离散数学 期末考试卷 B卷

合集下载

离散数学期末考试卷

离散数学期末考试卷

离散数学期末考试卷一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 幂集2. 命题逻辑中,下列哪个命题不是合取命题?A. (p ∧ q)B. (p ∨ q)C. (p → q)D. (p ↔ q)3. 关系R在集合A上是自反的,这意味着:A. 对于所有a∈A,(a, a)∈RB. R是对称的C. R是传递的D. R是反对称的4. 在图论中,下列哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 矩阵5. 布尔代数中,下列哪个操作不是基本操作?A. 与(AND)B. 或(OR)C. 非(NOT)D. 模(MOD)6. 函数f: A → B,下列哪个条件不是函数的一一对应的必要条件?A. 对于A中不同的元素,它们的函数值不同B. 对于B中的每个元素,A中至少有一个元素映射到它C. 对于A中的每个元素,B中只有一个元素映射到它D. A和B的元素数量相同7. 在组合数学中,下列哪个是排列的定义?A. 从n个不同元素中取出r个元素的所有可能组合B. 从n个不同元素中取出r个元素的所有可能排列C. 从n个元素中取出r个元素的所有可能组合,不考虑顺序D. 从n个元素中取出r个元素的所有可能排列,考虑顺序8. 逻辑等价是指两个命题:A. 总是同时为真或同时为假B. 在所有可能的真值分配下都具有相同的真值C. 只有在某些真值分配下具有相同的真值D. 至少在一个真值分配下具有相同的真值9. 递归函数的特点是:A. 只能通过迭代来实现B. 必须有一个或多个基本情况C. 只能通过递归调用自身来实现D. 不能包含任何循环结构10. 在证明中,归纳法的基本步骤是:A. 基础步骤和归纳步骤B. 假设步骤和证明步骤C. 假设步骤和归纳步骤D. 基础步骤和假设步骤二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集包含元素个数为______。

安徽大学-离散数学期末试卷及答案

安徽大学-离散数学期末试卷及答案

安徽大学《离散数学》期末考试试卷(B 卷)(时间120分钟)开课院(系、部) 姓名 学号 .一、选择题(每小题2分,共20分)1.设522:=⨯P ,:Q 雪是黑的,842:=⨯R ,:S 太阳从东方升起,下列命题中真值为T 的是( ) A 、R Q P ∧→; B 、S P R ∧→;C 、R Q S ∧→;D 、)()(S Q R P ∧∨∧。

2.下列命题公式中,为重言式的是( )A 、)(R Q P ∨→;B 、)()(Q P R P →∧∨;C 、)()(R Q Q P ∨↔∨;D 、))()(())((R P Q P R Q P →→→→→→。

3.设x x L :)(是演员,x x J :)(是老师,x y x A :),(钦佩y ,命题“所有演员都钦佩某些老师”符号化为( )A 、)),()((y x A x L x →∀;B 、))),()(()((y x A y J y x L x ∧∃→∀;C 、)),()()((y x A y J x L y x ∧∧∃∀;D 、)),()()((y x A y J x L y x →∧∃∀。

4.设}{φ=A , ))((A B ρρ=,以下各小题中不正确的有( )A 、B ∈}}{{φ; B 、B ∈}}}{{,{φφ ;C 、B ⊆}}}{{,{φφ;D 、B ⊆}}}{,{},{{φφφ。

5.设φ=A , }}{,{φφ=B ,则A B -是( )。

A 、 }}{{φ; B 、}{φ ; C 、 }}{,{φφ; D 、 φ。

6.设},,{c b a A =,R ,S ,T 是集合)(A ρ上的二元关系。

其中,}|,{y x y x R ⊂><=,}|,{φ=><=y x y x S ,}|,{A y x y x T =><= 。

下列哪些命题为真?( ) I.R 是反自反、反对称和传递的 II.S 是反自反和对称的 III.T 是反自反和对称的A 、仅I ;B 、仅II ;C 、I 和II ;D 、全真。

