MAX6050AEUR+中文资料
NCE6050A Pb自由产品说明书
NCE N-Channel Enhancement Mode Power MOSFETDescriptionThe NCE6050A uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.General Features● V DS =60V,I D =50AR DS(ON) <20m Ω @ V GS =10V● High density cell design for ultra low Rdson ● Fully characterized avalanche voltage and current ● Good stability and uniformity with high E AS ● Excellent package for good heat dissipation ● Special process technology for high ESD capabilityApplication● Power switching application● Hard switched and high frequency circuits ● Uninterruptible power supply100% UIS TESTED!100% ∆Vds TESTED!Schematic diagramMarking and pin assignmentTO-220-3L top viewPackage Marking and Ordering InformationDevice MarkingDeviceDevice PackageReel SizeTape widthQuantityNCE6050A NCE6050A TO-220-3L---Absolute Maximum Ratings (T C =25℃unless otherwise noted)Parameter Symbol Limit UnitDrain-Source Voltage V DS 60 V Gate-Source Voltage V GS±20 V Drain Current-ContinuousI D 50 ADrain Current-Continuous(T C =100℃) I D (100℃) 35.4 A Pulsed Drain Current I DM 90 A Maximum Power Dissipation P D85 W Derating factor0.3 W/℃Single pulse avalanche energy (Note 5)E AS 245 mJOperating Junction and Storage Temperature RangeT J ,T STG-55 To 175℃Thermal CharacteristicThermal Resistance,Junction-to-Case (Note 2)R θJC3.3/W ℃Electrical Characteristics (T C =25℃unless otherwise noted)Parameter Symbol ConditionMin Typ Max UnitOff CharacteristicsDrain-Source Breakdown Voltage BV DSS V GS =0V I D =250μA 60 - - V Zero Gate Voltage Drain Current I DSS V DS =60V,V GS =0V -- 1 μA Gate-Body Leakage Current I GSS V GS =±20V,V DS =0V - - ±100 nA On Characteristics (Note 3) Gate Threshold VoltageV GS(th) V DS =V GS ,I D =250μA 1.4 1.9 2.5 V Drain-Source On-State Resistance R DS(ON) V GS =10V, I D =20A - 14 20 m Ω Forward Transconductance g FSV DS =5V,I D =20A 18- - S Dynamic Characteristics (Note4) Input Capacitance C lss - 2050 - PFOutput CapacitanceC oss - 158 - PFReverse Transfer Capacitance C rssV DS =30V,V GS =0V,F=1.0MHz- 120 - PF Switching Characteristics (Note 4) Turn-on Delay Time t d(on) - 7.4 - nSTurn-on Rise Time t r - 5.1 - nS Turn-Off Delay Time t d(off) - 28.2 - nSTurn-Off Fall Time t fV DD =30V, R L =6.7Ω V GS =10V,R G =3Ω - 5.5 -nSTotal Gate Charge Q g - 50 nCGate-Source Charge Q gs - 6 nCGate-Drain ChargeQ gd V DS =30V,I D =20A,V GS =10V- 15 nC Drain-Source Diode Characteristics Diode Forward Voltage (Note 3) V SDV GS =0V,I S =20A -1.2 V Diode Forward Current (Note 2)I S - - 50 A Reverse Recovery Time t rr - 28 - nS Reverse Recovery Charge Qrr TJ = 25°C, IF =20Adi/dt = 100A/μs (Note3)- 40 - nCForward Turn-On Timet onIntrinsic turn-on time is negligible (turn-on is dominated by LS+LD)Notes:1. Repetitive Rating: Pulse width limited by maximum junction temperature.2. Surface Mounted on FR4 Board, t ≤ 10 sec .3. Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 2%.4. Guaranteed by design, not subject to production5. EAS condition : Tj=25,VDD=℃30V,VG=10V,L=0.5mH,Rg=25ΩTest Circuit1) E AS test Circuit2) Gate charge test Circuit3) Switch Time Test CircuitTypical Electrical and Thermal Characteristics (Curves)Vds Drain-Source Voltage (V)Figure 1 Output CharacteristicsVgs Gate-Source Voltage (V)Figure 2 Transfer CharacteristicsI D - Drain Current (A)Figure 3 Rdson- Drain CurrentT J -Junction Temperature(℃)Figure 4 Rdson-Junction TemperatureQg Gate Charge (nC)Figure 5 Gate ChargeVsd Source-Drain Voltage (V)Figure 6 Source- Drain Diode ForwardR d s o n O n -R e s i s t a n c e (m Ω)I D - D r a i n C u r r e n t (A )I D - D r a i n C u r r e n t (A )N o r m a l i z e d O n -R e s i s t a n c eV g s G a t e -S o u r c e V o l t a g e (V )I s - R e v e r s e D r a i n C u r r e n t (A )Vds Drain-Source Voltage (V)Figure 7 Capacitance vs VdsVds Drain-Source Voltage (V)Figure 8 Safe Operation AreaT J -Junction Temperature(℃)Figure 9 BV DSS vs Junction TemperatureT J -Junction Temperature(℃)Figure 10 V GS(th) vs Junction TemperatureI D - D r a i n C u r r e n t (A )C C a p a c i t a n c e (p F )Square Wave Pluse Duration (sec)Figure 11 Normalized Maximum Transient Thermal Impedancer (t ),N o r m a l i z e d E f f e c t i v e T r a n s i e n t T h e r m a l I m p e d a n c eTO-220-3L Package InformationDimensions In Millimeters Dimensions In Inches SymbolMin.Max.Min.Max.A 4.400 4.600 0.173 0.181A1 2.250 2.550 0.089 0.100b 0.710 0.910 0.028 0.036b1 1.170 1.370 0.046 0.054c 0.330 0.650 0.013 0.026c1 1.200 1.400 0.047 0.055D 9.910 10.250 0.390 0.404E 8.9500 9.750 0.352 0.384E1 12.650 12.950 0.498 0.510e 2.540 TYP. 0.100 TYP.e1 4.980 5.180 0.196 0.204F 2.650 2.950 0.104 0.116H 7.900 8.100 0.311 0.319h 0.000 0.300 0.000 0.01213.400 0.508 0.528L 12.900L1 2.850 3.250 0.112 0.128 V 7.500 REF. 0.295 REF.Φ 3.400 3.800 0.134 0.150Attention:■Any and all NCE power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE power representative nearest you before using any NCE power products described or contained herein in such applications.■ NCE power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE power products described or contained herein.■Specifications of any and all NCE power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer’s products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer’s products or equipment.■ NCE power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.■ In the event that any or all NCE power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.■No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE power Semiconductor CO.,LTD.■Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. NCE power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE power product that you intend to use.■This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.。
MAX809中文资料_数据手册_参数
MAX809R/S/T/Z VCC < 3.6 V; MAX810R/S/T/Z Tamb = –40 °C to +85 °C
MAX809J/L/M MAX810J/L/M
VCC < 5.5 V; Tamb = +85 °C to +105 °C
MAX809R/S/T/Z VCC < 3.6 V; MAX810R/S/T/Z Tamb = +85 °C to +105 °C
2003 Aug 08
4
Philips Semiconductors
3-pin microprocessor resets
Product data
MAX809/MAX810
ELECTRICAL CHARACTERISTICS
VCC = full range (Tamb = –40 °C to +105 °C) unless otherwise noted; typical values are at Tamb = +25 °C, and VCC = 5 V (J/L/M versions), VCC = 3.3 V (T/S versions), VCC = 3 V (R version), and VCC = 2.5 V (Z version) (Note 1).
TEMPERATURE RANGE
–40 to +105 °C –40 to +105 °C –40 to +105 °C –40 to +105 °C
Part number
MAX809
MAX809ZD, MAX809ZW
MAX809RD, MAX809RW
IEC-6050中文版
適用否? Ye s Ye s Ye s Ye s YES Ye s Ye s
IEC 60950-1:2001介紹
- Electric shock
電殛的發生情形是因為有電流通過人體,只要有數毫安培的電 流,即可對正常健康人造成影響,並且有可能因不自覺地反應而 造成間接性危險。當然,更大的電流會造成更危險的情形。一 般而言,在乾燥情形下,小於40Vpeak或60Vdc的電壓,通常視為 不具危險的電壓。但是,可被觸碰的零件或是提把皆應接至大 地或是將其適當地隔離之。
下述危險的傷害, 人體泛指使用者及服務人員此二種類
型的人:
危險的種類 電殛 ( El ect r i c s hock) 危險能量 ( Ener gy hazar ds ) 火災 ( Fi r e) 機械及熱的危險 ( Mechani cal and heat hazar ds ) 幅射危險 ( Radi at i on hazar ds ) 化學的危險 ( Chemi cal hazar ds ) 材料及零件 ( Mat er i al s and component s )
IEC60950-1:2001介紹
4.3 功能接地(Functional Earthing)規定;若可觸及或其他的導 體零件必須要功能接地者,下列的所有要求可提供:
a.) 功能接地電路與危險電壓電路的電性隔離,須使用下列至少一種 的方法來達到: - _____雙_重__或__加_強____絕緣 - _基__本_絕緣及使用保護罩(Protective screen)連接到PE端子 b.) 功能接地電路允許接到__P_E_端_子__或 _P_r_o_te_c_t_iv_e_B_o_n_d_i_ng__c_o_n_d_u_ct_o_r c.) 只作功能接地的接線端子不可標示IEC 60417 No.___5_0_1_7_,或 ___5_0_19__的符號,除非該功能接地的接線端子是由如 terminal block 零件,或半成品所提供,則用IEC 60417 No._5_0_1_7___的符號標示是 可接受的。Note: d.) 設備內的功能接地的導線不能用__黃__綠_色___線。 e.) 若電源線使用__黃__綠__色__絕緣線僅作為功能接地連接,則設備不能 標示___C__la_s_s_I_I 的符號。
mpu6050中文资料
mpu6050中文资料Mpu-6000(6050)是世界上第一个集成的六轴运动处理模块。
与多元器件方案相比,mpu-6000(6050)消除了组合陀螺仪与加速器时间轴的差异问题,减少了大量的封装空间。
当连接到三轴磁强计时,mpu-60x0提供一个完整的9轴运动融合输出到它的主I2C或SPI 端口(SPI仅在mpu-6000上可用)。
1感测范围MPU-6000(6050)的角速度全格感测范围为±250、±500、±1000与±2000°/sec (dps),可准确追踪快速与慢速动作,并且,用户可程式控制的加速器全格感测范围为±2g、±4g±8g与±16g。
产品传输可透过最高至400kHz的IIC或最高达20MHz的SPI(MPU-6050没有SPI)。
MPU-6000可在不同电压下工作,VDD供电电压介为2.5V±5%、3.0V±5%或3.3V±5%,逻辑接口VDDIO供电为1.8V ±5%(MPU6000仅用VDD)。
MPU-6000的包装尺寸4x4x0.9mm(QFN),在业界是革命性的尺寸。
其他的特征包含内建的温度感测器、包含在运作环境中仅有±1%变动的振荡器。
2应用运动感测游戏现实增强电子稳像(EIS: Electronic Image Stabilization) 光学稳像(OIS: Optical Image Stabilization) 行人导航器“零触控”手势用户接口姿势快捷方式认证车轮力传感器3市场智能型手机平板装置设备手持型游戏产品游戏机3D遥控器可携式导航设备4特征以数字输出6轴或9轴的旋转矩阵、四元数(quaternion)、欧拉角格式(Euler Angle forma)的融合演算数据。
具有131 LSBs/°/sec 敏感度与全格感测范围为±250、±500、±1000与±2000°/sec 的3轴角速度感测器(陀螺仪)。
MAX4060EUA中文资料
ELECTRICAL CHARACTERISTICS
(VCC = 3V for MAX4061/MAX4062, VCC = 5V for MAX4060, GND = 0V, SHDN = VCC, INT/AUX = 0V, RG = 11.11kΩ, RL = 100kΩ to 1.5V, RBIAS = ∞, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 2)
TEMP RANGE
MAX4060ETA -40°C to +85°C
MAX4060EUA -40°C to +85°C
MAX4061ETA -40°C to +85°C
MAX4061EUA -40°C to +85°C
MAX4062EUB -40°C to +85°C
*EP = Exposed paddle.
