反比例函数5

合集下载

数学中的反比例函数

数学中的反比例函数

数学中的反比例函数反比例函数在数学中是一类特殊的函数,其数学表达式为y = k/x,其中k是常数,x和y是函数的自变量和因变量。

1. 反比例函数的定义和性质反比例函数是指当x和y满足y = k/x时,函数y与x成反比例关系。

其中k是常数,反比例函数的定义域为除0以外的所有实数。

反比例函数的一些重要性质如下:- 当x趋近于正无穷大或负无穷大时,y趋近于0,这也是反比例函数的特点之一。

- 当x>0时,y>0;当x<0时,y<0。

反比例函数的值域也是除0以外的所有实数。

- 反比例函数的图像是通过原点的双曲线,其中无穷远点(即x和y 无穷大的点)对称。

2. 反比例函数的图像和变化趋势反比例函数的图像通常是一个双曲线,其形状取决于常数k的值。

当k>0时,双曲线开口朝上;当k<0时,双曲线开口朝下。

反比例函数的变化趋势可以通过观察其图像得到。

当x增大时,y会减小,反之亦然。

同时,当x趋近于0时,y趋近于无穷大。

3. 反比例函数的应用举例反比例函数在实际生活中有很多应用。

以下是一些常见的应用举例。

- 电阻和电流的关系:欧姆定律中,电流与电阻成反比例关系。

当电阻增大时,电流减小;反之亦然。

- 速度和时间的关系:在匀速运动中,速度和时间成反比例关系。

当时间增加时,速度减小;反之亦然。

- 工作人员数量和完成任务所需时间的关系:在一项任务中,完成任务所需时间与工作人员数量成反比例关系。

当工作人员数量增加时,完成任务所需时间减小。

4. 反比例函数的求解方法求解反比例函数的关键是求解常数k的值。

一种常见的方法是利用给定的数据点,通过代入x和y的值,得到k的值。

举例说明,假设有一组数据点(2, 6)和(4, 3),我们可以代入x和y的值,得到以下方程:6 = k/23 = k/4通过求解这个方程组,可以得到k的值为12。

于是反比例函数的数学表达式为y = 12/x。

5. 反比例函数与其他函数的比较反比例函数与直线函数、指数函数和多项式函数等其他函数有着不同的特点和性质。

数学反比例函数知识点大全

数学反比例函数知识点大全

数学反比例函数知识点大全反比例函数知识点反比例函数定义一般地,如果两个变量某、y之间的关系可以表示成y=k/某(k为常数,k≠0)的形式,那么称y是某的反比例函数。

因为y=k/某是一个分式,所以自变量某的取值范围是某≠0。

而y=k/某有时也被写成某y=k或y=k·某^(-1)。

反比例函数图像性质反比例函数的图像为双曲线。

1.当k>0时,反比例函数图像经过一,三象限,每一象限内,从左往右,y随某的增大而减小。

2.当k<0时,反比例函数图像经过二,四象限,每一象限内,从左往右,y随某的增大而增大。

反比例函数图像是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,其对称轴为y=某和y=-某;反比例函数图像上的点关于坐标原点对称。

知识点1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/某,若在分母上加减任意一个实数m(即y=k/某(某±m)m为常数),就相当于将双曲线图象向左或右平移m个单位。

(加一个数时向左平移,减一个数时向右平移)反比例性质1规律:反比函数与一次函数(与正比例函数相交,交点关于原点对称)相交,求线段数量关系时,切记“原点O到两交点的距离是相等的”若给出反比函数解析式,那么最终求得的结果的过程肯定要转化成关于“k”的几何意义。

2规律:一次函数与反比函数相交且两函数解析式都未知,此时一次函数所在直线与交点分别于某轴,y轴做垂线的交点所连接的线段是相互平行的,同时一次函数与反比函数的交点到一次函数与某轴,y轴的交点的距离是相等的。

3规律:题目中给出线段比例和四边形的面积求k问题,利用同底等高三角形面积与高之间的关系,面积与k之间的关系。

求出k(此时不用具体求出点坐标)。

4规律:有中点时利用中点坐标公式,再根据反比函数上任何一点处的几何意义都相同的思想转化出面积问题。

5规律:若反比例函数图像经过多个点,那么在这几点处的几何意义是相同的。

反比例函数知识点

反比例函数知识点

反比例函数知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!反比例函数知识点反比例函数知识点_反比例函数知识考点数学函数知识点有什么?数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。

考点05 反比例函数的图像和性质(解析版)

考点05 反比例函数的图像和性质(解析版)