离散数学期末试题及答案完整版

离散数学期末试题及答案完整版

离散数学期末试题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】326《离散数学》期末考试题(B )一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧⌝)(; (5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).三.1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v . 八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(B)参考答案一、1. {{a , b }, a , b , ?}, {{a , b }, a , b },16.2.92, 27.3.)()(x Q x P →, )()(y P y Q ⌝∧.4. 2, 4, 6, 12.5.4≤,奇数.二、1.22,2,m mn mn ., g , g . ,2,4.,不存在,不存在. 5.连通,3,10.三、1. }}{},,{},,{},{{c c b b a a B A =⋃,}}{{c B A =⋂,{)(=A P ?, {{a , b }}, {{c }}, {{a , b }, {c }}}.2.27933,3,3. 3.0)(↓∨q p .4.{-1,-2,-3,-6,1,2,3,6}. .四、证 对于任意A y x ∈,,若)()(y f x f =,则))(())((y f g x f g =,即))(())((y g f x g f =. 由于g f 是单射,因此y x =,于是f 是单射.例如取},,{},3,2,1(},,{γβα===C B b a A ,令)}2,(),1,{(b a f =,)},3(),,2(),,1{(ββα=g ,这时)},(),,{(βαb a g f = 是单射,而g 不是单射.五、解 1. R 的关系图R G 如下:2.(1)由于R b b ∉),(,所以R 不是自反的. (2)由于R a a ∈),(,所以R 不是反自反的.(3)因为R b d ∈),(,而R d b ∉),(,因此R 不是对称的. (4)因R a c c a ∈),(),,(,于是R 不是反对称的.(5)经计算知R c d a d c c b c a c c a b a a a R R ⊆=)},(),,(),,(),,(),,(),,(),,(),,{( ,进而R 是传递的.综上所述,所给R 是传递的.3.R 的关系矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111011100000111R M .六、解 命题公式))(())((p q r r q p A →→↔→→=的真值表如下:由表可知,))(())((p q r r q p A →→↔→→=的主析取范式为A 的主合取范式为)()(r q p r q p A ⌝∨⌝∨∧∨⌝∨⌝=.七、证 不妨设G 的阶数3≥n ,否则结论是显然的. 根据推论1知,63-≤n m . 若G 的任意节点v 的度数均有5)deg(≥v ,由握手定理知n v m v5)deg(2≥=∑.于是m n 52≤,进而652363-⋅≤-≤m n m . 因此30≥m ,与已知矛盾. 所以必存在节点v 使得4)deg(≤v .八、解 设满足要求的r 位数的个数有a r 种,r = 0,1,2,…,则排列计数生成函数65432121211219619431x x x x x x ++++++=,因而38!412194=⋅=a .。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分).证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D,(C∨D)→⌝E, ⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

离散B 期末考试试题及参考答案

离散B 期末考试试题及参考答案
青岛理工大学试卷纸共2页第2页
二(15分)
R={<1,1> , <1,2>,<2,1>, <2,2>,<2,3>,<3,1>, <3,3>}
S={<1,1> , <1,2>,<1,3>, <2,3>}
关系图略
关系R:自反; 关系S:反对称,传递
三(20分)(1)(pqq)
所以该式是矛盾式。
2)(P∨Q)R(P∨Q)∨R(P∧Q)∨R
9.整数集合上关于普通加法运算所构成的群〈Z,+〉中,元素(-2)-3=_____
10设A={a,b,c},A上二元关系R={< a, a > , < a, b>,< a, c>, < c, c>},
则自反闭包r(R)=。
11一个班有45个人,在第一次考试中有26人得优秀,在第二次考试中有21人得优秀,如果两次考试都得优秀的有14人,问两次考试都没有得优秀的有_____人?
(pqq)
(2)10分)
求下列公式的主合取范式及主析取范式
(P∨Q)R
四.(10分)设集合A={1, 2, 3, 4, 6, 8, 12},R是A上的整除关系,
(1)画出偏序集(A, R)的哈斯图;
(2)写出集合A的极大元,极小元,最大元,最小元。
青岛理工大学试卷纸共2页第1页
试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须用碳素笔楷书,以便誉印;5、考试前到指定地点领取试卷。
其中量词( x)的辖域是_____________。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。

2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____;=A _____;=B A Y __ _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ __________;=-)()(A B ρρ_____ ______。

二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。

(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ;求)(),(),(R t R s R r 的关系矩阵;并画出R ;)(),(),(R t R s R r 的关系图。

(10分)5. 试判断),(≤z 是否为格?说明理由。

(5分)(注:什么是格?Z 是整数;格:任两个元素;有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。

