第13章 轴对称复习教案
轴对称章节复习教案
轴对称复习教案一.复习目标1、重新认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。
2、按照要求作出简单图形经过一次或两次轴对称后的图形,能应用轴对称进行简单的图案设计。
3、理解线段的垂直平分线的概念并掌握其性质,理解等腰三角形、等边三角形的有关概念,并掌握它们的性质及判定方法。
二.复习重点复习轴对称的性质、等腰三角形的性质和判定,构建本章知识结构三.教学难点灵活运用轴对称性质简化解决问题的途径四.教学过程1.温故而知新先请同学们打开课本,看看轴对称这章我们都学了那些知识(一)基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做__________,这条直线就叫做__________。
折叠后重合的点是对应点,叫做__________。
2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线__________,这条直线叫做_________,折叠后重合的点是对应点,叫做_________。
(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线经过线段_______点并且_______这条线段的直线,叫做这条线段的垂直平分线。
4.等腰三角形有_______的三角形,叫做等腰三角形。
相等的两条边叫做_______,另一条边叫做_______,两腰所夹的角叫做_______,底边与腰的夹角叫做_______。
5.等边三角形三条边都_______的三角形叫做等边三角形。
例题:下面几种图形,一定是轴对称图形的是()(二)主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_______。
或者说轴对称图形的对称轴,是任何一对对应点所连线段的_______。
2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离_______。
3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,)。
第十三章轴对称教案
第十三章轴对称教案教案标题:第十三章轴对称教案教学目标:1. 理解轴对称的概念,并能够识别轴对称图形。
2. 掌握绘制轴对称图形的方法。
3. 运用轴对称的概念解决问题。
教学重点:1. 轴对称的概念及特点。
2. 轴对称图形的绘制方法。
教学准备:1. 教师准备:教学课件、黑板、彩色粉笔、绘图纸、铅笔、直尺、剪刀等。
2. 学生准备:学习用书、绘图工具等。
教学过程:步骤一:导入(5分钟)1. 利用课件或黑板上展示一些轴对称图形,引发学生对轴对称的认识和兴趣。
2. 提问学生:你们能否找出这些图形中的轴对称线?轴对称线有什么特点?步骤二:讲解轴对称的概念及特点(10分钟)1. 通过示意图和实例,向学生解释轴对称的定义和特点。
2. 强调轴对称的概念是指一个图形可以通过某条线对折后,两边完全重合。
步骤三:绘制轴对称图形(15分钟)1. 以具体的图形为例,向学生展示绘制轴对称图形的方法。
2. 指导学生使用直尺和铅笔,在绘图纸上练习绘制轴对称图形。
3. 强调绘制时要保持对称性,即对折后两边要完全重合。
步骤四:巩固练习(15分钟)1. 分发练习册或工作纸,让学生独立完成一些绘制轴对称图形的练习题。
2. 监督学生的练习过程,及时纠正错误并给予指导。
步骤五:应用拓展(10分钟)1. 提供一些实际问题,让学生运用轴对称的概念解决问题。
2. 鼓励学生思考并提供合理的解决方法。
步骤六:总结与评价(5分钟)1. 回顾本节课所学内容,强调轴对称的重要性和应用。
2. 对学生的表现进行评价,并鼓励他们在日常生活中多观察和运用轴对称的概念。
教学延伸:1. 鼓励学生在课后继续练习绘制轴对称图形,提高技巧和速度。
2. 推荐相关绘画或几何学习资源,帮助学生进一步了解轴对称的应用。
教学反思:本节课通过引导学生认识轴对称的概念,讲解绘制轴对称图形的方法,并应用解决问题,帮助学生掌握了轴对称的基本知识和技能。
在教学过程中,教师应注意引导学生思考和互动,激发学生的学习兴趣和积极性。
13章复习教案
第十三章轴对称复习教案一. 轴对称图形•1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做_对称点_____.3. 轴对称的性质:①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二. 用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.练习例:已知△ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC关于y轴对称的图形。
