⊙C 相切于点D ,求直线l 的解析式。

17.(本小题16分)在Rt △ABC 中,BC =9, CA =12,∠ABC 的平分线BD 交AC 与点D , DE ⊥DB 交AB 于点E .
(1)设⊙O 是△BDE 的外接圆,求证:AC 是⊙O 的切线;
(2)设⊙O 交BC 于点F,连结EF,求EF
AC
的值.。

相关文档
最新文档