考点五反比例函数的图像和性质知识点整合一、反比例函数的概念1.反比例函数的概念一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围反比例函数ky x=(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.表达式ky x=(k 是常数,k ≠0)kk >0k <0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为-1典例引领变式拓展故答案为:2.考向二反比例函数的图象和性质当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y随x的增大而减小.当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y随x的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例引领根据图象可知,114x x>+的解集是-正确的有②③;故选:B .【点睛】本题考查了反比例函数的性质,平移的性质,反比例函数图象与几何变换,掌握性质,数形结合是解题的关键.2.如图,点(1,2)A 和点(,)B a b 是反比例函数右侧,则下列说法中,不正确的是(A .该反比例函数解析式B .矩形OCBD 的面积为C .该反比例函数的另一个分支在第三象限,且【详解】解:根据题意,10k ->,解得1k <,∴0k =满足题意,故选:D .变式拓展二、填空题三、解答题把上表中的坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的(1)请在该平面直角坐标系中作出(2)观察函数图象,并结合表中的数据:①猜测1y与x之间的函数关系,并求②求2y关于x的函数表达式;(2)①观察表格可知,1y 是x 设1k y x=,把()30,10代入得:1030k =,∴300k =,∴612x ≤≤.考向三反比例函数解析式的确定1.反比例函数的解析式k y x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例引领【答案】30【分析】此题主要考查了平移的性质和反比例函数图象上点的坐标特征,题关键.利用平行四边形的面积公式得出得出k 的值.【详解】∵将该函数图像向上平移x 【答案】52【分析】本题主要考查了矩形的性质及待定系数法求反比例函数解析式,根据矩形的边与y 轴平行,()1,B m ,D【答案】8 yx =【分析】本题主要考查了求反比例函数解析式、正方形的性质等知识点,确定点是解题的关键.先根据坐标与图形得到A【答案】5 yx =-【分析】本题考查反比例函数图像的性质,键.变式拓展【答案】28【分析】利用反比例函数图像上的坐标特点,即可得出答案.【详解】解:∵ABCD 是矩形,∴90DAB ABC ∠∠==【答案】24a <<【分析】本题考查利用待定系数法求反比例函数解析式,及解不等式.先求出双曲线解析式,由题意可用长.再由线段BC 与双曲线有交点且与点考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx=中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例引领A .4-B .6【答案】C 【分析】本题考查反比例函数与一次函数的交点问题,题的关键.利用APC 与PBD 相似即可解决问题.【详解】解:PC x ⊥ 轴,PD ⊥PDB PCA ∴∠=∠,PD x 轴,BPD PAC ∴∠=∠,APC PBD ∴ ∽,∴AC PC PD BD=.二、填空题【答案】-3【分析】本题考查的是反比例函数系数k 的几何意义,的面积是是解答此题的关键.作AD OB ⊥OA =12OB ,然后通过证得AOD BOA ∽何意义即可求得k 的值.∵Rt OAB 中,30ABO ∠=︒,∴OA =12OB ,∵90ADO OAB ∠∠==︒,AOD BOA ∠∠=∴AOD BOA ∽,∴214AOD S OA S OB ⎛⎫== ⎪⎝⎭ ,【答案】5-【分析】此题主要考查了反比例函数的图象,比例函数的图象,理解反比例函数比例系数的几何意义是解决问题的关键.连接AB y ∥轴,得ABC 和AB y ∥轴,ABC ∴ 和AOB ∆关于AB 边上的高相等,52ABC AOB S S ∆∆∴==,根据反比例函数比例系数的几何意义得:变式拓展(1)用含m 的代数式表示(2)若3OMN S =△,则【答案】24m k =90OAB ∠=︒,∴N 点的横坐标为m ,反比例函数()0k y x x=>的图象过点N ,∴N 点的纵坐标为4m , OME OAN S S =△△,OMN OME OAN MEAN MEAN S S S S S=+-=△△△梯形梯形,3OMN S =△,三、解答题【答案】(2,4)C 或(8,1)C 【分析】本题考查了反比例函数的图象与性质,形的判定与性质;由反比例函数的对称性得四边形设点8,C m m ⎛⎫ ⎪⎝⎭,分别过点∵点A 、C 在反比例函数∴1842AOE COF S S ∆∆==⨯=,当04m <<时,则AOE S ∆∴6ACFE AOC S S ∆==梯形,k=【答案】6【分析】本题考查了反比例函数⊥轴,垂足为点E,连接等.作AE x到三角形AOB的面积,两个面积之和为⊥轴,垂足为点【详解】解:作AE x,AE x⊥轴,AB AC=∴=,BE CE,=5OC OB(1)求k和m的値;(2)当8x≥时,求函数值【答案】(1)10k=,m(2)5 04y<≤.考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例引领(1)若2k =,4b =-,则(2)若CE DE =,则b 与【答案】12k +【分析】本题考查了一次函数和反比例函数的交点问题,系是解此题的关键.【答案】12【分析】本题主要考查了反比例函数的综合应用,解析式,解题的关键是数形结合,熟练掌握相关的性质.过点⊥轴于点E,过点CB作BE x()DE=---=,证明AD∥132联立43y x y x =+⎧⎪⎨=-⎪⎩,解得:1131x y =-⎧⎨=⎩,2113x y =-⎧⎨=⎩,∴()3,1A -,()1,3B -,二、解答题(1)求反比例函数与一次函数的函数表达式;(2)连接OA OB ,,求OAB 的面积;(3)请结合图象直接写出不等式m kx b x+<【答案】(1)6y x =,y =x +1(2)52AOB S =对于1y x =+,当0y =时,=1x -;当0x =∴()1,0C -,()0,1D ∴1,OC =1,OD =∴111112*********AOB S =⨯⨯+⨯⨯+⨯⨯=+ (3)解:由图象可知:不等式m kx b x+<的解集为:(1)求反比例函数和一次函数的解析式;(2)设D 为线段AC 上的一个动点(不包括图象于点E ,当CDE 的面积最大时,求点【答案】(1)反比例函数解析式为y =(2)点E 坐标为()2,3-.变式拓展(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出不等式【答案】(1)y x =--(2)6(3)<4x -或02x <<【分析】(1)先把点A 代入反比例函数解析式,即可求出(2)先求出直线y =-(3)观察函数图象即可求得不等式的解集.【详解】(1)解:∵(A(1)求一次函数和反比例函数的关系式;(2)若点E 是点C 关于x 轴的对称点,求【答案】(1)一次函数解析式1y x 4=-(2)32ABE S =△【分析】(1)利用点A 的坐标,代入可求出反比例函数解析式,进而求出点待定系数法可求出一次函数的解析式;当点P在BC上运动时,则PB∵2sin ==2PH B PB ,即PH =∴(1132822y DB PH =⋅=⨯⋅()304;x x ⎧≤≤由图像可得,函数图像有最大值为(3)解:根据函数图像可得:当【点睛】本题主要考查了函数图像与性质、求函数解析式、画函数图像、三角形面积、运用函数图像解不等式等知识点,求得函数解析式以及数形结合思想是解题的关键.(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求a ,k 的值.(2)利用图像信息,直接写出不等式1102k x x+-≥的解集(3)如图2,直线CD 过点A ,与反比例函数图像交于点C ,与x 轴交于点,OA OC ,求OAC 的面积.【答案】(1)4a =,12k =;(2)4x ≥(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当(3)将直线1y向下平移2围.根据函数图象可得:当11.如图,在平面直角坐标系例函数2myx=(m为常数,且(1)求反比例函数与一次函数的解析式.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,坐标.【答案】(1)8 yx =(2)()4,2 C90∠=∠=∠=ABO BOE AEO∴四边形ABOE是矩形,∴==,OB AE2OE AB==45,∠=︒ADO∴ 是等腰直角三角形,AED∴==,DE AE4。