思考:如图,分别作出点P,M,N关于直线x=1的对称点, 你能发现它们坐标之间分别有什么关系吗?如图,分别作出△ABC关于直线x=1(记为m) 和直线y=-1(记为n)对称的图形,它们的对应点的坐标之间分别有什么关系?•如图:类似: 若两点(x1,y1)、(x2,y2)关于直线y=n对称,则;4.利用轴对称变换作图:如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短?1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)•.作法:1.将点B沿垂直与河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。
证明:由平移的性质,得BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC.CD.DB.CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE中,∵AC+CE>AE,∴AC+CE+MN>AE+MN,即AC+CD+DB >AM+MN+BN所以桥的位置建在CD处,AB两地的路程最短。
《轴对称》复习教案
教师小结:
1、关于轴对称的点,线段,图形的性质与做法。
2、角平分线的性质。
3、垂直平分线的性质。
4、等腰三角形的性质与应用。
5、等边三角形的性质与应用。
板书设计:
第13章轴对称复习
1、关于轴对称的点,线段,图形的性质与做法。
2、角平分线的性质。
3、垂直平分线的性质。
4、等腰三角形的性质与应用。
5、等边三角形的性质与应用。
教学反思:
修订、增减
教学重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用
教学难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用
教学方法与手段:由特殊到一般的思想、分类讨论的思想
教学过程:
一.知识梳理形成系统
做轴对称图形的对称轴
轴对称做轴对称图形
用坐标表示轴对称
等腰三角形
性质和判定
等边三角形
课题:
《轴对称复习教案》
三维
目标
知识与技能
1.理解轴对称与轴对称图形的概念,掌握轴对称的性质
2.掌握线段的垂直性质并能够简单应用
4.理解等边三角形的性质并能够简单应用
过程与方法
初步体会从对称的角度欣赏设计简单的轴对称图案
情感态度与价值观
数形结合的思想及方程的思想都应引起广泛的重视和应用
第十三章 轴对称复习教案教案模板
板
书
设
计
教学
后记
总结:提问学生
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
4、知识点四:等腰三角形
(1)定义:
(2)性质(3条):
(3)判定(2条):
均采取提问学生方式,如果学生回答困难,师作引导。课件展示。
课
堂
小
结
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等
小雅中学教师教案
2015年10月28日第周第3节八(4)班数学科教师:杨远航
课题
第十三章轴对称复习教案
课型
新课
第1课时
教
学
目
标
知识与技能:理解轴对称与轴对称图形的概念,掌握轴对称的性质
过程与方法:结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣
情感态度与价值观:能够按要求做出简单的平面图形的轴对称图形,初步体会从对称的角度欣赏和设计简单的轴对称图案
法制渗透
无
重
点
掌握线段的垂直平分线、等腰三角形的性质及应用
难点
轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用
教法
教具
学具
教
学
过
程
教师活动
学生活动
教学过程:
一、课件出示本章结构图
二、知识点复习
1、知识点一:后给出概念(课件展示)
(2)成轴对称
师提问学生,采用个别提问,而后给出概念(课件展示)
第十三章轴对称复习课教案、学案、
课题:第十三章轴对称复习课教案教学目标:1.通过题组训练,深化对轴对称性质的理解;2.经历典例的思考与反思的过程,体会研究轴对称图形的思想方法,提升解题的应变能力,逐步形成用轴对称的视角识别图形与构造图形的基本解题策略.重点、难点:重点:逐步形成用轴对称的视角识别图形与构造图形的基本解题意识..难点:掌握用轴对称的眼光识别图形与构造图形的基本策略.教学方法:讲授式,启发式和探究式的综合教学方法教具准备:多媒体、课件、三角板教学环节教师活动学生活动设计意图一、小题夯基础7~10分钟出示练习题,并指导学生完成相关知识的回顾:1.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是().A.150°B.300°C.210°D.330°.师提问:本题你用到了轴对称图形的什么知识?2.已知,图1是轴对称图形,AF所在的直线为对称轴,连接CD,BE,求证:CD=BE小归纳:这两道小题的共同的特点是什么?学生:快速在学案纸上完成练习学生:做题并用手势展示答案完成解题后的反思,进行相关知识的回顾两小题的共性为“已知轴对称通过小题带动学生对知识的复习,使复习更具靶向性.检测题是对本节课所必需的预备性的、基础性的和相关性的知识与技能的检验.作用在于判断具体学情,以便抓缺漏,及时补.使全体学生都进入新的最佳准备状态.采用“手势展示....答案..”的方式,关注学生课堂学习的参与度和学习效果,体现全.