三角形期末复习讲义
期末复习(一) 直角三角形
期末复习(一) 直角三角形各个击破命题点1 直角三角形的性质与判定【例1】 在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D.(1)如图1,若∠C =30°,求证:BD =14BC ;(2)如图2,若∠C =45°,写出点D 到△ABC 的三个顶点A ,B ,C 的距离的关系;(3)在(2)的基础上,如果点M ,N 分别在线段AB ,AC 上移动,在移动过程中保持AN =BM ,请判断△DMN 的形状,请证明你的结论.【思路点拨】 (1)先由同角的余角相等可以得到∠BAD =∠C =30°,再根据直角三角形中30°角所对的直角边等于斜边的一半,可以在Rt △ABD 和Rt △ABC 中分别找出BD 与AB ,AB 与BC 的关系,从而得出BD 与BC 的数量关系;(2)根据∠C =45°,∠BAC =90°,可得△ABC 是等腰直角三角形.又AD ⊥BC ,由等腰三角形三线合一的性质可知,D 为直角三角形斜边的中点.再由直角三角形斜边中线的性质,即可求出AD ,BD ,DC 之间的关系;(3)先由题目所给的条件证明△BDM ≌△ADN ,从而得到MD =DN 及∠BDM =∠ADN ,进而可得∠MDN =∠ADB =90°.【解答】(1)证明:∵∠BAC =90°,AD ⊥BC ,∴∠B +∠C =90°,∠B +∠BAD =90°.∴∠BAD =∠C =30°.∴在Rt △ABD 中,BD =12AB , 在Rt △ABC 中,AB =12BC. ∴BD =14BC. (2)∵∠C =45°,∠BAC =90°,∴△ABC 是等腰直角三角形.∵AD ⊥BC ,∴D 为BC 的中点.∴AD =BD =CD.(3)△DMN 是等腰直角三角形.证明:∵BM =AN ,∠B =∠DAN =45°,BD =AD ,∴△BDM ≌△ADN(SAS).∴MD =ND ,∠BDM =∠ADN.∴∠MDN =∠ADB =90°.∴△MDN 是等腰直角三角形.【方法归纳】 (1)由直角三角形斜边中线的性质可得到两条线段之间的数量关系;(2)由角来判断一个三角形是直角三角形,只要说明这个三角形中有一个直角或有两个角互余即可.1.如图,△ABC 中,CD ⊥AB 于D ,且E 是AC 的中点.若AD =6,DE =5,则CD 的长等于(D)A .5B .6C .7D .82.一个三角形的三个角的度数之比是3∶3∶6,则这个三角形是等腰直角三角形.3.在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线交BC 于点D ,交AB 于点E.如果DE =1,求BC 的长.解:连接AD.∵DE 垂直平分AB ,∴AD =BD ,∠DEB =90°.∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°.在Rt △BDE 中,∠B =30°,∴DE =12BD.∴BD =2. ∵AD =BD ,∴∠BAD =∠B.∴∠DAC =∠BAC -∠BAD =120°-30°=90°.又∵∠C =30°,∴AD =12CD.∴CD =2AD =2BD =4. ∴BC =CD +BD =4+2=6.命题点2 勾股定理及其逆定理【例2】 如图,四边形ABCD ,AB =AD =2,BC =3,CD =1,∠A =90°,求∠ADC 的度数.【思路点拨】 首先在Rt △BAD 中,利用勾股定理求出BD 的长,而由题意可知,△ABD 为等腰直角三角形,则∠ADB =45°,再根据勾股定理逆定理,证明△BCD 是直角三角形,即可求出答案.【解答】 连接BD.在Rt △BAD 中,∵AB =AD =2,∴∠ADB =45°,BD =AD 2+AB 2=2 2.在△BCD 中,DB 2+CD 2=(22)2+12=9=CB 2,∴△BCD 是直角三角形.∴∠BDC =90°.∴∠ADC =∠ADB +∠BDC =45°+90°=135°.【方法归纳】 当不能直接求一个角的度数时,可通过作辅助线,求几个角的和或差.4.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有(D)A .②B .①②C .①③D .②③5.如果三角形有一条边上的中线长恰好等于这条边的长,那么称这个三角形是“有趣三角形”,这条中线为“有趣。
三角形复习提纲
三角形复习提纲三角形是初中数学中一个重要的几何概念,它涵盖了很多重要的性质和定理。
本文将对三角形的基本概念、性质和定理进行复习和总结。
一、三角形的基本概念首先,我们需要了解三角形的基本定义和几何元素。
三角形是由三条线段组成的闭合图形,它的三个顶点分别由这三条边所连接。
在三角形中,我们有以下几个重要的几何元素:1. 顶点:三个顶点分别用大写字母A、B、C表示。
2. 边:三条边分别用小写字母a、b、c表示。
3. 内角:三角形内部的角分别用字母A、B、C表示。
4. 外角:三角形外部的角也分别用字母A、B、C表示,它们的和为360度。
二、三角形的性质在我们熟悉了三角形的基本概念后,我们来了解一些与三角形有关的重要性质。
1. 内角和定理:三角形的内角和等于180度。
即A + B + C = 180度。
2. 外角和定理:三角形的一个外角等于其不相邻的两个内角的和。
即A' = B + C,B' = A + C,C' = A + B。
3. 直角三角形:如果一个三角形有一个内角等于90度,我们称其为直角三角形。
直角三角形的边与边之间也有一些重要关系,比如勾股定理。
4. 等边三角形:如果一个三角形的三个边相等,我们称其为等边三角形。
等边三角形的三个内角也相等,都是60度。
三、三角形的定理除了上述的性质外,三角形还有很多重要的定理,它们可以帮助我们解决各种与三角形有关的问题。
以下是一些常见的三角形定理:1. 外角定理:一个三角形的外角等于其不相邻的两个内角的和。
2. 内角平分线定理:一条角的内角平分线将这个角分成两个相等的角。
3. 垂直角定理:如果两条直线相交,形成了四个角,其中相邻的两个角互为垂直角。
4. 相似三角形的性质:如果两个三角形的对应角相等,则这两个三角形是相似的。
相似三角形有很多重要的性质和比例关系,比如边长比例、面积比例等。
在解决三角形问题时,我们可以利用这些性质和定理来推导和证明结论,从而得到问题的解答。
期末总复习二全等三角形的判定与性质
【分析】 (1)欲证 BF=EC,只需要证明 BC=EF,由△ABC≌△DEF 即 得到;(2)由△ABC≌△DEF 得到∠ACB=∠DFE,从而得到∠ACF=∠ DFC,即可得 AC∥DF.
命题高频点 2 全等三角形的判定 【例 2】在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE=90°. (1)当点 D 在 AC 上时,如图①,线段 BD、CE 有怎样的数量关系和位置关 系?直接写出你猜想的结论; (2)将图①中的△ADE 绕点 A 顺时针旋转一个锐角,到如图②所示的位置, 请问(1)的数量关系和位置关系是否还成立,请说明理由.
解:(1)BD=CE,BD⊥CE.理由如下:∵∠BAC=∠DAE=90°.在△ABD 与
AB=AC △ACE 中,∠BAC=∠DAE=90° ,∴△ABD≌△ACE(SAS).∴BD=
AD=AE
CE,∠ABD=∠ACE,∵∠ACE+∠AEC=90°,∴∠ABD+∠AEC=90°, ∴BD⊥CE;
(2)BD、CE 的数量和位置关系不变.为说明理由,应延长 BD 交 AC 于点 G, 交 CE 于点 F.∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠ DAC,即∠BAD=∠CAE.∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS).∴ BD=CE,∠ABD=∠ACE.∵∠AGB=∠FGC,∴∠ABD+∠AGB=∠ACE +∠FGC=90°,∴∠CFG=90°,即 BD⊥CE.