反比例函数知识点整理

反比例函数知识点整理

反比例函数知识点整理反比例函数是数学中的一种特殊函数形式,它的表达式为y=k/x,其中k是常数,x和y分别表示自变量和因变量。

在学习反比例函数时,我们需要了解它的定义、图像特征、性质以及应用等方面的知识点。

一、反比例函数的定义反比例函数是一种具有特殊形式的函数,其定义如下:当x≠0时,y=k/x,其中k是常数,称为比例系数;当x=0时,函数无定义。

二、反比例函数的图像特征1. 反比例函数的图像呈现出一条直线和坐标轴的分离特点。

2. 当x趋近于正无穷大时,y趋近于0;当x趋近于负无穷大时,y也趋近于0;当x趋近于0时,y的绝对值趋近于正无穷大。

3. 反比例函数的图像关于y轴对称。

三、反比例函数的性质1. 定义域:反比例函数的定义域为除去x=0之外的所有实数。

2. 值域:反比例函数的值域为除去y=0之外的所有实数。

3. 单调性:当k>0时,反比例函数在定义域上单调递减;当k<0时,反比例函数在定义域上单调递增。

4. 零点:当x≠0时,反比例函数的零点为x=k。

5. 解方程:对于反比例函数的解方程问题,可以采用代数运算的方式解决。

例如,对于函数y=k/x,若求解y=0的解,则解为x=0;若求解k=0的解,则解为x的全体实数。

四、反比例函数的应用反比例函数在实际问题中有着广泛的应用,以下为一些常见的应用场景:1. 比例关系:反比例函数常用于描述两个变量之间的反比关系,例如电阻与电流的关系、速度与时间的关系等。

2. 等时工作问题:在某些需要保持总工作量不变的情况下,反比例函数可用于描述工作人员数量与工作时间的关系。

3. 比例缩放:反比例函数可用于描述物体大小与距离的关系,例如光的强度与距离的关系等。

4. 电磁场强度:反比例函数可用于描述电磁场强度与距离的关系,例如万有引力与质点间距离的关系等。

总结:通过对反比例函数的定义、图像特征、性质以及应用等方面的整理,我们可以更好地理解和应用反比例函数。

数学反比例函数

数学反比例函数

数学反比例函数反比例函数是数学中的一种函数类型,其呈现为y=k/x,其中k为非零常数。

那么,反比例函数有哪些特点呢?下面就为您进行详细介绍。

特点:1.如果x>0,则y的值随着x的减小而增大;如果x<0,则y的值随着x的减小而减小。

2.在x轴上没有定义该函数,因为分母为0。

3.如果k的值大于0,则函数在x轴的正半轴(x>0)上是单调递减的;如果k的值小于0,则函数在x轴的正半轴上是单调递增的。

4.如果k的值为正无穷大或负无穷大,则函数没有定点,即没有交点。

5.当x越大时,函数的增长速度越慢。

6.当k的值变化时,函数的图像也会随之变化,反比例函数图像通常为右下角至左上角的斜线。

用途:反比例函数在实际生活中有着广泛的应用,例如电路中的电阻、光学中的物距、几何中的比例等。

其中,反比例函数被广泛应用于以下几个方面。

1.电路设计:在电路元件中,电阻和电流是反比例关系。

通过反比例函数可以计算和优化电路元件的设计。

2.物理学:在光学中,物距和物像的反比例关系可以用反比例函数解释。

同样,在匀速直线运动中,速度和时间之间也存在反比例关系。

3.经济学:在经济学中,生产总量和劳动力之间存在反比例关系,即产量增加,劳动力减少。

4.统计学:在统计学中,样本数量和误差之间也存在反比例关系。

样本数量越大,误差越小。

总的来说,反比例函数是一种非常重要的函数类型,在实际应用中也有着广泛的应用。

通过对反比例函数的研究与应用,可以为我们的生活带来更为精确和高效的计算方式,也能更好地满足我们的实际需求。

反比例函数实例

反比例函数实例

反比例函数实例反比例函数是数学中的一种函数类型,指的是两个变量间的比例关系,其中当一个变量的数值增加时,另一个变量的数值会相应地减小。

在本文中,我们将提供一些反比例函数的实例,以帮助读者更好地理解这一概念。

一、基本概念在反比例函数中,两个变量之间存在着一定的比例关系。

如果我们称一个变量为“x”,另一个变量为“y”,那么反比例函数可以表示为:y=k/x,其中k为常数。

这个方程的意思是,当x的值发生变化时,y的值将相应地发生变化。

y=k/x中的常数k是反比例函数的比例常数,它决定了变量之间的比例关系。

如果k的值比较大,那么当x 的值变化幅度较小时,y的值会有较大的变化;反之,当k的值比较小时,y的变化会比较缓慢。

二、实例1. 两个游泳选手在游泳池中同时游泳,其中一个游泳选手的速度是另一个游泳选手的两倍。

假设游泳池长为40m,其中一个选手游完了整个游泳池所需时间为20秒。

此时,请问另一个选手游完整个游泳池所需的时间是多少?这是一个典型的反比例函数的实例。

此时选手的速度与所需时间之间存在反比例关系,即速度越快,所需时间越短。

我们可以用反比例函数来表示两个选手的速度与所需时间之间的关系。

设选手2的速度为x,则选手1的速度为2x(因为选手1的速度是选手2的两倍)。

根据公式y=k/x,我们可以得到选手1的速度为(2x)。

选手1游完整个游泳池所需的时间为:(40m)/(2x) = 20秒解得选手1的速度为:所以,选手2游完整个游泳池所需的时间为20秒。

2. 一台机器在4小时内可以完成一项工作。

如果我们增加工人的数量,可以使同样的任务在2小时内完成。

假设原本机器只有一名工人在操作,请问加入了多少名工人才能使这项任务可以在2小时内完成?同样,这也是一个反比例函数的实例。

在这个例子中,我们可以使用反比例函数来表示机器中的工人数量与完成任务的时间之间的关系。

设原本机器中的工人数量为x,则增加一个工人后可以将任务在t时间内完成。

反比例函数计算公式

反比例函数计算公式

反比例函数计算公式
1、y=k/x 其中X是自变量,Y是X的函数
2、y=k/x=k·1/x
3、xy=k
4、y=k·x^-1
5、① k ≠ 0 ②一般情况下,自变量 x 的取值范围是 x ≠ 0 的一切实数③函数 y 的取值范围也是一切非零实数 .
两种有关联的量,一种量随另一种量变化而变化,但这两种量的积一定是个常数,这时,这两种量是成反比例的量,它们的关系叫做反比例关系。

一般用来x的变化规律来表示y的变化规律。

反比例量涵盖三个量,一个定量和两个变量。

研究两个变量的膨胀(或减少)之间的关系。

一个量的变化导致另一个量的相反变化。

这两个量是成反比的,它们的关系是成反比的。

形如 y/x=k(一定)(k不等于0)的函数叫做反比例函数,k叫做反比例系数。

(一定),这是求反比例的公式。

用字母表示反比例的关系式k(一定)=yx。

反比例,指的是两种有关联的变量,一种量变化,另一种量也随着变化,假设这两种量中相对应的两个数的乘积一定,既然如此那,他们就叫做成反比例的量,他们的关系叫做反比例关系。