员性...2小题在1题选择题的基础上变成证明题,直接用轴对称图形性CFEDBACABDFE图1归纳提升指导复习二、小题悟方法7分钟轴对称图形全等线段等角等数量关系2.在2题中连接DB,CE,它们与AF的位置关系是什么?请说明理由轴对称图形全等线段等角等数量关系垂直平行位置关系几何图形先判断第二组题1.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的任意两点,若△ABC的面积为12cm2,则图中阴影部分的面积是___________ cm2解题后反思:本题求面积和的方法是什么?2.如图,已知方格纸中是4个相同的正方形,则∠1+∠2 =____________解题后反思:本题两角和的方法是什么?师生共析:1本小题的共性是已知虽然没有说轴对称图形,但依据所给条件及图形特征可以判断是轴对称图形,然后利用对称性“一移二拼”化零为整2.见题三问提炼解题策略:拿到一道题时,先问自己三个问题1.此图是轴对称图形吗?图形,利用性质解题”学生完成解题后,进行相关知识的回顾学生:在学案纸上独立思考完成题目的解答学生交流解题思路,可能一题多解学生加深认识:利用对称性解题可以事半功倍,所以今后解题时见到图形必须先判..断.其对称性,充分利用对称性质解题培养学生建立“进行知识整合”的意识第二组题目——没有告诉是轴对称图形,但识别出了两个基本的轴对称图形,等腰三角形,角;并利用性质解题学生初步感受“解题时见到图形应关注..其轴对称性的重要..整体思想是初中教学的难点,本组通过小题学方法为今后学习搭台阶,自然的突破难点..12.三、典例学经验20分钟例题1用轴对称思考,增加解题的靶向性四、小结3分钟2.它的对称轴是谁?3.此题能否运用对称性解题?例1.如图,已知D为等边三角形ABC内一点,且DB=DA,BP=AB,∠DBP=∠DBC,求∠BPD的度数4分钟后,此题没有思路的学生请按照下面的提示思考:(1)如图,已知D为等边三角形ABC内一点,且∠DBP=∠DBC, ,BP=AB,DB=DA①寻找轴对称图形.......,②求∠BPD的度数7分钟后,找到轴对称图形也没能找到解题思路的学生继续按下面的提示思考:(2)如图,已知D为等边三角形ABC内一点,且∠DBP=∠DBC ,BP=AB,DB=DA,①寻找轴对称图形,②画出对称轴,③.......求∠BPD的度数10分钟后,找到轴对称图形也没能找到解题思路的学生继续按下面的提示思考:(3)如图,已知D为等边三角形ABC内一点,且∠DBP=∠DBC, BP=AB,DB=DA,①寻找轴对称图形,②画出对称轴,③.......每个轴对称图形能帮你实现什么?④求∠BPD的度数2. 利用拆分图的方式讲解,并用几何画板强调:当点D位置发生变化,但只要满足的条件不变,∠P的度数就不变,因为这个图中的轴对称性不变学生:独立思考完成题目的解答学生在黑板板演过程学生:体会用轴对称思考,用全等表达引导学生较复杂图进行拆图,提炼基本图.采用分层教学4、7、10分钟后,此题没有思路的学生按照分层提示思考此题PAB CD五、作业师:现在,大家回顾一下本节课的学习过程,想一想,本节课都有哪些收获?你认为本节课的重点是什么?你还有哪些疑点?引导学生分组交流课堂心得,或整理笔记我的收获:课上检测题及课后作业1.(贵阳中考)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.2.如图:△ABC中,∠BAC=54°,∠BAC的角平分线交BC于D,若AB-AC=CD,则∠ABC的度数为________CDBA3.如图,在△ABC中,∠BAC=54°,∠BAC的外角平分线交直线BC于D,若AB+AC=BD,求∠ABC的度数。
轴对称复习教案
轴对称复习教案教案标题:轴对称复习教案教学目标:1. 理解轴对称的概念,并能够识别轴对称图形。
2. 能够在平面上绘制轴对称图形。
3. 掌握轴对称图形的特征和性质。
教学准备:1. 教师准备:白板、彩色粉笔/白板笔、轴对称图形的图片、绘图工具(尺子、铅笔、橡皮擦等)。
2. 学生准备:绘图工具。
教学过程:引入(5分钟):1. 教师向学生介绍轴对称的概念,简单解释轴对称的含义,并给出一些日常生活中的例子,如人的面部、动物的身体等。
2. 教师展示一些轴对称图形的图片,引导学生观察和发现其中的共同特征。
探究(15分钟):1. 教师让学生自由绘制一个简单的图形,并要求学生找出这个图形的轴对称线。
2. 学生们互相交换绘制的图形,找出对方图形的轴对称线,并给出理由。
3. 教师引导学生总结轴对称图形的特征和性质,如轴对称图形的两侧镜像对称、轴对称图形的轴对称线是图形的中垂线等。
拓展(15分钟):1. 教师出示一些复杂的轴对称图形,要求学生找出其轴对称线,并给出理由。
2. 学生们自由绘制一个轴对称图形,并将其交给其他同学找出轴对称线。
3. 学生们互相交流和讨论自己绘制的轴对称图形,分享找到的轴对称线。
巩固(10分钟):1. 教师出示一些轴对称图形的问题,要求学生回答,如“这个图形有几条轴对称线?”、“这个图形的轴对称线在哪里?”等。
2. 教师提供一些绘图题目,要求学生按照给定的要求绘制轴对称图形。
总结(5分钟):1. 教师总结本节课的重点内容,强调轴对称图形的特征和性质。