(10分)2. 设R 是实数集;b a b a f R R R f +=→⨯),(,:;ab b a g R R R g =→⨯),(,:。

求证:g f 和都是满射;但不是单射。

(10分)一;1; _ ∃x ∃y¬P(x)∨Q(y)2; {2} {4;5} {1;3;4;5}3; {{c};{a ;c};{b ;c};{a ;b ;c}} Φ_ 二;B D三;解:主合取方式:p ∧q ∨r ⇔(p ∨q ∨r)∧(p ∨¬q ∨r)∧(¬p ∨q ∨r)= ∏0.2.4主析取范式:p ∧q ∨r ⇔(p ∧q ∧r) ∨(p ∧q ∧¬r) ∨(¬p ∧q ∧r) ∨(¬p ∧¬q ∧r) ∨(p ∧¬q ∧r)= ∑1.3.5.6.7 四;1;证明:编号 公式 依据 (1) (¬B∨C )∧¬C 前提 (2) ¬B∨C ;¬C (1) (3) ¬B (2) (4) A →B (3) (5) ¬A (3)(4) (6) ¬(¬A∧D ) 前提 (7) A ∨¬D (6) (8)¬D (5)(6)2;证明:要证f 是满射;即∀y ∈R ;都存在(x1;x2)∈R ×R ;使f (x1;x2)=y ;而f (x1;x2)=x1+x2;可取x1=0;x2=y ;即证得;再证g 是满射;即∀y ∈R ;;都存在(x1;x2)∈R ×R ;使g (x1;x2)=y ;而g (x1;x2)=x1x2;可取x1=1;x2=y ;即证得;最后证f 不是单射;f (x1;x2)=f (x2;x1)取x1≠x2;即证得;同理:g (x1;x2)=g (x2;x1);取x1≠x2;即证得。

离散期末考试题及答案

离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。

东华大学《离散数学》2021-2022学年第一学期期末试卷B卷(B)

东华大学《离散数学》2021-2022学年第一学期期末试卷B卷(B)

东 华 大 学 试 卷2021-2022学年第 1 学期 课号课程名称 离散数学 (期末; 闭卷) 适用班级(或年级、专业)1、对任意两个集合B A 和,证明 ()()A B A B A =⋂⋃-2、构造下面命题推理的证明如果我学习,那么我数学不会不及格;如果我不热衷于玩游戏机,那么我将学习;但我数学不及格,因此我热衷与玩游戏机。

二 、计算(本大题共4小题,第1小题5分,第2、3、4小题各10分,总计35分) 1、画一个有一条欧拉回路和一条汉密顿回路的图。

2、设()(){}212,,,个体域为为,整除为<x x Q y x y x P ,求公式: ()()()()()x Q y x P y x →∃∀,的真值。

3、一棵树有2n 个结点度数为2 ,3n 个结点度数为3,… ,k n 个结点度数为k ,问它有几个度数为1的结点。

4、设集合{}A d c b a A ,,,,=上的关系 {}d c c b a b b a R ,,,,,,,=,求出它的自反闭包,对称闭包和传递闭包。

三、设{}15,9,5,3=A 上的整除关系{}212121,,,a a A a a a a R 整除∈=,R 是否为A 上的偏序关系?若是,则:1、画出R 的哈斯图;2、求A 的极大值和A 的极小值。

(本大题10分)四、用推导法求公式()()R Q P →→的主析取范式和主合取范式。

(本大题10分) 五、设自然数集N 上的关系R 定义为:{}I m n n N n n n n R m ∈=∈=,2/,,,212121,证明:R 是N 上的等价关系。

(本大题10分)六、设+R R 和分别是实数集和正实数集,+和×分别是普通加法和乘法,定义函数+→R R f :为r r f 10)(=,证明 ),(),(⨯++R R f 到是从的同构映射。