比例(proportion)是一个数学术语,表示两个或多个比相等的式子。

在一个比例中,两个外项的积等于两个内项的积,叫做比例的基本性质。

反比例函数五大结论

反比例函数五大结论

反比例函数五大结论1. 哇哦,同学们!今天咱们来聊聊反比例函数的五大结论。

别急着打哈欠啊,这可是数学界的超级明星呢!想象一下,它就像是数学世界里的变形金刚,变来变去,让人目不暇接。

2. 第一个结论,反比例函数的图像是一条双曲线。

听起来高大上是不是?其实就是两条弯弯的线,像极了你妈妈做的面条,又细又长,怎么也吃不完。

这条线永远不会碰到x 轴和y轴,就像你永远追不上校花一样,只能无限接近啊!3. 第二个结论来啦!反比例函数的图像关于原点对称。

这就像是照镜子,你往左动,镜子里的你就往右动,简直是孪生兄弟啊!小明听到这儿,眼睛一亮:"哇,这不就是我和我双胞胎兄弟吗?一个往东,一个往西,永远相反!"4. 接下来是第三个结论:反比例函数在第一、三象限单调递减,在第二、四象限单调递增。

这听起来有点绕口,但其实很简单。

就像你爬山,有时候往上爬,有时候往下滑。

小红插嘴说:"哦,我明白了!就像过山车,一会儿上一会儿下,刺激得很!"5. 第四个结论可有意思了:当x越来越大时,y无限接近于0;当x越来越接近0时,y 的绝对值无限增大。

这就像是你和暗恋对象的距离,你越靠近他,他就跑得越远;你要是不理他,他反而凑过来了。

小明听完直呼:"这不就是我追女神的真实写照吗?"6. 最后一个结论:反比例函数的图像与坐标轴围成的面积是固定的。

这个有点抽象,我们来打个比方。

想象一下,你有一块橡皮泥,不管你怎么捏,它的体积都不变。

反比例函数的图像就是这样,你可以拉长它,压扁它,但它和坐标轴围成的面积永远不变。

7. 小红听完后若有所思:"哇,这不就是守恒定律吗?就像我们班的总成绩,不管怎么分配到每个人头上,加起来还是那么多。

"我竖起大拇指:"没错!你这个类比太妙了!"8. 说到这儿,小明突然问:"老师,这些结论在实际生活中有什么用啊?"我笑着说:"好问题!比如说,你知道为什么自行车变速器有不同档位吗?这就是利用了反比例函数的原理。

反比例函数公式

反比例函数公式

反比例函数公式1. 什么是反比例函数反比例函数是数学中的一种函数关系,也被称为倒数函数。

在数学中,两个变量之间如果满足一个变量增加,而另一个变量减少的关系,就可以表示为反比例函数。

反比例函数的一般形式表示为:y = k/x其中,y表示函数的值,x表示自变量的值,而k是常数。

2. 反比例函数的图像反比例函数的图像是一个双曲线,其中,曲线的渐近线为x 轴和y轴。

当x趋近于零时,y趋向于无穷大;当x趋近于无穷大时,y趋向于零。

反比例函数的图像有一个特点,即图像在原点处对称。

我们以一个简单的例子来说明反比例函数的图像。

假设 k = 1,我们可以得到以下函数:y = 1/x我们可以通过绘制函数的表格或利用计算器来得到函数的图像。

下表是一些x和对应y的值:x y-3-0.33-2-0.5-1-11/221120.530.33绘制这些点后,我们可以看到图像呈现出一个双曲线,其中曲线趋近于x轴和y轴。

该图像经过原点并在x轴和y轴间对称。

3. 反比例函数的性质3.1 定义域和值域反比例函数的定义域为除零之外的所有实数。

也就是说,对于任意非零的x,可以找到对应的y值。

值域是全体非零的实数。

3.2 零点和渐近线反比例函数的零点在x轴上,即当x为非零实数时,函数的值为零。

而渐近线是指图像趋向于的线,反比例函数有两条渐近线,分别是x轴和y轴。

3.3 单调性反比例函数在定义域上是单调递减或单调递增的。

当k为负值时,函数单调递减;当k为正值时,函数单调递增。

3.4 对称性反比例函数在原点处对称。

也就是说,如果点(x,y)在图像上,那么点(-x,-y)也在图像上。

4. 反比例函数的应用反比例函数在实际中有着广泛的应用。

以下是几个常见的应用场景:4.1 电阻电流关系在电路中,电阻和电流之间满足反比例关系。

根据欧姆定律,电流和电阻之间的关系可以表示为:I = V/R其中,I代表电流,V代表电压,R代表电阻。

根据反比例函数的公式,我们可以发现电阻和电流之间的关系是反比例函数关系。

第5章 反比例函数

第5章 反比例函数
____________________________________________________________________________
南苑中学教师备课笔记
课 题
§5.3反比例函数的应用
第1课时
共1课时
教 学
目 标
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程;2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
难 点
反比例函数的图象特点及性质的探究.
教具准备
施教时间
2006年 月 日
教学过程:
一、创设问题情境,引入新课
我们在前面学习了正比例函数和一次函数的图象,知道它们的图象都是一条直线,那么反比例y=k/x(k≠0)的图象是直线呢?还是曲线,本节课就让我们一齐来实践吧.
二、新课讲解
1.画反比例函数的图象
教具准备
施教时间
2006年 月 日
教学过程:
一、创设问题情境,引入新课
上节课我们学习了画反比例函数的图象,并从函数的图象位于哪些象限来研究了反比例函数的.我们知道在学习正比例函数和一次函数图象时,还研究了当k>0时,y的值随x的增大而增大,当k<0时,y的值随x值的增大而减小,即函数值随自变量的变化而变化的情况,以及函数图象与x轴,y轴的交点坐标.本节课我们来研究一下反比例函数的有关性质.
3.将反比例函数的图象绕原点旋转180°后,能与原来的图形重合,即反比例函数是中心对称图形.
4.反比例函数的图象既不能与x轴相交也不能与y轴相交,但是当x的值越来越接近于0时,y的值将逐渐变得很大;反之,y的值将逐渐接近于0.因此,图象的两个分支无限接近;轴和y轴,但永远不会与x轴和y轴相交.