,解得xy==185 ,此
时 AC=17,CD=5,AD=8,5+8<17,∴不符合题意,∴AD=13cm,BC
=10cm.
10.如图,∠AOB=90°,OM 平分∠AOB,直角三角板的 顶点 P 在射线 OM 上移动,两直角边分别与 OA、OB 相交 于点 C、D,问 PC 与 PD 相等吗?试说明理由.
八年级数学上册期末复习资料
初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF=。
知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。
2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。
求证:BP 为MBN ∠的平分线。
例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
初中数学讲义初二上册《三角形》全章复习与巩固—知识讲解(提高)
《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和: 三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键.举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
三角形期末复习讲义汇总
三角形复习讲义一、知识点1.三角形的内角和2.三角形的三边关系,范围3.三角形的外角性质4.三角形的角平分线,性质5.三角形的中线,作用6.三角形的高线;内外之分;三线共同点7.中垂线(垂直平分线),性质8.命题的概念,如果那么;9.全等三角形的定义,记号,性质;10.全等三角形的判定方法;直角三角形全等的判定11.尺规作图:(1)作一条线段等于已知线段(2)作一个角等于已知角(3)作线段的垂直平分线(4)作角平分线(5)过一个已知点作一条直线的垂线12.轴对称与轴对称图形;轴对称图形的作法13.等腰三角形的定义;性质14.等腰三角形的判定;分类讨论15.等边三角形的定义;性质;判定方法16.直角三角形的性质;判定;逆命题与逆定理17.等腰直角三角形、有30 度角的直角三角形边角关系18.勾股定理,逆定理内容及作用二、基础题组知识点1-31.三角形两边的长分别为1 和8,若该三角形第三边长为偶数,则该三角形的周长为2.设△的三边为a、b、c,化简:3.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形 B .锐角三角形 C.钝角三角形 D .等边三角形4.在△中,/ 3/B,// 30°,贝V/度,/ 度.5.已知如图,△为直角三角形,/ 90°,若沿图中虚线剪去/ C,则/ 1+Z 2 等于知识点4-8D,若/ 128°,/ 36°,则/的度数是1•如图,是△的角平分线,丄于点( )A . 10° B. 12° C. 15D. 18°2.如图,在△中,/ 90°,/ 30°,/的平分线与/的外角平分线交于E点,连接,则/是( )A . 15° B. 20° C.D. 353.如图,△的面积是12, 2,点E是的中点,则△的面积C4. 如图,在△中,是边上的高线,是一条角平分线,它们交与点P.已知/ 60°. 求/的度数•EB5. 如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中 / 90°,/ 45°,/ 30°,则/的度数是( )A. 15° B . 25°C . 30°D . 10°7. 能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝 角” 为 假 命 题 的 两 个 角 是 ( )A . 120°, 60°B .95. 1 °, 104. 9°C . 30°, 60°D. 90°, 90°8. 下列命题是真命题的有( ) ①对顶角相等;6.如图,在△中,/ C = 90°,平分/,且/B = 3/,求/的度数 - CAB②两直线平行,内错角相等;两个锐角对应相等的两个直角三角形全等;三角形的一条中线能将三角形分成面积相等的两分;若a22,则A . 1个B . 2个C . 3个D . 4个知识点9-111.若△旦△, A与D, B与E分别是对应顶点,/ 52° ,Z 67°, 15,/ 度,2. 如图,在△中,D,E分别是边,上的点,若△□△□△,则/ 度.3. 如图,点P在/的平分线上,若使△旦△,则需添加的一个条件是.(只写一个即可,不添加辅助线)4. 工人师傅常用角尺平分一个任意角.做法如下:如图所示,/是一个任意角,在边,上分别取,移动角尺,使角尺两边相同的刻度分别与M N重合.过角尺顶点C的射线即是/的平分线.做法中用到三③0B角形全等的判定方法是A. B . C . D5.如图,点E、F在上,,,// C.求证:D.8.如图,△与△中,与交于点E,且//,(1)求证:△旦△;(2)当/ 50°,求/的度数9. 已知二边及夹角,求做三角形已知:线段a , b ,/a 。
解三角形 高一期末复习
解三角形一、知识梳理:三角形中的有关公式:(1)内角和定理:π=++C B A ,这是三角形中三角函数问题的特殊性,解题可不能忘记!锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方。
(2)正弦定理:R R CcB b A a (2sin sin sin ===为三角形外接圆的半径). ①C B A c b a sin :sin :sin ::=;②R a A 2sin = R b B 2s i n = RcC 2s i n =③=a R A 2sin ⋅ R B b 2s i n⋅= R C c 2sin ⋅= 已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.A 为锐角 A 为钝角或直角 图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=等,常选用余弦定理鉴定三角形的形状.(4)面积公式:)(21sin 2121c b a r C ab ah S a ++===(其中r 为三角形内切圆半径) 特别提醒:(1)求解三角形中的问题时,一定要注意π=++C B A 这个特殊性:C B A -=+π,2cos 2sin ,sin )sin(CB AC B A =+=+;(2)求解三角形中含有边角混合关系问题时,常运用正弦定理、余弦定理实现边角互化。
二、典型例题:题型一:利用正、余弦定理解三角形1、在ABC ∆中,若,60,2,6 ===B BC AC 则______=C 。
2、下列条件判断三角形解的情况,正确的是_______①30,16,8===A b a ,有两解; ②60,20,18===B c b ,有一解; ③90,2,15===A b a ,无解 ④150,25,30===A b a ,有一解 3、设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c .已知41cos ,2,1===C b a . (1)求ABC ∆的周长(2)求)cos(C A -的值.题型二:判断三角形形状1、在ABC ∆中,,cos sin 2sin C B A =且C B A 222sin sin sin +=,试判断ABC ∆的形状。
第三章《三角形》期末复习课件
D
三、三角形的三种重要线段 3、三角形的高: 从三角形的一个顶点向它的对边
所在的直线作垂线,顶点和垂足之间的线段叫做
Байду номын сангаас
三角形的高线,简称三角形的高。
A 如左图,若有AD⊥BC, B 则线段AD是△ABC的一条高 D C
四、三角形的性质
1、三角形内角和定理:三角形三个内角 的和等于180˚ 2、三角形三边关系:三角形任意两边 之和大于第三边,任意两边之差小于第 三边。 3、三角形具有稳定性
b
顶点: 三个顶点A、B、C
C
内角: 三个内角:∠A,∠B,∠C
二、三角形的分类 锐角三角形 按角分: 直角三角形 钝角三角形 三角形 等腰三角形 按边分: 一般等腰三 角形 等边三角形 不等边三角形
三、三角形的三种重要线段
在三角形中,连接一个顶点 1、三角形的中线:
与它对边中点的线段,叫做这个三角形的中线。
A C B D
三、说理题
1、如图AB=AC,∠B=∠C,点D、E 在BC边上,且BD= CE,那么图中有哪些 三角形全等?请说明理由。
A
B
D
E
C
2、如图,AB=DC,AC=DB, 你能说明图中∠1=∠2的理由吗?
A D
1
2
B
C
利用全等三角形测距离
A、B间有多远呢?