(本大题10分)七、设I 是整数集合,+是普通加法,试证明>+<,I 是一个群。

大连东软信息学院09~10学年第一学期期末试题 离散数学(B卷)答案

大连东软信息学院09~10学年第一学期期末试题 离散数学(B卷)答案

第 2 页( 共 2 页)
r: 我们到圆明园玩
s: 颐和园游人太多
前提:
,
,,
结论:
证明:○1
前提引入
○2
前提引入
○3
○1 ○2 假言推理
○4
前提引入
○5
前提引入
○6
○4 ○5 假言推理
○7
○3 ○6 析取三段论
…………(5 分) …………(10 分) …………(5 分) …………(10 分) …………(5 分)
…………(10 分)
题号
1
2
3
4
5
6
7
8
答案
C
D
A
B
D
A
B
C
三、判断题,正确的打“√”,错误的打“×”(共 5 小题,每小题 2 分,本题满分 10 分)
1. √
2. √ 3.× 4. × 5. √
四、解答题(共 3 小题,每小题 10 分,本题满分 30 分)
1. 解:(1) (2)
(3) 2. (1)
………(4 分) …………(8 分) …………(10 分) …………(4 分)
大连东软信息学院 09~10 学年第一学期期末试题
离散数学(B 卷)标准答案及评分标准
学生层次:计算机系 09 级 计算机科学与技术\软件工程\网络工程 本科
一、填空题 (共 8 小题,每小题 2 分,本题满分 16 分)
1.
2.
3.
4.
5.
6.
7.
8.

二、选择题 (共 8 小题,每小题 3 分,本题满分 24 分)
(2) 的关系矩阵为
的关系图如下:

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 乘法答案:D2. 命题逻辑中,以下哪个命题不是基本的逻辑连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 等于(=)答案:D3. 在图论中,一个图的度数之和等于边数的几倍?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是布尔代数的基本定理?A. 德摩根定律B. 布尔代数的分配律C. 布尔代数的结合律D. 所有选项都是答案:D5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合答案:C6. 在关系数据库中,以下哪个操作不是基本的数据库操作?A. 选择B. 投影C. 连接D. 排序答案:D7. 以下哪个是有限自动机的组成部分?A. 状态B. 转移C. 输入符号D. 所有选项都是答案:D8. 以下哪个命题逻辑表达式是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p → q) ∧ (q → p)D. (p → q) ∧ (¬p → ¬q)答案:D9. 以下哪个是归纳法证明的基本步骤?A. 基础步骤B. 归纳步骤C. 反证法D. 所有选项都是答案:B10. 以下哪个是图的遍历算法?A. 深度优先搜索(DFS)B. 广度优先搜索(BFS)C. Dijkstra算法D. 所有选项都是答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的德摩根定律。

答案:德摩根定律是命题逻辑中描述否定命题的两个重要定律。

它们分别是:- ¬(p ∧ q) ≡ ¬p ∨ ¬q- ¬(p ∨ q) ≡ ¬p ∧ ¬q2. 解释什么是图的连通分量,并给出一个例子。

答案:图的连通分量是指图中最大的连通子图。

大学《离散数学》期末考试试卷及答案(1)

大学《离散数学》期末考试试卷及答案(1)

大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。

A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。

A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。

A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。

2. 有一个集合A={1,2,3},则集合A的幂集为______。

3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。

三、解答题1. 请写出离散数学中常用的数学符号及其含义。

2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。

3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。

四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。

2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。

3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。

参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。

- ∩:交,表示集合的交集操作。

- ∖:差,表示减去一个集合中的元素。

- ⊆:包含,表示一个集合包含于另一个集合。

- =:相等,表示两个集合具有相同的元素。

2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。

华东师范大学06-07学年离散数学试卷B答案

华东师范大学06-07学年离散数学试卷B答案

m为奇数 m 2 或 ,有 Euler Path。 n为奇数 n 2
十二、 Proof: 假设每个连通分支含有 ri 个区域, ei 条边和 vi 个顶点 (i 1, 2,..., k ) ,那么,根据 Euler 定 理,有 ri ei vi 2 ,
ri ei vi 2k
i 1 k i 1 i 1
k
k
k
(r 1) 1 k 1 e v 2k ,
i 1 i
即 r k 1 e v 2k , 那么: r e v k 1
C (100,
八、
100 k ) 2
n2
(a) an an 1 an 2 2 (b) a0 0, a1 0
(n 1)
九、 Solution: a) 相应的齐次递推关系的特征方程为 r 2 , 所以相应的齐次递推关系的通解为: an
( p)
1n ,又 1 不是相应的齐次 1 2n ,而 2n 2 2n 2
[ a ] [b] . It follows that [ a ] [b] since [ a ] is nonempty.
Next, we will show that (3) implies (1). Suppose that [ a ] [b] . Then there is an element c with c [ a ] and c [b] . In other words, aRc and bRc . By the symmetric property, cRb . Then by transitivity, since aRc and cRb , we have