2. 学生们回顾本节课所学内容,提出问题和疑惑。
作业:布置一道与轴对称相关的练习题,要求学生在家完成,并在下节课上进行讨论和解答。
教学反思:本节课通过引入、探究、拓展、巩固和总结等环节,帮助学生理解轴对称的概念和性质,培养学生观察和分析问题的能力。
同时,通过绘制轴对称图形的实际操作,提高学生的动手能力和创造力。
在教学过程中,教师应注重学生的参与和互动,引导学生主动思考和发现问题,激发学生的学习兴趣。
初中轴对称总复习教案
初中轴对称总复习教案教学目标:1. 巩固轴对称图形的概念,理解轴对称图形的性质和判定方法。
2. 能够运用轴对称图形的性质解决实际问题,提高学生的应用能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 轴对称图形的概念和性质。
2. 轴对称图形的判定方法。
教学难点:1. 轴对称图形的性质在实际问题中的应用。
2. 轴对称图案的设计。
教学准备:1. 教学课件或黑板。
2. 相关轴对称图形的图片或实物。
教学过程:一、导入(5分钟)1. 引导学生回顾轴对称图形的定义,即一个图形沿一条直线对折,对折后的两部分能够完全重合,这样的图形叫做轴对称图形。
2. 提问:我们已经学习了轴对称图形的哪些性质和判定方法?二、知识梳理(15分钟)1. 轴对称图形的性质:a. 轴对称图形的对称轴是图形的中心线,将图形分为两个完全相同的部分。
b. 轴对称图形的对称点关于对称轴对称,即对称点到对称轴的距离相等。
c. 轴对称图形的对称线段垂直平分线段的性质。
2. 轴对称图形的判定方法:a. 判断一个图形是否为轴对称图形,可以找出图形的对称点,连结对称点,画对称点所连线段的垂直平分线,若图形两部分能够完全重合,则该图形为轴对称图形。
b. 判断一个图形是否有对称轴,可以找出图形的对称点,连结对称点,画对称点所连线段的垂直平分线,若垂直平分线即为图形的对称轴。
三、巩固练习(15分钟)1. 给出一些图形,让学生判断它们是否为轴对称图形,并找出对称轴。
2. 给出一些实际问题,让学生运用轴对称图形的性质解决。
四、拓展与应用(10分钟)1. 让学生设计一些轴对称图案,并解释其对称性。
2. 讨论轴对称图形在实际生活中的应用,如建筑、艺术设计等。
五、总结(5分钟)1. 回顾本节课复习的内容,强调轴对称图形的性质和判定方法。
2. 鼓励学生在日常生活中发现轴对称现象,培养学生的观察力和想象力。
教学反思:本节课通过复习轴对称图形的概念、性质和判定方法,帮助学生巩固已学知识,并通过实际问题培养学生的应用能力。
2014年秋季新版新人教版八年级数学上学期第十三章轴对称单元复习复习教案1
2014年秋季新版新人教版八年级数学上学期第十三章轴对称单元复习复习教案112.2作轴对称图形12.2.1 作轴对称图形(1)教学目标①通过动手操作体验轴对称变换.②能作出一个图形经一次或二次轴对称变换后的图形.③能利用轴对称变换设计一些简单的图案.④通过图案设计等活动,培养学生的动手操作能力、审美及数学兴趣,发展学生的空间观念.教学重点与难点重点:作一个图形经轴对称变换后的图形.难点:通过动手操作总结轴对称变换的特征.教学准备剪刀、画有一个简易风筝的半透明的纸.教学设计创设情境,引入新课多媒体介绍剪纸文化艺术:剪纸是中国最为流行的民间艺术之一,根据考古其历史可追溯到公元六世纪,甚至更早.在过去,人们经常用纸做成形态各异的物像和人像,与死者一起下葬或葬礼上燃烧,还被用作祭祀祖先和神仙所用供品的装饰物.现在,剪纸更多地是用于装饰,也可为礼品作点缀之用,甚至剪纸本身也可作为礼物赠送他人.剪纸不是用机器而是由手工做成的,常用的方法有两种:剪刀剪和刀剪.学生欣赏展示的剪纸图片,教师提出问题:如此漂亮的剪纸是如何剪出的呢?相信同学们学了本节课后你也能剪出如此漂亮的剪纸!引入新课,板书课题:轴对称变换.注:让学生了解剪纸艺术,认识我国悠久灿烂的民族文化,了解我国优秀的民间手工艺术.培养学生的审美,激发学习兴趣.动手操作,感受变换请学生拿出画有一个简易风筝(如图形状)的半透明的纸,把这张纸对折后描图.学生画好后打开对折的纸.注:采用风筝图便于学生画图,在动手操作中体验轴对称变换,发现轴对称变换的特征,在实践中体验学习的快乐,也使轴对称特征的得出显得更直观,更具体.也为下面画轴对称变换后的图形提供感性认识.请学生仔细观察回答下列问题:(1)画出的图形与原来的图形有什么关系?(学生回答后,师生补充得出:画出的图形与原图形关于折痕轴对称,折痕所在直线是对称轴)(2)两个图形成轴对称有什么特征?(学生回答后,让学生找出几个对应点,并连结对应点进行验证.)注:我们可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(多媒体演示如下图经多次重复后的图形),让学生感受运用所学知识设计出这些美丽的图案其实并不难!如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?学生交流后,总结归纳出:由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大。
第十三章轴对称教案共15课时
§13.1 轴对称§13.1.1 轴对称(一)课型:新授课教学目标一、知识与技能1、在生活实例中认识轴对称图.2、轴对称图形和两个图形成轴对称的联系和区别。
