2.4 渐开线与摆线 课件(人教A选修4-4)(2)

合集下载

2.4 渐开线与摆线 课件(人教A选修4-4)(2)

2.4 渐开线与摆线 课件(人教A选修4-4)(2)

|AM|= 0 =4θ AM 作 AB 垂直于 x 轴,过 M 点作 AB 的垂线,由三角和向量知
识,得 OA =(4cos θ,4sin θ),
由几何知识知∠MAB=θ,
AM =(4θsin θ,-4θcos θ),
得 OM = OA + AM
5 2 4π -π+2.
本课时考点是圆的渐开线或摆线的参数方程的应用,近几 年的高考题中还未出现过.2012 年惠州模拟以填空题的形式对 圆的摆线的参数方程的应用进行了考查,属低档题. [考题印证]
x=t-sin t (2012· 惠州模拟)摆线 y=1-cos t
(0≤t≤2π)与直线 y=1 的交点的直角坐标为________.
[悟一法] 摆线的参数方程是三角函数的形式,可考虑其性质与三角
函数的性质有类似的地方.
[通一类]
x=cos φ+φsin φ π 3. φ=2、 时, 当 π 求出渐开线 上对应的点 A、 y=sin φ-φcos φ
B,并求出 A、B 间的距离.
x=cos φ+φsin φ, π 解:将 φ=2代入 y=sin φ-φcos φ,
x=r[θ-sin φ+θ] 的参数方程为 y=r[1-cos φ+θ]
∴点 M
(θ 为参数)
[研一题] [例3] 设圆的半径为8,沿x轴正向滚动,开始时圆与x轴
相切于原点O,记圆上动点为M,它随圆的滚动而改变位置, 写出圆滚动一周时M点的轨迹方程,画出相应曲线,求此曲线
上点的纵坐标y的最大值,说明该曲线的对称轴.
[悟一法] 解决此类问题的关键是根据渐开线的形成过程,将问题归
结到用向量知识和三角的有关知识建立等式关系上.
用向量方法建立运动轨迹曲线的参数方程的过程和步骤: (1)建立合适的坐标系,设轨迹曲线上的动点为M(x,y). (2)取定运动中产生的某一角度为参数. (3)用三角、几何知识写出相关向量的坐标表达式. (4)用向量运算得到 OM 的坐标表达式,由此得到轨迹曲线 的参数方程.

人教版高中数学选修2.4-渐开线与摆线ppt课件

人教版高中数学选修2.4-渐开线与摆线ppt课件

=(2α-2sin α,2-2cos α)
=(2(α-sin α),2(1-cos α)).
uuur 动点 M 的坐标为(x,y),向量OM =(x,y).
所以xy= =221α- -csoins
α, α.
这就是所求摆线的参数方程.
[悟一法] (1)圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动时,圆周上一个定点 的轨迹. (2)在圆的摆线中,圆周上定点M的位置也可以由圆心角φ唯一确定.
φ+φsin φ-φcos
φ φ
上对应的点 A、
B,并求出 A、B 间的距离.
解:将
φ=π2代入xy= =scions
φ+φsin φ-φcos
φ, φ,
得 x=cos π2+π2·sin π2=0+π2=π2,
轨迹曲线的参数方程为
x=8t-sin t y=81-cos t
(0≤t≤2π)
即 t=π 时,即 x=8π 时,y 有最大值 16.
曲线的对称轴为三角函数的性质有类似的地 方.
[通一类]
3.当
φ=π2、π
时,求出渐开线xy= =scions
[研一题] [例2] 求半径为2的圆的摆线的 参数方程.(如图所示,开始时定 点M在原点O处,取圆滚动时转过 的角度α,(以弧度为单位)为参数) [精讲详析] 本题考查圆的摆线的参数方程的求法.解答本题需要搞清圆的摆线 的参数方程的一般形式,然后将相关数据代入即可. 当圆滚过α角时,圆心为点B,圆与x轴的切点为A,定点M的位置如图所示, ∠ABM=α.
度为单位),则
|AM|= ¼ AM0 =4θ
作 AB 垂直于 x 轴,过 M 点作 AB 的垂线,由三角和向量知
uuur 识,得OA=(4cos θ,4sin θ),