小明在上周末游览风景
区时,看到了一个美丽的
● ●
B
C E
●
长了。
理由如下: 在△ACB与△DCE中, AC=C D(已知)
D
∠BCA=∠ECD(对顶角相等) BC=CE(已知) ∴△ACB≌△DCE(SAS ) ∴AB=DE( 全等三角形的对应边相等 )
三角形知识总复习
折叠纸盒
折叠纸盒的构造中,常常 可以看到三角形的应用, 它们能够承受一定的压力, 保持纸盒的形状。
三角形在数学与其他学科中的应用
几何学
三角形是几何学中基础图形之一, 研究三角形的性质、面积和周长
等基础知识是几何学的重要内容。
工程学
在工程设计中,三角形的应用非常 广泛,如结构设计、机械零件设计 等。
详细描述
根据三角形的角度和边长,可以将三角形分为不同的类型。 例如,等边三角形三边相等,三个角都是60度;等腰三角形 两边相等,两个角相等;直角三角形有一个90度的角等。这 些分类有助于理解三角形的特性和性质。
02 三角形的面积与周长
CHAPTER
三角形的面积计算
01
02
03
公式法
使用三角形面积公式(面 积 = (底 × 高) ÷ 2)计算 面积。
三角形知识总复习
目录
CONTENTS
• 三角形的基本性质 • 三角形的面积与周长 • 三角形的角度与勾股定理 • 三角形的全等与相似 • 三角函数与解三角形 • 三角形的实际应用
01 三角形的基本性质
CHAPTER
三角形的基本定义
总结词
三角形是由三条边和三个角构成的闭合二维图形。
详细描述
三角形的基本定义包括其构成的要素,即三条边和三个角。这三条边在平面几 何中首尾相连,形成一个封闭的二维图形,而三个角则定义了三角形的角度大 小。
等边三角形
等边三角形的三条边长度相等,面积计算公式为(面积 = (√3/4) × a^2),其中a是等边三 角形的边长。周长计算公式为(周长 = 3a)。
等腰三角形
等腰三角形有两边长度相等,面积计算公式为(面积 = (底 × 高) ÷ 2),周长计算公式为 (周长 = a + b + c),其中a、b和c分别是三角形的底、相等的两边和另一条边。
三角形期末复习
三角形的角平分线
A
●
︶
几何语言:
1 2
B
●
D
C
∵AD是 △ ABC的角平分线
1 ∴∠ BAD = ∠ CAD = 2∠BAC 用处:求相等的角,求角度
练一练
1、能将△ABC的面积分成相等的两部分的 是( B )
A、高 B、中线 C、角平分线 D、对角线
2、画△ABC中BC边上的高,下列各图中 正确的是( D ) D
2cm<x<12cm 范围是_____________;这个三角形周长c的取 14cm<c <24cm 值范围是_____________;
练一练
3、已知△ABC是等腰三角形,如果它的周长 为20cm,一条边长为4cm,求等腰三角形其它 两边的长为(8cm,8cm )。
4、已知△ABC是等腰三角形,如果它的一边 长为3cm,一边长为6cm,则这个等腰三角形的 周长为(15cm )。
多边形外角和为360°
1. 三角形的三边关系:
(1) 三角形两边的和大于第三边 (2) 三角形两边的差小于第三边
2. 判断三条已知线段a、b、c能否 组成三角形.
当a最长,且有b+c>a时,就可构成三角形.
3. 确定三角形第三边的取值范围:
两边之差<第三边<两边之和.
练一练
1、下列条件中能组成三角形的是( C ) A、 5cm, 13cm, 7cm B、 3cm, 5cm, 9cm C、 14cm, 9cm, 6cm D、 5cm, 6cm, 11cm 2、三角形的两边为7cm和5cm,则第三边x的
重难点: 三角形的三边关系定理,内外角的 性质,多边形的内角和公式的应用
本章知识结构
人教版初中八年级上册数学-期末复习 第12章全等三角形 课件(共48张PPT)
第3题
4.如图,AO=BO,下列条件不能判定△AOD≌△BOC 的是( B )
A.OC=OD C. ∠A=∠B
第4题 B.AD=BC D.∠C=∠D
【考点 3】角平分线的性质和判定 5.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,AB=6,CD
=2,则点 D 到 AB 的距离是_2_,△ABD 的面积是_6_.
用 HL 证 Rt△ABC≌Rt△DEC. 得 ∠A=∠D, 从而 AB∥DE.
10.如图,在△ABC 和△DEF 中,下面有四个条件,请你在其中 选 3 个作为题设,余下的 1 个作为结论,写一个真命题,并加 以证明. ① AB=DE;②AC=DF;③∠ABC=∠DEF;④BE =CF.
题设:①③④;结论:② 证明提示:BC=BE+EC=CF+EC=EF. 用 SAS 证明△ABC≌△DEF,从而 AC=DF.
证明:(1)如图,连接 AF, ∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE, ∵∠ACB=∠AEF=90°,AF=AF, ∴Rt△ACF≌Rt△AEF, ∴CF=EF.∴BF+EF=BF+CF=BC, ∴BF+EF=DE;
(2)如图,DE=BF-EF,理由是: 连接 AF,∵Rt△ABC≌Rt△ADE, ∴AC=AE,BC=DE, ∵∠E=∠ACF=90°,AF=AF, ∴Rt△ACF≌Rt△AEF,∴CF=EF, ∴DE=BC=BF-FC=BF-EF,即 DE=BF-EF.
24.已知 Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°. (1)将这两个三角形按图①方式摆放,使点 E 落在 AB 上,DE 的延长线交 BC 于点 F.求证:BE+EF=DE; (2)改变△ADE 的位置,使 DE 交 BC 的延长线于点 F(如图②), 写出此时 BF、EF 与 DE 之间的等量关系,并说明理由.
解三角形复习课课件
余弦定理
总结词
余弦定理是解三角形的另一种重要方法,它通过已知的两边和夹角来求解第三 边。
详细描述
余弦定理是指在一个三角形中,任意两边及其夹角的余弦值的乘积等于第三边 的平方减去另两边的平方与这两边夹角的余弦值的乘积,即 $c^2 = a^2 + b^2 - 2abcos C$。
勾股定理
总结词
勾股定理是解三角形的基础定理之一 ,它描述了直角三角形中两直角边的 平方和等于斜边的平方。
03
总结词
在应用正弦定理或余弦定理时,要注意等式 或不等式的成立条件,避免出现错误的结果
。
05
02
总结词
在解题过程中,要特别注意边长和角度的取 值范围,避免出现无解或多解的情况。
04
问题二
等式或不等式的成立条件
06
详细描述
正弦定理适用于任何三角形,但余弦定理只适 用于非钝角三角形。在解题时,要确保所使用 的定理适用于给定的三角形。
解三角形的步骤和方法
步骤二
应用正弦定理或余弦定理
总结词
正弦定理和余弦定理是解三角形的重要工具,通过它们可以建立边 长或角度之间的关系。
详细描述
根据题目条件,选择适当定理进行推导。正弦定理用于求解边长或 角度,余弦定理用于证明角度和边长的关系。
解三角形的步骤和方法
步骤三
01
解方程或不等式
总结词
02
详细描述
回顾解题过程,分析自己在解题中遇到的 困难和错误。找出问题的根源,并采取措 施避免类似错误再次发生。
感谢您的观看
THANKS
在得到边长或角度之间的关系后,需要解方程或不等式来找到
具体的数值。
详细描述
期末复习:解三角形
高三期末复习:解三角形一、知识点梳理: 1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin === 注:①R 表示△ABC 外接圆的半径 ②正弦定理可以变形成各种形式来使用 2、余弦定理:在△ABC 中,A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=也可以写成第二种形式:bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,abc b a C 2cos 222-+=3、疑点:解三角形问题解决过程中,注意:① 角的联系:π=++C B A ② 角的范围:),0(,,π∈C B A ③ 边角的关系与转换,如:sin sin A B a b A B >⇔>⇔>△ABC 的面积公式,B ac A bc C ab S sin 21sin 21sin 21=== 二、诊断练习:1、判定下列三角形的形状(1)在△ABC 中,已知38,4,3===c b a ,请判断△ABC 的形状。
(2)在△ABC 中,已知C B A 222sin sin sin <+,请判断△ABC 的形状。
(3)在△ABC 中,已知bc a A ==2,21cos ,请判断△ABC 的形状。
(4)在△ABC 中,已知C B bc B c C b cos cos 2sin sin 2222=+,请判断△ABC 的形状。