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,表示两个集合A和B的并集的符号是:A. ∩B. ∪C. ⊂D. ⊆2. 以下哪个命题逻辑表达式是真命题,当P为真,Q为假时?A. ¬PB. P ∧ QC. P ∨ QD. P → Q3. 如果函数f: A → B是一个单射,那么它不能是:A. 满射B. 双射C. 恒等函数D. 逆函数4. 在图论中,一个图G是连通的,当且仅当:A. G是无向图B. G是简单图C. G是完全图D. 对于任意两个顶点,都存在一条路径5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合二、简答题(每题10分,共30分)6. 解释什么是二元关系,并给出一个例子。

7. 描述什么是有向图和无向图的区别。

8. 什么是等价关系,它有哪些性质?三、计算题(每题15分,共30分)9. 给定集合A = {1, 2, 3, 4},B = {a, b, c},定义函数f: A → B,其中f(1) = a, f(2) = b, f(3) = c, f(4) = a。

判断f是否是单射、满射或双射,并给出理由。

10. 计算以下命题逻辑表达式的真值表:(P ∧ Q) → (¬P ∨ R),其中P、Q、R是命题变量。

四、证明题(每题20分,共20分)11. 证明:如果一个图G是连通的,那么它的任意子图也是连通的。

答案一、选择题1. B2. C3. A4. D5. D二、简答题6. 二元关系是定义在两个集合上的一个关系,它将第一个集合中的每个元素与第二个集合中的元素相关联。

例如,如果A是人名的集合,B是年龄的集合,关系R可以是“比...年长”,那么(Alice, 30) ∈ R表示Alice比30岁年长。

7. 有向图由顶点和有向边组成,每条边都有一个方向,表示从一个顶点指向另一个顶点。

无向图由顶点和无向边组成,边没有方向。

东北大学离散数学考试试卷( B 卷)

东北大学离散数学考试试卷( B 卷)

东北大学考试试卷(B卷)2011—2012 学年第 1 学期课程名称: 离散数学总分 一 二 三 四 五 六 七 八一.将下面命题符号化(8分)1.如果天气好,我将去游乐场,否则我将呆在家中。

(P→Q)∧(¬P→R)2.只有计算机专业的学生和非大一学生才可以访问校园网。

R→(P∨Q)3.并非所有学习好的大学生都想成为科学家。

¬∀x((A(x) ∧B(x)) →C(x))4.尽管有人聪明,但未必一切人都聪明。

∃x(A(x) ∧B(x)) ∧¬∀x((A(x) →B(x))二.(10分) 填空(每空1分)1.(3分)A与B是全集E的子集,给定集合X={P,Q,R,S,T,U,V,W,Y,Z},其中的元素都表示命题,如下所示:P: A-B=A Q:A∩B=B R:A⊆B S: A⊆∼B T: B⊆AU: ∼B⊆∼A V:A∩B=Φ W:A∪B=B Y: ∼A⊆∼B Z: B⊆∼A又令R是X上的命题等价关系,则商集X/R=({{P,S,V,Z},{R,U,W},{Q,T,Y}} )2.(每空1分)令R和S都是人类上的关系,且R={<x,y>|x是y的父亲} S={<x,y>|x是y的母亲} 则S o R表示( 祖母和孙子 )关系; R o S C表示( 夫妻 )关系。

3.(每空1分) 设f是从A到B的函数,g是从B到A的函数,如果f go是双射的,则f是__满___射的,g是__入___射的。

4.(每空1分)A,B是有限集合, P(A)表示A的幂集,已知|A|=3,|P(B)|=64,|P(A∪B)|=256, 则|B|=( 6 ), |A-B|=( 2 ), |A⊕B|=( 7 )。

三.(8分)写出命题公式P→((R→Q)∧(¬R→¬Q)) 的主析取范式。

解:P→((R→Q)∧(¬R→¬Q))⇔¬P∨((¬R∨Q)∧(R∨¬Q))⇔(¬P∨¬R∨Q) ∧(¬P∨ R∨¬Q)即命题公式的主合取范式中的大项为M6和M2所以其主析取范式中的小项有m0,m3,m4,m5,m6,m7即主析取范式为:(P∧R∧Q)∨( P∧¬R∧¬Q) ∨(¬P∧R∧Q) ∨(¬P∧R∧¬Q) ∨(¬P∧¬R∧Q) ∨(¬P∧¬R∧¬Q) 四.(15分)已知R1、R2是集合A上的等价关系,问R1∪R2、R1∩R2、R1-R2、r((A×A)-R1)中哪些是A上的等价关系?如果不是说明理由,或举反例。