二、过程与方法分析轴对称图形,理解轴对称的概念.三、情感态度价值观让学生体会数学的对称美在生活中的广泛应用和体现。
教学重点轴对称图形的概念.教学难点能够识别轴对称图形并找出它的对称轴.教学方法:探究、实践操作练习预习导航1、分析轴对称图形,理解轴对称的概念.2、两个图形成轴对称即对称点的概念3、轴对称图形和两个图形成轴对称的联系和区别。
教学过程一、图片展示,引入新课轴对称是对称中重要的一种,从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.二、新知探究1、轴对称图形及对称轴的概念形成(1)出示课本的图片,观察它们都有些什么共同特征.这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.(2)概念形成如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)•对称.(3)学生举例(4)制作学具,强化概念取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.结论:位于折痕两侧的图案是对称的,它们可以互相重合.由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.2接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。
(5)例题讲解下列各图,你能找出它们的对称轴吗?结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.(1) (2) (3) (4) (5)2、两个图形关于某条直线对称概念形成(1)展示挂图,大家想一想,你发现了什么?(2)制作学具,交流讨论总结定义像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.(3)两个图形成轴对称与全等图形的关系(课本P31思考).结论:成轴对称的两个图形全等.如果把一个轴对称图形沿对称轴分成两个图形,这两个图形全等,并且也是成轴对称的.轴对称是说两个图形的位置关系,而轴对称图形是说一个具有特殊形状的图形.3、两个图形成轴对称与轴对称图形的联系与区别轴对称的两个图形和轴对称图形,都要沿某一条直线折叠后重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,•如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、巩固练习A组:课本P30练习P31练习B组:1、找出英文26个大写字母中哪些是轴对称图形?2、你能举出三个是轴对称图形的汉字吗3、练习册习题C组:1、用两个圆、两个三角形、两条平行线构造轴对称图形,别忘了要加上一两句贴切、诙谐的解说词。
第十三章轴对称全章教案
教学过程设计归纳概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴。
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点叫做对称点。
区别概念:名称轴对称图形关于直线对称区别图形个数一个图形两个图形图形的特殊性一个具有特殊形状的图形两个具有特殊位置关系的图形联系把轴对称的两个图形看成一个整体,它就是轴对称图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线轴对称。
三、课堂训练1.下列图形中,轴对称图形的个数有()A.1个B.2个C.3个D.4个2.下列银行的标志中,不是轴对称图形的是()A.B.C.D.3.有两条对称轴的轴对称图形是()A.B.C.D.教师在学生描述的基础上归纳轴对称图形及轴对称的概念,并板书概念。
学生认真观察展示的图片,认真读定义,合作交流,描述轴对称图形与轴对称的区别。
教师指导学生从不同方面区别轴对称图形与轴对称。
学生独立思考,举手回答。
学生独立思考,举手回答。
学生独立思考,举手回答。
4.图案,对称轴有()A.2条B.4条C.8条D.无数条5.等边三角形有三条对称轴,其中一条是()A.一边上的高线B.一个角的平分线C.一边上的中线D.一边上的高所在直线6.下列图案中,不是轴对称的是()7.两个图形关于直线对称的是()四、小结归纳学生本节课的主要收获1.轴对称图形、关于直线对称的定义。
2.轴对称图形与关于直线对称的区别和联系。
五、作业设计一、教材第36页习题第1、2题。
二、教材第37页习题第6、7、8。
学生独立思考,举手回答。
学生独立思考,举手回答。
学生独立思考,举手回答。
学生独立思考,举手回答。
教师引导学生回顾本节课知识,并总结、归纳本节课的重点。