(5)在三角形ABC 中,sinA=sin sin sin cosB+cosCB CA +=,判断三角形的形状2、在△ABC 中,已知030,4,5===A b a ,则△ABC 的面积__________;3、在△ABC 中, a=12,A=060,要使三角形有两解,则对应b 的取值范围为__________;4、在△ABC 中,若△ABC 的面积为S ,且22)(2c b a S -+=,则tanC 的值__________; 5、在△ABC 中,已知87cos ,6,0222===--A a c bc b ,则△ABC 的面积__________; 三、典型例题1、设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=.(Ⅰ)求BAtan tan 的值; (Ⅱ)求tan()A B -的最大值.2、在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.3、设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .4、在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A 相距海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45+θ(其中sin θ=26,090θ<< )且与点A 相距海里的位置C .(I )求该船的行驶速度(单位:海里/小时);(II )若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.四、课后练习:1、等腰三角形顶角的正弦值为2524,则底角的余弦值为__________; 2、在ΔABC 中,若2cosBsinA =sinC ,则ΔABC 的形状一定是__________三角形;3、在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断,其中正确的是__________; ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+4、在直角三角形ABC 中,A 、B 为锐角,则sinAsinB 的取值范围是__________;5、在ΔABC 中,sinA ︰sinB ︰sinC =2︰3︰4,则cos C =__________;6、给出下列四个命题,则正确的命题为__________;⑴ 若sin2A=sin2B ,则△ABC 是等腰三角形 ⑵ 若sinA=cosB ,则△ABC 是直角三角形 ⑶ 若cosA·cosB·cosC <0, 则△ABC 是钝角三角形 ⑷ 若cos(A -B)cos(B -C)cos(C -A) = 1, 则△ABC 是等边三角形7、已知△ABC 中,135cos ,54sin ==B C ,则A cos =__________; 8、在ABC ∆中,D 为BC 中点,45,30,BAD CAD ∠=︒∠=︒2=AB ,则AD =__________;9、已知△ABC 中,AB 边上的高与AB 边的长相等,则2AC BC AB BC AC BC AC++⋅的最大值为__________; 10、在△ABC 中,求证:2222112cos 2cos ba b B a A -=-11、设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (1)求B 的大小; (2)求cos sin A C +的取值范围.12、在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长.13、如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120 .已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的 半径OA 的长(精确到1米).。
期末复习-三角形三大模型三大专题满分突破
D E A F B
7
学而思网校
连接AO并延长,交BC于K. (1) 求证:AK+BC<AB+AC;
学习有意思
8、 如图,在 ABC中,AB>AC>BC , O为 ABC内任一点,
1 (2) 求证: ( AB AC BC )<OA OB OC<AB AC BC. 2
D A
2. “8”字模型 角的关系: A B C D
B
C
B A
边的关系: AB CD
AD BC
O
C
D
3. “角分线”模型 (1). 如右图 OB , OC 分别是 ABC , ACB 的角 平分线。 角的关系: BOC 90
0
A
1 A 2
O
B
C
2
学而思网校
(2) ,如图②,点 P 在△ABC 内部,∠BPC 与∠A 的大小关系是 (3) ,如图③,点 P 是∠ABC、∠ACB 平分线的交点,此时∠BPC 与 ∠A 的大小关系是 (4) ,如图④,点 P 是∠ABC 平分线和∠ACB 外角平分线的交点,∠ BPC 与∠A 的大小关系是 (5),如图⑤,点 P 是∠ABC 和∠ACB 两外角平分线的交点,∠BPC 与 ∠A 的大小关系是 (6),在上述五种情景中,选择其中一种情况说明理由。 (7) ,如图⑥,在△ABC 中,∠C=90° ,点 P 是∠ABC 平分线和∠BAC 外角平分线的交点,则∠P 的度数为
11
学而思网校
学习有意思
【考点】平面镶嵌(密铺) 【专题】规律性 【分析】 (1)第一次铺完用 1× 2 块,第二次铺完共用 3× 4 块,第三次铺完 后,共用 5× 6 块,所以第 4 次铺完后,共使用的木板数为 7× 8 块; (2)第 10 次铺完后,共使用的木板数为 19× 20 块; (3)第 n 次铺完后,共使用的木板数为(2n-1)× 2n 块. 【解答】解: (1)第 4 次铺完后,共使用的木板数为 7× 8=56; (2)第 10 次铺完后,共使用的木板数为 19× 20=380; (3)第 n 次铺完后,共使用的木板数为 2n(2n-1)=4n2-2n. 【点评】解决本题的关键是得到共使用的木板数的变化规律.
7.三角形、平行四边形和梯形-苏教版四年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)
苏教版四年级下册数学期末复习专题讲义-7.三角形、平行四边形和梯形【知识点归纳】三角形:三条线段首尾相接围成的图形叫做三角形。
三角形的高和底:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
三角形三边关系:三角形任意两边长度的和大于第三边。
三角形的内角和等于180°。
三角形分类:按角分为:锐角三角形、直角三角形、钝角三角形。
按边分类:等腰三角形、等边三角形(正三角形)、不等边三角形。
平行四边形:两组对边分别平行的四边形叫作平行四边形。
平行四边形的高和底:从平行四边形一条边上的一点到它对边的垂直线段,是平行四边形的高,这条对边是平行四边形的底。
梯形:只有一组对边平行的四边形叫作梯形。
梯形的上底、下底和腰:互相平行的一组对边分别是梯形的上底和下底,不平行的一组对边是梯形的腰。
梯形的高:从梯形一条底边上的一点到它对边的垂直线段叫作梯形的高。
两腰相等的梯形是等腰梯形。
多边形内角和=180°×(边数-2)。
(根据三角形的内角和推算出来)【典例讲解】例1.等腰三角形中有一个内角是80°,另外两个角()A.都是50°B.分别是20°和80C.分别是20°和80°或都是50°【分析】等腰三角形这个80°的内角可能是顶角,也可能是底角.根据等腰三角形的内角和定理(三角形三个内角之和是180°)及等腰三角形两个底角相等的性质,即可分别计算出当这个角是顶角时的底角度数、当这个角是底角时顶角的度数.【解答】解:当等腰三角形的顶角是80°时它的两个底角:(180°﹣80°)÷2=100°÷2=50°当当等腰三角形的底角是80°时180°﹣80°×2=180°﹣160°=20°答:另外两个角分别是20°和80°或都是50°.故选:C.【点评】解答此题的关键是三角形内角定理及等腰三角形性质的应用.例2.一个三角形中,有两个角的度数分别是32°和46°,第三个内角为102°,这个三角形是钝角三角形.(按角分类)【分析】根据三角形内角和定理,三角形三个内角之和是180°,已知这个三角形的两个角的度数,用180°减这两个角的度数之和就是第三个角的度数.由前面计算可知,这个三角形的第三个角是102°,是钝角,根据钝角三角形的意义,有一个角是钝角的三角形是钝角三角形,这个三角形是钝角三角形.【解答】解:180°﹣(32°+46°)=180°﹣78°=102°这个三角形有一个角是钝角,是钝角三角形答:第三个内角为102°,这个三角形是钝角三角形.故答案为:102,钝角.【点评】此题考查的知识有三角形内角和定理的应用、三角形的分类(按角分类).