人A版数学选修4-4课件:第2讲 4 渐开线与摆线

人A版数学选修4-4课件:第2讲 4 渐开线与摆线
上一页 返回首页 下一页
根据渐开线的定义和求解参数方程的过程可知其中的字母r是指基圆的半 径,参数φ是指绳子外端运动时绳子上的定点M相对于圆心的张角.
上一页
返回首页
下一页
[再练一题]
x=cos φ+φsin φ, 3π π 1.当φ= 2 , 2 时,求出渐开线 上的对应点A,B,并 y=sin φ-φcos φ
【解析】 根据圆的渐开线与摆线的参数方程可知B正确. 【答案】 B
上一页 返回首页 下一页
[质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1: 解惑: 疑问 2: 解惑: 疑问 3: 解惑: _____________________________________________________ _______________________________________________________ _____________________________________________________ _______________________________________________________ ______________________________________________________ _______________________________________________________
那么,根据两点之间的距离公式可得A、B两点的距离为|AB|=
3+ 6

3 3-π 2 2 π -2 + 6 -1
1 =6 13-6 3π2-6π-36 3+72. 即A、B两点之间的距离为 1 2 13 - 6 3 π -6π-36 3+72. 6

高中数学 2.4渐开线与摆线 新人教A版选修4-4

高中数学 2.4渐开线与摆线 新人教A版选修4-4

A.只有圆才有渐开线
B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所
栏 目

以才能得到不同的图形

C.正方形也可以有渐开线
D.对于同一个圆,如果建立的直角坐标系的位置不同,那么画
出的渐开线形状就不同
编辑课件
分析:本题容易错选 A.渐开线不是圆独有的.其他图形,例如
椭圆、正方形也有.渐开线和摆线的定义虽然在字面上有相似之处,
题二 渐开线、摆线参数方程的应用
例 3 设摆线xy==1t--scionst,t (t 为参数,0≤t≤2π)与直线 y=1
相交与 A,B 两点,求 A,B 两点间的距离.


解析:由 y=1 及 y=1-cos t 得 cos
∴t1=π2 ,t2=3π2 .当
π t1= 2 时,
编辑课件
►变式训练
1.已知圆的渐开线的参数方程是
x=cos φ+φsin
y=sin
φ-φcos
φ, φ (φ 为参数),则此渐开线对应的基圆的直
栏 目


________




φ

π 4





线







链 接
__________________.
1
22+
28π, 22-
2π 8
编辑课件
φ+φsin φ-φcos
φ), φ) (φ 为参数)可求
π r 的值,然后把 φ= 2 代入方编辑程课,件即得对应的点的坐标.
解析:所给的圆的渐开线的参数方程可化为

人教版高中数学选修2.4渐开线与摆线ppt课件

人教版高中数学选修2.4渐开线与摆线ppt课件
设 点 M 的 坐 标 为 ( x , y ) , 取 为 参 数 , 根 据 点 M 满 足 的 几 何 条 件 , 有
x O D O A D A O A M C r r s i n ,
y D M A C A B C B r r c o s .
四 渐开线与摆线
1、渐开线 2、摆线
1、渐开线
1、渐开线的定义
探究:P41
把一条没有弹性的细绳绕在一个圆盘上,在绳的 外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切 而逐渐展开,那么铅笔会画出一条曲线。
这条曲线的形状怎样?能否求出它的轨迹方程?
动点(笔尖)满足什么几何条件?
设 开 始 时 绳 子 外 端 ( 笔 尖 ) 位 于 点 A ,
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
B M ( x r c o s , y r s i n ) , | B M | r .
O
A
由 于 向 量 e 1 ( c o s , s i n ) 是 与 O B 同 方 向 的 单 位 向 量 ,
因 而 向 量 e 2 ( s i n , c o s ) 是 与 向 量 B M 同 方 向 的 单 位 向 量 。