(完整word版)《离散数学》期末试题及答案

(完整word版)《离散数学》期末试题及答案

326《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧⌝)(; (5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).三.1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.四、(10分)设B A f →:且C B g →:,若g f ο是单射,证明f 是单射,并举例说明g不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v . 八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(B)参考答案一、1. {{a , b }, a , b , ∅}, {{a , b }, a , b },16.2.92, 27.3.)()(x Q x P →, )()(y P y Q ⌝∧.4. 2, 4, 6, 12.5.4≤,奇数. 二、1.22,2,m mn mn .2.g , g , g .3.1,2,4.4.8,不存在,不存在.5.连通,3,10.三、1. }}{},,{},,{},{{c c b b a a B A =⋃,}}{{c B A =⋂,{)(=A P ∅, {{a , b }}, {{c }}, {{a , b }, {c }}}.2.27933,3,3. 3.0)(↓∨q p .4.{-1,-2,-3,-6,1,2,3,6}.5.9.四、证 对于任意A y x ∈,,若)()(y f x f =,则))(())((y f g x f g =,即))(())((y g f x g f οο=. 由于g f ο是单射,因此y x =,于是f 是单射.例如取},,{},3,2,1(},,{γβα===C B b a A ,令)}2,(),1,{(b a f =,)},3(),,2(),,1{(ββα=g ,这时)},(),,{(βαb a g f =ο是单射,而g 不是单射.五、解 1. R 的关系图R G 如下:2.(1)由于R b b ∉),(,所以R 不是自反的. (2)由于R a a ∈),(,所以R 不是反自反的.(3)因为R b d ∈),(,而R d b ∉),(,因此R 不是对称的. (4)因R a c c a ∈),(),,(,于是R 不是反对称的.(5)经计算知R c d a d c c b c a c c a b a a a R R ⊆=)},(),,(),,(),,(),,(),,(),,(),,{(ο,进而R 是传递的.综上所述,所给R 是传递的.3.R 的关系矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111011100000111R M .六、解 命题公式))(())((p q r r q p A →→↔→→=的真值表如下:由表可知,))(())((p q r r q p A →→↔→→=的主析取范式为).()()()()()(r q p r q p r q p r q p r q p r q p A ⌝∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧∨∧⌝∧∨∧∧=A 的主合取范式为)()(r q p r q p A ⌝∨⌝∨∧∨⌝∨⌝=.七、证 不妨设G 的阶数3≥n ,否则结论是显然的. 根据推论1知,63-≤n m . 若G 的任意节点v 的度数均有5)deg(≥v ,由握手定理知n v m v5)deg(2≥=∑.于是m n 52≤,进而652363-⋅≤-≤m n m . 因此30≥m ,与已知矛盾. 所以必存在节点v 使得4)deg(≤v .八、解 设满足要求的r 位数的个数有a r 种,r = 0,1,2,…,则排列计数生成函数()x x x x x x x E +⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++=1!21!3!21)(23265432121211219619431x x x x x x ++++++=, 因而38!412194=⋅=a .。

离散数学期末考试试题(有几套带答案)

离散数学期末考试试题(有几套带答案)

离散试卷及答案离散数学试题(A 卷及答案)一、证明题(10分) 1)(P ∧(Q ∧R))∨(Q ∧R)∨(P ∧R)R证明: 左端(P ∧Q ∧R)∨((Q ∨P)∧R)((P ∧Q)∧R))∨((Q ∨P)∧R)((P ∨Q)∧R)∨((Q ∨P)∧R)((P ∨Q)∨(Q ∨P))∧R ((P ∨Q)∨(P ∨Q))∧RT ∧R(置换)R2)x(A(x)B(x))xA(x)xB(x) 证明 :x(A(x)B(x))x(A(x)∨B(x))xA(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)二、求命题公式(P ∨(Q ∧R))(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))(P ∧Q ∧R)(P ∨(Q ∧R))∨(P ∧Q ∧R))(P ∧(Q ∨R))∨(P ∧Q ∧R) (P ∧Q)∨(P ∧R))∨(P ∧Q ∧R) (P ∧Q ∧R)∨(P ∧Q ∧R)∨(P ∧Q ∧R))∨(P ∧Q ∧R))∨(P ∧Q ∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6三、推理证明题(10分) 1)C ∨D, (C ∨D) E, E (A ∧B), (A ∧B)(R ∨S)R ∨S证明:(1) (C ∨D) E(2) E (A ∧B) (3) (C ∨D)(A ∧B)(4) (A ∧B)(R ∨S)(5) (C ∨D)(R ∨S)(6) C ∨D (7) R ∨S 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x)(2)P(a) (3)x(P(x)Q(y)∧R(x)) (4)P(a)Q(y)∧R(a)(5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)x(P(x)∧R(x))(11)Q(y)∧x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。