例3.三角形的三边长分别是3cm、4cm、5cm,这样的三角形的形状只有一种.√(判断对错)【分析】三角形的三边长分别是3cm、4cm、5cm,因为三条边是确定的,三角形的形状就是确定的,所以这样的三角形的形状只有一种,那就是直角三角形.【解答】解:三角形的三边长分别是3cm、4cm、5cm,这样的三角形的形状只有直角三角形一种.故原题说法正确.故答案为:√.【点评】解决此题还可以利用三角板画出图,然后直观判断.例4.在三角形ABC中,∠1=65°,∠2=20°,求∠4的度数.【分析】利用三角形内角和定理:三角形内角和是180°,∠3=180°﹣90°﹣20°=70°,∠4=180°﹣70°﹣65°=45°.据此解答.【解答】解:∠3=180°﹣90°﹣20°=70°∠4=180°﹣70°﹣65°=45°答:∠4=45°.【点评】本题主要考查三角形的内角和,关键是利用三角形内角和定理做题.例5.红红家有一块三角形的小菜园,菜园的最大角是120°,且最大角的度数是最小角的4倍,这块三角形菜地其他角的度数是多少?这块地的形状是一个什么三角形?【分析】这块三角形菜园的最大角是120°,且最大角的度数是最小角的4倍,用120°除以4就是最小角的度数;再根据三角形内角和定理(三角形三个内角之和是180°)即可求出另一个角的度数.这个三角形中最大角是120°,属于钝角,根据钝角三角形的意义,有一个角是钝角的三角形是钝角三角形,此三角形为钝角三角形.【解答】解:120°÷4=30°180°﹣120°﹣30°=30°这个三角形的最大角是钝角,它是一个钝角三角形答:这块三角形菜地其他角的度数都是30°,这块地的形状是一个钝角三角形.【点评】此题考查的知识有三角形内角和定理、三角形(按角)分类.【同步测试】一.选择题(共10小题)1.根据下列描述,一定是锐角三角形的是()A.有一个内角是85°的三角形B.有两个内角都是锐角的三角形C.其中最大的内角小于90°D.等腰三角形2.下面的说法正确的是()A.有一组对边平行的四边形是梯形B.平行四边形和梯形都是四边形C.在梯形中,平行的一组对边叫做梯形的腰3.一个三角形的底不变,要使面积扩大2倍,高要扩大()A.2倍B.4倍C.6倍D.8倍4.小明用小棒摆三角形,应该选取()组小棒.A.12cm,12cm,24cm B.12cm,15cm;27cmC.12cm,15cm,24cm D.15cm,15cm,31cm5.一个三角形两个角的度数分别是50°和65°.这个三角形一定是()A.等腰的锐角三角形B.等边的锐角三角形C.等腰的钝角三角形D.三边不等的锐角三角形6.小明在研究平行四边形的面积时,想把一个平行四边形转化成一个长方形.下面的四种剪法中不能拼成长方形的是图()A.B.C.D.7.一个三角形与一个平行四边形的面积相等,底也相等.三角形的高是2分米,平行四边形的高是()分米.A.1B.2C.3D.48.如图中,平行四边形的高是28cm,它的对应底是()A.36cm B.20cm C.25cm D.28cm9.张浩将梯形ABCD通过割补的方法,转化成三角形ABF(过程如图).已知三角形ABF的面积是24cm2,则CF的长是()cm.A.2B.4C.6D.1210.一个等腰三角形的两条边是10厘米和4厘米,它的周长是()厘米.A.18B.14C.24D.20二.填空题(共8小题)11.一个平行四边形的底是13分米,高是70厘米,面积是平方分米.12.在锐角三角形中,任何两个内角的度数之和都90°.13.等腰三角形ABC,其中AB等于AC,∠B=,∠A=.14.两组对边分别平行的四边形是或.15.在一个三角形中,有两个角分别是28°和62°,另一个角是,这是一个三角形.16.把一个平行四边形的底扩大到原来的2倍,高扩大到原来的3倍,得到的平行四边形的面积是原来的倍.17.一个平行四边形的面积是60dm2,底是5dm,这条底边对应的高是dm.18.一个等腰直角三角形两条直角边的长度和是18cm,它的面积是cm2.三.判断题(共5小题)19.两个三角形的面积相等,它们的底和高不一定相等.(判断对错)20.在梯形里画一条线段,分成两个图形,这两个图形不可能是平行四边形.(判断对错)21.一个三角形的周长是30cm,它的最长边的长一定不小于15厘米.(判断对错)22.一个等腰三角形的周长是21cm,其中一条边长5cm,它的另外两条边可能是5cm和11cm.(判断对错)23.一个平行四边形的面积是24cm2,将它的底增加2cm,高减少2cm,得到的平行四边形的面积一定仍是24cm2.(判断对错)四.计算题(共2小题)24.求平行四边形的面积(单位:厘米)25.计算下面图形的周长.五.应用题(共6小题)26.把一根长25米的彩带剪成三段,第一段长5米,第二段长8米,这三段能围成一个三角形吗?为什么?27.有5根小棒,长度分别是3厘米、3厘米、3厘米、4厘米、6厘米,可以摆成几种不同的三角形?请你列举出来.28.如图,一个长方形框架拉成平行四边形后,面积是18dm2,长方形框架的周长是多少分米?29.一个三角形的面积是12cm2,底边长6cm,这条底边上的高是多少cm?30.在一块平行四边形空地(如图)上种草坪,1平方米草坪的价格是10元.种这块草坪需要多少钱?31.一块平行四边形玻璃,底长150厘米,高比底少50厘米,刘阿姨买这块玻璃用了90元钱.每平方米玻璃的价钱是多少?参考答案与试题解析一.选择题(共10小题)1.【分析】根据角的分类、三角形按角的大小分类情况,小于90度的角叫做锐角;等于90度的角叫做直角;大于90度小于180度的角叫做钝角;有一个角是钝角的三角形,叫做钝角三角形;有一个角是直角的三角形,叫做直角三角形;三个角都是锐角的三角形,叫做锐角三角形;据此解答.【解答】解:根据锐角三角形的特征,锐角三角形的三个角都是锐角,由此可知,三角形中最大角小于90度的三角形一定是锐角三角形.故选:C.【点评】此题考查的目的是理解掌握角的分类、三角形按照角的大小分类及应用.2.【分析】有且只有一组对边平行的四边形是梯形,A错误;平行四边形和梯形都是四边形,B正确;在梯形中,平行的一组对边叫做梯形的上底和下底,C错误;据此解答即可.【解答】解:有且只有一组对边平行的四边形是梯形,A错误;平行四边形和梯形都是四边形,B正确;在梯形中,平行的一组对边叫做梯形的上底和下底,C错误;只有B正确;故选:B.【点评】此题考查了梯形的特征,要熟练掌握.3.【分析】三角形的面积=底×高÷2,若底不变,要使面积扩大2倍,高要扩大2倍.【解答】解:因为三角形的面积=底×高÷2,若底不变,要使面积扩大2倍,高要扩大2倍.故选:A.【点评】此题主要考查三角形的面积公式的灵活运用.4.【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行依次分析、进而得出结论.【解答】解:A、因为12+12=24,不能组成三角形,不符合题意;B、因为12+15=27,不能组成三角形,不符合题意;C、12+15>24,所以能组成三角形,符合题意;D、15+15<31,所以不能组成三角形,不符合题意;故选:C.【点评】解答此题的关键是根据三角形的特性进行分析、解答即可.5.【分析】三角形的两个内角的度数已知,依据三角形的内角和是180°,即可求出第三个内角的度数,从而可以判定这个三角形的类别.【解答】解:180°﹣50°﹣65°=130°﹣65°=65°因为三角形三个内角都是锐角,且有两个角相等,所以这个三角形是等腰的锐角三角形.故选:A.【点评】解答此题的主要依据是:三角形的内角和是180度以及三角形的分类方法.6.【分析】选项A:图形中是沿着高剪得,有直角,把剪下的左边图形平移到右边可以得到一个长方形.选项B:图形中不是沿着高剪得,没有直角,把剪下的上面图形平移到下面不能得到一个长方形.选项C,沿平行四边形的一边中点分别剪下了个直角三角形,通过旋转、平移后能够拼成一个长方形.选项D,沿平行四边形的高剪开后,可以平成一个长方形,据此解答.【解答】解:根据长方形的特征,长方形的对边平行且相等,选项A:图形中是沿着高剪得,有直角,把剪下的左边图形平移到右边可以得到一个长方形.选项B:图形中不是沿着高剪得,没有直角,把剪下的上面图形平移到下面不能得到一个长方形.选项C,沿平行四边形的一边中点分别剪下了个直角三角形,通过旋转、平移后能够拼成一个长方形.选项D,沿平行四边形的高剪开后,可以平成一个长方形.故选:B.【点评】此题主要考查平行四边形面积公式的推导过程及应用.7.【分析】由题意可知:一个三角形和一个平行四边形的面积相等,底也相等,由两种图形的面积公式可得,平行四边形的高应是三角形高的一半,三角形的高是2分米,所以用三角形的高除以2即可解答.【解答】解:2÷2=1(分米)答:平行四边形的高是1分米.故选:A.【点评】此题主要考查三角形和平行四边形的面积公式的灵活运用.8.【分析】根据平行四边形高的意义,从平行四边形的一个顶点向对边作垂线,顶点到垂足的距离叫做平行四边形的高,通过观察图形可知,高28厘米对应的底是25厘米.