《2.4渐开线与摆线》课件3-优质公开课-人教A版选修4-4精品

《2.4渐开线与摆线》课件3-优质公开课-人教A版选修4-4精品
3������ x = 3 ������������������ 2 + 2 ������������������ 2 , ������ x= 2 , 得 即 所以当参数 φ 取 时,对应的 ������ ������ ������ 2 y = 3. y = 3 ������������������ 2 - 2 ������������������ 2 , ������ ������ ������
曲线上的点的坐标是
3������ ,3 2
.
圆的渐开线的参数方程中,字母 r 表示基圆的半径,字母 φ 是指 绳子外端运动时绳子上的定点 M 相对于圆心的张角;另外,渐开线的 参数方程不宜化为普通方程.
二、圆的摆线的参数方程 活动与探究 2 已知一个圆的摆线过一定点(2,0),请写出该圆的半径最大时该 摆线的参数方程. x = r(φ-������������������φ), 思路分析:根据圆的摆线的参数方程 (φ 为参数), y = r(1-������������������φ) 只需把点(2,0)代入参数方程求出 r 的表达式,根据表达式求出 r 的最 大值,再确定对应的摆线的参数方程即可.
1 ������ (φ 为参数). 1 = (1-������������������φ) ������
代入即可得圆的摆线的参数方程为
迁移与应用 2 x = 1 + 6������������������α, 已知圆 C 的参数方程是 (α 为参数)和直线 l 对应 y = -2 + 6������������������α 的普通方程是 x-y-6 2=0. (1)如果把圆心平移到原点 O,请问平移后圆和直线满足什么关 系? (2)写出平移后圆的摆线方程. (3)求摆线和 x 轴的交点.

高中数学人教A版选修4-4课件:2-4渐开线与摆线

高中数学人教A版选修4-4课件:2-4渐开线与摆线

目标导航 题型一 题型二 题型三
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO IANLITOUXI
D典例透析
圆的渐开线的参数方程及应用 【例1】 已知圆的直径为2,其渐开线的标准参数方程对应的曲线 π π 上两点A,B对应的参数分别 是 和 , 求������, ������两点间的距离. 3 2 分析:先写出圆的渐开线的参数方程,再把点A,B对应的参数分别 代入参数方程可得A,B两点的坐标,然后使用两点之间的距离公式 可得点A,B之间的距离. 解:根据题意可知圆的半径是1, 所以其对应渐开线的参数方程是 ������ = cos������ + ������sin������, (������为参数). ������ = sin������-������cos������ π π 分别把 φ= 和 ������ = 代入,
3 2
可得 A,B 两点的坐标分别为 ������
3+ 3π 3 3-π 6
,
6
, ������
பைடு நூலகம்π 2
,1 .
根据两点之间的距离公式可得 A,B 两点间的距离为
目标导航 题型一 题型二 题型三
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO IANLITOUXI
D典例透析
|AB|=
������ = 9(������-sin������), (������为参数). ������ = 9(1-cos������)
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO IANLITOUXI
D典例透析

人教版数学选修4-4课件 2.4 渐开线与摆线

人教版数学选修4-4课件 2.4 渐开线与摆线

课末随堂演练
课后限时作业
制作者:状元桥
适用对象:高二学生
制作软件:Powerpoint2003、 Photoshop cs3
运行环境:WindowsXP以上 操作系统
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆 方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧 室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从 左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
第二讲
参数方程
• 2.4 渐开线与摆线
•2.1 曲线的参数方程
•2.1.1 参数方程的概念与圆的参数 方程
栏目导 航
课前教材预案 课堂深度拓展 课末随堂演练 课后限时作业
课前教材预案
•要点一 渐开线
以基圆圆心 O 为原点,直线 OA 为 x 轴,建立平面直角坐标系,可得圆的渐开线
的参数方程为yx==rrscions
AM,按渐开线定义,弧A︵M0 的长和线段 AM 的长相等,记―O→A 和 x 轴正向所夹的角为
θ(以弧度为单位),则|AM|=A︵M0 =4θ.
作 AB 垂直于 x 轴,过 M 点作直线 AB 的垂线,由三角函数和向量知识,得―O→A =
(4cos θ,4sin θ),由几何知识知∠MAB=θ,―AM→=(4θsin θ,-4θcos θ),
• 解析A:.根据3渐π开线的定义B可.知弧4πAE 的长是半径为 1C的.圆周5长π的四分之一,长度

高二数学人教A版选修4-4课件:2.4 渐开线与摆线

高二数学人教A版选修4-4课件:2.4 渐开线与摆线

S 随堂练习 UITANG LIANXI
1
2
3
3.圆的渐开线和摆线的参数方程
(1)圆的渐开线的参数方程:
x
= r(������������������φ + φ������������������φ), y = r(������������������φ-φ������������������φ) (φ
x y
= =
���1���1������((φ1--������������������������������������φφ)),(φ
为参数);
所求圆的渐开线的参数方程为
x
=
1 ������
y=
(������������������φ + φ������������������φ),
1 ������
x y
= =
221k1k������������((φ1--������������������������������������φφ)),(φ
为参数,k∈N*).
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
四 渐开线与摆线
-1-
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
课程目标 1.借助教具或计算机软件,观察圆在直 线上滚动时圆上定点的轨迹(平摆线)、 直线在圆上滚动时直线上定点的轨迹 (渐开线).知道平摆线和渐开线的生成 过程,以及它们的参数方程. 2.通过阅读材料,知道外摆线、内摆线 的生成过程;学会摆线在实际应用中的 实例.