第5章反比例函数学、练案

第5章反比例函数学、练案

5.1反比例函数 学案学习目标:1、记住反比例函数的概念和三种表达式;2、能确定反比例函数的解析式;3、反比例函数的概念和应用。

学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式学习难点:理解反比例函数的概念。

学习过程: 一. 知识回顾1、一般地.在某个变化中,有两个 x 和y,如果给定一个x 的值,相应地 ,那么我们称y 是x 的函数,其中x 叫 ,y 叫 。

2、一辆汽车以60千米/小时的速度匀速行驶,那么行驶的路程s (千米)与行驶的时间t (小时)之间的函数关系式是__________。

此时s 是t 的________________函数. 3.一次函数的相关知识⑴形如y= 的函数,叫做一次函数; ⑵它的一般形式是 ,其中k ;⑶图像的性质是:当k >0时,图像经过第象限,y 随x 的逐渐增大而 ,这时图像是 图像(上升或下降)。

当k<0时,图像经过第 象限,y 随x 的逐渐增大而 ; 当k=0时,它变成 函数,图像的性质与 的性质相同。

二.自主探究 任务一 反比例函数的概念1、矩形的面积(S )与长(a )、宽(b )之间的关系式为: ,当S=24cm2①请用含有b 的代数式表示a ;a ;当a ,变量a 是b 的 , 理由: ④a 是b 的一次函数吗?答: ,理由: 2. 我们知道,电流I、电阻R 、电压U 之间满足关系式U=IR ,当U=220V 时, (1) 请你用含有R 的代数式表示I: (2) 利用写出的关系式完成下表: 当R 越来越大时,I怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?答: ,理由: (4)I 是R 的一次函数吗?答: ,理由: 3. 京沪高速公路全长约为1262km ,汽车沿京沪高速公路从上海驶往北京,汽车完成全程所需的时间t (h )与行驶的平均速度V(km/h)之间有怎样的关系? 答:变量t 是v 的函数吗?答: ,理由: 综上有:反比例函数的定义:一般地,如果两个变量x ,y 之间的关系可以表示成: (k 为常数,且K 0)的形式,那么称y 是x 的反比例函数. 【思考】(1)反比例函数中自变量x 的取值范围是什么?答:(2)反比例函数的三种表达式①___________②___________③___________4. 概念应用:下列哪些式子表示y 是x 的反比例函数?并且说明k 是多少? (1)y=x 5 (2)y=2x(3)xy=2 (4)y=10-x (5)y=x 31 (6)y=x b 3(b 为常数 b ≠0) (7)y=x52- (8)y=π1 (9)y=2x 1- (10)y=23+x (11)y=540+x 、 任务二 反比例函数定义的应用 1、已知122)2(-++=m mx m m y(1)如果y 是x 的正比例函数,求m? (2)如果y 是x 的反比例函数,求m? 解:2、已知y 是x的反比例函数,当x=3时,y=4求:当x=1时,y 的值.三、课堂练习(1)一个矩形的面积为20cm 2, 相邻的两条边长分别为xcm 和ycm ,则y 与x 的关系式可以表示为 , 那么变量y 是变量x 的函数吗? 是反比例函数吗? 。

反比例函数知识点归纳

反比例函数知识点归纳

反比例函数知识点归纳反比例函数是函数的一种特殊形式,其形式为y=k/x,其中k是一个非零常数。

在反比例函数中,自变量x的值增加,因变量y的值会减少;自变量x的值减少,因变量y的值会增加。

1.反比例函数的定义域和值域在反比例函数y=k/x中,除数x不能为0,所以定义域为x≠0。

由于因变量y可以取任意实数值,所以反比例函数的值域为y≠0。

2.反比例函数的图像特征反比例函数的图像是一个直角坐标平面中的双曲线。

这是由于当自变量x接近于0时,因变量y的值会趋向于正无穷大或负无穷大。

因此,反比例函数的图像在原点处有一个垂直渐近线,并且图像在横轴和纵轴上无法触及。

3.反比例函数的性质a)当自变量x不等于0时,反比例函数y=k/x是连续函数。

由于在x=0处没有定义,所以反比例函数在x=0处不连续。

b)反比例函数的导数在定义域的任意一点都存在。

假设反比例函数为y=k/x,则其导数为y'=-k/x^2,可以发现导数对于任意x都存在。

c)反比例函数的最小值或最大值也取决于常数k的符号。

当k>0时,反比例函数的最小值为正无穷大;当k<0时,反比例函数的最大值为正无穷大。

4.反比例函数的应用反比例函数在实际问题中有很多应用,尤其是在与物体运动相关的问题中。

例如,在物理学中,对于一个物体的匀速运动,其速度与所用时间的关系为反比例函数。

速度越大,所用时间越短。

另一个常见的应用是电阻和电流之间的关系。

根据欧姆定律,电阻和电流之间的关系为R=V/I,其中R是电阻,V是电压,I是电流。

根据反比例函数的性质,当电流变大时,电阻变小,电流变小时,电阻变大。

此外,反比例函数在金融市场中也有应用。

例如,根据波动性和流动性的关系,股票价格与交易量之间的关系可以表示为反比例函数。

5.反比例函数的解析式反比例函数的解析式为y=k/x,其中k是一个非零常数。

可以根据具体问题中的条件给出k的值,从而得到反比例函数的具体形式。

总结:反比例函数是一种特殊形式的函数,其定义域为除了0的所有实数,值域为除了0的所有实数。

反比例函数知识点

反比例函数知识点

反比例函数知识点:1.定义:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。

其中x 是自变量,y 是函数,自变量x 的取值是不等于0的一切实数。

说明:1)y 的取值范围是一切非零的实数。

2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此其解析式也可以写成xy=k ;1-=kx y ;xk y 1=(k 为常数,k ≠0) 3)反比例函数y =xk (k 为常数,k ≠0)的左边是函数,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如xy 1=,x y 213=等都是反比例函数,但21+=x y 就不是关于x 的反比例函数。

2. 用待定系数法求反比例函数的解析式由于反比例函数y =xk 只有一个待定系数,因此只需要知道一组对应值,就可以求出k 的值,从而确定其解析式。

3. 反比例函数的画法:1)列表;2)描点;3)连线注:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴4. 图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y= -x ;对称中心是:原点5. 性质:说明:1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。

2)反比例函数图像的两个分只可以无限地接近x 轴、y 轴,但与x 轴、y 轴没有交点。

3)越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大.4)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,) 在双曲线的另一支上.6. 反比例函数y =xk (k ≠0)中的比例系数k 的几何意义表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