据此解答即可.【解答】解:如图中,平行四边形的高是28cm,它的对应底25cm.故选:C.【点评】此题考查的目的是理解掌握平行四边形高的意义及应用.9.【分析】CF的长就是梯形的上底,24平方厘米是梯形的面积,梯形的下底是8厘米,高是4厘米,根据梯形的面积=(上底+下底)×高÷2,则上底=梯形的面积×2÷高﹣下底,据此即可解答.【解答】解:24×2÷4=8=12﹣8=4(厘米)答:CF的长是4cm.故选:B.【点评】本题考查了梯形面积公式的灵活运用情况.10.【分析】求等腰三角形的周长,就要确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为10厘米和4厘米,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4厘米为腰长,10厘米为底边长,由于4+4=8,两边之和不大于第三边,则三角形不存在;(2)若10厘米为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+4=24(厘米).故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.二.填空题(共8小题)11.【分析】根据平行四边形的面积公式:S=ah,把数据代入公式解答.【解答】解:70厘米=7分米,13×7=91(平方分米)答:它的面积是91平方分米.故答案为:91.【点评】此题需要考查平行四边形面积公式的灵活运用,关键是熟记公式.12.【分析】根据锐角三角形的性质和三角形内角和是180°解答即可.【解答】解:锐角三角形中,三个角都是锐角,因为三角形的内角和是180°,所以任意两个锐角之和都大于90°.故答案为:大于.【点评】此题是考查了三角形内角和以及锐角三角形的性质的灵活应用.13.【分析】已知角为145°,它的补角是等腰三角形的一个底角,可求出底角度数为180°﹣145°=35°,两底角度数相等,三角形内角和是180°,则顶角度数为180°﹣35°﹣35°=110°.【解答】解:∠B=∠C=180°﹣145°=35°∠A=180°﹣35°﹣35°=110°故答案为:35°,110°.【点评】本题考查了三角形内角和定理,属于基础题,关键是掌握三角形内角和为180度.14.【分析】两组对边分别平行的四边形是平行四边形.平行四边形包括一般平行四边形或特殊平行四边形.特殊平行四边形即正方形、长方形、菱形等.【解答】解:两组对边分别平行的四边形是一般平行四边形或特殊平行四边形.故答案为:一般平行四边形,特殊平行四边形.【点评】此题考查了平行四边形的判定方法和分类.15.【分析】根据三角形的内角和定理:三角形内角和是180°,用180°减掉两个已知角的度数,就是第三个角的度数;根据三角形按角分率的标准,判断三角形的分类即可.【解答】解:180°﹣28°﹣62°=90°答:另一个角是90°,这是一个直角三角形.故答案为:90°;直角.【点评】本题主要考查三角形的内角和,关键是利用三角形内角和定理做题.16.【分析】根据平行四边形的面积公式:S=ah,再根据因数与积的变化规律,积扩大的倍数等于因数扩大倍数的乘积.据此解答.【解答】解:2×3=6答:平行四边形的面积是原来的6倍.故答案为:6.【点评】此题考查的目的是理解掌握平行四边形的面积公式、因数与积的变化规律及应用.17.【分析】根据平行四边形的面积公式:S=ah,那么h=S÷a,把数据代入公式解答.【解答】解:60÷5=12(分米)答:这条底边对应的高是12分米.故答案为:12.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.18.【分析】由条件“一个等腰直角三角形两条直角边的长度和是18cm”可知,此三角形的直角边为18÷2=9cm,再利用三角形的面积公式:三角形面积=底×高÷2即可求得结果.【解答】解:18÷2=9(cm)9×9÷2=40.5(cm2)答:它的面积是40.5cm2.故答案为:40.5.【点评】此题主要考查三角形的面积公式:三角形面积=底×高÷2,将数据代入公式即可求得结果.三.判断题(共5小题)19.【分析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的底和高不一定相等;比如,底和高分别是4、3,6、2的两个三角形的面积相等,但底和高不相等,判断即可.【解答】解:因为两个三角形的面积相等,则两个三角形面积的2倍也相等,也就是底乘高相等;比如,底和高分别是4、3,6、2的两个三角形的面积相等,但底和高不相等,所以说“两个三角形的面积相等,它们的底和高不一定相等”是正确的.故答案为:√.【点评】掌握三角形的面积公式是解题的关键.20.【分析】(1)过上底上的除两个端点外的任意一点做腰的一条平行线,把梯形分成两个图形:一个平行四边形和一个梯形;(2)过上底上的除两个端点外的任意一点做底的一条垂线,把梯形分成两个图形:两个梯形;(3)连接梯形的对角线,可以得到两个三角形.(4)这不是一个直角梯形,得不到一个长方形和一个梯形,由此求解.【解答】解:根据分析画图如下:(1)一个平行四边形和一个梯形(2)两个梯形(3)一个三角形(4)一个三角形和梯形得不到两个平行四边形.所以本题说法正确;故答案为:√.【点评】本题主要考查了学生根据三角形、平行四边形、梯形的定义来对图形进行分割的能力.21.【分析】根据三角形的特性:任意两边之和大于第三边,三角形的任意两边的差一定小于第三边;进行解答即可.【解答】解:如果三边长分别为14cm、7cm、9cm,周长是30cm,符合7+9>14,能组成三角形,但最长边是14cm,14<15,故原题说法错误;故答案为:×.【点评】此题是考查三角形的特性,应灵活掌握和运用.22.【分析】首先根据等腰三角形的性质可分为两种情况讨论:5cm为腰长、5cm为底的长度.然后看是否能围成三角形,由此解答即可.【解答】解:当5厘米是腰时,底边是21﹣5×2=11(厘米),5+5<11,这种情况不成立;如果5厘米是底边,则腰长为:(21﹣5)÷2=8(厘米),5+8>8,所以能围成三角形;所以其中一条边长5cm,它的另外两条边不可能是5cm和11cm.故原题说法错误;故答案为:×.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.23.【分析】根据平行四边形的面积公式:S=ah,可以通过举例证明.假如原来平行四边形的底是3厘米,高是8厘米,底增加2厘米后是5厘米,高减少2厘米后是6厘米,分别求出原来和增加后的面积,然后进行比较即可.【解答】解:假如原来平行四边形的底是3厘米,高是8厘米,底增加2厘米后是5厘米,高减少2厘米后是6厘米,原来的面积:3×8=24(平方厘米);增加后的面积:(3+2)×(8﹣2)=5×6=30(平方厘米);24平方厘米<30平方厘米,答:所得到的平行四边行面积比原来平行四边形面积大.因此,所得到的平行四边行面积与原来平行四边形面积相等,这种说法是错误的.故答案为:×.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.四.计算题(共2小题)24.【分析】根据题意,如图,这个平行四边形的底是3cm,高是2.8cm.根据面积公式:S=ah,把数据代入公式解答.【解答】解:3×2.8=8.4(平方厘米)答:它的面积是8.4平方厘米.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.25.【分析】根据三角形的周长=三条边的和,用8+8+10计算即可得到三角形的周长;根据长方形的周长=(长+宽)×2,用(15+7)×2计算即可得到长方形的周长.【解答】解:8+8+10=26(厘米)答:三角形的周长是26厘米;(15+7)×2=22×2=44(厘米)答:长方形的周长是44厘米.【点评】本题考查长方形的周长、三角形的周长,明确长方形的周长=(长+宽)×2、三角形的周长=三条边的和是解答本题的关键.五.应用题(共6小题)26.【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【解答】解:因为25﹣5﹣8=12(米)且5+8=13>12所以这三段能围成一个三角形,因为两边之和大于第三边.【点评】此题主要依据三角形的两边之和大于第三边的特点和减法的意义解决问题.27.【分析】根据三角形边的特征,在三角形中任意两边之和大于第三边,由此解答.【解答】解:根据分析知,共有以下情况,①3厘米,3厘米,3厘米;②3厘米,3厘米,4厘米;③3厘米,4厘米,6厘米;答:一共可以拼成3个不同的三角形.【点评】此题主要根据三角形的任意两边之和大于第三边解决问题.28.