高中数学人教A版选修4-4课件 第二讲参数方程2.4渐开线与摆线

高中数学人教A版选修4-4课件 第二讲参数方程2.4渐开线与摆线

思维辨析
变式训练 1 已知圆的渐开线的参数方程是 ������ = cos������ + ������sin������, (φ 为参数),则此渐开线对应的基圆的直径 ������ = sin������-������cos������ π 是 ,当参数 φ= 时对应的曲线上的点的坐标 为 .
√2

渐开线与摆线
学 习 目 标 思 维 脉 络 1.了解 圆的渐开线的参 渐开线与摆线 数方程,了解 摆线的生成 渐开线的概念及生成过程 过程及它的参数方程. 摆线的概念及生成过程 2.了解 用向量知识推导 圆的渐开线与摆线的参数方程 运动轨迹的方法和步骤.
1.渐开线 (1)把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支 铅笔,将绳子拉紧,保持绳子与圆相切而逐渐展开,那么笔尖画出的 曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆. (2)圆的渐开线的参数方程: ������ = ������(cos������ + ������sin������), (φ 为参数). ������ = ������(sin������-������cos������) 2.摆线 (1)圆的摆线就是一个圆沿着一条定直线无滑动地滚动时,圆周上 一个定点的轨迹,圆的摆线又叫旋轮线. (2)圆的摆线的参数方程: ������ = ������(������-sin������), (φ 为参数). ������ = ������(1-cos������)
)
做一做2 半径为2的圆的摆线的参数方程为( ������ = 2cos������, A. (φ 为参数) ������ = 2sin������ ������ = -2cos������, B. (φ 为参数) ������ = -2sin������ ������ = 2(������-sin������), C. (φ 为参数) ������ = 2(1-cos������) ������ = 2(1-sin������), D. (φ 为参数) ������ = 2(������-cos������) 答案:C

2019-2020学年人教A版数学选修4-4课件:第2讲 4 渐开线与摆线

2019-2020学年人教A版数学选修4-4课件:第2讲 4 渐开线与摆线

第十四页,编辑于星期六:二十三点 三十二分。
因此|AB|= π2+32π2+1+12=2 π2+1, 故点 A,B 间的距离为 2 π2+1.
第十五页,编辑于星期六:二十三点 三十二分。
圆的摆线的参数方程
【例 2】 已知一个圆的摆线过一定点(2,0),请写出该圆的半径
最大时该摆线的参数方程以及对应的圆的渐开线的参数方程.
第二页,编辑于星期六:二十三点 三十二分。
自主预习 探新知
第三页,编辑于星期六:二十三点 三十二分。
教材整理 1 渐开线及其参数方程 阅读教材 P40~P41“思考”及以上部分,完成下列问题. 1.把线绕在圆周上,假设线的粗细可以忽略,拉着线头逐渐展 开,保持线与圆相切, 线头 的轨迹就叫做圆的渐开线,相应的 _定__圆____叫做渐开线的 基圆 .
第二十页,编辑于星期六:二十三点 三十二分。
2.已知一个圆的摆线方程是xy= =44φ--4c4ossinφφ ,(φ 为参数),求该 圆的面积和对应的圆的渐开线的参数方程.
第二十一页,编辑于星期六:二十三点 三十二 分。
[解] 首先根据摆线的参数方程可知 圆的半径为 4,所以面积为 16π, 该圆对应的渐开线的参数方程是:
代入即可得圆的摆线的参数方程为
x=1πφ-sinφ,
y=1π1-cos φ
(φ 为参数)
第十八页,编辑于星期六:二十三点 三十二分。
圆的渐开线的参数方程为
x=1πcos φ+φsin φ,
y=1πsin φ-φcos φ
(φ 为参数).
第十九页,编辑于星期六:二十三点 三十二分。
根据摆线的定义和求解参数方程的过程可知其中的参数 φ 是指 圆上定点相对于定直线与圆的切点所张开的角度.