板书设计教学过程设计不添字母);与MN有什么关系?..猜想:什么叫做线段的垂直平分线?关于直线对称的轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.探究二:1.请你用三角板画出下图中线段AB 的对称轴MN ,并说明:线段的对称轴是___________________;.在直线MN 上任取一点P ,连结P A 、PB ,通过测量、折叠等方法判断P A 、PB 的关系,怎样证明? .猜想线段的垂直平分线有什么性质,并用简练的语言叙述出来: 归纳: 线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等.线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【例题】如图,ABC ∆中,D 为BC 上一点,E 、F 为AD 上两点,若EB =EC ,FB =FC ,求证:AB =AC【分析】先证明EBF ∆≌ECF ∆,再证明ABF ∆≌ACF ∆,固可得证,但运用线段垂直平分线的知识更为简单.【证明】∵EB=EC ∴E 在BC 的垂直平分线上,∵FB=FC ∴F 在BC 的垂直平分线上,∵E 、F 在AD 上,∴直线AD 就是BC 的垂直平分线,∴AB=AC.【点拨】EB =EC 只能说明E 在BC 的垂直平分线上,而不能说明点E 所在直线就是垂直平分线,须由E 、F 两点确定。
第13章_轴对称复习教案
1、如图,根据要求回答下列问题:
解:(1)点A关于x轴对称点的坐标是;
点B关于y轴对称点的坐标是;
点C关于原点对称点的坐标是;
(2)作出与△ABC关于x轴对称的图形(不要求写作法)
2、等腰△ABC中,∠A=70度,求∠B、∠C的度数。
3、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A,∠ADB的度数.
教学方法与手段:由特殊到一般的思想、分类讨论的思想
教学过程:
一.知识梳理形成系统
做轴对称图形的对称轴
轴对称做轴对称图形
用坐标表示轴对称
等腰三角形
性质和判定
等边三角形
二.知识巩固变式训练
1、以下图形有两条对称轴的是()
A、正六边形B、矩形C、等腰三角形D、圆
2、如图1,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A为()
4、如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠ABC=∠ADC.
5、如图,在△ABC中,∠ACB=90,DE是AB的垂直平分线,∠CAE:∠EAB=4:1.求∠B的度数.
教师小结:
1、关于轴对称的点,线段,图形的性质与做法。
2、角平分线的性质。
3、垂直平分线的性质。
4、等腰三角形的性质与应用。
6.如图4,、、是三个村庄,现要修建一个自来水厂,使得自来水厂到三个村庄的距离相等,请你作出自来水厂的位置
7.如图5,在直线上求作一点,点使点到点和点的距离相等.
8.如图6,∠AOB内有两点P﹑Q,求作一点H,使到∠AOB两边的距离相等,且到点P和点Q的距离相等
9、四边形ABCD是正方形,△PAD是等边三角形,求 的度数。
28第13章轴对称小结与复习教案
第13章轴对称小结与复习一、教学目标(一)知识与技能:1.总结本章所学的轴对称、轴对称变换、等腰三角形的性质和判定等知识;2.培养学生用轴对称的观点认识线段的中垂线、角的平分线、等腰三角形等几何图形;3.归纳总结本章学习过程中用到的数学思想方法,培养分析问题的能力.(二)过程与方法:使学生能较好地运用本章知识和技能解决有关问题.(三)情感态度与价值观:培养学生的分析解答能力.二、教学重点、难点重点:将所学知识有机地组织起来,形成科学合理的知识结构,并能综合运用.难点:通过归纳总结解题思想和方法,形成分析问题解决问题的能力.三、教学过程知识梳理一、轴对称相关定义和性质1.定义(1)如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)如果一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.性质(1)关于某直线对称的两个图形是全等图形;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(3)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.二、线段垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.三、平面直角坐标系中轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y).四、等腰三角形的性质及判定1.性质:(1)两腰相等;(2)轴对称图形,等腰三角形底边上的中线(顶角的平分线、底边上的高)所在的直线就是它的对称轴;(3)两个底角相等,简称“等边对等角”;(4)顶角平分线、底边上的中线、底边上的高相互重合(简称“三线合一”).2.判定(1)有两边相等的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).五、等边三角形的性质及判定1.性质:(1)等边三角形的三边相等.(2)等边三角形的三个内角都相等,并每一个角都等于60°.(3)等边三角形的三条高线,三条中线,三条角平分线,分别互相重合.(4)等边三角形是轴对称图形,有三条对称轴.2.判定(1)三边相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.