【分析】由题意可知:平行四边形的高已知,面积已知,利用平行四边形的面积公式,即可求出平行四边形的底,也就是长方形的长,从而利用长方形的周长公式就能求出长方形框架的周长.【解答】解:18÷3=6(dm)(6+4)×2=10×2=20(dm)答:长方形框架的周长是20分米.【点评】本题主要考查了长方形的周长计算以及平行四边形面积公式的实际应用.29.【分析】根据三角形的面积=底×高÷2,则三角形的面积×2÷底=高,把数据代入即可求解.【解答】解:12×2÷6=24÷6=4(厘米)答:这条底边上的高是4厘米.【点评】本题考查了三角形的面积=底×高÷2的灵活应用.30.【分析】先利用平行四边形的面积S=ah求出这块空地的面积,再用草坪的面积乘单位面积草坪的价格,就是种这块草坪需要多少钱.【解答】解:15×12×10=180×10=1800(元)答:种这块草坪需要1800元.【点评】此题主要考查平行四边形的面积的计算方法,在实际生活中的应用.31.【分析】根据平行四边形的面积公式:S=ah,已知底是150厘米,高比底少50厘米,那么高是150﹣50=100厘米,把数据代入公式求出这块玻璃的面积,然后根据已知总价和数量求单价,用除法解答.【解答】解:150×(150﹣50)=150×100=15000(平方厘米)15000平方厘米=1.5平方米90÷1.5=60(元)答:每平方米玻璃的价钱是60元.【点评】此题主要考查平行四边形面积公式的灵活运用,以及总价、数量、单价三者之间关系的应用.。
期末复习——直角三角形
A
∴ ∠BAD= ∠B= ∠C= ∠CAD= 450 ∴ ∠BAC= 900
B C
D
是等腰三角形, 边上的高恰好等于 例4:已知 :已知∆ABC是等腰三角形,BC边上的高恰好等于 是等腰三角形 BC边长的一半,求∠BAC的度数。 边长的一半, 的度数。 边长的一半 的度数 2、当BC为腰时,设∠B为顶角,分下面几种情况讨论: 、 为腰时, 为顶角, 为腰时 为顶角 分下面几种情况讨论: 为锐角时, (1) 顶角 为锐角时,如图: ) 顶角B为锐角时 如图: B
PO平分∠AOB, 平分∠ 平分 PA⊥OA,PB⊥OB ⊥ ⊥ AP=BP
练一练 1、在∆ABC中,如果∠A+ ∠B= ∠C,则∆ABC 、 中 如果∠ 则 直角三角形 为 _____________. 2、 已知 △ABC中,∠C=900,AB边上的中 、 已知Rt△ 中 = 边上的中 线长为2, 线长为 ,且AC+BC=6,则 S ∆ABC = 5 。 + = , 3、如图,在△ABC中,∠C=90°, 、如图, 中 ° ∠B=30°,AB的垂直平分线交 ° 的垂直平分线交 BC于D,垂足为 ,BD=4厘米, 厘米, 于 ,垂足为E, 厘米 B . 则AC= 2 3
B D E C
例2、如图,已知 、如图,已知AB=AD,CB=CD,AC,BD相交于 , , , 相交于 点O,若AB=5,AC=7,BD=6。 , , , 。 求∠BCD的度数 的度数
解:∵AB=AD 在线段BD的中垂线上 ∴点A在线段 的中垂线上(到线段两端距离相等的点在这条 在线段 的中垂线上( 线段的垂直平分线上) 线段的垂直平分线上) 同理点也在BD的中垂线上 同理点也在 的中垂线上 A AC⊥BD且平分 且平分BD ∴AC⊥BD且平分BD ∵BD=6 ∴BO=3 ∵AB=5 D B AO2+BO2=AB2 (勾股定理 得 AO=4 勾股定理)得 勾股定理 O ∵AC=7 C ∴OC=3 ∴△BOC等腰直角三角形 等腰直角三角形 ∴∠BCO=45°,同理∠DCO=45° 同理∠ ∴∠ ° 同理 ° ∴∠BCD=90° ∴∠ °
三角形复习讲义
7-7第七章《三角形》专题复习 姓名:第一部分、知识网络结构图与三角形有关的线段 (1) 三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. ①边:AB,BC,CA 或a,b,c ②顶点:A,B,C ③角:C B A ∠∠∠,, (2)三角形的分类①⎪⎩⎪⎨⎧⎩⎨⎧等边三角形底和腰不相等的三角形等腰三角形不等边三角形三角形按边)(②⎪⎩⎪⎨⎧⎩⎨⎧钝角三角形锐角三角形斜三角形直角三角形三角形按角(3)三角形的主要线段①三角形的中线:顶点与对边中点的连线,三中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三角角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) (4)三角形三边间的关系. ①两边之和大于第三边 b a c a c b c b a >+>+>+,,②两边之差小于第三边 a c b c b a b a c <-<-<-,,(5)三角形的稳定性:三角形的三条边确定后,三角形的形状和大小不变了,这个性质叫做三角形 的稳定性.三角形的稳定性在生产和生活中有广泛的应用. 与三角形有关的角(1)三角形的内角和定理及性质 定理:三角形的内角和等于180°。
推论1:直角三角形的两个锐角互余。
推论2:三角形的一个外角等于与它不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
(2)三角形的外角及外角和①三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角。
②三角形的外角和等于360°。
(3)多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形复习讲义一、知识点1.三角形的内角和2.三角形的三边关系,范围3.三角形的外角性质4.三角形的角平分线,性质5.三角形的中线,作用6.三角形的高线;内外之分;三线共同点7.中垂线(垂直平分线),性质8.命题的概念,如果那么;9. 全等三角形的定义,记号,性质;10. 全等三角形的判定方法;直角三角形全等的判定11.尺规作图:(1)作一条线段等于已知线段(2)作一个角等于已知角(3)作线段的垂直平分线(4)作角平分线(5)过一个已知点作一条直线的垂线12.轴对称与轴对称图形;轴对称图形的作法13.等腰三角形的定义;性质14.等腰三角形的判定;分类讨论15.等边三角形的定义;性质;判定方法16. 直角三角形的性质;判定;逆命题与逆定理17. 等腰直角三角形、有30度角的直角三角形边角关系18. 勾股定理,逆定理内容及作用二、基础题组知识点1-31.三角形两边的长分别为1和8,若该三角形第三边长为偶数,则该三角形的周长为2.设△ABC的三边为a、b、c,化简:|a-b-c|+|b-c-a|+|c-a-b|=3.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形 B.锐角三角形C.钝角三角形 D.等边三角形4.在△ABC中,∠A=3∠B,∠A-∠C=30°,则∠A= 度,∠C= 度.5.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于知识点4-81.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A.10°B.12°C.15°D.18°2. 如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,连接AE,则∠CEB是()A.15°B.20°C.30°D.35°3.如图,△ABC的面积是12,BD=2CD,点E是AD的中点,则△ACE的面积是.4.如图,在△ABC中,AD是BC边上的高线,CE是一条角平分线,它们交与点P. 已知∠APE=60°.求∠DAC的度数.5.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15°B .25°C .30°D .10°6. 如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,且∠B =3∠BAD ,求∠ADC 的度数.7. 能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是 ( )A .120°,60°B .95.1°,104.9°C .30°,60°D .90°,90°8. 下列命题是真命题的有( )①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④三角形的一条中线能将三角形分成面积相等的两部分;⑤若a 2=b 2,则a=bA .1个B .2个C .3个D .4个知识点9-111. 若△ABC ≌△DEF ,A 与D ,B 与E 分别是对应顶点,∠A=52°,∠B=67°,BC=15cm ,∠F= 度,FE= cm .2. 如图,在△ABC 中,D ,E 分别是边AC ,BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C= 度.3. 如图,点P 在∠AOB 的平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是 .(只写一个即可,不添加辅助线)4.工人师傅常用角尺平分一个任意角.做法如下:如图所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.做法中用到三C A BD角形全等的判定方法是 ( )A .SSSB .SASC .ASAD .HL5. 如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .求证:∠A=∠D .6. 如图,△ABC 中,∠BAC=110°,BC=10,若MP 和NQ 分别垂直平分AB 和AC ,求(1)∠PAQ 的度数;(2)△APQ 的周长。