2019版数学人教A版选修4-4课件:2.4 渐开线与摆线

2019版数学人教A版选修4-4课件:2.4 渐开线与摆线
(∈Z).因为

r 是圆的半径,所以 r>0.所以应有 k>0,且 k∈Z,即 k∈N*.所以所求摆
线的参数方程是
=
=
1

1

(-sin),
(为参数),其中 k∈N*.
(1-cos)
-14-
第十四页,编辑于星期日:点 四十七分。
答案:C
第四页,编辑于星期日:点 四十七分。
-4-

渐开线与摆线
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
3.圆的渐开线和摆线的参数方程
= (cos + sin),
(1)圆的渐开线的参数方程:
(为参数).
= (sin-cos)
D.对于同一个圆,如果建立的平面直角坐标系的位置不同,那么画出的
渐开线的形状就不同
解析:不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线
和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个
圆不论在什么位置建立平面直角坐标系,画出图形的大小和形状都
是一样的,只是方程的形式及图形在坐标系中的位置可能不同.
-3-

渐开线与摆线
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
【做一做1】 关于渐开线和摆线的叙述,正确的是(
HONGNANJUJIAO
D典例透析
IANLITOUXI
)
A.只有圆才有渐开线
B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到
了不同的图形
C.正方形也可以有渐开线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

π π π π π 得 x=cos 2+2· 2=0+2=2, sin π π π y=sin 2-2· 2=1. cos
π ∴A(2,1). 将
x=cos φ+φsin φ, φ=π,代入 y=sin φ-φcos φ,
得 x=cos π+π·sin π=-1,y=sin π-πcos π=π. ∴B(-1,π). ∴|AB|= = π 2+12+1-π2
[研一题] [例2] 求半径为2的圆的摆线的
参数方程.(如图所示,开始时定
点M在原点O处,取圆滚动时转过 的角度α,(以弧度为单位)为参数) [精讲详析] 本题考查圆的摆线的参数方程的求法.解答
本题需要搞清圆的摆线的参数方程的一般形式,然后将相关数 据代入即可. 当圆滚过α角时,圆心为点B,圆与x轴的切点为A,定点
[通一类] 1.基圆直径为 10,求其渐开线的参数方程.
解: φ 为参数, 为基圆上点与原点的连线与 x 轴正方向的 取 φ 夹角. ∵直径为 10,∴半径 r=5. 代入圆的渐开线的参数方程得:
x=5cos φ+φsin φ, y=5sin φ-φcos φ,
这就是所求的圆的渐开线的参数方程.
由几何知识知∠MAB=θ,
AM =(4θsin θ,-4θcos θ), 得 OM = OA + AM
=(4cos θ+4θsin θ,4sin θ-4θcos θ) =(4(cos θ+θsin θ),4(sin θ-θcos θ)).
又 OM =(x,y),
M的位置如图所示,∠ABM=α.
AM 由于圆在滚动时不滑动,因此线段 OA 的长和圆弧 的长
相等,它们的长都等于 2α,从而 B 点坐标为(2α,2).
向量 OB =(2α,2),
向量 MB =(2sin α,2cos α),
BM =(-2sin α,-2cos α),
[命题立意]
本题主要考查摆线方程及其参数的几何意义.
[解析]
由题设得 1=1-cos t,
π 3 解得 t1=2,t2=2π. π x1= -1, 2 对应交点的坐标为 y1=1, 3 x2= π+1, 2 y2=1, π 3 交点为(2-1,1),(2π+1,1). π 3 [答案] (2-1,1),(2π+1,1)
3.圆的渐开线和摆线的参数方程
x=rcos φ+φsin φ y=rsin φ-φcos φ
(φ 为参数)
(1)圆的渐开线方程:

(2)摆线的参数方程:
x=rφ-sin φ y=r1-cos φ
(φ 为参数)