安徽大学 离散数学 期末试卷06-07(2)

安徽大学 离散数学 期末试卷06-07(2)

安徽大学2006—2007学年第 二 学期 《 离散数学 》考试试卷(B 卷)(时间120分钟)院/系 专业 姓名 学号题 号 一 二 三 四 五 六 七 总分得分一、选择题(每小题2分,共20分)1.在自然数集合N 上,下列运算中可结合的是( ) A. b a b a -=*; B. ),max(*b a b a =; C. b a b a 2*+=; D. b a b a -=*。

2.R 为实数集,运算*定义为:R b a ∈,,||*b a b a ⋅=,则代数系统<R,*>是( ) A. 半群; B. 独异点; C. 群; D. 阿贝尔群。

3.下列代数系统中,哪个是独异点( )A. <R,ο>,其中22b a b a +=ο;B. <R,ο>,其中333b a b a +=ο;C. <I,max>,其中max 为求两数中较大数;D. <I +,GCD>,其中GCD 为最大公约数。

(R :实数集,I :整数集,I +:正整数集)4.下列集合对于指定运算,构成群的为( )A. 非负整数集关于数的加法运算;B. 整数集关于数的减法运算;C. 正实数关于数的除法运算;D. 一元实系数多项式集合关于多项式加法。

5.下面哪个集合关于指定运算构成整环( ) A. },|2{3Z b a b a ∈+,关于数的加法和乘法; B. {n 阶实数矩阵},关于矩阵的加法和乘法; C. },|2{Z b a b a ∈+,关于数的加法和乘法;D. },|{Z b a a b b a ∈⎪⎪⎭⎫ ⎝⎛,关于矩阵的加法和乘法。

6.下面给出了一些偏序集的哈斯图,其中哪个不是格( )A.;B.;C.;D.。

7. 下面哈斯图(图1-7)表示的格中哪个元素无补元( )? A. a ; B. c ; C. e ; D. f 。

得分图1-78.给定平面图G如图1-8所示,则G中面的个数及面的总次数分别为()A. 4,20 ;B. 4,22 ;C. 5,22 ;D. 5,24 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东莞理工学院城市学院(本科)试卷(B卷)
2013-2014学年第一学期
开课单位:计算机与信息科学系,考试形式:闭卷,允许带入场科目:离散数学,班级:软工本2012-1、2、3姓名:学号:题序一二三四总分
得分
评卷人
一、单项选择题(每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。

1.下列语句中不是命题的只有()
A.鸡毛也能飞上天?B.或重于泰山,或轻于鸿毛。

C.不经一事,不长一智。

D.牙好,胃口就好。

2.设P:他聪明,Q:他用功,命题“他虽聪明但不用功”的符号化正确的是()A.⌝P∧Q B.P∧⌝Q C.P→⌝Q D.P∨⌝Q 3.下列命题公式不是永真式的是()
A.Q→(P∨Q)B.(P∧Q)→P
C.⌝(P∧⌝Q)∧(⌝P∨Q)D.(P→Q)↔(⌝P∨Q)4.给定命题公式:(⌝P∨Q)∧(P→R),与之逻辑等价的是()
A.P→(⌝Q∧R)B.P→(Q∨R)
C.⌝P→(Q∧R)D.P→(Q∧R)
5.设A(x):x是人,B(x):x犯错误,命题“没有不犯错误的人”符号化为()A.∀x(A(x))∧B(x)B.⌝∃x(A(x)→⌝B(x))
C.⌝∃x(A(x)∧B(X))D.⌝∃x(A(x)∧⌝B(x))
6.命题“所有的马都比某些牛跑得快”的符号化公式为()
假设:H(x):x是马,C(y):y是牛,F(x,y):x跑得比y快。