六、有关作图1.作线段的垂直平分线.2.过已知直线外的一点作该直线的垂线.3.最短路径:(1)牧人饮马问题;(2)造桥选址问题.考点讲练考点一轴对称及轴对称图形例1在下列“禁止行人通行、注意危险、禁止非机动车通行、限速20”四个交通标志图中,为轴对称图形的是( )针对训练1.在等腰三角形、圆、长方形、正方形、直角三角形中,一定是轴对称图形的有( )个A.1B.2C.3D.42.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为_____.考点二关于坐标轴对称的点的坐标例2按要求完成作图:(1)作△ABC关于y轴对称的△A1B1C1;(2)在x轴上找出点P,使PA+PC最小,并直接写出P点的坐标.解:(1)如图,△AB1C1为所求;(2)如图,点P为所求,P点的坐标为(-3,0).针对训练3.在直角坐标系中,点P(a,2)与点A(-3,m)关于x轴对称,则a,m的值分别为( )A.3,-2B.-3,-2C.3,2D.-3,2考点三线段垂直平分线的性质和判定例3在△ABC中,AD是高,在线段DC上取一点E,使得BD=DE,已知AB+BD=DC.求证:点E在线段AC的垂直平分线上.证明:∵ AD是高,且BD=DE∴ AB=AE∵ AB+BD=DC,DC=CE+DE∴ AB+BD=CE+DE又∵ BD=DE∴ AB=CE∴ AE=CE∴ 点E 在线段AC 的垂直平分线上针对训练4.如图:△ABC 中,MN 是AC 的垂直平分线,若CM =5cm ,△ABC 的周长是22cm ,则△ABN 的周长是______.方法总结线段的垂直平分线一般会与中点、90°角、等腰三角形一同出现,在求角度、三角形的周长,或证明线段之间的等量关系时,要注意角或线段之间的转化.考点四 等腰三角形的性质和判定例4 如图,已知等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.求证:M 是BE 的中点.证明:连接BD∵ △ABC 是等边三角形,且D 是AC 的中点∴ ∠ACB=60°,∠DBC=∠ABC=×60°=30°∵ CE=CD∴ ∠E=∠CDE∵ ∠ACB=∠E+∠CDE∴ ∠E= ∠ACB=30°∴ ∠DBC=∠E=30°∴ DB=DE又∵ DM ⊥BC∴ M 是BE 的中点例5 等腰三角形的一个内角是另一个内角的2倍,求该等腰三角形的顶角的度数.解:设该等腰三角形中,小角的度数为x ,则大角的度数为2x .(1)当x 为底角时,x +x +2x =180,解得 x =45,则 2x =90(2)当x 为顶角时,x +2x +2x =180,解得 x =36答:该等腰三角形顶角的度数为90°或36°.方法总结在等腰三角形中,常用到分类讨论思想,一般有如下情况:(1)在求角度时,未指明底角和顶角;(2)在求三角形周长时,未指明底边和腰;(3)未给定图形时,有时需分锐角三角形和钝角三角形两种情况进行讨论.针对训练5.如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,DE ∥BC ,则图中的等腰三角形共有____个.6.如图,已知等边△ABC 中,点D 、E 分别在边AB 、BC 上,把△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1,EB 1分别交边AC 于M 、H 点,若∠ADM =50°,则∠CEH 的度数为_____.21217.如图,在△ABC中,AD是角平分线,AC=AB+BD.求证:∠B=2∠C.证明:在AC上截取AE=AB,连接DE.∵ AD是角平分线,∴∠EAD=∠BAD又∵ AD=AD,∴△EAD≌△BAD (SAS)∴ DE=DB,∠AED=∠B∵ AC=AB+BD=AE+DE=AE+EC∴ EC=ED,∴∠C=∠CDE∴∠AED=∠C+∠CDE=2∠C∴∠B=2∠C8.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,角α与β之间的数量关系是____________,请说明理由;解:(1)α+β=180°理由:∵∠DAE=∠BAC∴∠DAE-∠DAC=∠BAC-∠DAC,即∠CAE=∠BAD又∵ AB=AC,AD=AE∴△ABD≌△ACE (SAS)∴∠ABD=∠ACE∵∠BAC+∠ABD+∠ACB=180°∴∠BAC+∠ACE+∠ACB=180°∴∠BAC+∠BCE=180°,即α+β=180°(2)如图②,点D在线段BC的延长线上移动时,角α与β之间的数量关系是________,请说明理由;解:(2)α=β理由:∵∠DAE=∠BAC∴∠DAE+∠DAC=∠BAC+∠DAC,即∠CAE=∠BAD又∵ AB=AC,AD=AE∴△ABD≌△ACE (SAS)∴∠ABD=∠ACE∵∠ACD=∠ABC+∠BAC=∠ACE+∠DCE∴∠BAC=∠DCE即α=β(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形并猜想角α与β之间的数量关系是______.解:(3)如图所示.猜想:α=β。
13轴对称复习教案
(分析)欲证△ABC是直角三角形,只需证明∠BCA=90°即可.