Input Noise-Voltage Density
BW-3dB RIN
RMATCH
en
Either differential input
AV = 10V/V, f = 1kHz AV = 100V/V, f = 1kHz, MAX4061/MAX4062 only
RMS Output Noise Voltage
元1/03
MAX4060/MAX4061/MAX4062
Differential Microphone Preamplifiers with Internal Bias and Complete Shutdown
General Description
max485esa中文资料
General DescriptionThe MAX481, MAX483, MAX485, MAX487–MAX491, andMAX1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and onereceiver. The MAX483, MAX487, MAX488, and MAX489feature reduced slew-rate drivers that minimize E MI andreduce reflections caused by improperly terminated cables,thus allowing error-free data transmission up to 250kbps.The driver slew rates of the MAX481, MAX485, MAX490,MAX491, and MAX1487 are not limited, allowing them totransmit up to 2.5Mbps.These transceivers draw between 120µA and 500µA ofsupply current when unloaded or fully loaded with disableddrivers. Additionally, the MAX481, MAX483, and MAX487have a low-current shutdown mode in which they consumeonly 0.1µA. All parts operate from a single 5V supply.Drivers are short-circuit current limited and are protectedagainst excessive power dissipation by thermal shutdowncircuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature thatguarantees a logic-high output if the input is open circuit.The MAX487 and MAX1487 feature quarter-unit-loadreceiver input impedance, allowing up to 128 MAX487/MAX1487 transceivers on the bus. Full-duplex communi-cations are obtained using the MAX488–MAX491, whilethe MAX481, MAX483, MAX485, MAX487, and MAX1487are designed for half-duplex applications.________________________Applications Low-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level Translators Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks__Next Generation Device Features o For Fault-Tolerant Applications MAX3430: ±80V Fault-Protected, Fail-Safe, 1/4Unit Load, +3.3V, RS-485 Transceiver MAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-Safe, RS-485/J1708 Transceivers o For Space-Constrained Applications MAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus RS-485/RS-422 Transceivers MAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 Package MAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422,True Fail-Safe Receivers MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-485/RS-422 Transmitters o For Multiple Transceiver Applications MAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters o For Fail-Safe Applications MAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422Transceiverso For Low-Voltage ApplicationsMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kVESD-Protected, 12Mbps, Slew-Rate-Limited,True RS-485/RS-422 Transceivers For pricing, delivery, and ordering information, please contact Maxim Direct at1-888-629-4642, or visit Maxim Integrated’s website at .______________________________________________________________Selection Table19-0122; Rev 10; 9/14PARTNUMBERHALF/FULL DUPLEX DATA RATE (Mbps) SLEW-RATE LIMITED LOW-POWER SHUTDOWN RECEIVER/DRIVER ENABLE QUIESCENT CURRENT (μA) NUMBER OF RECEIVERS ON BUS PIN COUNT MAX481Half 2.5No Yes Yes 300328MAX483Half 0.25Yes Yes Yes 120328MAX485Half 2.5No No Yes 300328MAX487Half 0.25Yes Yes Yes 1201288MAX488Full 0.25Yes No No 120328MAX489Full 0.25Yes No Yes 1203214MAX490Full 2.5No No No 300328MAX491Full 2.5No No Yes 3003214MAX1487 Half 2.5No No Yes 2301288Ordering Information appears at end of data sheet.找电子元器件上宇航军工MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-LimitedRS-485/RS-422 TransceiversPackage Information For the latest package outline information and land patterns, go to . Note that a “+”, “#”, or “-”in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.16Low-Power, Slew-Rate-Limited RS-485/RS-422 TransceiversMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-100017©2014 Maxim Integrated Products, Inc.Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.。
FR605资料
·Low Reverse Recovery Time ·Low Reverse Current·Low Forward Voltage Drop ·High Current Capability·Plastic Material:UL Flammability Classification Rating 94V-0·Case: R-6, Molded Plastic·Terminals: Axial Leads,Solderable per MIL-STD-202Method 208·Polarity: Color Band Denotes Cathode ·Weight: 1.7 grams (approx.)·Mounting Position: AnyCharacteristicSymbol FR601FR 602FR 603FR 604FR 605FR 606FR 607Unit Maximum Recurrent Peak Reverse Voltage V RRM 501002004006008001000V Maximum RMS Voltage V RMS 3570140280420560700V Maximum DC Blocking voltageV DC 501002004006008001000V Maximum Average Forward Rectified Current 9.5mm Lead Length @ T A =75°C I (AV) 6.0A Peak Forward Surge Current8.3ms single half sine-wave superimposed on rated load (JEDEC method)I FSM 300A Maximum Instantaneous Forward Voltage@ 6.0A DCV F 1.3V Maximum DC Reverse Current at Rated Blocking Voltage@ T A = 25°CI R 10m A Maximum Full Load Reverse Current Full Cycle Average 9.5mm lead length @ T L = 55°C I R 150m A Maximum Reverse Recovery Time (Note 1)T rr 150250500ns Typical Junction Capacitance (Note 2)C J 200pF Operating and Storage Temperature RangeT J ,T STG-65 to +175°CNotes:1. Reverse Recovery Test Conditions: I F =0.5A, I R =1.0A,I RR =0.25A2. Measured at 1.0MHz and applied reverse voltage of 4.0V.AAB CDFR601 - FR6076.0A FAST RECOVERY RECTIFIERR-6Dim Min Max A 25.4¾B 8.69.1C 1.2 1.3D8.69.1All Dimensions in mmMechanical DataFeaturesMaximum Ratings and Electrical Characteristics@ T A = 25°C unless otherwise specified.2468255075100125150175I ,A V E R A G E F O R W A R D C U R R E N T(A V )T ,AMBIENT TEMPERATURE (°C)Fig.1,Typical Forward Current Derating CurveA 10100200110100I ,P E A K F O R W A R D S U R G E C U R R E N T (A M P E R E S )F S M NUMBER OF CYCLES AT 60HzFig.4,Maximum Non-Repetitive SurgeCurrent0.111010010000.60.81.01.21.41.61.82.0I ,I N S T A N T A N E O U S F O R W A R D C U R R E N T (A M P E R E S )F V ,INSTANTANEOUS FORWARD VOLTAGE (VOLTS)Fig.3,Typical Instantaneous Forward CharacteristicsF100200300400500600110100I ,P E A K F O R W A R D S U R G E C U R R E N T (A M P E R E S )F s m NUMBER OFCYCLES AT 60HzFig.2,Max Non-Repetitive Peak Surge Current。
MPU-6050部分中文资料
MPU-60501 MPU-6050简介MPU-60X0 是全球首例9 轴运动处理传感器。
它集成了3 轴MEMS 陀螺仪,3 轴MEMS加速度计,以及一个可扩展的数字运动处理器DMP(Digital Motion Processor),可用I2C接口连接一个第三方的数字传感器,比如磁力计。
扩展之后就可以通过其I2C 或SPI 接口输出一个9 轴的信号(SPI 接口仅在MPU-6000 可用)。
MPU-60X0 也可以通过其I2C 接口连接非惯性的数字传感器,比如压力传感器。
MPU-60X0 对陀螺仪和加速度计分别用了三个16 位的ADC,将其测量的模拟量转化为可输出的数字量。
为了精确跟踪快速和慢速的运动,传感器的测量范围都是用户可控的,陀螺仪可测范围为±250,±500,±1000,±2000°/秒(dps),加速度计可测范围为±2,±4,±8,±16g。
一个片上1024 字节的FIFO,有助于降低系统功耗。
和所有设备寄存器之间的通信采用400kHz 的I2C 接口或1MHz 的SPI 接口(SPI 仅MPU-6000 可用)。
对于需要高速传输的应用,对寄存器的读取和中断可用20MHz 的SPI。
另外,片上还内嵌了一个温度传感器和在工作环境下仅有±1%变动的振荡器。
芯片尺寸4×4×0.9mm,采用QFN 封装(无引线方形封装),可承受最大10000g 的冲击,并有可编程的低通滤波器。
关于电源,MPU-60X0 可支持VDD 范围2.5V±5%,3.0V±5%,或3.3V ±5%。
另外MPU-6050 还有一个VLOGIC 引脚,用来为I2C 输出提供逻辑电平。
VLOGIC 电压可取1.8±5%或者VDD。
2.应用领域●AirSign™技术(安全/身份验证)●TouchAnywhere™技术(“不接触”UI应用程序控制/导航)●MotionCommand™技术(手势捷径)●Motion-enabled游戏和应用程序框架●InstantGesture™iG™手势识别●基于位置服务的兴趣点、航迹推算●手机和便携式游戏●各自游戏控制器●3d网络连接遥控器,机顶盒,3 d小鼠●可穿戴传感器对健康、健身和体育●玩具3特征以数字输出6 轴或9 轴的旋转矩阵、四元数(quaternion)、欧拉角格式(Euler Angle forma)的融合演算数据。
MAX5490MC02000-T中文资料
General DescriptionThe MAX5490 precision resistor-divider consists of two accurately matched resistors with access to the ends and center of the divider. This device offers excellent resistance matching of 0.035% (A grade), 0.05% (B grade), and 0.1% (C grade). The MAX5490 provides an extremely low resistance-ratio temperature drift of 1ppm/°C (typ) over -55°C to +125°C, and has an end-to-end resistance of 100k Ω. Resistance ratios from 1:1 to 100:1 are available. Five standard ratios are available (see Table 1), and custom ratios are also available upon request. The MAX5490 is ideal for precision gain-setting applications where tight resistance matching and low temperature drift are necessary.The MAX5490 is available in a space-saving 3-pin SOT23 package, and is guaranteed over the military -55°C to +125°C temperature range.ApplicationsIndustrial Process Control Instrumentation Precision Gain Setting Medical Equipment Automatic Test Equipment Base StationsFeatures♦Resistance Ratios from 1:1 to 100:1♦Custom Ratios Available Upon Request ♦Tight Initial Ratio Accuracy0.035% (MAX5490A)0.05% (MAX5490B)0.1% (MAX5490C)♦Low 1ppm/°C (typ) Resistor-Ratio-Drift♦Up to 80V Operating Voltage Across Sum of R1and R2♦Tiny 3-Pin SOT23 PackageMAX5490100k ΩPrecision-Matched Resistor-Divider inSOT23________________________________________________________________Maxim Integrated Products 1Pin ConfigurationOrdering Information*Block Diagram19-3337; Rev 2; 3/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at1-888-629-4642, or visit Maxim’s website at .*See the How to Order section for more details.M A X 5490100k ΩPrecision-Matched Resistor-Divider in SOT232_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(T= -55°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage Between P1 and P2.................................................100V Maximum Current into Any Pin......................................±1.00mA Continuous Power Dissipation (T A = +70°C)3-Pin SOT23 (derate 7.1mW/°C above +70°C).........571.4mW 3-Pin SOT23 (θJ-A ).....................................................141°C/WOperating Temperature Range.........................-55°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CNote 1:The MAX5490 is 100% production tested at T A = +25°C. Specifications over -55°C to +125°C are guaranteed by designand characterization.Note 2:Testing conditions: T A = +25°C, V P1-P2= 10V and 80V.Note 3:For ratios from 25:1 to 100:1, contact factory.Note 4:Absolute TCR is defined asand is guaranteed by design, not production tested.and is tested at 10V and 80V.MAX5490100k ΩPrecision-Matched Resistor-Divider inSOT23_______________________________________________________________________________________39565-25535-20-1001020304050-30-55125NORMALIZED RESISTANCE-RATIO DRIFTvs. TEMPERATURETEMPERATURE (°C)R A T I O D R I F T (p p m )-80-4004080120160-1209565-25535-55125NORMALIZED RESISTANCE-RATIO DRIFTvs. TEMPERATURETEMPERATURE (°C)R A T I O D R I F T (p p m )9565-25535-150-100-50050100150200-200-55125NORMALIZED RESISTANCE-RATIO DRIFTvs. TEMPERATURETEMPERATURE (°C)R A T I O D R I F T (p p m )-0.04-0.03-0.02-0.0100.010.020.030.0402040607010305080RESISTANCE-RATIO ACCURACYvs. VOLTAGEVOLTAGE (V)R A T I O A C C U R A C Y (%)0.11011001000FREQUENCY RESPONSEFREQUENCY (kHz)RE S P O N S E (d B )6-18-12-9-33-15-60Typical Operating Characteristics(V P1-P2= 10V, TA = +25°C, unless otherwise noted.)Note 5:Resistance-ratio voltage coefficient is defined asand is guaranteed by design, not production tested.Note 6:where C = C P3and DC ELECTRICAL CHARACTERISTICS (continued)(T A = -55°C to +125°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)M A X 5490100k ΩPrecision-Matched Resistor-Divider in SOT234_______________________________________________________________________________________Detailed DescriptionAs shown in the Block Diagram , the MAX5490 consists of two precision, low-ratio-drift resistors with an end-to-end resistance of 100k Ω(R 1+ R 2). P3 is the set point of the divider. The maximum working voltage of the MAX5490 is 80V. This device offers a wide range of resistance ratios (R 1/R 2) from 1:1 to 100:1 and is ideal for precision operational amplifier gain/attenuation con-trol. A maximum initial ratio accuracy of 0.035% and a low 1ppm/°C ratio drift enhance system accuracy.Applications InformationSelf-Heating and ErrorApplying a voltage across terminals P1 and P2 causesthe device to heat up due to power dissipation. In high-voltage applications, consider the error in resistance-ratio temperature coefficient caused by self-heating.The worst-case self-heating occurs when the operating voltage attains its maximum value. Approximate the result of power dissipation under this condition as:The thermal resistance from junction to ambient, θJ-A ,for a 3-pin SOT23 package is 141°C/W. Calculate the resulting temperature rise as:∆T = 64mW x 141°C/W = 9.02°CIf the ratio temperature coefficient is 1ppm/°C (typ), the total error introduced by self-heating is:9.02°C x 1ppm/°C = 9.02ppmPin Description10001011001k100FREQUENCY (Hz)N O I S E (n V /√H z )10SPECTRAL NOISE DENSITYM A X 5490 t o c 061001010.10.010.0010.0001101k 10k 100100kTOTAL HARMONIC DISTORTIONPLUS NOISE RESPONSEFREQUENCY (Hz)T H D +N (%)Typical Operating Characteristics (continued)(V P1-P2= 10V, T A = +25°C, unless otherwise noted.)MAX5490100k ΩPrecision-Matched Resistor-Divider inSOT23_______________________________________________________________________________________5Figure 3. Buffered Attenuator Figure 1. Inverting Amplifier Configuration Figure 4. Attenuator with BufferFigure 2. Noninverting Amplifier ConfigurationTypical ApplicationsM A X 5490100k ΩPrecision-Matched Resistor-Divider in SOT236_______________________________________________________________________________________Example Part NumbersMAX5490100k ΩPrecision-Matched Resistor-Divider inSOT237Table 2. Ratio RangesChip InformationTRANSISTOR COUNT: 0PROCESS: BiCMOS*Standard ratios are available for ordering in any quantity. Nonstandard ratios are also available for values between 1:1 to 100:1. A minimum order quantity of 10,000 units is required for nonstandard ratios. Please contact factory for more information.M A X 5490100k ΩPrecision-Matched Resistor-Divider in SOT23Maxim cannot assume responsib ility for use of any circuitry other than circuitry entirely emb odied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2005 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products, Inc.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
MAX6064AEUR-T中文资料
MAX6064AEUR-T中⽂资料General DescriptionThe MAX6061–MAX6068 are precision, low-dropout,micropower voltage references. These three-terminal devices are available with output voltage options of 1.25V, 1.8V, 2.048V, 2.5V, 3V, 4.096V, 4.5V, and 5V.They feature a proprietary curvature-correction circuit and laser-trimmed thin-film resistors that result in a very low temperature coefficient of 20ppm/°C (max) and an initial accuracy of ±0.2% (max). Specifications apply to the extended temperature range (-40°C to +85°C). The MAX6061–MAX6068 typically draw only 90µA of supply current and can source 5mA or sink 2mA of load current. Unlike conventional shunt-mode (two-terminal)references that waste supply current and require an external resistor, these devices offer a supply current that is virtually independent of the supply voltage (8µA/V variation) and do not require an external resis-tor. Additionally, the internally compensated devices do not require an external compensation capacitor.Eliminating the external compensation capacitor saves valuable board area in space-critical applications. Low dropout voltage and supply independent, ultra-low sup-ply current make these devices ideal for battery-operat-ed, high-performance, low-voltage systems.The MAX6061–MAX6068 are available in a 3-pin SOT23package.ApplicationsAnalog-to-Digital Converters (ADCs)Portable Battery-Powered Systems Notebook Computers PDAs, GPSs, DMMs Cellular PhonesPrecision 3V/5V SystemsFeatureso Ultra-Small 3-Pin SOT23 Package o ±0.2% (max) Initial Accuracyo 20ppm/°C (max) Temperature Coefficient o 5mA Source Current o 2mA Sink Currento No Output Capacitor Required o Stable with Capacitive Loads o 90µA (typ) Quiescent Supply Current o 200mV (max) Dropout at 1mA Load Current o Output Voltage Options: 1.25V, 1.8V, 2.048V, 2.5V,3V, 4.096V, 4.5V, 5Vo 13µVp-p Noise 0.1Hz to 10Hz (MAX6061)MAX6061–MAX6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References________________________________________________________________Maxim Integrated Products119-1659; Rev 1; 4/01Ordering InformationPin ConfigurationSelector GuideNote:There is a minimum order increment of 2500 pieces for SOT23 packages.Typical Operating Circuit appears at end of data sheet.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at /doc/5d9648470.html.M A X 6061–M A X 6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References2_______________________________________________________________________________________ ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS —MAX6061, V OUT = 1.25VStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(Voltages Referenced to GND) IN.........................................................................-0.3V to +13.5V OUT .............................................................-0.3V to (V IN +0.3V)Output Short-Circuit Duration to GND or IN (V IN < 6V)...Continuous Output Short-Circuit Duration to GND or IN (V IN ≥6V)................60sContinuous Power Dissipation (T A = +70°C)3-Pin SOT23 (derate 4.0mW/°C above +70°C)............320mW Operating Temperature Range ...........................-40°C to+85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering,10s).................................+300°CMAX6061–MAX6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References_______________________________________________________________________________________3 ELECTRICAL CHARACTERISTICS —MAX6068, V OUT = 1.80VM A X 6061–M A X 6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References4_______________________________________________________________________________________ ELECTRICAL CHARACTERISTICS —MAX6062, V OUT = 2.048V(V IN = +5V, I OUT = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)MAX6061–MAX6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References(V IN = +5V, I OUT = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)M A X 6061–M A X 6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References6_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS —MAX6063, V OUT = 3.0V(V = +5V, I = 0, T = T to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)MAX6061–MAX6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References_______________________________________________________________________________________7 ELECTRICAL CHARACTERISTICS —MAX6064, V OUT = 4.096V(V IN = +5V, I OUT = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)M A X 6061–M A X 6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References8_______________________________________________________________________________________ ELECTRICAL CHARACTERISTICS —MAX6067, V OUT = 4.500V(V IN = +5V, I OUT = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)MAX6061–MAX6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References_______________________________________________________________________________________9 ELECTRICAL CHARACTERISTICS —MAX6065, V OUT = 5.000V(V= +5.2V, I = 0, T = T to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)Note 1:All devices are 100% production tested at T A = +25°C and are guaranteed by design for T A = T MIN to T MAX , as specified.Note 2:Temperature Coefficient is measured by the “box ” method, i.e., the maximum ?V OUT is divided by the maximum ?T.Note 3:Temperature Hysteresis is defined as the change in +25°C output voltage before and after cycling the device from TM A X 6061–M A X 6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References10______________________________________________________________________________________ M A X 6061/68 t o c 09FREQUENCY (kHz)P S R R (d B )-10-20-30-40-50-60-70-80-900.0011101000.010.11000MAX6061POWER-SUPPLY REJECTION RATIOvs. FREQUENCYTypical Operating Characteristics(V IN = +5V for MAX6061–MAX6068, V IN = +5.5V for MAX6065, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5)2.0462.0472.0492.0482.0502.051-4010-15356085MAX6062OUTPUT VOLTAGE TEMPERATURE DRIFT4.9984.9995.0015.0005.0025.003-4010-15356085MAX6065OUTPUT VOLTAGE TEMPERATURE DRIFT TEMPERATURE (°C)O U T P U T V O L T A G E (V )-300-200-100010020030024681012MAX6061LINE REGULATIONINPUT VOLTAGE (V)O U T P U T V O L T A G E C H A N G E (µV ) -1200-600-800-1000-400-20002005971113MAX6065LINE REGULATIONINPUT VOLTAGE (V)O U T P U T V O L T A G E C H A N G E (µV )24LOAD CURRENT (mA)O U T P U T V O L T A G E C H A N G E (m V)MAX6061LOAD REGULATION-620-2-44861012-6-2-4246LOAD CURRENT (mA)O U T P U T V O L T A G E C H A N G E (m V )MAX6065LOAD REGULATION00.100.050.200.150.250.30021345MAX6066DROPOUT VOLTAGE vs. LOAD CURRENTLOAD CURRENT (mA)D R O P O U T V O L T A GE (V )0.200.2521345LOAD CURRENT (mA)D R O P O U T V O L T A GE (V )MAX6065DROPOUT VOLTAGE vs. LOAD CURRENTMAX6061–MAX6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References______________________________________________________________________________________11 -70-800.001101000-60-50-40-30-20-100FREQUENCY (kHz)P S R R (d B )0.1MAX6065POWER-SUPPLY REJECTION RATIOvs. FREQUENCYM A X 6061/68 t o c 10708090100110246M A X 6061/68 t o c 11INPUT VOLTAGE (V)S U P P L Y C U R R E N T (µA )MAX6061SUPPLY CURRENT vs. INPUT VOLTAGE808595901051101001155791113INPUT VOLTAGE (V)S U P P L Y C U R R E N T (µA )MAX6065SUPPLY CURRENT vs. INPUT VOLTAGE 708090100110120-4010-15356085TEMPERATURE (°C)S U P P L Y C U R R E N T (µA)MAX6061SUPPLY CURRENT vs. TEMPERATURE8595356085TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )MAX6065SUPPLY CURRENT vs. TEMPERATURE00.00110100040206080100140120160180200220M A X 6061/68 t o c 15FREQUENCY (kHz)O U T P U T I M P E D A N C E (?)0.1MAX6061OUTPUT IMPEDANCE vs. FREQUENCY18000.00110100040206010080120140160M A X 6061/68 t o c 16FREQUENCY (kHz)O U T P U T I M P E D A N C E (?)0.1MAX6065OUTPUT IMPEDANCE vs. FREQUENCYV OUT 10µV/div 1s/div MAX60610.1Hz TO 10Hz OUTPUT NOISEM A X 6061/68 t o c 17Typical Operating Characteristics (continued)(V IN = +5V for MAX6061–MAX6068, V IN = +5.5V for MAX6065, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5) V OUT 10µV/divM A X 6061/68 t o c 18M A X 6061–M A X 6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References12______________________________________________________________________________________Typical Operating Characteristics (continued)(V IN = +5V for MAX6061–MAX6068, V IN = +5.5V for MAX6065, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5) I OUT 500µA/divV OUTAC-COUPLED20mV/div400µs/divMAX6065LOAD TRANSIENT(I OUT = ±250µA, C L = 1µF, V IN = 5.5V)+250µA-250µAMAX6061/68 toc24V OUT 500mV/divV IN 5V/div10µs/divMAX6061TURN-ON TRANSIENT(C L = 50pF)M A X 6061/68 t o c 19V OUT 2V/divV IN 5V/div40µs/divMAX6065TURN-ON TRANSIENT(C L = 50pF)M A X 6061/68 t o c 20I OUT 500µA/divV OUTAC-COUPLED 100mV/div 400µs/divI OUT +250µA I OUT -250µAMAX6061/68 toc21I OUT 500µA/divV OUTAC-COUPLED50mV/div400µs/divMAX6065LOAD TRANSIENT(I OUT = ±250µA, C L = 0, V IN = 5.5V)+250µA-250µAMAX6061/68 toc22I OUT 500µA/divV OUTAC-COUPLED10mV/div400µs/divMAX6061LOAD TRANSIENT(I OUT = ±250µA, V IN = 5.0V, C L = 1µF)+250µA -250µAMAX6061/68 toc23MAX6061–MAX6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References______________________________________________________________________________________13Typical Operating Characteristics (continued)(V IN = +5V for MAX6061–MAX6068, V IN = +5.5V for MAX6065, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5) I OUT 5mA/divV OUTAC-COUPLED 100mV/div400µs/div MAX6061LOAD TRANSIENT(V IN = 5.0V, C L = 0, I OUT = ±2mA)+2mA-2mAMAX6061/68 toc25I OUT 5mA/divV OUTAC-COUPLED50mV/div400µs/divMAX6065LOAD TRANSIENT(C L = 0, I OUT = ±2mA, V IN = 5.5V)+2mA -2mAMAX6061/68 toc26I OUT 5mA/divV OUTAC-COUPLED50mV/div 400µs/div MAX6061LOAD TRANSIENT (V IN = 5.0V, C L = 1µF, I OUT = ±2mA)+2mA-2mAMAX6061/68 toc27I OUT 5mA/divV OUTAC-COUPLED20mV/div400µs/divMAX6065LOAD TRANSIENT(C L = 1µF, I OUT = ±2mA, V IN = 5.5V)+2mA -2mAMAX6061/68 toc28I OUT 5mA/divV OUTAC-COUPLED 200mV/div400µs/div MAX6061LOAD TRANSIENT(V IN = 5.0V, C L = 0, I OUT = ±4mA)+4mA-4mAMAX6061/68 toc29I OUT 5mA/divV OUTAC-COUPLED 100mV/div400µs/divMAX6065LOAD TRANSIENT(I OUT = ±5mA, C L = 0, V IN = 5.5V)+5mA-5mAMAX6061/68 toc30M A X 6061–M A X 6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References 14______________________________________________________________________________________ I OUT 5mA/divV OUTAC-COUPLED50mV/div400µs/divMAX6065LOAD TRANSIENT(I OUT = ±5mA, C L = 1µF, V IN = 5.5V)+5mA-5mAMAX6061/68 toc32V IN500mV/divV OUTAC-COUPLED20mV/div MAX6061LINE TRANSIENT(C L = 0)+0.25-0.25MAX6061/68 toc3340µs/div V IN500mV/divV OUTAC-COUPLED20mV/div40µs/divMAX6065LINE TRANSIENT(C L = 0)+0.25-0.25MAX6061/68 toc34Typical Operating Characteristics (continued)(V IN = +5V for MAX6061–MAX6068, V IN = +5.5V for MAX6065, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5) I OUT 5mA/divV OUTAC-COUPLED50mV/div400µs/div MAX6061LOAD TRANSIENT(V IN = 5.0V, C L = 1µF, I OUT = ±4mA)+4mA-4mAMAX6061/68 toc31Note 5:Many of the MAX6061 family Typical Operating Characteristics are extremely similar. The extremes of these characteristicsare found in the MAX6061 (1.25V output) and the MAX6065 (5.0V output). The Typical Operating Characteristics of the remainder of the MAX6061 family, typically lie between these two extremes and can be estimated based on their output voltages.MAX6061–MAX6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage References______________________________________________________________________________________15 Applications InformationInput BypassingFor the best line-transient performance, decouple the input with a 0.1µF ceramic capacitor as shown in the Typical Operating Circuit . Locate the capacitor as close to IN as possible. Where transient performance is less important, no capacitor is necessary.Output/Load CapacitanceDevices in the MAX6061 family do not require an output capacitance for frequency stability.I n applications where the load or the supply can experience step changes, an output capacitor of at least 0.1µF will reduce the amount of overshoot (undershoot) and improve the circuit ’s transient response. Many applica-tions do not require an external capacitor, and the MAX6061 family can offer a significant advantage in these applications when board space is critical.Supply CurrentThe quiescent supply current of the series-mode MAX6061 family is typically 90µA and is virtually inde-pendent of the supply voltage, with only an 8µA/V (max)variation with supply voltage. Unlike series references,shunt-mode references operate with a series resistor connected to the power supply. The quiescent current of a shunt-mode reference is thus a function of theinput voltage. Additionally, shunt-mode references have to be biased at the maximum expected load current, even if the load current is not present at the time. I n the MAX6061 family, the load current is drawn from the input voltage only when required, so supply current is not wasted and efficiency is maximized at all input volt-ages. This improved efficiency reduces power dissipa-tion and extends battery life. When the supply voltage is below the minimum specified input voltage (as during turn-on), the devices can draw up to 400µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.Output Voltage HysteresisOutput voltage hysteresis is the change of output voltage at T A = +25°C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical tem-perature hysteresis value is 130ppm.Turn-On TimeThese devices typically turn on and settle to within 0.1%of their final value in 50µs to 300µs, depending on the device. The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout voltage and the maximum load. Chip InformationTRANSISTOR COUNT: 117PROCESS: BiCMOSOrdering Information (continued)M A X 6061–M A X 6068Precision, Micropower, Low-Dropout,High-Output-Current, SOT23 Voltage ReferencesPackage InformationMaxi m cannot assume responsi bi li ty for use of any ci rcui try other than ci rcui try enti rely embodi ed i n a Maxi m product. No ci rcui t patent li censes are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600?2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。
MAX805中文资料
_______________General DescriptionThese microprocessor (µP) supervisory circuits reduce the complexity and number of components required for power-supply monitoring and battery-control functions in µP systems. They significantly improve system relia-bility and accuracy compared to separate ICs or discrete components.These devices are designed for use in systems powered by 3.0V or 3.3V supplies. See the selector guide in the back of this data sheet for similar devices designed for 5V systems. The suffixes denote different reset threshold voltages: 3.075V (T), 2.925V (S), and 2.625V (R) (see Reset Threshold section in the Detailed Description ). All these parts are available in 8-pin DIP and SO packages.Functions offered in this series are as follows:________________________ApplicationsBattery-Powered Computers and Controllers Embedded Controllers Intelligent Instruments Automotive SystemsCritical µP Power Monitoring Portable Equipment____________________________Featureso –R —E —S —E —T –and RESET Outputs o Manual Reset Inputo Precision Supply-Voltage Monitor o 200ms Reset Time Delayo Watchdog Timer (1.6sec timeout)o Battery-Backup Power Switching—Battery Can Exceed V CC in Normal Operation o 40µA V CC Supply Current o 1µA Battery Supply Currento Voltage Monitor for Power-Fail or Low-Battery Warningo Guaranteed –R —E —S —E —T –Assertion to V CC = 1V o8-Pin DIP and SO Packages______________Ordering InformationOrdering Information continued on last page.* Contact factory for dice specifications.** These parts offer a choice of reset threshold voltage. Select the letter corresponding to the desired nominal reset threshold voltage (T = 3.075V, S = 2.925V, R = 2.625V) and insert it into the blank to complete the part number.MAX690T/S/R, 704T/S/R, 802T/S/R, 804–806T/S/R3.0V/3.3V Microprocessor Supervisory Circuits________________________________________________________________Maxim Integrated Products 1__________________Pin Configuration_________Typical Operating CircuitsCall toll free 1-800-998-8800 for free samples or literature.19-0243; Rev 1; 9/94M A X 690T /S /R , 704T /S /R , 802T /S /R , 804–806T /S /R3.0V/3.3V Microprocessor Supervisory Circuits 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = 3.17V to 5.5V for the MAX690T/MAX704T/MAX80_T, V CC = 3.02V to 5.5V for the MAX690S/MAX704S/MAX80_S, V CC = 2.72V to 5.5V for the MAX690R/MAX704R/MAX80_R; VBATT = 3.6V; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Terminal Voltage (with respect to GND)V CC .........................................................................-0.3V to 6.0V VBATT....................................................................-0.3V to 6.0V All Other Inputs ...................-0.3V to the higher of V CC or VBATT Continuous Input CurrentV CC ..................................................................................100mA VBATT...............................................................................18mA GND..................................................................................18mA Output Current –R —E —S —E —T –, –P —F —O –....................................................................18mA V OUT ................................................................................100mAContinuous Power Dissipation (T A = +70°C)Plastic DIP (derate 9.09mW/°C above +70°C)..............727mW SO (derate 5.88mW/°C above +70°C)...........................471mW CERDIP (derate 8.00mW/°C above +70°C)...................640mW Operating Temperature RangesMAX690_C_ _/MAX704_C_ _/MAX80_ _C_ _........0°C to +70°C MAX690_E_ _/MAX704_E_ _/MAX80_ _E_ _......-40°C to +85°C MAX690_M_ _/MAX704_M_ _/MAX80_ _M_ _...-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX690T/S/R, 704T/S/R, 802T/S/R, 804–806T/S/R3.0V/3.3V Microprocessor Supervisory Circuits_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V CC = 3.17V to 5.5V for the MAX690T/MAX704T/MAX80_T, V CC = 3.02V to 5.5V for the MAX690S/MAX704S/MAX80_S, V CC = 2.72V to 5.5V for the MAX690R/MAX704R/MAX80_R; VBATT = 3.6V; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25˚C.)M A X 690T /S /R , 704T /S /R , 802T /S /R , 804–806T /S /R3.0V/3.3V Microprocessor Supervisory Circuits 4_______________________________________________________________________________________Note 1: V CC supply current, logic input leakage, watchdog functionality (MAX690_/802_/805_/804_), M R functionality(MAX704_/806_), PFI functionality, state of –R —E —S —E —T –(MAX690_/704_/802_/806_), and RESET (MAX804_/805_) tested atVBATT = 3.6V, and V CC = 5.5V. The state of –R —E —S —E —T –or RESET and –P —F —O –is tested at V CC = V CC min.Note 2:Tested at VBATT = 3.6V, V CC = 3.5V and 0V. The battery current will rise to 10µA over a narrow transition window aroundV CC = 1.9V.Note 3:Leakage current into the battery is tested under the worst-case conditions at V CC = 5.5V, VBATT = 1.8V and at V CC = 1.5V,VBATT= 1.0V.Note 4:Guaranteed by design.Note 5:When V SW > V CC > VBATT, V OUT remains connected to V CC until V CC drops below VBATT. The V CC -to-VBATT comparatorhas a small 25mV typical hysteresis to prevent oscillation. For V CC < 1.75V (typ), V OUT switches to VBATT regardless of the voltage on VBATT.Note 6: When VBATT > V CC > V SW , V OUT remains connected to V CC until V CC drops below the battery switch threshold (V SW ).Note 7:V OUT switches from VBATT to V CC when V CC rises above the reset threshold, independent of VBATT. Switchover back toV CC occurs at the exact voltage that causes –R —E —S —E —T –to go high (on the MAX804_/805_, RESET goes low); however switchover occurs 200ms prior to reset.Note 8:The reset threshold tolerance is wider for V CC rising than for V CC falling to accommodate the 10mV typical hysteresis, whichprevents internal oscillation.Note 9:The leakage current into or out of the RESET pin is tested with RESET asserted (RESET output high impedance).ELECTRICAL CHARACTERISTICS (continued)(V CC = 3.17V to 5.5V for the MAX690T/MAX704T/MAX80_T, V CC = 3.02V to 5.5V for the MAX690S/MAX704S/MAX80_S, V CC = 2.72V to 5.5V for the MAX690R/MAX704R/MAX80_R; VBATT = 3.6V; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25˚C.)MAX690T/S/R, 704T/S/R, 802T/S/R, 804–806T/S/R3.0V/3.3V Microprocessor Supervisory Circuits_______________________________________________________________________________________55–60–2060140V CC -to-V OUT ON-RESISTANCEvs. TEMPERATURE14TEMPERATURE (°C)V C C -t o -V O U T O N -R E S I S T A N C E (Ω)20100–40080401203218020–60–2060140VBATT-to-V OUT ON-RESISTANCEvs. TEMPERATURE60TEMPERATURE (°C)V B A T T -t o -V O U T O N -R E S I S T A N C E (Ω)20100–40080401201401005025–60–2060140SUPPLY CURRENT vs. TEMPERATURE3045TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )20100–4008040120403510,0000.1–60–2060140 BATTERY SUPPLY CURRENTvs. TEMPERATURE11000TEMPERATURE (°C)B A T T E R Y S U P P L YC U R R E N T (n A )20100–400804012010010 1.2401.230–60–2060140PFI THRESHOLD vs. TEMPERATURE1.2321.238TEMPERATURE (°C)P F I T H R E S H O L D (V)20100–40080401201.2361.234216196–60–2060140RESET TIMEOUT PERIOD vs. TEMPERATURE200212TEMPERATURE (°C)R E S E TT I M E O U T P E R I O D (m s )20100–40080401202082043010–60–2060140RESET-COMPARATOR PROPAGATIONDELAY vs. TEMPERATURE1426TEMPERATURE (°C)PR O P A G A T I O N D E L A Y (µs )20100–400804012022181.0040.994–60–2060140NORMALIZED RESET THRESHOLDvs. TEMPERATURE0.9961.002TEMPERATURE (°C)N O R M A L I Z E D R E S E T T H R E S H O L D (V )20100–40080401201.0000.998__________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)M A X 690T /S /R , 704T /S /R , 802T /S /R , 804–806T /S /R_______________Detailed DescriptionReset OutputA microprocessor’s (µP’s) reset input starts the µP in a known state. These µP supervisory circuits assert reset to prevent code execution errors during power-up, power-down, brownout conditions, or a watchdog timeout.–R —E —S —E —T –is guaranteed to be a logic low for 0V < V CC <V RST , provided that VBATT is greater than 1V. Withouta backup battery,–R —E —S —E —T –is guaranteed valid for V CC > 1V. Once V CC exceeds the reset threshold, aninternal timer keeps –R —E —S —E —T –low for the reset timeoutperiod; after this interval,–R —E —S —E —T –goes high (Figure 2).If a brownout condition occurs (V CC dips below thereset threshold),–R —E —S —E —T – goes low. Each time –R —E —S —E —T –is asserted, it stays low for the reset timeout period.Any time V CC goes below the reset threshold, the internal timer restarts.The watchdog timer can also initiate a reset. See the Watchdog Input section.The MAX804_/MAX805_ active-high RESET output is open drain, and the inverse of the MAX690_/MAX704_/MAX802_/MAX806_–R —E —S —E —T –output.Reset ThresholdThe MAX690T/MAX704T/MAX805T are intended for 3.3V systems with a ±5% power-supply tolerance and a 10% system tolerance. Except for watchdog faults,reset will not assert as long as the power supply remains above 3.15V (3.3V - 5%). Reset is guaranteed to assert before the power supply falls below 3.0V.The MAX690S/MAX704S/MAX805S are designed for 3.3V ±10% power supplies. Except for watchdog faults, they are guaranteed not to assert reset as long as the supply remains above 3.0V (3.3V - 10%). Reset is guaranteed to assert before the power supply falls below 2.85V (V CC - 14%).The MAX690R/MAX704R/MAX805R are optimized for monitoring 3.0V ±10% power supplies. Reset will not occur until V CC falls below 2.7V (3.0V - 10%), but is guaranteed to occur before the supply falls below 2.59V (3.0V - 14%).The MAX802R/S/T, MAX804R/S/T, and MAX806R/S/T are respectively similar to the MAX690R/S/T,MAX805R/S/T, and MAX704R/S/T, but with tightened reset and power-fail threshold tolerances.3.0V/3.3V Microprocessor Supervisory Circuits 6_____________________________________________________________________________________________________________________________________________________Pin Description1V OUT Supply Output for CMOS RAM. When V CC is above the reset threshold, V OUT isconnected to V CC through a P-channel MOSFET switch. When V CC falls below V SW and VBATT, VBATT connects to V OUT . Connect to V CC if no battery is used.2V CC Main Supply Input 3GND Ground4PFI Power-Fail Input. When PFI is less than V PFT or when V CC falls below V SW , –P —F —O –goeslow; otherwise, –P —F —O –remains high. Connect to ground if unused.7–R —E —S —E —T –Active-Low Reset Output. Pulses low for 200ms when triggered, and stays low wheneverV CC is below the reset threshold or when –M —R –is a logic low. It remains low for 200ms after either V CC rises above the reset threshold, the watchdog triggers a reset, or –M —R –goes from low to high.—–M —R–Manual Reset Input. A logic low on –M —R –asserts reset. Reset remains asserted as long as –M —R –is low and for 200ms after –M —R –returns high. This active-low input has an internal 70µA pull-up current. It can be driven from a TTL or CMOS logic line, or shorted to ground with a switch. Leave open if unused.6WDIWatchdog Input. If WDI remains high or low for 1.6sec, the internal watchdog timer runs out and reset is triggered. The internal watchdog timer clears while reset is asserted or when WDI sees a rising or falling edge. The watchdog function cannot be disabled.5–P —F —O –Power-Fail Output. When PFI is less than V PFT , or V CC falls below V SW , –P —F —O –goes low;otherwise, –P —F —O –remains high. Leave open if unused.8VBATTBackup-Battery Input. When V CC falls below V SW and VBATT, V OUT switches from V CC to VBATT. When V CC rises above the reset threshold, V OUT reconnects to V CC . VBATT may exceed V CC . Connect to V CC if no battery is used.—RESET Active-High, Open-Drain Reset Output is the inverse of –R —E —S —E —T –.NAMEFUNCTIONMAX690MAX80212PIN34——6587MAX804MAX805123476—58—MAX704MAX806Watchdog Input(MAX690_/802_/804_/805_)The watchdog circuit monitors the µP’s activity. If the µP does not toggle the watchdog input (WDI) within 1.6sec,a reset pulse is triggered. The internal 1.6sec timer is cleared by either a reset pulse or by a transition (low-to-high or high-to-low) at WDI. If WDI is tied high or low, a –R —E —S —E —T –pulse is triggered every 1.8sec (t WD plus t RS ).As long as reset is asserted, the timer remains cleared and does not count. As soon as reset is deasserted,the timer starts counting. Unlike the 5V MAX690 family,the watchdog function cannot be disabled.Power-Fail ComparatorThe PFI input is compared to an internal reference. IfPFI is less than V PFT ,–P —F —O –goes low. The power-fail comparator is intended for use as an undervoltage detector to signal a failing power supply. However, the comparator does not need to be dedicated to this function because it is completely separate from the rest of the circuitry.The power-fail comparator turns off and –P —F —O –goes low when V CC falls below V SW on power-down. The power-fail comparator turns on as V CC crosses V SW on power-up. If the comparator is not used, connect PFI toground and leave –P —F —O – unconnected.–P —F —O –may beconnected to –M —R –on the MAX704_/MAX806_ so that a low voltage on PFI will generate a reset (Figure 5b).MAX690T/S/R, 704T/S/R, 802T/S/R, 804–806T/S/R3.0V/3.3V Microprocessor Supervisory Circuits_______________________________________________________________________________________7Figure 1.Block Diagram Figure 2.Timing DiagramM A X 690T /S /R , 704T /S /R , 802T /S /R , 804–806T /S /RBackup-Battery SwitchoverIn the event of a brownout or power failure, it may be necessary to preserve the contents of RAM. With a backup battery installed at VBATT, the devices auto-matically switch RAM to backup power when V CC falls.This family of µP supervisors (designed for 3.3V and 3V systems) doesn’t always connect VBATT to V OUT when VBATT is greater than V CC . VBATT connects to V OUT (through a 140Ωswitch) when V CC is below V SW and VBATT is greater than V CC , or when V CC falls below 1.75V (typ) regardless of the VBATT voltage. This is done to allow the backup battery (e.g., a 3.6V lithium cell) to have a higher voltage than V CC .Switchover at V SW (2.40V) ensures that battery-backup mode is entered before V OUT gets too close to the 2.0V minimum required to reliably retain data in CMOS RAM.Switchover at higher V CC voltages would decrease backup-battery life. When V CC recovers, switchover is deferred until V CC rises above the reset threshold (V RST ) to ensure a stable supply. V OUT is connected to V CC through a 3ΩPMOS power switch.Manual Reset A logic low on –M —R –asserts reset. Reset remains assertedwhile –M —R –is low, and for t WP (200ms) after –M —R –returns high. This input has an internal 70µA pull-up current, soit can be left open if it is not used.–M —R –can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs. Connect a normally open momentary switchfrom –M —R –to GND to create a manual-reset function;external debounce circuitry is not required.__________Applications InformationThese µP supervisory circuits are not short-circuit protected. Shorting V OUT to ground—excluding power-up transients such as charging a decoupling capacitor—destroys the device. Decouple both V CC and VBATT pins to ground by placing 0.1µF capacitors as close to the device as possible.Using a SuperCapas a Backup Power SourceSuperCaps™ are capacitors with extremely high capacitance values (e.g., order of 0.47F) for their size.Figure 3 shows two ways to use a SuperCap as a backup power source. The SuperCap may be connected through a diode to the 3V input (Figure 3a)or, if a 5V supply is also available, the SuperCap may be charged up to the 5V supply (Figure 3b) allowing a longer backup period. Since VBATT can exceed V CC while V CC is above the reset threshold, there are no special precautions when using these µP supervisors with a SuperCap.Operation without a BackupPower SourceThese µP supervisors were designed for battery-backed applications. If a backup battery is not used,connect both VBATT and V OUT to V CC , or use a different µP supervisor such as the MAX706T/S/R or MAX708T/S/R.Replacing the Backup BatteryThe backup power source can be removed while V CC remains valid, if VBATT is decoupled with a 0.1µF capacitor to ground, without danger of triggeringRESET/–R —E —S —E —T –.As long as V CC stays above V SW ,battery-backup mode cannot be entered.Adding Hysteresisto the Power-Fail ComparatorThe power-fail comparator has a typical input hysteresis of 10mV. This is sufficient for most applica-tions where a power-supply line is being monitored through an external voltage divider (see the section Monitoring an Additional Power Supply ).If additional noise margin is desired, connect a resistorbetween –P —F —O –and PFI as shown in Figure 4a. Select the ratio of R1 and R2 such that PFI sees 1.237V (V PFT )when V IN falls to its trip point (V TRIP ). R3 adds the hysteresis and will typically be more than 10 times the value of R1 or R2. The hysteresis window extends both above (V H ) and below (V L ) the original trip point (V TRIP ).3.0V/3.3V Microprocessor Supervisory Circuits 8_______________________________________________________________________________________™ SuperCap is a trademark of Baknor Industries.Connecting an ordinary signal diode in series with R3,as shown in Figure 4b, causes the lower trip point (V L )to coincide with the trip point without hysteresis (V TRIP ),so the entire hysteresis window occurs above V TRIP .This method provides additional noise margin without compromising the accuracy of the power-fail threshold when the monitored voltage is falling. It is useful for accurately detecting when a voltage falls past a threshold.The current through R1 and R2 should be at least 1µA to ensure that the 25nA (max over extended temperature range) PFI input current does not shift the trip point. R3should be larger than 10k Ωso it does not load down the –P —F —O –pin. Capacitor C1 adds additional noise rejection.Monitoring an Additional Power Supply These µP supervisors can monitor either positive or negative supplies using a resistor voltage divider toPFI. –P —F —O –can be used to generate an interrupt to theµP (Figure 5). Connecting –P —F —O – to –M —R –on the MAX704and MAX806 causes reset to assert when the monitored supply goes out of tolerance. Reset remainsasserted as long as –P —F —O –holds –M —R –low, and for 200msafter –P —F —O –goes high.Interfacing to µPswith Bidirectional Reset PinsµPs with bidirectional reset pins, such as the Motorola 68HC11 series, can contend with the MAX690_/MAX704_/MAX802_/MAX806_–R —E —S —E —T –output. If, forexample, the –R —E —S —E —T –output is driven high and the µP wants to pull it low, indeterminate logic levels may result. To correct this, connect a 4.7k Ωresistorbetween the –R —E —S —E —T –output and the µP reset I/O, as inFigure 6. Buffer the –R —E —S —E —T –output to other system components.Negative-Going V CC TransientsWhile issuing resets to the µP during power-up, power-down, and brownout conditions, these supervisors are relatively immune to short-duration negative-going V CC transients (glitches). It is usually undesirable to reset the µP when V CC experiences only small glitches.Figure 7 shows maximum transient duration vs. reset-comparator overdrive, for which reset pulses are not generated. The graph was produced using negative-going V CC pulses, starting at 3.3V and ending below the reset threshold by the magnitude indicated (reset comparator overdrive). The graph shows the maximum pulse width a negative-going V CC transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically,a V CC transient that goes 100mV below the reset threshold and lasts for 40µs or less will not cause a reset pulse to be issued.A 100nF bypass capacitor mounted close to the V CC pin provides additional transient immunity.MAX690T/S/R, 704T/S/R, 802T/S/R, 804–806T/S/R3.0V/3.3V Microprocessor Supervisory Circuits_______________________________________________________________________________________9Figure 3. Using a SuperCap as a Backup Power SourceM A X 690T /S /R , 704T /S /R , 802T /S /R , 804–806T /S /R3.0V/3.3V Microprocessor Supervisory Circuits 10______________________________________________________________________________________PFTMAX690T/S/R, 704T/S/R, 802T/S/R, 804–806T/S/R3.0V/3.3V Microprocessor Supervisory Circuits______________________________________________________________________________________11Figure 7.Maximum Transient Duration without Causing aReset Pulse vs. Reset Comparator Overdrive_Typical Operating Circuits (cont.)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600©1994 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.M A X 690T /S /R , 704T /S /R , 802T /S /R , 804–806T /S /R3.0V/3.3V Microprocessor Supervisory Circuits _Ordering Information (continued)___________________Chip Topography* Contact factory for dice specifications.** These parts offer a choice of reset threshold voltage. Select the letter corresponding to the desired nominal reset threshold voltage (T = 3.075V, S = 2.925V, R = 2.625V) and insert it into the blank to complete the part number.WDI [MR]RESET (RESET) GNDVCCVBATTV OUTPFI PFO 0.110" (2.794mm)0.080" (2.032mm)( ) ARE FOR MAX804T/S/R, MAX805T/S/R.[ ] ARE FOR MAX704T/S/R, MAX806T/S/R.TRANSISTOR COUNT: 802;SUBSTRATE IS CONNECTED TO THE HIGHER OF V CC OR VBATT, AND MUST BE FLOATED IN ANY HYBRID DESIGN.。
max485esa中文资料
General DescriptionThe MAX481, MAX483, MAX485, MAX487–MAX491, andMAX1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and onereceiver. The MAX483, MAX487, MAX488, and MAX489feature reduced slew-rate drivers that minimize E MI andreduce reflections caused by improperly terminated cables,thus allowing error-free data transmission up to 250kbps.The driver slew rates of the MAX481, MAX485, MAX490,MAX491, and MAX1487 are not limited, allowing them totransmit up to 2.5Mbps.These transceivers draw between 120µA and 500µA ofsupply current when unloaded or fully loaded with disableddrivers. Additionally, the MAX481, MAX483, and MAX487have a low-current shutdown mode in which they consumeonly 0.1µA. All parts operate from a single 5V supply.Drivers are short-circuit current limited and are protectedagainst excessive power dissipation by thermal shutdowncircuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature thatguarantees a logic-high output if the input is open circuit.The MAX487 and MAX1487 feature quarter-unit-loadreceiver input impedance, allowing up to 128 MAX487/MAX1487 transceivers on the bus. Full-duplex communi-cations are obtained using the MAX488–MAX491, whilethe MAX481, MAX483, MAX485, MAX487, and MAX1487are designed for half-duplex applications.________________________Applications Low-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level Translators Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks__Next Generation Device Features o For Fault-Tolerant Applications MAX3430: ±80V Fault-Protected, Fail-Safe, 1/4Unit Load, +3.3V, RS-485 Transceiver MAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-Safe, RS-485/J1708 Transceivers o For Space-Constrained Applications MAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus RS-485/RS-422 Transceivers MAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 Package MAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422,True Fail-Safe Receivers MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-485/RS-422 Transmitters o For Multiple Transceiver Applications MAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters o For Fail-Safe Applications MAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422Transceiverso For Low-Voltage ApplicationsMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kVESD-Protected, 12Mbps, Slew-Rate-Limited,True RS-485/RS-422 Transceivers For pricing, delivery, and ordering information, please contact Maxim Direct at1-888-629-4642, or visit Maxim Integrated’s website at .______________________________________________________________Selection Table19-0122; Rev 10; 9/14PARTNUMBERHALF/FULL DUPLEX DATA RATE (Mbps) SLEW-RATE LIMITED LOW-POWER SHUTDOWN RECEIVER/DRIVER ENABLE QUIESCENT CURRENT (μA) NUMBER OF RECEIVERS ON BUS PIN COUNT MAX481Half 2.5No Yes Yes 300328MAX483Half 0.25Yes Yes Yes 120328MAX485Half 2.5No No Yes 300328MAX487Half 0.25Yes Yes Yes 1201288MAX488Full 0.25Yes No No 120328MAX489Full 0.25Yes No Yes 1203214MAX490Full 2.5No No No 300328MAX491Full 2.5No No Yes 3003214MAX1487 Half 2.5No No Yes 2301288Ordering Information appears at end of data sheet.找电子元器件上宇航军工MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-LimitedRS-485/RS-422 TransceiversPackage Information For the latest package outline information and land patterns, go to . Note that a “+”, “#”, or “-”in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.16Low-Power, Slew-Rate-Limited RS-485/RS-422 TransceiversMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-100017©2014 Maxim Integrated Products, Inc.Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.。
Maxcell称重显示器使用说明书
.................................. 37
1
Maxcell
2-3-12 RS485 ID 输入 (选配功能)
............................................. 38
命令格式说明 ...................................................................................................................... 39
2-3-9 RS232 一般或简易输出重量 6 位或 7 位选择
..................... 35
2-3-10 RTC 时间调整
............................................................... 36
2-3-11 调整打印时年月日或日月年显示方式
2-3-3 输出格式选择
.................................................................... 29
2-3-4 传送方式设定
.................................................................... 30
使用前之准备工作
一. 请将本机放置于稳固且平坦之桌面上使用,勿放于摇动或振动之台架上。 二. 避免将本机放置于温度变化过大或空气流动剧烈之场所,如日光直射或冷气机之出风口。 三. 请使用独立之电源插座,以避免其它电器用品干扰。 四. 打开电源时,秤盘上请勿放置任何东西。 五. 产品使用时,秤物之重心须位于秤盘之中心点,且秤物不超出秤盘范围,以确保其准确度。 六. 使用本机前,请先温机 15 ~ 20 分钟。 七. 请注意当低电源警示之符号( )闪烁时,则表示须再行充电。 八. 如对本产品有任何建议,请不吝指正。
maxon motor control escon 50 5 使用说明书
maxon motor ag Brünigstrasse 220 P.O.Box 263 CH-6072 Sachseln (瑞士) 电话:+41 41 666 15 00 传真:+41 41 666 16 50 出版日期 2018年11月ESCON 伺服控制器使用说明书maxon motor control ESCON 50/5伺服控制器订货号 409510使用说明书文件编号: rel8440maxon motor control A-2文件编号:rel8440ESCON 伺服控制器出版日期:2018年11月ESCON 50/5使用说明书© 2018 maxon motor. 如有修改恕不另行通知。
1概述31.1本手册的介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2设备介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3安全规程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52技术规格72.1技术数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2标准 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103设置113.1适用的一般规定 . . . . . . . . . . . . . . . . . . . . . . . . . . 113.2电源的设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3连接 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.4电位器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.5状态显示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274接线294.1有刷直流电机 . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.2无刷电子换向电机 . . . . . . . . . . . . . . . . . . . . . . . . . 335备件35目录请首先认真阅读下文!本说明供合格的专业技术人员阅读参考。
MAX266中文数据手册
MAX266中文数据手册MAX266/265中文数据手册By Hi_Cracker @whu引脚电阻可编程通用高效滤波器-----MAX266/265General Description和MAX265是高效的容滤波器,专门设计用于需要高精度滤波的应用MAX266场合。
内置了两个独立的滤波模块,可以配置成低通,高通,带通,带阻,全通滤波器。
中心频率或者截止频率的控制需要外接电阻以及6 Pin-Strapped 的输入特性来编程实现,然而,Q值仅用电阻连接实现。
各种各样类型的滤波器都可以实现(巴特沃斯,切比雪夫,椭圆滤波器等等)。
内部集成了两个运算放大器。
MAX265可以将中心/截止频率可以最高调到40Khz,然而,MAX266,通过使用一个低范围的fclk/fo比例系数,可以将fos 调到140Khz。
4MHZ系统时钟,可以通过一个晶振或是额外的源获得。
滤波器的操作电压为从±2.37v到±6.3v或者+5V的单电源供电。
Application:声纳电子设备Anti-Aliasing 滤波器数字信号处理震动音频分析远程通信测试仪器Features滤波器参数设置软件化256bit的频率控制字电阻调整Q值和fo140Khz频率调节范围±5V或者单电源﹢5V操作电压Introduction每个MAX266/265都包含的两个可配置滤波器模块已经显示在数据手册前面的功能框图上。
fclk/fo编程输入(F0-F5)被两个滤波模块共用,然而,每个部分的fo仍然受到各自外接电阻的独立调节。
各个模块的的Q值也是受到各自的外接电阻的独立调节的。
MAX266使用比MAX265更低范围的取样比率(fclk/fo),这样就可以产生更高的信号带宽以及fo的可编程范围。
降低fclk/fo产生的影响主要就是比MAX265的滤波器参数的连续性稍微差了一些,但是这些不同可以通过使用图23所示的图形或是美信得滤波器软件来补偿。
MAX5160中文资料
MAX5160 µMAX
L1
8 VDD 7 CS 6L
H2
5W GND 3
MAX5161
6 VDD 5 INC 4 U/D
SOT23-6
________________________________________________________________ Maxim Integrated Products 1
2 _______________________________________________________________________________________
元器件交易网
MAX5160/MAX5161
Low-Power Digital Potentiometers
For free samples & the latest literature: , or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.
元器件交易网
W
U/D
L
Features
o 32 Tap Positions o 50kΩ, 100kΩ, and 200kΩ Resistance Values o 400Ω Wiper Resistance o ±25% Resistance Tolerance o 3-Wire Serial Data Input o ±1LSB DNL o ±0.5LSB INL o 100nA Supply Current o Single-Supply Operation: +2.7V to +5.5V o Power-On Reset: Wiper Goes to Midscale
MAX490EESA+资料
Supply Control
Voltage (VCC) Input Voltage
.(.–R—..E.–..,..D..E..)........................................-.0....5..V...t.o...(.V..C...C...+...0...152VV)
♦ For Low-Voltage Applications: MAX3483E/MAX3485E/MAX3486E/MAX3488E/ MAX3490E/MAX3491E: +3.3V Powered, ±15kV ESD-Protected, 12Mbps, Slew-Rate-Limited, True RS-485/RS-422 Transceivers
General Description
The MAX481E, MAX483E, MAX485E, MAX487E– MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environments. Each driver output and receiver input is protected against ±15kV electro-static discharge (ESD) shocks, without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.
华美电气 HM6050电缆故障测试仪说明书
武汉国电华美电气设备有限公司HM6050电缆故障测试仪说明书武汉国电华美电气有限公司电话:************84663808138****4534邮箱:***************137****3504官网: 地址:武汉市汉南区华顶工业园A25-1统一热线:4000-935-230目录简介 (3)第一章HM6050电缆故障测试仪 (3)第一节主要技术性能指标 (3)第二节仪器面板及操作功能 (5)第三节电缆故障测试步骤及测试方式选择 (15)第二章低压脉冲测试法 (16)第一节低压脉冲测试的基本原理 (16)第二节脉冲法测全长 (17)第三节脉冲法测故障 (18)第四节脉冲法测速度 (19)第三章冲击高压闪测法(冲闪法) (20)第一节基本原理 (20)第二节电流取样冲闪法 (20)第三节高压闪测法注意事项 (22)附一路径信号发生器使用说明 (23)附二定点仪及其使用说明 (27)附三轻型高压试验变压器使用说明 (29)操作台箱说明书 (41)常规安全概述请查看下列安全防范措施以避免受伤害并防止对本产品或任何与其连接的产品造成损伤。
为了避免潜在的危险,请仅按详细使用说明来使用本产品。
避免火灾或个人受伤。
使用正确的电源线。
请仅使用为本产品所指定并由国家鉴定过的电源线。
正确地连接和断开。
在将仪器连接到测试电缆之前,先要连接好仪器的保护地线,测量结束后,先进行放电处理,然后再断开测试连接线。
请勿开盖操作。
面板打开时请勿操作本产品。
远离外露的电路。
电源接通后请勿接触外露的接头和元件。
请勿在潮湿环境下操作。
请勿在爆燃性空气环境中操作。
请保持产品表面清洁干燥。
提供适当的通风。
怀疑产品出现故障时,请勿进行操作。
如果怀疑此产品已损坏,可请合格的维修人员进行检查。
简介HM6050电缆故障测试仪用于检测各种动力电缆的高阻泄漏故障、闪络性故障、低阻接地和断路故障。
由于本仪器应用自主开发的测试技术和高频高压数据信号处理装置,使其具有最好的电缆故障波形判断能力和最简单方便的操作系统。
OMR扫描仪产品说明书
1. Introduction
1. 1. About the MR DIO Modules
The OMR provides a series of digital input or output (DIO) modules to sense the digital signal or to control the remote devices.
M-3577 for
OMR-6050 OMR-6053 OMR-6056 OMR-6060
OMR-6052 OMR-6054 OMR-6058 OMR-6063
Analog Input Modules
Contents
1. INTRODUCTION............................................. 1-1
Features of OMR-6050 • 7 bits digital input • 8 bits open collector digital output • Programmable host watchdog timer for host failure protection • Internal watchdog timer for device failure protection • Easy programming by software • Easy installation and wiring
2. INITIALIZATION & INSTALLATION............. 2-1
2. 1. SOFTWARE INSTALLATION..................................................... 2-1 2. 2. INITIALIZING A BRAND-NEW MODULE....................................... 2-1 2. 3. INSTALL A NEW OMR TO A EXISTING NETWORK........................ 2-4 2. 4. APPLICATION WIRING FOR OMR-6050..................................... 2-5 2. 5. APPLICATION WIRING FOR OMR-6052..................................... 2-7 2. 6. APPLICATION WIRING FOR OMR-6053..................................... 2-8 2. 7. APPLICATION WIRING FOR OMR-6054..................................... 2-9 2. 8. APPLICATION WIRING FOR OMR-6056..................................... 2-9 2. 9. APPLICATION WIRING FOR OMR-6058................................... 2-10 2. 10. APPLICATION WIRING FOR OMR-6060................................... 2-11 2. 11. APPLICATION WIRING FOR OMR-6063................................... 2-13
AC6050
3
wwlab
AC6050 1. 2. 3. 精度指FSR精度(相对于峰峰满输入幅度)。 噪音为1000样本统计的噪音。 测量值为典型参数。
A/D最大通过率: 80KHZ,输入通道建立时间<10uS。 差分输入共模抑制比:>80分贝。
采用光电隔离,隔离电压大于500V。不需额外外部供电。 PCI总线,符合PCI V2.1标准 AC6050占用64个I/O选通空间(自动分配)。
DB37
输入定义:
7
wwlab
AC6050 单端模式:
AIN0-AIN31对应32路A/D输入通道:0-31。 差分模式:
- AIN0-AIN15对应16路差分A/D输入通道的“+”输入:0-15。 - AIN16-AIN31对应16路差分A/D输入通道的“-”输入:0-15。 17、36脚:GND
3-2、软件安装 Windows 98 驱动安装:
1、关闭计算机的电源; 2、将ac6050板卡插入PCI查槽中; 3、打开计算机电源,启动Windows 98; 4、Windows 98将会显示找到新硬件(将显示找到Pci Device),进行下一 步; 5、在添加硬件向导窗口中选择搜索设备的最新驱动程序,下一步; 6、选择驱动所在目录,进行安装(\pci\ac6050\driver); 7、Windows 98将显示找到WWlab PCI AC6050 A/D Board提示进行下一步; 8、驱动已经安装完成
1-2:主要特点 、性能:
A/D转换器: 软件查询。
120KHZ பைடு நூலகம்2位A/D
ADS7816, A/D内置采样保持器。 工作方式:
32路单端/16路差分输入, 输入方式由跳线器选择。 输入阻抗>100MΩ , 最大输入电压:< +12V / -5.5V,瞬时输入耐压:-25V - +30V,DB37孔式输入连接器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General DescriptionThe MAX6012/MAX6021/MAX6025/MAX6030/MAX6041/MAX6045/MAX6050 precision, low-dropout, micropower voltage references are available in miniature SOT23-3surface-mount packages. They feature a proprietary curvature-correction circuit and laser-trimmed thin-film resistors that result in a low temperature coefficient of <15ppm/°C and initial accuracy of better than 0.2%.These devices are specified over the extended temper-ature range.These series-mode voltage references draw only 27µA of quiescent supply current and can sink or source up to 500µA of load current. Unlike conventional shunt-mode (two-terminal) references that waste supply cur-rent and require an external resistor, devices in the MAX6012family offer a supply current that’s virtually independent of supply voltage (with only a 0.8µA/V vari-ation with supply voltage) and do not require an external resistor. Additionally, these internally compensated devices do not require an external compensation capacitor and are stable with up to 2.2nF of load capac-itance. Eliminating the external compensation capacitor saves valuable board area in space-critical applications.Their low dropout voltage and supply-independent,ultra-low supply current make these devices ideal for battery-operated, low-voltage systems.ApplicationsHand-Held Equipment Data Acquisition SystemsIndustrial and Process-Control Systems Battery-Operated Equipment Hard-Disk DrivesFeatureso 0.2% (max) Initial Accuracyo 15ppm/°C (max) Temperature Coefficient o 35µA (max) Quiescent Supply Current o 0.8µA/V Supply Current Variation with V IN o ±500µA Output Source and Sink Current o 100mV Dropout at 500µA Load Current o 0.12µV/µA Load Regulation o 8µV/V Line Regulationo Stable with C LOAD = 0 to 2.2nFMAX6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout,SOT23-3 Voltage References________________________________________________________________Maxim Integrated Products 1Typical Operating Circuit19-4777; Rev 3; 4/01Ordering InformationPin Configuration appears at end of data sheet.Selector GuideFor price, delivery, and to place orders,please contact Maxim Distribution at 1-888-629-4642,or visit Maxim’s website at .M A X 6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—MAX6012(V IN = +5V, I OUT = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(Voltages Referenced to GND)IN.........................................................................-0.3V to +13.5V OUT .............................................................-0.3V to (V IN + 0.3V)Output Short Circuit to GND or IN (V IN < 6V)............Continuous Output Short Circuit to GND or IN (V IN ≥6V).........................60sContinuous Power Dissipation (T A = +70°C)3-Pin SOT23-3 (derate 4.0mW/°C above +70°C)........320mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS—MAX6021MAX6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References(V IN= +5V, I OUT= 0, T A= T MIN to T MAX, unless otherwise noted. Typical values are at T A= +25°C.) (Note 1)M A X 6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX6025(V IN = +5V, I OUT = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)ELECTRICAL CHARACTERISTICS—MAX6030MAX6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References(V IN= +5V, I OUT= 0, T A= T MIN to T MAX, unless otherwise noted. Typical values are at T A= +25°C.) (Note 1) Array_______________________________________________________________________________________5M A X 6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References 6_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX6041(V IN = +5V, I OUT = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)ELECTRICAL CHARACTERISTICS—MAX6045MAX6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References(V IN= +5V, I OUT= 0, T A= T MIN to T MAX, unless otherwise noted. Typical values are at T A= +25°C.) (Note 1)M A X 6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References 8_______________________________________________________________________________________Note 1:All devices are 100% production tested at T A = +25°C and are guaranteed by design for T A = T MIN to T MAX , as specified.Note 2:Temperature Coefficient is measured by the “box” method, i.e., the maximum ∆V OUT is divided by the maximum ∆t.Note 3:Temperature Hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T MIN to T MAX .Note 4:Not production tested. Guaranteed by design.Note 5:Dropout voltage is the minimum input voltage at which V OUT changes ≤0.2% from V OUT at V IN = 5.0V (V IN = 5.5V for MAX6050).ELECTRICAL CHARACTERISTICS—MAX6050(V IN = +5.5V, I OUT = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)MAX6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout,SOT23-3 Voltage References_______________________________________________________________________________________9Typical Operating Characteristics(V IN = +5V for MAX6012/21/25/30/41/45, V IN = +5.5V for MAX6050; I OUT = 0; T A = +25°C; unless otherwise noted.) (Note 6)1.24701.24801.24751.24901.24851.25051.25001.24951.2510-40-2020406080100MAX6012OUTPUT VOLTAGE TEMPERATURE DRIFTTEMPERATURE DRIFT (°C)V O U T (V )4.9864.9904.9884.9964.9944.9925.0025.0004.9985.004-4020-20406080100MAX6050OUTPUT VOLTAGE TEMPERATURE DRIFTTEMPERATURE DRIFT (°C)V O U T (V ) 4.9934.9954.9944.9994.9984.9974.9965.0025.0015.0005.00303004005001002006007008009001000MAX6050LONG-TERM DRIFTTIME (h)O U T P U T V O L T A G E (V )-1002001003004002648101214MAX6012LINE REGULATIONINPUT VOLTAGE (V)O U T P U T V O L T A G E C H A N G E (µV )-0.4-0.20.20.4-500-2500250-375-125125375500MAX6012LOAD REGULATIONLOAD CURRENT (µA)O U T P U T V O L T A G E C H A N G E (m V )-2004002006008005791113MAX6050LINE REGULATIONINPUT VOLTAGE (V)O U T P U T V O L T A G E C H A N G E (µV )0.10.20.30.40.50.60.70.802004006008001000MAX6025/MAX6030DROPOUT VOLTAGE vs.SOURCE CURRENTSOURCE CURRENT (µA)D R O P O U T V O L T A GE (V )-0.400-0.2000.2000.400-500-2500250-375-125125375500MAX6050LOAD REGULATIONLOAD CURRENT (µA)O U T P U T V O L T A G E C H A N G E (m V )0.100.050.200.150.250.3004002006008001000MAX6041/MAX6045/MAX6050DROPOUT VOLTAGE vs.SOURCE CURRENTSOURCE CURRENT (µA)D R O P O U T V O L T A GE (V )M A X 6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References 10______________________________________________________________________________________1001k10k100k1M10MMAX6012POWER-SUPPLY REJECTIONvs. FREQUENCYM A X 6012-10FREQUENCY (Hz)P S R (m V /V )1000.010.1110MAX6050POWER-SUPPLY REJECTIONvs. FREQUENCYFREQUENCY (Hz)P S R (m V /V )1000.010.11101010k100k1M1001k10M20262422283032343638402648101214SUPPLY CURRENT vs. INPUT VOLTAGEINPUT VOLTAGE (V)S U P P L Y C U R R E N T (µA )0.0110010k 10.1101k100k 1MMAX6012OUTPUT IMPEDANCE vs. FREQUENCYM A X 6012-13FREQUENCY (Hz)O U T P U T I M P E D A N C E (Ω)0.11101001k 0.0110010k 10.1101k100k 1MMAX6050OUTPUT IMPEDANCE vs. FREQUENCYM A X 6012-14FREQUENCY (Hz)O U T P U T I M P E D A N C E (Ω)0.11101001k 2025303540SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )-402040-206080100V OUT 20µV/div1sec/div MAX60500.1Hz TO 10Hz OUTPUT NOISEM A X 6012-17V IN 1V/divV OUT 1V/div10µs/divMAX6012TURN-ON TRANSIENTM A X 6012-18Typical Operating Characteristics (continued)(V IN = +5V for MAX6012/21/25/30/41/45, V IN = +5.5V for MAX6050; I OUT = 0; T A = +25°C; unless otherwise noted.) (Note 6)V OUT 10µV/div1sec/div MAX60120.1Hz TO 10Hz OUTPUT NOISEM A X 6012-16MAX6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout,SOT23-3 Voltage References______________________________________________________________________________________11Typical Operating Characteristics (continued)(V IN = +5V for MAX6012/21/25/30/41/45, V IN = +5.5V for MAX6050; I OUT = 0; T A = +25°C; unless otherwise noted.) (Note 6)I OUT 40µA/div+25µA-25µAV OUT 20mV/div10µs/divMAX6012LOAD-TRANSIENT RESPONSEMAX6012-19I OUT = ±25µA, AC-COUPLEDI OUT 50µA/divV OUT 50mV/div20µs/divMAX6050LOAD-TRANSIENT RESPONSEM A X 6012-20V IN = 5.5V, I OUT = ±25µA, AC-COUPLEDV IN 2V/divV OUT 2V/div10µs/divMAX6050TURN-ON TRANSIENTM A X 6012-21+500µA-500µA V OUT 0.2V/divI OUT 1mA/div10µs/divMAX6012LOAD-TRANSIENT RESPONSEMAX6012-22I OUT = ±500µA, AC-COUPLEDV IN200mV/divV OUT 100mV/div2µs/divV IN = 5.5V ±0.25V, AC-COUPLEDMAX6050LINE-TRANSIENT RESPONSEM A X 6012-25I OUT500µA/divV OUT 200mV/div20µs/divMAX6050LOAD-TRANSIENT RESPONSEM A X 6012-23V IN = 5.5V, I OUT = ±500µA, AC-COUPLED V IN200mV/divV OUT 100mV/div2.5µs/divV IN = 5V ±0.25V, AC-COUPLEDMAX6012LINE-TRANSIENT RESPONSEM A X 6012-24Note 6:Many of the Typical Operating Characteristics of the MAX6012 family areextremely similar. The extremes of these characteristics are found in the MAX6012 (1.2V output) and the MAX6050 (5.0V output). The TypicalOperating Characteristics of the remainder of the MAX6012 family typically lie between these two extremes and can be estimated based on their output voltage.M A X 6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References 12______________________________________________________________________________________Detailed DescriptionThe MAX6012/MAX6021/MAX6025/MAX6030/MAX6041/MAX6045/MAX6050 precision bandgap references use a proprietary curvature-correction circuit and laser-trimmed thin-film resistors, resulting in a low tempera-ture coefficient of <20ppm/°C and initial accuracy of better than 0.2%. These devices can sink and source up to 500µA with <200mV of dropout voltage, making them attractive for use in low-voltage applications.Applications InformationOutput/Load CapacitanceDevices in this family do not require an output capaci-tance for frequency stability. They are stable for capac-itive loads from 0 to 2.2nF. H owever, in applications where the load or the supply can experience step changes, an output capacitor will reduce the amount of overshoot (or undershoot) and assist the circuit’s tran-sient response. Many applications do not need an external capacitor, and this family can offer a signifi-cant advantage in these applications when board space is critical.Supply CurrentThe quiescent supply current of these series-mode ref-erences is a maximum of 35µA and is virtually indepen-dent of the supply voltage, with only a 0.8µA/V variation with supply voltage. Unlike series references, shunt-mode references operate with a series resistor con-nected to the power supply. The quiescent current of a shunt-mode reference is thus a function of the input voltage. Additionally, shunt-mode references have to be biased at the maximum expected load current, even if the load current is not present all the time. The load current is drawn from the input voltage only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved effi-ciency can help reduce power dissipation and extend battery life.When the supply voltage is below the minimum speci-fied input voltage (as during turn-on), the devices can draw up to 200µA beyond the nominal supply current.The input voltage source must be capable of providing this current to ensure reliable turn-on.Output Voltage HysteresisOutput voltage hysteresis is the change in the output voltage at T A = +25°C before and after the device is cycled over its entire operating temperature range.H ysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 130ppm.Figure 1. Positive and Negative References from Single +3V or +5V SupplyMAX6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout,SOT23-3 Voltage References______________________________________________________________________________________13Pin ConfigurationChip InformationTRANSISTOR COUNT: 70Turn-On TimeThese devices typically turn on and settle to within 0.1% of their final value; 30µs to 220µs depending on the device. The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout volt-age and the maximum load.Positive and Negative Low-PowerVoltage ReferenceFigure 1 shows a typical method for developing a bipo-lar reference. The circuit uses a MAX681 voltage dou-bler/inverter charge-pump converter to power an ICL7652, thus creating a positive as well as a negative reference voltage.M A X 6012/6021/6025/6030/6041/6045/6050Precision, Low-Power, Low-Dropout, SOT23-3 Voltage ReferencesPackage Information。