九年级上册数学第五章 反比例函数

九年级上册数学第五章   反比例函数

九年级上册数学第5章反比例函数『一』 .知识归纳:● 知识点1 反比例函数的概念1.xky =(0≠k )可以写成1-=kx y (0≠k )的形式,注意自变量x 的指数为-1,在解决有关自变量指0≠k 数问题时应特别注意系数0≠k 这一限制条件;2.xky =(0≠k )也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式; 3.反比例函数xky =的自变量0≠x ,故函数图象与x 轴、y 轴无交点. ● 知识点2 反比例函数的图象在用描点法画反比例函数xky =的图象时,应注意自变量x 的取值不能为0,且x 应对称取点(关于原点对称).● 知识点3 反比例函数及其图象的性质1.函数解析式:xky =(0≠k ) 2.自变量的取值范围:0≠x3.图象:(1)图象的形状:双曲线.k 越大,图象的弯曲度越小,曲线越平直.k 越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当0>k 时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 当0<k 时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大. (3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则),(b a --在双曲线的另一支上.图象关于直线x y ±=对称,即若(a ,b )在双曲线的一支上,则),(a b 和),(a b --在双曲线的另一支上.4.k 的几何意义如图1,设点P (a ,b )是双曲线xky =上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO 和三角形PBO 的面k 21). 积都是如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为k 2.5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线x k y 1=与双曲线xk y 2=的关系: 当021<k k 时,两图象没有交点;当021>k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.●知识点4 实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上. ● 知识点5 充分利用数形结合的思想解决问题. 『二』典型例题解析★例题解析1 反比例函数的概念图2(1)下列函数中,y 是x 的反比例函数的是( ).A .y=3xB .x y 23=-C .3xy=1D .22x y = (2)下列函数中,y 是x 的反比例函数的是( ). A .x y 41=B .21x y -=C .21-=x y D .x y 11+= 答案:(1)C ;(2)A .★例题解析2 图象和性质 (1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________. ②若y 随x 的增大而减小,那么k=___________.(2)已知一次函数y=ax+b 的图象经过第一、二、四象限,则函数xaby =的图象位于第________象限.(3)若反比例函数xk y =经过点(-1,2),则一次函数2+-=kx y 的图象一定不经过第_____象限.(4)已知a ·b <0,点P (a ,b )在反比例函数xay =的图象上, 则直线b ax y +=不经过的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限 (5)若P (2,2)和Q (m ,2m -)是反比例函数xky =图象上的两点, 则一次函数y=kx+m 的图象经过( ).A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 (6)已知函数)1(-=x k y 和xky -=(k ≠0),它们在同一坐标系内的图象大致是( ).A .B .C .D . 答案:(1)①②1;(2)一、三;(3)四;(4)C ;(5)C ;(6)B .★例题解析3 函数的增减性 (1)在反比例函数)0(<=k xky 的图象上有两点),(),,(2211y x B y x A ,且021>>x x ,则21y y -的值为( ).A .正数B .负数C .非正数D .非负数(2)在函数xa y 12--=(a 为常数)的图象上有三个点),1(1y -,),41(2y -,),21(3y ,则函数值1y 、2y 、3y 的大小关系是( ).A .2y <3y <1yB .3y <2y <1yC .1y <2y <3yD .2y <1y <3y (3)下列四个函数中:①x y 5=;②x y 5-=;③x y 5=;④xy 5-=. y 随x 的增大而减小的函数有( ).A .0个B .1个C .2个D .3个 (4)已知反比例函数xky =的图象与直线y=2x 和y=x+1的图象过同一点,则当x >0时,这个反比例函数的函数值y 随x 的增大而 (填“增大”或“减小”). 答案:(1)A ;(2)D ;(3)B . ★例题解析4 解析式的确定(1)若y 与x 1成反比例,x 与z1成正比例,则y 是z 的( ). A .正比例函数 B .反比例函数 C .一次函数D .不能确定(2)若正比例函数y=2x 与反比例函数xky =的图象有一个交点为 (2,m ),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数xm y 2=的图象经过点),(8-2-,反比例函数x m y =的图象在第二、四象限,求的值.(4)已知一次函数y=x+m 与反比例函数xm y 1+=(1≠m )的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克. 请根据题中所提供的信息解答下列问题:①药物燃烧时y 关于x 的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y 关于x 的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室; ③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B ; (2)4,8,(2-,4-); (3)依题意,且,解得.(4)①依题意,⎩⎨⎧>+==+;013300m x m x 解得⎩⎨⎧==210m x②一次函数解析式为2+=x y ,,反比例函数解析式为xy 3=. (5)①x y 43=,80≤≤x ,)8(48>=x xy ; ②30;③消毒时间为1025.13433-348>=⨯(分钟),所以消毒有效. ★例题解析5 面积计算 (1)如图,在函数xy 3-=的图象上有三个点A 、B 、C ,过这三个点分别向x 轴、y 轴作垂线,过每一点所作的两条垂线段与x 轴、y 轴围成的矩形的面积分别为S 1、S 2、S 3,则( ). A .321s s s >>B .S 1<S 2<S 3C .S 1<S 3<S 2D .S 1=S 2=S 3第(1)题图 第(2)题图 (2)如图,A 、B 是函数xy 1=的图象上关于原点O 对称的任意两点,AC//y 轴,BC//x 轴,△ABC 的面积S ,则( ).A .S=1B .1<S <2C .S=2D .S >2(3)如图,Rt △AOB 的顶点A 在双曲线xmy =上,且S △AOB=3,求m 的值.第(3)题图 第(4)题图 (4)已知函数xy 4=的图象和两条直线y=x ,y=2x 在第一象限内分别相交于P 1和P 2两点,过P 1分别作x 轴、y 轴的垂线P 1Q 1,P 1R 1,垂足分别为Q 1,R 1,过P 2分别作x 轴、y 轴的垂线P 2 Q 2,P 2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P 1 R 1和O Q 2P 2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx (k >0)和反比例函数xy 1=的图象相交于A 、C 两点,过A 作x 轴垂线交x 轴于B ,连接BC ,若△ABC 面积为S ,则S=_________.(6)如图在Rt △ABO 中,顶点A 是双曲线xky =与直线)1(++-=k x y 在第四象限的交点,AB ⊥x 轴于B 且S △ABO=23.①求这两个函数的解析式;②求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积.