证明:取AB的中点D,连接CD.
∵BC=2,AB=4,∴BC=BD=AD=2.
∴∠BCD=∠BDC.
又∵∠B=60°,∴∠BCD=∠BDC=60°.
2.线段的垂直平分线
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
3.轴对称变换
Байду номын сангаас由一个平面图形得到它的轴对称图形叫做轴对称变换.
4.等腰三角形
有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
5.等边三角形
三条边都相等的三角形叫做等边三角形.
∴BC= AB,∠B=60°.
又∵CD⊥BA,
∴∠BDC=90°,∠BCD=30°.∴BD= BC.
∴BD= · AB= AB.
即BD= AB.
二、有关等腰三角形的内角度数的计算
例2如图所示,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,求∠BAC的度数.
解:∵AD=BD,AB=AC=CD,
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
专题总结及应用
一、用轴对称的观点证明有关几何命题
例1如图所示,已知∠ACB=90°,CD是高,∠A=30°.求证BD= AB.
证明:在△ABC中,∠ACB=90°,∠A=30°,
∴DC=BD=DA.∴∠A=∠DCA.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
A D B
图1
A D E B C
C
图2
3、等腰三角形的两边长分别为 3cm,7cm,则它的周长为 cm 4、如图 2,在△ABC 中,DE 是边 AC 的垂直平分线,若 BC=8cm,AB=10cm, 则△EBC 的周长为 cm(学生可以合作讨论,互帮互学) 5、将一张长方形纸按如图 3 的方式折叠,BC,BD 为折痕,则∠CBD 为( ) A、50° B、90° C、 100° D、110°
双井中学八年级(数学)备课组
集 体 备 课 教 案
主 备: 上课时间 上课教师 课题: 年 辅 备: 月 日 (星期 ) 本周第( 八年级( )课时 )班 总( )课时 班 级 《第 13 章 轴对称复习教案》 1.理解轴对称与轴对称图形的概念,掌握轴对称的性质 2.掌握线段的垂直平分线、角的平分线的性质及应用 知识与技能 3.理解等腰三角形的性质并能够简单应用 4.理解等边三角形的性质并能够简单应用 过程与方法 情感态度与价值观 初步体会从对称的角度欣赏设计简单的轴对称图案 数形结合的思想及方程的思想都应引起广泛的重视和应用
图3
图4
6.如图 4, A 、 B 、 C 是三个村庄,现要修建一个自来水厂 P ,使得自来水 厂 P 到三个村庄的距离相等,请你作出自来水厂的位置 7.如图 5, 在直线 CD 上求作一点 H , 点 H 使点 H 到点 A 和点 B 的距离相 等.
图5
图6
8.如图 6,∠AOB 内有两点 P﹑Q,求作一点 H,使到∠AOB 两边的距离相 等,且到点 P 和点 Q 的距离相等 9、四边形 ABCD 是正方形,△PAD 是等边三角形,线、角的平分线的性质、等腰三角形的性质及应用 教学难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用 教学方法与手段:由特殊到一般的思想、分类讨论的思想 修订、增减 教学过程: 一.知识梳理 形成系统 轴对称 做轴对称图形的对称轴 做轴对称图形 用坐标表示轴对称 等腰三角形 性质和判定 等边三角形 二.知识巩固 变式训练 1、 以下图形有两条对称轴的是( ) A、正六边形 B、 矩形 C、等腰三角形 D、圆 2、如图 1,在△ABC 中,AB=AC,点 D 在 AC 上,且 BD=BC=AD,则∠A 为(
教师小结:
1、关于轴对称的点,线段,图形的性质与做法。 2、角平分线的性质。 3、垂直平分线的性质。 4、等腰三角形的性质与应用。 5、等边三角形的性质与应用。
板书设计:
第 13 章 轴对称复习 1、关于轴对称的点,线段,图形的性质与做法。 2、角平分线的性质。 3、垂直平分线的性质。 4、等腰三角形的性质与应用。 5、等边三角形的性质与应用。 教学反思: