实验三 双容液位控制

合集下载

双容水箱液位定值控制系统实验

双容水箱液位定值控制系统实验

双容水箱液位定值控制系统实验双容水箱液位定值控制系统一、实验目的1( 通过实验,进一步了解双容对象的特性。

2( 掌握调节器参数的整定与投运方法。

3( 研究调节器相关参数的改变对系统动态性能的影响。

二、实验设备1( THJ-2型高级过程控制系统装置。

2( 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3( 万用表一只三、实验原理本实验系统以中水箱与下水箱为被控对象,下水箱的液位高度为系统的被图6-1 双容液位定值控制系统结构图控制量。

基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID。

本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵。

如果采用电动调节阀作执行元件,则变频调速磁图6-2 双容液位定值控制系统方框图力泵支路中的手控阀F2-4或F2-5打开时可分别作为中水箱或下水箱的扰动。

图6-1为实验系统的结构图,图6-2为控制系统的方框图。

四、实验内容与步骤1( 图6-1所示,完成实验系统的接线。

2( 接通总电源和相关仪表的电源。

3( 打开阀F1-1、 F1-2、F1-7、F1-10和F1-11,且使F1-10的开度大于F1-11的开度。

4( 用实验四(上册)中所述的临界比例度法或4:1衰减振荡法整定调节器的相关参数。

5( 设置系统的给定值后,用手动操作调节器的输出,控制电动调节阀给中水箱打水,待中水箱液位基本稳定不变且下水箱的液位等于给定值时,把调节器切换为自动,使系统投入自动运行状态。

6( 启动计算机,运行MCGS组态软件软件,并进行下列实验:1)当系统稳定运行后,突加阶跃(给定量增加5%,15%),观察并记录系统的输出响应曲线。

2)待系统进入稳态后,启运变频器调速的磁力泵支路,分别适量改变阀F2-4或阀F2-5的开度(加扰动),观察并记录被控制量液位的变化过程。

7.通过反复多次调节PI的参数,使系统具有较满意的动态性能指标。

双容液位控制系统的设计

双容液位控制系统的设计

双容液位控制系统的设计一、引言液位控制是工业生产过程中非常重要的一项控制技术,涉及到很多行业,如化工、石油、机械等。

双容液位控制系统是一种常见的液位控制系统,适用于双容器之间液位的控制和调节。

本文旨在介绍双容液位控制系统的设计原理、建模过程和控制策略。

二、设计原理设计双容液位控制系统的关键是建立双容器之间液位与控制阀的开启程度之间的数学关系。

常用的数学模型有级差模型和电气模拟模型。

级差模型假设两个容器之间的液位差与控制阀的开启程度成线性关系。

电气模拟模型则通过电路和元件来模拟液位和控制阀之间的关系。

三、建模过程1.确定系统的输入和输出变量:输入变量通常是控制阀的开度,输出变量是液位差。

2.建立数学模型:可以使用级差模型或电气模拟模型。

2.1级差模型建模:液位差=K*(开度1-开度2)其中,K为级差因子,开度1和开度2分别为上游容器和下游容器的控制阀开度。

2.2电气模拟模型建模:使用电路和元件来模拟液位和控制阀之间的关系,如使用电阻模拟阀门、电容模拟容器等。

3.验证和调优模型:通过实验或仿真验证模型的准确性,并根据实际情况对模型参数进行调优。

四、控制策略反馈控制是根据实际液位差与设定值之间的偏差来调整控制阀的开启程度,使液位差尽可能接近设定值。

前馈控制是在系统受到外部干扰时,根据干扰信号的大小来改变控制阀的开启程度,以抵消干扰对液位差的影响。

采用PID控制器是常用的控制策略。

PID控制器根据比例、积分和微分三个参数来调节控制阀的开启程度,以实现液位的稳定控制。

五、总结双容液位控制系统是一种常见的液位控制系统,涉及到液位建模和控制策略的设计。

本文介绍了双容液位控制系统的设计原理、建模过程和控制策略,包括级差模型和电气模拟模型的建模方法,以及反馈控制和前馈控制的控制策略。

双容液位控制系统的设计需要根据具体的应用需求进行调整和优化,并且需要进行实验验证和参数调优才能达到理想的控制效果。

双容水箱液位控制系统设计

双容水箱液位控制系统设计

双容水箱液位控制系统设计首先,双容水箱液位控制系统的基本原理是根据水位信号的反馈来控制水泵的启停。

当水箱液位低于设定值时,水泵启动,开始抽水;当液位达到设定值时,水泵停止运行。

这样就可以实现水箱液位的自动控制。

第一,确定水箱的容积和设计液位。

容积和设计液位的确定需要根据实际应用情况来选择,一般要考虑水泵的流量和工作时间等因素。

容积大的水箱可以减少水泵启停的频率,但其建设和维护成本也较高。

第二,确定水位传感器的选择和安装。

水位传感器是检测水箱液位的关键部件,可以选择浮子式传感器、超声波传感器等。

选择合适的传感器需要考虑其精度、可靠性、成本和使用环境等因素。

安装传感器时要确保其与水箱的接触良好,避免信号干扰。

第三,确定控制器的选择和编程。

控制器是实现水位控制的核心部件,可以选择PLC、单片机等。

控制器的选择要考虑其处理能力、输入输出接口和编程灵活性等因素。

编程时需要设置液位设定值和控制逻辑,使得系统能够准确地控制水泵的启停。

第四,确定水泵的选择和安装。

水泵是水箱液位控制系统的关键设备,可以选择离心泵、自吸泵等。

选择合适的水泵需要考虑其流量、扬程、功率和效率等因素。

水泵的安装要确保其与水箱的连接可靠,并考虑水泵的防护和维护问题。

第五,确定报警和保护措施。

对于水箱液位控制系统,需要设置相应的报警和保护机制,以及应急措施。

例如,当水泵故障或水箱液位异常时,系统应该能够及时发出报警,并采取相应的措施避免设备损坏或事故发生。

最后,测试和调试系统。

在系统设计和安装完成后,需要进行全面的测试和调试工作。

首先测试传感器和控制器的工作是否正常,然后测试水泵的启停控制是否准确。

同时,还需要进行系统的稳定性和灵敏度测试,确保系统能够稳定运行和满足实际需求。

总之,双容水箱液位控制系统的设计需要综合考虑容积、液位传感器、控制器、水泵、报警保护和测试调试等方面的因素。

只有设计合理并正确配置这些部件,才能实现高效、稳定的液位控制。

实验三 双容水箱液位定值控制

实验三 双容水箱液位定值控制

实验三双容液位定值控制实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。

要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。

实验系统控制方框图如下所示:图3-1 双容液位定值控制系统方框图实验内容一:观察系统在PI控制参数下的动态响应曲线1、按要求设定参数,液位给定值SV=80mm,PI参数为P=20,I=60。

2、设置好系统的给定值后,用手动操作AI智能调节仪的输出,通过电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把输出切换为自动,使系统投入自动运行状态。

其总貌图如下图所示:图3-2 双容液位定值控制系统总貌图上图曲线中所示,恒定不变的曲线线为下水箱液位的设定值,上面一条曲线为下水箱液位的的测量值,下面一条曲线为中水箱液位的测量值。

3、 观察系统在设定的控制参数下的动态响应曲线,如下图所示:图3-3 双容液位定值控制系统动态响应曲线由上图可知,其最大测量值为PV max =119.35mm ,由此可得出其最大超调量δ=(119.35-80)/80*100%,δ=50% 。

又由实时数据知:t 1=09:59:15,t 2=10:04:43则其上升时间t =t 2-t 1=328s 。

由以上可知,该双容控制系统的动态响应不如单容液位定值控制系统的动态响应,并且,在双容定值控制系统中,系统的响应还有一定的滞后,其滞后时间为T=94s 。

分析以上现象可得出以下的结论:本实验中被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。

根据前一实验单容水箱液位定值控制的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:G(s)=G 1(s)G 2(s)=)1s T )(1s T (K 1s T k 1s T k 212211++=+⨯+ (3-1) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。

双容水箱液位控制系统毕业设计(论文)

双容水箱液位控制系统毕业设计(论文)

内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:双容水箱液位控制系统学生姓名:学号:专业:班级:指导教师:双容水箱液位控制系统摘要本设计以PCT-Ⅲ型过程控制实验装置为基础,对双容水箱进行对象特性测试及液位控制。

通过对双容水箱液位控制系统的分析建模,针对其对象特性,采用串级PID控制方式,构成了以上水箱液位为副调节参数、下水箱液位为主调节参数的液位串级控制系统,有效地克服了二次干扰以及双容水箱的容量滞后等问题,从而缩短了调节时间。

利用北京亚控公司生产的组态王软件实施上位机界面组态,对系统进行实时地操作、监控。

在控制过程中不需要下位机,通过在组太王软件工程浏览器中的命令语言编辑对话框里面输入PID控制源程序,实现计算机直接控制的方式,通过RS232/485转换器和牛顿模块实现计算机与现场设备之间的数据交换。

并利用变频器使抽水泵工作在恒压供水的状态下,通过电动调节阀来实现控制目标。

在对双容水箱液位控制系统进行参数整定时,以使调节过程稳、准、快为原则,从而得到适合的调节器参数。

实验结果表明,系统实现了对过程参数的无稳态误差控制,具有良好的稳态性能和动态性能。

关键词: 液位;串级控制;PID 控制;组态软件;参数整定Double tank water level control systemAbstractThe design is based on the PCT-Ⅲ type of process control device for the testing object properties and level control on the two-tank. Through analysis and modeling for the two-tank water level control system, use of cascade PID control for its object properties and constitute a water level control system ,its deputy adjustable parameter is previous water level and the main adjustable parameters is under the tank's liquid level cascade control system. It overcomes the problems effectively about the second two-tank and capacity lagged behind and reduces the adjustment time. Use Configuration software which is generated by Beijing Asia's PC to implement the interface configuration, operate water level real-time and monitor the system. In the control process does not require the next crew, edit dialog box to enter the PID control inside source through the software engineering group in the browser command language to achieve direct control of the computer, through the RS232/485 converter and Newton module achieve the exchange of data between computer and field devices. And use the drive to work in the constant pressure water supply pumps in the state, through the electric control valve to achieve the control objectives. In two-tank water level control system parameters adjustment, follow the principle of steady, accurate, fast in adjustment process to get appropriate parameters. The experimental results show that the system of process parameters to achieve steady-state error-free control, with good steady state performance and dynamic performance.Keywords:Level; Cascade control; PID control; configuration software; parameter tuning目录摘要 (I)Abstract (II)第一章绪论 (1)1.1课题研究背景及意义 (1)1.2本文主要研究的内容 (2)第二章PCT试验装置介绍 (3)2.1 PCT实验装置构成简介 (3)2.1.1水箱 (3)2.1.2液位传感器 (3)2.1.3电动调节阀 (4)2.1.4压力传感器 (4)2.1.5变频器 (4)2.1.6三项磁力水泵 (5)2.1.7牛顿模块 (5)2.2双容水箱系统硬件结构 (6)2.3 水箱液位实验控制系统的用途 (7)第三章双容水箱液位控制系统分析设计 (8)3.1双容水箱液位控制系统分析 (8)3.1.1液位控制系统组成 (8)3.1.2液位控制系统的控制目标 (9)3.1.3液位控制系统的模型分析 (9)3.2 双容水箱液位控制系统方案设计 (12)3.2.1控制方案的选定 (12)3.2.2串级控制系统的特点 (13)3.2.3串级控制系统的设计 (13)3.2.4计算机串级控制算法实施 (17)3.2.5液位串级控制系统工作过程 (18)3.3液位控制系统参数整定 (19)3.3.1Kp、Ti、Td对控制质量的影响 (20)3.3.2几种工程整定方法介绍 (21)3.3.3串级控制系统的参数整定 (24)第四章组态软件设计 (27)4.1“组态王”简介 (28)4.2组态画面的建立 (28)4.2.1建立工程 (28)4.2.2设备配置 (29)4.2.3变量定义 (31)4.2.4画面设计与动画连接 (33)4.2.5实时曲线和历史曲线的建立 (36)4.2.6手自动切换和PID控制画面的建立 (38)第五章双容水箱液位控制系统实验 (40)5.1实验所用设备 (40)5.2实验过程 (40)5.3实验结果分析 (42)总结 (43)参考文献 (44)附录 (46)致谢 (48)第一章绪论1.1课题研究背景及意义随着科学技术的发展,现代工业生产工艺中的控制问题也日趋复杂。

双容液位PID控制

双容液位PID控制

摘要本设计以THSA-1型综合自动化控制系统实验装置为平台,采用PID控制规律,对双容水箱系统的下水箱液位进行控制。

以远程数据采集控制方式进行实验,并利用MCGS组态软件来实现计算机监控,使控制系统具有良好的稳态性能和动态性能。

实验测试结果表明,系统实现了对过程参数的无稳态误差控制。

关键词:液位控制;PID调节;MCGSAbstractThe design is according to the THSA-1 experimental device of integrated automation control system, using the PID control rules on the two-capacity water tank system to control the water level. By way of remote data acquisition and control experiments, using MCGS configuration software to monitor the computer, so that the control system will have good steady state and dynamic performance. The experimental results show that the system of process parameters achieves zero steady-state of error control.Keywords: liquid level control; PID control; MCG目录前言............................................................... - 1 -第1章绪论........................................................ - 2 -1.1过程控制概述 ............................................................................................................ - 2 -1.2设计内容 ................................................................................................................... - 4 - 第2章双容水箱液位系统控制方案.................................... - 4 -2.1 单回路控制系统概述................................................................................................. - 4 -2.2 调节器设计............................................................................................................... - 5 -2.2.1单容水箱液位特性测试 ................................................................................... - 6 -2.2.2双容水箱特性测试和被控对象的建模 .............................................................. - 8 -2.2.3调节规律的选择.............................................................................................- 11 -2.2.4调节器正/反作用方式的选择....................................... - 12 -2.2.5调节器的参数整定 .........................................................................................- 12 - 第3章双容水箱液位系统控制实验................................... - 15 -3.1实验所用装置说明 ....................................................................................................- 15 -3.1.1 THSA-1型过控综合自动化控制系统实验平台.................................................- 15 -3.1.2 THSA-1型过控综合自动化控制系统对象........................................................- 16 -3.1.3 THSA-1型过控综合自动化控制系统实验平台.................................................- 17 -3.1.4 软件介绍 ......................................................................................................- 19 -3.2双容水箱液位PID控制实验 ......................................................................................- 20 -3.2.1实验内容与步骤.............................................................................................- 20 -3.2.2实验结果与数据分析......................................................................................- 22 - 结论............................................................... - 28 -参考文献 (29)致谢.................................................. 错误!未定义书签。

双容水箱液位PID控制实验

双容水箱液位PID控制实验

《过程控制系统设计》课程实验报告2018年5月9日实验二双容水箱液位PID控制实验一、实验目的1、学习双容水箱液位PID 控制系统的组成和原理;2、进一步熟悉PID 的调节规律;3、进一步熟悉PID 控制器参数的整定方法。

二、实验设备1、四水箱实验系统DDC 实验软件;2、PC 机(Window XP 操作系统);3、CS4000型过程控制实验装置。

三、实验原理1、控制系统的组成及原理单回路调节系统,一般是指用一个控制器来控制一个被控对象,其中控制器只接收一个测量信号,其输出也只控制一个执行机构。

双容水箱液位PID 控制系统也是一种单回路调节系统,典型的双容水箱液位控制系统如图 1 所示:图 1 双容水箱液位PID 控制系统的方框图在双容水箱液位PID 控制系统中,以液位为被控量。

其中,测量电路主要功能是测量对象的液位并对其进行归一化等处理;PID 控制器是整个控制系统的核心,它根据设定值和测量值的偏差信号来进行调节,从而控制双容水箱的液位达到期望的设定值。

3、PID 控制器参数的实验整定方法双容水箱液位PID 控制器参数整定,是为了得到某种意义下的最佳过渡过程。

我们这里选用较通用的“最佳”标准,即在阶跃扰动作用下,先满足需要的衰减率,然后尽量协调准确性和快速性要求。

四、实验内容在手动情况下进入初始稳态(如图3),然后根据水箱的实际液位情况进行了一次下水箱阶跃响应测试,最终达到平衡状态,如图4所示。

根据两点法求K、T、τ参数,并用响应曲线法整定出对应的控制器参数。

将整定好的参数投入设备,进行闭环自动控制,并微调参数,记录分析控制系统的响应曲线。

图2 现场接线图图3 建立工作点图4 下水箱阶跃响应测试曲线五、数据记录由图4的阶跃响应曲线,根据两点法求出K、T、τ参数,并用响应曲线法整定出对应的控制器参数P、Ti,绘图及计算过程如图5所示。

图5 响应曲线法整定参数设置完PID参数(Kc=1/P=1/0.7=1.43,Ti=8.52min×60=514.8s),手动切自动,修改设定值(SV=13),最终达到平衡状态,如图6所示。

双容水箱液位调节阀控制实验

双容水箱液位调节阀控制实验

实验五双容水箱液位调节阀控制5.1 实验目的了解双容液位控制的构成环节,调节阀的工作原理,熟悉上位机组态王的组态及通讯。

通过实验,掌握双容液位PID参数的整定。

5.2 实验要求1、实验前需熟悉实验的设备装置以及管路构成。

2、熟悉仪表装置,如检测单元、控制单元、执行单元等。

3、用响应曲线法求取PID参数,以4:1标准衰减振荡作为指标,整定出最佳的比例度、积分时间和微分时间。

5.3 实验设备及系统组成1、实验设备:A3000对象系统(1)泵:工作电源220VAC。

(2)变频器:工作电源220VAC,控制信号4-20mA,输出电源0-220VAC。

(3)电动调节阀:工作电源24VAC,控制信号2.10VDC,阀门开度0.100%。

(4)液位传感器:输出信号4-20mA,量程为0-50cm。

2、系统组成双容下水箱液位PID控制流程图如图5.1所示图5.1双容下水箱液位调节阀PID单回路控制3、测点清单测点清单如表5.1所示:表5.1 双容下水箱液位调节阀PID单回路控制测点清单水介质由泵P102箱V104中加压获得压头,经由调节阀FV101进入水箱V102,经QV117流向V103,通过挡板QV116回流至水箱V104而形成水循环;其中,水箱V103的液位由LT103测得,用调节挡板QV116的开启程度来模拟负载的大小。

本例为定值自动调节系统,FV101为操纵变量,LT103为被控变量,采用PID调节来完成。

需要全打开的手阀:QV102、QV107;需要全关闭的手阀:QV103、QV104、QV105、QV109;挡板开度:QV1170.8cm。

QV1160.5cm。

5.4 操作步骤和调试1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。

2、在现场对象上,选择管路,打开或关闭相应手阀。

3、在控制柜上,将IO面板的下水箱液位输出连接到AI0,IO面板的电动调节阀控制端连到A O0。

双容水箱串级PID控制实验液位

双容水箱串级PID控制实验液位

双容水箱液位串级PID控制实验一、实验目的1、进一步熟悉PID调节规律2、学习串级PID控制系统的组成和原理3、学习串级PID控制系统投运和参数整定二、实验设备1、四水箱实验系统DDC实验软件2、PC机(Window 2000 Professional 操作系统)三、实验原理1、控制系统的组成及原理一个控制器的输出用来改变另一个控制器的设定值,这样连接起来的两个控制器称为“串级”控制器。

两个控制器都有各自的测量输入,但只有主控制器具有自己独立的设定值,只有副控制器的输出信号送给被控对象,这样组成的系统称为串级控制系统。

本仿真系统的双容水箱串级控制系统如下图所示:图17-1 本仿真系统的双容水箱串级控制系统框图串级控制器术语说明主变量:y1称主变量。

使它保持平稳使控制的主要目的副变量:y2称副变量。

它是被控制过程中引出的中间变量副对象:上水箱主对象:下水箱主控制器:PID控制器1,它接受的是主变量的偏差e1,其输出是去改变副控制器的设定值副控制器:PID控制器2,它接受的是副变量的偏差e2,其输出去控制阀门副回路:处于串级控制系统内部的,由PID控制器2和上水箱组成的回路主回路:若将副回路看成一个以主控制器输出r2为输入,以副变量y2为输出的等效环节,则串级系统转化为一个单回路,即主回路。

串级控制系统从总体上看,仍然是一个定值控制系统,因此,主变量在干扰作用下的过渡过程和单回路定值控制系统的过渡过程具有相同的品质指标。

但是串级控制系统和单回路系统相比,在结构上从对象中引入一个中间变量(副变量)构成了一个回路,因此具有一系列的特点。

串级控制系统的主要优点有:1)副回路的干扰抑制作用发生在副回路的干扰,在影响主回路之前即可由副控制器加以校正2)主回路响应速度的改善副回路的存在,使副对象的相位滞后对控制系统的影响减小,从而改善了主回路的相应速度3)鲁棒性的增强串级系统对副对象及控制阀特性的变化具有较好的鲁棒性4)副回路控制的作用副回路可以按照主回路的需要对于质量流和能量流实施精确的控制由此可见,串级控制是改善调节过程极为有效的方法,因此得到了广泛的应用。

双容水箱液位串级控制DCS实训报告

双容水箱液位串级控制DCS实训报告

DCS实训报告一、实训目的(1)熟悉集散控制系统(DCS)的组成。

(2)掌握MACS组态软件的使用方法。

(3)培养灵活组态的能力。

(4)掌握系统组态与装置调试的技能。

二、实训内容以双容水箱为对象设计液位串级控制系统,并用MACS组态软件完成组态包括:(1)数据库组态。

(2)设备组态。

(3)算法组态。

(4)画面组态。

(5)系统组态。

三、实训设备和器材(1)THSA-1型生产过程自动化技术综合实训装置。

(2)和利时DCS控制系统。

四、实训步骤1、工程分析双容水箱液位串级控制系统需要两个输入测量信号,一个输出控制信号。

因此需要一个模拟输出模块FM148A和一个模拟输出模块FM151.采集下水箱液位信号(LT1)控制电动控制发的开度。

2、工程建立1)打开:开始→程序→macsv组态软件→数据库总控。

2)点击按钮或选择工程|新建工程,新建工程,输入工程名字:wenzhao。

工程名必须为12个以内的非中文字符,只包括字母、数字。

3)点击“确定”按钮,然后在空白处选择这个工程,此时会显示当前域号为65535等信息。

4)选择“编辑>域组号组态”,选择组号为1,将刚创建的工程从“未分组的域”移动到右边“该组所包括的域”里,点“确定”按钮。

出现当前域号:0等信息。

5)在数据库总控组态中添加变量。

选择菜单栏,编辑→编辑数据库,弹出窗口,输入用户名和口令bjhc/3dlcz。

点击“确定”按钮。

6)选择系统→数据操作,出现下面对话框,点击“确定”。

7)因为双容水箱定制控制系统用到一个模块,两个通道,所以需要编辑两个点号。

点击“AI模拟量输入”选项出现下图。

8)点击“全选A”按钮。

将右侧的选择项名选中,点击“确定”按钮。

9)选择后确定进入编辑数据界面。

10)数据库编辑,注意:设置它的参数,根据实际情况,设置设备好(即设备地址),通道号(输入通道为2,对应FM148,对应FM143),量程上限下限,点名(注意:点名不能重复使用)。

双容液位控制系统的设计

双容液位控制系统的设计

双容液位控制系统的设计摘要在化学工业生产中,液位控制是一项非常重要的环节。

本论文所论述的双容液位控制系统是以过程综合自动化控制系统实验为平台,以仪表控制方法为主要工具,进行液位控制方法设计。

智能控制仪表蕴含大量高科技技术,且具备许多优点,因此越来越广泛的被应用于工业控制领域。

论文也对组态软件MCGS的特点及基本使用方法进行了简单介绍,这样对串级控制实施监控,提供了条件。

在控制算法方面,系统选用PID控制器。

然后根据系统具体的控制要求,主回路选择PI调节器,副回路选择P调节器;并选用适当整定法对调节器参数进行整定。

关键词:双容液位控制系统,智能仪表控制,MCGS组态软件,PID控制?—Dual-tank liquid level control system designAbstractProduction in the chemical industry, liquid level control is a very important part. Discussed in this paper two-tank liquid level control system is based on the process of experiments Integrated Automation Control System as a platform to instrument control as the main instrument designed for liquid level control. Intelligent Control Instrument contains a large number of high technology, and have many advantages, so more and more widely applied in industrial control.Papers also features MCGS configuration software and the basic use a brief introduction, this implementation of the cascade control monitoring, provided the conditions.In the control algorithm, the system adopts PID controller. And specific control requirements according to the system, the main loop select PI regulator, the Deputy loop select P regulator; and an appropriate tuning the parameters of the regulator tuning.\Key words: dual-tank liquid level control system, intelligent instrument control, MCGS configuration software, PID control目录双容液位控制系统的设计 (i)、摘要 (i)Abstract (ii)1 绪论 (1)课题来源,背景及意义 (1)课题研究的内容安排 (2)2 THJ-2型高级过程控制系统 (3)系统简介和组成 (3)系统控制仪表的组成 (3)、检测装置 (3)执行机构 (4)控制器 (4)智能仪表的发展前景、应用领域和优点 (4)系统软件 (5)系统特点 (5)本章小结 (6)3 MCGS组态软件 (7)—什么是MCGS组态软件 (7)MCGS组态软件的系统构成 (7)MCGS组态软件的特点 (7)建立MCGS工程 (8)设计画面流程 (9)整体画面 (13)本章小结 (15)4 液位串级控制系统分析与建模 (16)-串级控制系统的分析 (16)串级控制系统及组成结构 (16)串级控制系统的特点和适用场合 (16)串级控制系统的设计 (16)双容水箱液位串级控制系统的组成 (17)系统建模 (18)系统特性测试 (19)模型最终确定 (21);本章小结 (22)5 系统的PID参数整定 (23)PID概述 (23)控制器参数整定方法 (23)PID参数的确定 (27)系统特性测试. (28)本章小结 (30)6 结论 (31)!参考文献 (32)致谢 (33)?1 绪论课题来源,背景及意义过程控制涉及炼油、化工、发电、冶金、造纸、医药和轻工业等工业部门,对国民经济的发展起着十分重要的作用。

双容水箱液位定值控制系统实验报告

双容水箱液位定值控制系统实验报告

双容水箱液位定值控制系统实验报告实验目的:通过搭建双容水箱液位定值控制系统,了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。

实验器材:1.液位控制综合实验台2.电子积分器PID控制器3.水泵4.液位传感器5.两个水箱6.电压表和电流表实验步骤:1.将两个水箱放在实验台上,一个用作上升水箱,一个用作下降水箱。

2.将水泵安装在上升水箱中,并通过输水管连接两个水箱。

3.将液位传感器安装在上升水箱和下降水箱中,并将其连接到电子积分器PID控制器。

4.将电子积分器PID控制器连接到电源,并连接电压表和电流表来监测相应的电压和电流。

5.打开水源,使用电子积分器PID控制器调节水泵的运行方式和水泵的转速。

6.观察液位传感器的反馈信号,并根据反馈信号调整PID控制器的参数,使得液位保持在设定值附近。

7.记录不同设定值下液位的控制效果,并分析数据。

8.关闭水源,停止实验。

实验结果:根据实验数据,可以观察到双容水箱液位控制系统的控制效果。

当设定值改变时,PID控制器能够调整水泵的运行方式和水泵的转速,以使得液位保持在设定值附近。

实验结果表明,在合适的PID控制器参数设置下,液位的稳定性和控制精度较高。

实验分析:在双容水箱液位定值控制系统中,PID控制器起到了关键作用。

P项(比例项)根据液位的偏差来调节水泵的转速,I项(积分项)根据液位的积累偏差来调整水泵的运行方式,D项(微分项)根据液位的变化速度来预测液位的变化趋势。

通过PID控制器的联合作用,可以实现对液位的稳定控制。

从实验结果分析可以看出,PID控制器的参数设置非常重要。

当P参数过大或过小时,会导致液位振荡或调节速度缓慢;当I参数过大或过小时,会导致液位超调或稳态误差;当D参数过大时,系统可能产生过冲。

因此,需要根据具体的系统要求和实验条件来合理设置PID控制器的参数。

结论:通过搭建双容水箱液位定值控制系统,并对其进行实验研究,我们可以了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。

双容水箱液位控制系统方案

双容水箱液位控制系统方案

双容水箱液位控制系统方案一、前言在许多工业生产过程中,水位的控制是非常关键的环节。

双容水箱液位控制系统是一种常用的水位控制方案,它通过两个水容器之间的液位传感器和控制阀门来实现液位的自动控制。

本文将就双容水箱液位控制系统的设计方案进行详细介绍。

二、系统结构[插入系统结构示意图]系统由两个水容器、液位传感器、控制阀门和控制器组成。

其中,一个水容器为水箱,另一个水容器为储水槽。

三、系统原理四、系统设计步骤1.确定控制策略首先要确定液位控制的目标和要求,例如需要将水箱液位控制在一定范围内。

然后根据具体的要求设计控制策略,如使用PID控制算法。

2.选择液位传感器根据实际需要选择合适的液位传感器,可以使用浮球式液位传感器或是压力式液位传感器。

传感器的选择需要考虑其测量范围、精度和稳定性等因素。

3.选择控制阀门选择合适的控制阀门用于控制水的流入和流出。

阀门的选择需要考虑其流量范围、响应速度和可控性等因素。

同时,还需要考虑阀门的安装位置和连接方式等因素。

4.确定控制器和通信协议选择合适的控制器用于接收液位传感器的信号,并控制控制阀门的开关状态。

通常可以选择PLC或是单片机作为控制器,并根据实际需要确定通信协议。

5.编写控制程序根据控制策略和控制器的要求编写控制程序,实现液位的自动控制。

程序需要包括液位传感器的读取、控制阀门的开关和液位的调节等功能。

6.系统调试和优化对安装完毕的系统进行调试和优化,通过实际测试来验证系统的性能和稳定性。

如有需要,可以对控制策略和参数进行调整,以满足实际应用的需求。

五、系统特点和应用1.可靠性高:通过使用液位传感器和控制器,系统能够实时监测和控制液位,避免了人工操作的误差。

2.自动化程度高:系统可以实现液位的自动控制,减少了人工操作的工作量。

3.调节性能好:根据实际需要,可以选择合适的控制策略和参数,以实现液位的快速调节和稳定控制。

4.应用范围广:双容水箱液位控制系统广泛应用于各类工业生产过程中,如供水系统、储罐液位控制等。

双容型水箱实验报告

双容型水箱实验报告

机械电子工程原理实验报告双容型水箱液位及PID控制综合实验组员:XXXXXX年X月实验一压力传感器特性测试及标定测量实验一、实验目的1、了解本实验装置的结构及组成。

2、掌握压力传感器的实验原理及方法,对压力传感器进行标定。

二、实验设备1、德普施双容水箱一台。

2、PC 机及 DRLINK4.5 软件。

三、实验原理图 1-1 传感器装置图本实验传感器如图1-1所示,使用二个扩散硅压阻式压力传感器,分别用来测量上水箱水柱压力,下水箱水柱压力。

扩散硅压阻式压力传感器实质是硅杯压阻传感器。

它以N型单晶硅膜片作敏感元件,通过扩散杂质使其形成4个P型电阻,形成电桥。

在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,使电桥有相应输出。

经过后级电路的放大处理之后输出0~5V之间的电信号。

扩散硅压力传感器的输出随输入呈线性关系,输出特性曲线一般是一条直线,一般使用传感器前需要对此传感器进行标定,通常的做法是取两个测量点(x1,y1)和(x2, y2)然后计算特性直线的斜率K和截距B 即可。

由于扩散硅压力传感器承受的水压力及水的液位高度成正比,因此扩散硅压力传感器通常也用来测量液位高度。

四、实验内容及结果图1-2 上水槽压力传感器特性测试及标定测量实验图1-3 下水槽压力传感器特性测试及标定测量实验5)压力传感器的标定系数值表。

表1-1 压力传感器标定系数值传感器K值B值液位1传感器0.06440-7.98567液位2传感器0.065166-12.63056)依据压力传感器标定系数值绘制的压力传感器特性曲线如图1-3,图1-4所示:图1-3 上水槽压力传感器特性曲线图1-4 下水槽压力传感器特性曲线五、思考题1.在做本实验的时候,为何2次标定的液位高度不能够太接近?答:由于液位高度及电压值为线性关系,故2次标定的液位高度要保持一定距离,这样可以有效降低系统误差。

在控制过程中由于水泵抽水压力冲击传感器等影响会对液位传感器产生一定程度的干扰。

三容液位定值控制实验

三容液位定值控制实验

三容液位定值控制实验是一种常见的控制工程实验,用于演示和研究在不同流量输入条件下,如何通过控制阀门开度来实现三个容器的液位保持在设定值上。

以下是一个简单的三容液位定值控制实验的步骤:
1. 实验装置准备:
- 准备三个相互连接的容器,可以使用玻璃容器或塑料容器。

- 在每个容器中安装液位传感器,用于测量液位。

- 在每个容器上安装控制阀门,用于调节液位。

- 连接液位传感器和控制阀门到控制系统或数据采集设备。

- 连接流量控制装置或泵到容器的进水口。

2. 设定液位控制参数:
- 根据实验目的和要求,设置每个容器的液位设定值。

- 设定控制系统的采样时间和控制算法。

3. 启动实验:
- 打开流量控制装置或泵,使液体流入容器。

- 启动控制系统,开始实时监测液位,并根据设定值调节控制阀门的开度。

4. 数据记录和分析:
- 实时记录每个容器的液位数据和控制阀门的开度。

- 分析液位控制的稳定性和响应性能,评估控制系统的性能。

5. 参数调整和再次实验:
- 根据实验结果,可以调整控制系统的参数,如控制增益、积分时间等。

- 再次进行实验,观察和比较不同参数设置下的液位控制性能。

通过这个实验,可以帮助学生理解和实践液位控制的基本原理和方法,培养他们在控制工程中的实验和问题解决能力。

同时,可以对比不同控制算法和参数设置对控制系统性能的影响,进一步提高学生对控制系统设计和调节的理解和掌握。

双容水箱液位定值控制系统实验报告

双容水箱液位定值控制系统实验报告

XXXX大学
电子信息工程学院
专业硕士学位研究生综合实验报告
实验名称:双容水箱液位定值控制系统专业:控制工程
姓名: XXX
学号:XXXXXX
指导教师: XXX
完成时间:XXXXX
方案设计及参数计算:
单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。

系统的给定量是某一定值,要求系统的被控制量稳定至给定量。

单回路控制系统方框图
调节器参数的整定方法
(一)经验法
系统
参数
δ(%)T I(min)T
D
(min)
温度20~603~10~3
流量40~100~1
压力30~70~3
液位20~80
(二)临界比例度法
根据临界比例度δk和振荡周期T S,按下表所列的经验算式,求取调节器的参考参数值,这种整定方法是以得到4:1衰减为目标。

通过系统响应曲线可以看出,当设定值为10时,系统的响应有明显的时滞过程,并且有较大的超调现象,但系统最终稳定,整体图像比较理想。

双容液位控制(最终)详解

双容液位控制(最终)详解

5.控制元件的选择
• (2)液位变送器的选择 • 选择液位变送器 • 与其他变送器相比,超声波变送器较好地解决了旋转式、压力式、
电容式、浮子式等传统测量方式带来的粘莲、缠绕、堵塞、泄露、 介质腐蚀、维护不便等缺点。 适合恶劣工业场合; 抗干扰性强及在线输出调节; 换能器内置温度传感器,实现测量值的实时自动温度补偿;参数可 通过RS485设置, 屏蔽探头附近干扰信号; 4~20MA电流输出,可选现场总线接口。
5.控制元件的选择
• (1).执行器 • 执行器按照工作能源分为三大类:液动、气动、和电动执行器。 • 选择DKZ系列直行程电动执行器。 • DKZ直行程电动执行器与直通单座调节阀或直通双座调节阀组装而
成的。 • 该装置特点:
该执行器具有推力大,定位精度 高,反应速度快、滞后时间少、 能源消耗低、安装方便、供电简 便、在电源突然断电时能自动保 持调节阀原来的位置等特点
• (1)参数:K1=12 ,I1=1,D1=2
• 2)参数:K1=12 ,I1=4,D1=2
• 在无干扰最佳曲线下加入干扰,系统的MATLAB仿真框图如下:
加入干扰后的仿真曲线如下:
观察以上曲线可以初步看出,经参数整定,分别改变P、I、D参数后,使 系统的性能有了很大的改善,并且加入干扰后,一段时间也能达到平衡。 因此,研究出该调节器的PID控制参数为:K=12,I=4,D=2。
基于MATLAB诸多领域经常涉及到液 位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工,溶液过滤,化工生产等多种行业的 生产加工过程,通常需要使用蓄液池,蓄液池中的液 位需要维持合适的高度,既不能太满溢出造成浪费, 也不能过少而无法满足需求。因此液面高度是工业 控制过程中一个重要的参数,特别是在动态的状态 下采用适合的方法对液位进行检测、控制,能收到 很好的效果。

双容水箱液位PID控制实验

双容水箱液位PID控制实验

上海电力学院实验报告过程控制实验课程题目双容水箱液位PID控制实验班级姓名学号同组成员指导老师时间 2011-5-16 上海电力学院电力与自动化工程学院一、实验目的1、学习双容水箱液位PID 控制系统的组成和原理2、进一步熟悉PID 的调节规律3、进一步熟悉PID 控制器参数的整定方法二、实验设备1、四水箱实验系统硬件平台2、PC 机(Window XP操作系统)三、实验原理1、控制系统的组成及原理单回路调节系统,一般是指用一个控制器来控制一个被控对象,其中控制器只接收一个测量信号,其输出也只控制一个执行机构。

双容水箱液位PID 控制系统也是一种单回路调节系统,典型的双容水箱液位控制系统如下图所示:双容水箱液位PID 控制系统的方框图在双容水箱液位PID 控制系统中,以液位为被控量。