(7)如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 、C 分别在x 轴、y 轴上,点B 在函数x k y =(k >0,x >0)的图象上,点P (m ,n )是函数xky =(k >0,x >0)的图象上任意一点,过P 分别作x 轴、y 轴的垂线,垂足为E 、F ,设矩形OEPF 在正方形OABC 以外的部分的面积为S . ① 求B 点坐标和k 的值;第5题图第6题图② 当29=S 时,求点P 的坐标; ③ 写出S 关于m 的函数关系式.答案:(1)D ; (2)C ;(3)6;(4))22(1,P ,)222(2,P ,矩形O Q 1P 1 R 1的周长为8,O Q 2P2 R 2的周长为26,前者大. (5)1.(6)①双曲线为xy 3-=,直线为2--=x y ;②直线与两轴的交点分别为(0,-2)和(-2,0),且A (1,-3)和C (-3,1), 因此AOC ∆面积为4. (7)①B (3,3),9=k ;②29=S 时,E (6,0),),(236P ; ③mn S 22793219-=⋅⋅-=.★例题解析5 综合应用(一)(1)若函数y=k1x (k1≠0)和函数)0(22≠=k xk y 在同一坐标系内的图象没有公共点,则k 1和k 2( ).A .互为倒数B .符号相同C .绝对值相等D .符号相反 (2)如图,一次函数b kx y +=的图象与反比例数xmy =的图象交于A 、B 两点:A (-2,1),B (1,n ).① 求反比例函数和一次函数的解析式;② 根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.(3)如图所示,已知一次函数b kx y +=(k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数xmy =(m ≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若OA=OB=OD=1.① 求点A 、B 、D 的坐标;② 求一次函数和反比例函数的解析式.(4)如图,一次函数b ax y +=的图象与反比例函数xky =的图象交于第一象限C 、D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点). ① 利用图中条件,求反比例函数的解析式和m 的值;② 双曲线上是否存在一点P ,使得△POC 和△POD 的面积相等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数. ①041=+x x ; ②041=-x x.答案: (1)D .(2)① 反比例函数为,一次函数为;②范围是或.(3)①A (0,),B (0,1),D (1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.『三』衔接中考:考题1:2013年潍坊市)设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:A .考题2:(2013泸州)如图、已知双曲线()0ky k x=<经过直角三角形△OAB 斜边OA 的中点D ,且与直角边AB 相交于点C ,若点A 的坐标为(—6,4),则△AOC 的面积为 A 、12 B 、9 C 、6 D 、4考题3:(2013年南京)在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y = k 2x 的图像没有公共点,则(A) k 1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>0 答案:C考题4:(2013•衢州)若函数y=的图象在其所在的每一象限内,函数值y 随自变量x的增大而增大,则m 的取值范围是( ) A . m <﹣2 B . m <0 C . m >﹣2 D . m >0答案:A .考题5:(2013•滨州)若点A (1,y 1)、B (2,y 2)都在反比例函数的图象上,则y 1、y 2的大小关系为( ) A . y 1<y 2 B . y 1≤y 2 C . y 1>y 2 D . y 1≥y 2考题6:(2013•宁夏)函数(a ≠0)与y=a (x ﹣1)(a ≠0)在同一坐标系中的大致图象是( ) A .B .C .D .答案:C .考题5:(2013•六盘水)下列图形中,阴影部分面积最大的是( )A .B .C .D .答案:D考题6:(2013•毕节地区)一次函数y=kx+b (k ≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k 、b 的取值范围是( )A . k >0,b >0B . k <0,b >0C . k <0,b <0D . k >0,b <0答案:C考题7:(2013•莱芜)M(1,a)是一次函数y=3x+2与反比例函数图象的公共点,若将一次函数y=3x+2的图象向下平移4个单位,则它与反比例函数图象的交点坐标为(﹣1,﹣5),().考题8:已知一个函数的图象与y=6x的图象关于y轴成轴对称,则该函数的解析式为y=﹣6x.考题9:(2013•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=4,S n=.(用含n的代数式表示)考题10:(2013•眉山)如图,在函数y1=(x<0)和y2=(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则线段AB的长度=.考题11:(2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)答案:解答:解:(1)过点A作AD⊥x轴于D,∵C的坐标为(﹣2,0),A的坐标为(n,6),∴AD=6,CD=n+2,∵tan∠ACO=2,∴==2,解得:n=1,故A(1,6),∴m=1×6=6,∴反比例函数表达式为:y=,又∵点A、C在直线y=kx+b上,∴,解得:,∴一次函数的表达式为:y=2x+4;(2)由得:=2x+4,解得:x=1或x=﹣3,∵A(1,6),∴B(﹣3,﹣2);(3)分两种情况:①当AE⊥x轴时,即点E与点D重合,此时E1(1,0);②当EA⊥AC时,此时△ADE∽△CDA,则=,DE==12,又∵D的坐标为(1,0),∴E2(13,0).考题12:(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?解答:解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)设一次函数与x轴交于D点,令y=0,求出x=﹣1,即OD=1,∴A(1,2),∴AE=2,OE=1,∵N(3,0),∴到B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,∴B(3,4),即ON=3,BN=4,C(3,),即CN=,则S△ABC=S△BDN﹣S△ADE﹣S梯形AECN=×4×4﹣×2×2﹣×(+2)×2=.考题13:(2013•湖州压轴题)如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF 上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.解答:解:(1)过点A作AH⊥OB于H,∵sin∠AOB=,OA=10,∴AH=8,OH=6,∴A点坐标为(6,8),根据题意得:8=,可得:k=48,∴反比例函数解析式:y=(x>0);(2)设OA=a(a>0),过点F作FM⊥x轴于M,∵sin∠AOB=,∴AH=a,OH=a,∴S△AOH=•aa=a2,∵S△AOF=12,∴S平行四边形AOBC=24,∵F为BC的中点,∴S△OBF=6,∵BF=a,∠FBM=∠AOB,∴FM=a,BM=a,∴S△BMF=BM•FM=a•a=a2,∴S△FOM=S△OBF+S△BMF=6+a2,∵点A,F都在y=的图象上,∴S△AOH=k,∴a2=6+a2,∴a=,∴OA=, ∴AH=,OH=2,∵S 平行四边形AOBC =OB •AH=24, ∴OB=AC=3, ∴C (5, );(3)存在三种情况:当∠APO=90°时,在OA 的两侧各有一点P ,分别为:P 1(,),P 2(﹣,), 当∠PAO=90°时,P 3(, ), 当∠POA=90°时,P 4(﹣,).『四』课堂练习: ▼(一)基础类型:1. 1下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x=;其中是y 关于x 的反比例函数的有:__④__⑥_____________。