A .(∀x)(H (x )∧(∃y)((C (y )∧F(x,,y)))
B .(∀x)(H (x )→(∃y)((
C (y )→F(x,,y)))C .(∀x)(H (x )→(∃y)((C (y )∧F(x,,y)))
D .(∃y)(∀x)(H (x )→((C (y )∧F(x,,y)))
7.下列公式是前束范式的是()
A .))y (G )x ,z (F )(y )(x (∨⌝∀∀
B .)z (H ))y (G )y ()x (F )x ((∧∀∨∃⌝
C .)
y (G )y ()y ,x (F )x (∀→∃D .))
y ,x (G )y ()y ,x (F )(x (∀→∀8.下面的图是A={1,2,3}上关系R 的关系图G(R),从G(R)可判断R 所具有的性质是(
)
A.自反,对称,传递
B.反自反,非对称
C.反自反,对称,非传递
D.反自反,对称,反对称,传递
9.设集合A={1,2,3},下列关系R 中不是等价关系的是(

A.R={(1,1),(2,2),(3,3)}
B.R={(1,1),(2,2),(3,3),(3,2),(2,3)}
C.R={(1,1),(2,2),(3,3),(1,2)}
D.R={(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}
10.下面关于关系R 的传递闭包t (R)的描述最确切的是(

A .t(R)是包含R 的二元关系
B .t(R)是包含R 的最小传递关系
C .t(R)是包含R 的一个传递关系
D .t(R)是任何包含R 的传递关系
二、填空题(每空2分,共20分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

1.设全集{}10,9,8,7,6,5,4,3,2,1=E 的子集为{}10,8,6,4,2=A ,{}9,7,5,3,1=B ,
=
⊕B A ,=
⋂B A ~~2.设集合{}1,2,3X =,设关系R 为X 上的小于关系,则R=
3.设{},,A a b c =上的二元关系R ={<a ,a >,<a ,b >,<a ,c >,<c ,c >},则关系R 具备
性质。

4.设{}{1,2,3},,,{,,},:,:A B a b C x y z f A B g A C ===→→的函数,且有
{}1,,2,,3,,f a b b =<><><>{}1,,2,,3,,g x y z =<><><>则f 是
函数,
1。

2。

3。

g 是
函数。

5.一个无向图表示为G=<V,E>,其中V 是结点的集合,E 是的集合。

6.一个连通无向图G 是欧拉图,当且仅当G 中所有结点的度数为。

7.公式)()(s r q p ∨→∧的真值表中共有
种真值指派(赋值组合)。

8.给定命题公式:P ∨(⌝P →(Q ∨(⌝Q →R ))则它的成假指派(成假赋值)为。

三、计算题(每小题8分,共48分)要求写出详细计算过程,按步给分。

1、求命题公式(P →(Q ∨R))→⌝Q 的主析取范式和主合取范式。

2.设集合{}1,2,3,4A =,R 和S 均为A 上的二元关系,且{}1,2,3,4,
R =<><>{}2,3,4,1S =<><>,分别求关系的合成R ○S ,S ○R ,R ○S ○R ,S ○R ○S
3.设{},,,A a b c d =上的二元关系R ={<a ,b >,<b ,d>,<a ,c >,<c ,c >},用集合形式求R 的自反闭包、对称闭包和传递闭包,并用关系图的形式表示三个闭包。

4.设赋权无向连通图G 如下,求G 的最小生成树,并求该最小生成树的权总和。

V 1
V 2
V 3
V 4
V 5V 6
5
1553
3
6
4
2
6
5.用Huffman 算法画出树叶权为3,5,8,10,12的最优二叉树(要求画出最优树的形成过程),计算出该最优树的权,并给出哈夫曼编码。

6.给定一棵树(如图),试分别用前序周游算法、中序周游算法和后序周游算法写出运算表达式。

+
*
a
*/
b +c
d
e
f
四、证明题(共12分)
用命题逻辑推理方法证明下面推理的有效性:
如果我学习,那么我离散数学不会不及格。

如果我不热衷于玩游戏,那么我将学习。

但是我离散数学不及格。

因此,我热衷于玩游戏。

相关文档
最新文档