7. 如图,在ABC △中,90C ∠=o ,AD 平分CAB ∠,BC=9cm ,BD=6cm ,那么点D 到直线AB 的距离是cm ;8. 如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠ABC=∠DCB ,AB=DC .(1)求证:△ABC ≌△DCB ;(2)当∠AEB=50°,求∠EBC 的度数。
9. 已知二边及夹角,求做三角形。
知识点12-151. 已知以下四个汽车标志图案:其中是轴对称图形的图案是__________(只需填入图案代号)2. 如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要在其余13个白色小方格中选出一个也涂成黑色,使整个黑色的小方格图案成轴对称图形,这样的白色小方格有个,请在图中设计出一种方案.3. 已知等腰三角形的两边长分别为2cm 和4cm ,则它的周长为 ( ) a b 已知:线段a ,b ,∠a 。
求作△ABC ,使 BC=a , AB=b , ∠ABC=∠a 。
aA .6cmB .8cmC .10cmD .8cm 或10cm 4. 等腰三角形一腰上的高与另一腰所夹的角为30°,则顶角的度数为( )A 、60°B 、120°C 、 60°或 150°D 、60°或120°5. 等腰三角形一腰长为5,一边上的高为3,则底边长为______________.6. 如图,线段AB ,BC 有公共点B, ABC ∠=︒110,直线m l ,分别是AB,BC 的中垂线,交与点D ,连接AD 、CD,那么A C=∠+∠ ;7. 如图,在△ABC 中,AB=AC ,∠A=120°,BC=6cm ,AB 的垂直平分线交BC 于点M ,交AB于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cmmlD B CA8. 如图,在△ABC中,已知∠B和∠C的角平分线相交于点F,过点F作DE∥BC交AC于E,若BD+CE=12,则线段DE的长为_________.知识点16-181. 下列各命题的逆命题成立的是()A.如果两个数相等,那么它们的绝对值相等B.全等三角形的对应角相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等2. 把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果…,那么…”的形式:_________________________________3.在Rt△ABC中,∠C=90º,AC=5,BC=12,则AB边上的中线的长为___________.4.已知直角三角形的两边长为3和4,则第三边长为5. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()6. 如图,在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB的度数是()A.30°B.60°C.120°D.150°7. 将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2;8. 如图△ABC中,AB=AC,AB⊥AD,∠C=30°,AD=4cm,则BC=______cm.9. 如图,已知Rt△ABC中,∠C=90º,AC=8cm,BC=6cm,现将△ABC进行折叠,使顶点A、B重合,则△ADB的面积为cm2.10. 如图,要为一段高为5米,长为13米的楼梯铺上红地毯,那么红地毯至少要米;11. 如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AC的长是_____.12.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3(1)求DE的长;(2)求△ADB的面积.13. 如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE.(1)求证:∠AEC=∠C;(2)求证:BD=2AC;(3)若AE=6.5,AD=5,那么△ABE的周长是多少?三、提高题组1. 如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=______.2. 如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_______.3. 如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?4. 已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.5. 如图所示,在△ABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N,且DE和MN交于点F.(1)若∠B=20°求∠BAE的度数,(2)若∠EAN=40°,求∠F的度数,(3)若AB=8,AC=9,求△AEN周长的范围.6. 如图,已知∠MON=50°,P为∠MON内一定点,点A为OM上的点,B为ON上的点,当△PAB的周长取最小值时,则∠APB度数是_______.7. 如图,△ABC 中,AB=AC ,AD=DE ,∠BAD=20°,∠EDC=10°,则∠DAE 的度数为________8. 如图,△ABC 与△ABD 都是等边三角形,点E ,F 分别在BC ,AC 上,BE=CF ,AE 与BF 交于点G .(1)求∠AGB 的度数;(2)连接DG ,求证:DG=AG+BG .9. 如图,在△ABC 中,∠BAD=∠DAC ,DF ⊥AB ,DM ⊥AC ,AF=10cm ,AC=14cm ,动点E 以2cm/s 的速度从A 点向F 点运动,动点G 以1cm/s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:在运动过程中,不管t 取何值,都有S △AED =2S △DGC .(2)当取何值时,△DFE 与△DMG 全等.(3)在(2)的前提下,若126119 DC BD ,S △AEM =28cm²,求S △BFD10. 如图,点O 是等边△ABC 内一点,D 是△ABC 外的一点,∠AOB=110°,∠BOC=α,△BOC ≌△ADC ,∠OCD=60°,连接OD .(1)求证:△OCD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当α为多少度时,△AOD 是等腰三角形.11. 如图,在四边形ABCD 中,∠ABC=∠ADC=90°,点E 、F 分别是对角线AC 、BD 的中点,则( )A .EF ⊥BDB .∠AEF=∠ABDC .EF=21(AB+CD ) D .EF=21(CD-AB )12. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( )A .13cmB .12cmC .10cmD .8cm13. 如图,OM ⊥ON .已知边长为2的正三角形ABC ,两顶点A 、B 分别在射线OM ,ON 上滑动,滑动过程中,连接OC ,则OC 的长的最大值是_________.14. 如图,等边△ABC 中,AO 是∠BAC 的角平分线,D 为AO 上一点,以CD 为一边且在CD 下方作等边△CDE ,连接BE .(1)求证:△ACD ≌△BCE ;(2)延长BE 至Q ,P 为BQ 上一点,连接CP 、CQ 使CP=CQ=5,若BC=8时,求PQ 的长.2,则AB=_____.15. 已知:等边△ABC内有一点P,且PC=2,PB=4,PA=316. 勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积之间的数量关系是,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为,请说明理由.。