反比例函数图像与性质

反比例函数图像与性质

当 $k > 0$ 时,函数图像位于第一、三象限 ,且在每个象限内,随着 $x$ 的增大,$y$ 值逐渐减小。
当 $k < 0$ 时,函数图像位于第二、四象限 ,且在每个象限内,随着 $x$ 的增大,$y$ 值逐渐增大。
反比例函数的值总是趋近于零,但永远不会 等于零。
02
反比例函数图像特征
图像形状及位置
导数法
求反比例函数的导数,通过导数的正负来判断函数的单调性。对于反比例函数f(x)=k/x(k>0),其导数为 f'(x)=-k/x^2,在x>0和x<0的区间内,导数均为负,因此函数在这两个区间内分别单调递减。
奇偶性判断方法
奇函数性质
对于所有x,如果f(-x)=-f(x),则函数f(x)是奇函数。反比例函 数f(x)=k/x(k≠0)满足f(-x)=-k/(-x)=k/x=-f(x),因此是奇 函数。
感谢您的观看
THANKS
成本效益分析
在经济学中,反比例函数 可用于分析成本效益关系 ,如生产成本与产量之间 的关系。
投资回报
反比例函数可以表示投资 回报率与投资风险之间的 关系。
05
反比例函数与一次函数比较
图像特征比较
反比例函数图像
反比例函数的图像是一条双曲线,该曲线以原点为中心,分布在两个象限内。随着自变量的增大或减小,函数值 分别趋近于正无穷或负无穷。
图像对称性
奇函数的图像关于原点对称。反比例函数的图像同样具有这 一性质,其图像关于原点对称。
周期性讨论
无周期性
反比例函数不具有周期性。即不存在 一个正数T,使得对于所有x,都有 f(x+T)=f(x)。这是因为反比例函数的 图像在整个定义域内都是连续的,并 且没有重复的波形出现。

反比例函数的图象和性质---5。28

反比例函数的图象和性质---5。28

课 题反比例函数的概念及图象性质教学目标1. 理解反比例函数的三种形式2. 掌握反比例函数中K 的意义,理解函数值的意义3. 学会找对应关系,用等量关系转化函数关系教学重点 函数解析式的求法 教学难点 图象的性质教学方法讲练结合 举一反三学习内容与过程(一)课前交流: (二)授课内容:1、某反比例函数的图像过点M (2-,1),则此反比例函数表达式为( )A .2y x =B .2y x =-C .12y x =D .12y x =-2、已知反比例函数x ky =的图象在第二、第四象限内,函数图象上有两点A(72,y1)、B(5,y2),则y1与y2的大小关系为( )。

A 、y1>y2B 、y1=y2C 、y1<y2D 、无法确定3、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ).A .不小于54m3 B .小于54m3 C .不小于45m3 D .小于45m34、若A (a1,b1),B (a2,b2)是反比例函数x y 2-=图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A .b1<b2B .b1 = b2C .b1>b2D .大小不确定 5、已知正比例函数x k y 11=和反比例函授x k y 22=的图像都经过点(2,1),则1k 、2k 的值分别为:( )A. 1k =21,2k =2B. 1k =2,2k =21C. 1k =2,2k =2D. 1k =21,2k =21(1)反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

(2)反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。

《反比例函数》 讲义

《反比例函数》 讲义

《反比例函数》讲义一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。

例如,在路程 s 一定的情况下,速度 v 和时间 t 之间的关系为 v =s/t,当 s 为常数时,v 就是 t 的反比例函数。

需要注意的是,反比例函数中,x 作为分母不能等于 0,所以函数的定义域是x≠0 的一切实数。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0),这是最基本的形式。

2、 xy = k(k 为常数,k≠0),变形可得 y = k/x。

3、 y = kx^(-1)(k 为常数,k≠0),这里的 x^(-1)表示 1/x。

三、反比例函数的图象反比例函数的图象是双曲线。

当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小;当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。

例如,函数 y = 2/x,因为 k = 2>0,所以图象的两支分别在第一、三象限,在每个象限内,y 随 x 的增大而减小。

再比如,函数 y =-3/x,由于 k =-3<0,图象的两支就在第二、四象限,在每个象限内,y 随 x 的增大而增大。

为了更准确地画出反比例函数的图象,我们可以采用以下步骤:1、列表:选取一些 x 的值,计算出相应的 y 值,列出表格。

2、描点:根据表格中的数值,在平面直角坐标系中描出对应的点。

3、连线:用平滑的曲线将这些点连接起来。

四、反比例函数的性质1、对称性反比例函数的图象关于原点对称。

这意味着如果点(a,b)在反比例函数的图象上,那么点(a,b)也在图象上。

它的图象还是关于直线 y = x 和 y = x 对称的。

2、增减性当 k>0 时,在每个象限内,y 随 x 的增大而减小;当 k<0 时,在每个象限内,y 随 x 的增大而增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄土梁子初级中学教学设计之学案 九年级数学组设计
《 实际问题与反比例函数(第1课时) 》学案
设计人 杨海军 审核人 李永广 使用人 使用时间
学习目标 能灵活运用反比例函数的知识解决实际问题。

重点:运用反比例函数的意义和性质解决实际问题。

难点:从实际问题中寻找变量之间的关系,建立数学模型,教学时注意分析过程,渗透转化的数学思想。

学法提示 通过回顾反比例函数图像和性质,进行实际应用题型训练.
一、预习探索
1、三角形中,当面积S 一定时,高h 与相应的底边长a 关系 。

2、矩形中,当面积S 一定时,长a 与宽b 关系 。

3、长方体中当体积V 一定时,高h 与底面积S 的关系 。

二、典例分析
例1 煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?
(圆柱的体积 =底面积×高)
(2)公司决定把储存室的底面积S 定为5002m ,施工队施工时应该向下掘进多深?
(3)当施工队按(2)中的计划掘进到地下15m 时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?
三、巩固练习
1、某玻璃器血制造公司要制造一种容器为1L (1L=13dm )的圆锥形漏斗.
(1)漏斗口的面积S (单位:3dm )与漏斗的深d (指口到颈高度,单位:3dm )有怎样的函数关系?
(2)如果漏斗口的面积为1002cm ,那么漏斗深度为多少?
2、王大爷建一个面积为2500平米的长方形养鸡厂。

⑴养鸡厂的长y 与宽x 有怎样的函数关系?
⑵王大爷决定把鸡厂的长确定为250米,那么宽应是多少?
⑶由于受厂地限止,养鸡厂的宽最多为20米,那么养鸡厂的长至少为多少米?
四、达标检测
1.已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为( ).
2.有一面积为60的梯形,上底长是下底长的13
,若下底长为x ,高为y ,则y 与x 的函数关系式是 .
3.面积为2的△ABC ,一边长为x ,这边上的高为y ,则y 与x•的变化规律用图象表示大致是( ).
4、某农业大学计划修建一块面积为26102m 的矩形试验田.
(1)试验田的长y (单位:m )关于宽x (单位:m )的函数解析式是什么?
(2)如果试验田长与宽的比为1:2,那么试验田的长与宽分别是多少?
学后反思。

相关文档
最新文档