[小问题·大思维]
1.渐开线方程中,字母r和参数φ的几何意义是什么? 提示:字母r是指基圆的半径,参数φ是指绳子外端运动时 绳子上的定点M相对于圆心的张角. 2.摆线的参数方程中,字母r和参数φ的几何意义是什么? 提示:字母r是指定圆的半径,参数φ是指圆上定点相对于 某一定点运动所张开的角度大小.
[悟一法]
(1)圆的摆线的实质是一个圆沿着一条定直线无滑动地滚
动时,圆周上一个定点的轨迹.
(2)在圆的摆线中,圆周上定点M的位置也可以由圆心角φ
唯一确定.
[通一类]
2.圆的半径为r,沿x轴正向滚动,圆与x轴相切于原点O.圆上 点M起始处沿顺时针已偏转φ角.试求点M的轨迹方程.
π 解:xM=r· θ-r· [(φ+θ)-2] cos =r[θ-sin (φ+θ)], π yM=r+r· (φ+θ-2) sin =r[1-cos (φ+θ)].
x=4cos θ+θsin θ, 因此有 y=4sin θ-θcos θ,
这就是所求圆的渐开线的参数方程.
[悟一法] 解决此类问题的关键是根据渐开线的形成过程,将问题归
结到用向量知识和三角的有关知识建立等式关系上.
用向量方法建立运动轨迹曲线的参数方程的过程和步骤: (1)建立合适的坐标系,设轨迹曲线上的动点为M(x,y). (2)取定运动中产生的某一角度为参数. (3)用三角、几何知识写出相关向量的坐标表达式. (4)用向量运算得到 OM 的坐标表达式,由此得到轨迹曲线 的参数方程.
5 2 4π -π+2.
本课时考点是圆的渐开线或摆线的参数方程的应用,近几 年的高考题中还未出现过.2012 年惠州模拟以填空题的形式对 圆的摆线的参数方程的应用进行了考查,属低档题. [考题印证]
x=t-sin t (012· 惠州模拟)摆线 y=1-cos t
(0≤t≤2π)与直线 y=1 的交点的直角坐标为________.
AM 绳拉直时和圆的切点为 A,故 OA⊥AM,按渐开线定义,弧 0 的长和线段 AM 的长相等,记 OA 和 x 轴正向所夹的角为 θ(以弧
度为单位),则
AM |AM|= 0 =4θ
作 AB 垂直于 x 轴,过 M 点作 AB 的垂线,由三角和向量知
识,得 OA =(4cos θ,4sin θ),
x=r[θ-sin φ+θ] 的参数方程为 y=r[1-cos φ+θ]
∴点 M
(θ 为参数)
[研一题] [例3] 设圆的半径为8,沿x轴正向滚动,开始时圆与x轴
相切于原点O,记圆上动点为M,它随圆的滚动而改变位置, 写出圆滚动一周时M点的轨迹方程,画出相应曲线,求此曲线
上点的纵坐标y的最大值,说明该曲线的对称轴.
[精讲详析] 本题考查摆线的参数方程的求法及应用.解
答本题需要先分析题意,搞清M点的轨迹的形状,然后借助图 象求得最值.
轨迹曲线的参数方程为
x=8t-sin t y=81-cos t
(0≤t≤2π)
即 t=π 时,即 x=8π 时,y 有最大值 16. 曲线的对称轴为 x=8π.
[研一题] [例 1] 求半径为 4 的圆的渐开线的参数方程.
本题考查圆的渐开线的参数方程的求法,解答
[精讲详析]
本题需要搞清圆的渐开线的参数方程的一般形式,然后将相关字 母的取值代入即可.
以圆心为原点 O,绳端点的初始位置为 M0,向量 OM 0 的方
向为 x 轴正方向,建立坐标系,设渐开线上的任意点 M(x,y),
因此 OM = OB + BM
=(2α-2sin α,2-2cos α) =(2(α-sin α),2(1-cos α)).
动点 M 的坐标为(x,y),向量 OM =(x,y).
x=2α-sin 所以 y=21-cos
α, α.
这就是所求摆线的参数方程.
[读教材·填要点] 1.渐开线的概念及产生过程 把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一 支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出 的曲线叫做圆的 渐开线 ,相应的定圆叫做渐开线的 基圆 . 2.摆线的概念及产生过程 圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上 一个 定点 的轨迹,圆的摆线又叫 旋轮线 .
点击进入 创新演练大冲关
[悟一法] 摆线的参数方程是三角函数的形式,可考虑其性质与三角
函数的性质有类似的地方.
[通一类]
x=cos φ+φsin φ π 3. φ=2、 时, 当 π 求出渐开线 上对应的点 A、 y=sin φ-φcos φ
B,并求出 A、B 间的距离.
x=cos φ+φsin φ, π 解:将 φ=2代入 y=sin φ-φcos φ,
相关文档
最新文档