其中,测量电路主要功能是测量对象的液位并对其进行归一化等处理;PID 控制器是整个控制系统的核心,它根据设定值和测量值的偏差信号来进行调节,从而控制双容水箱的液位达到期望的设定值。

单回路调节系统可以满足大多数工业生产的要求,只有在单回路调节系统不能满足生产更高要求的情况下,才采用复杂的调节系统。

2、PID 调节规律PID控制是比例、积分、微分控制的简称。

在生产过程自动控制的发展历程中,PID控制是历史最久、生命力最强的基本控制方式。

目前,PID控制仍然是得到最广泛应用的基本控制方式。

常用的PID控制规律有:P、PI、PD、PID,可根据被控对象的特点和控制要求选择其中之一作为控制器。

3、PID 控制器参数的实验整定方法双容水箱液位PID控制器参数整定,是为了得到某种意义下的最佳过渡过程。

我们这里选用较通用的“最佳”标准,即要求在阶跃扰动作用下,被调量的波动具有衰减率0.75左右,在这个前提下,尽量满足准确性和快速性的要求。

常用的实验整定方法有:a、动态特性曲线法b、稳定边界法c、衰减曲线法四、实验步骤1、实验前准备工作2、进入实验运行四水箱实验系统DDC 实验软件,进入首页界面;选择实验模式为“实验装置”;单击实验菜单,进入双容水箱液位PID 控制实验界面。

试验三双容水箱液位定值控制系统试验-化工控制工程试验中心

试验三双容水箱液位定值控制系统试验-化工控制工程试验中心

试验三双容水箱液位定值控制系统试验-化工控制工程试验中心过程控制系统与工程实验指导书沈阳工业大学工程学院目录实验一单容自衡水箱液位特性测试实验 (3)实验二单容液位定值控制系统实验 (6)实验三双容水箱液位定值控制系统实验 (8)实验四水箱液位串级控制系统实验 (10)实验五下水箱液位前馈-反馈控制系统实验 (12)实验一单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。

2.根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。

二、实验设备1.THJ-2型高级过程控制系统实验装置2.计算机、MCGS 工控组态软件、RS232/485转换器1只、串口线1根3.万用表一只三、实验原理所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

图1-1所示为单容自衡水箱特性测试结构图及方框图。

阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。

液位h 的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。

若将Q1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q1之间的数学表达式。

根据动态物料平衡关系有Q 1-Q 2=A dtdh (1-1) 将式(1-1)表示为增量形式ΔQ 1-ΔQ 2=Adt h d ? (1-2) 式中:ΔQ1,ΔQ2,Δh ——分别为偏离某一平衡状态的增量; A ——水箱截面积。

在平衡时,Q 1=Q 2,dtdh =0;当Q1发生变化时,液位h 随之变化,水箱出口处的静压也随之变化,Q2也发生变化。

由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。

但为了简化起见,经线性化处理后,可近似认为Q2与h 成正比关系,而与阀F1-11的阻力R 成反比,即ΔQ 2=R h ? 或 R=2Q ??h (1-3) 式中:R —阀F1-11的阻力,称为液阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三双容液位控制
一、实验目的
1、了解简单过程控制系统的构成。

2、掌握双容液位计算机控制方法。

二、实验设备
1、 PCS过程控制实验装置(使用其中:电动调节阀、DDC控制单元、上水箱、下
水箱及液位变送器等)。

2、智能电动调节阀使用手册和液位变送器的调试(一般出厂之前已调试好)方法。

三、实验系统流程图:
四、实验原理
本实验采用计算机控制,将(下水箱)液位控制在设定高度。

通过上水箱根据下水箱信号输出给计算机,计算机根据P、I、D参数进行PID运算,输出信号给电动调节阀,然后由电动调节阀控制水泵1出水流量,控制上水箱液位,再控制下水箱液位,从而达到控制设定液位的目的。

当下水箱液位平衡时,上水箱液位也达到平衡
双容水箱液位过程控制的方块原理图:如图2-3
图2-3
五、实验步骤
1、按附图上下水箱双容液位控制实验接线图接好实验导线和通讯线。

2、将控制台背面右侧的通讯口(在电源插座旁)与上位机连接。

3、将手动阀门1V1、1V10、V
4、V5打开,其余阀门全部关闭。

4、先打开实验对象的系统电源,然后打开控制台上的总电源,再打开DDC 控制单元电源。

5、在控制板上打开水泵1、电动调节阀。

6、在信号板上打开电动调节阀输入信号、下水箱输出信号。

7、 打开计算机上的 MCGS 运行环境,选择系统管理菜单中的用户登录,登录用户。

8、选择单回路控制实验的上下水箱双容液位控制实验。

9、选择仪表控制方式。

10、整定参数值的计算
设定适当的控制参数使过渡过程的衰减比为4:1,整定参数值可按下列“阶跃反应曲线整定参数表”。

表1 阶跃反应曲线整定参数表
11、设置参数
Ts=1 (参考值)
SV=20 (参考值)
Kc=7 (参考值)
Ti=200 (参考值)
Td=0 (参考值)
12、观察计算机上的实时曲线和历史曲线。

13、待系统稳定后,给定加个阶跃信号,观察其液位变化曲线。

14、再等系统稳定后,给系统加个干扰信号,观察液位变化曲线。

15、曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果记录于表中。

按常规内容编写实验报告,并根据K、T、τ平均值写出广义的传递函数。

(六)思考建议
比较单容控制与双容控制区别和控制的难易度,为什么。

相关文档
最新文档