有机质谱历史及分析

合集下载

质谱分析

质谱分析

8 质谱8.1 概述质谱分析是现代物理、化学以及材料领域内使用的一个极为重要的工具。

从第一台质谱仪的出现至今已有80年历史。

早期的质谱仪器主要用于测定原子质量、同位素的相对丰度,以及研究电子碰撞过程等物理领域。

第二次世界大战时期,为了适应原子能工业和石油化学工业的需要,质谱法在化学分析中的应用受到了重视。

以后由于出现了高性能的双聚焦质谱仪,这种仪器对复杂有机分子所得的谱图,分辨率高,重现性好,因而成为测定有机化合物结构的一种重要手段。

60年代末,色谱-质谱联用技术因分子分离器的出现而日趋完善,使气相色谱法的高效能分离混合物的特点,与质谱法的高分辨事鉴定化会场的特点相结合,加上电子计算机的应用,这样就大大地提高了质谱仪器的效能,扩展了质谱法的工作领域。

近年来各种类型的质谱仪器相继问世,而质谱仪器的心脏—离子源,也是多种多样的,因此质谱法已日益广泛地应用于原子能、石油化工、电子、医药、食品、材料等工业生产部门,农业科学研究部门,以及核物理、电子与离子物理、同位素地质学、有机化学、生物化学、地球化学、无机化学、临床化学、考古、环境监测、空间探索等科学技术领域。

质谱法具有独特的电离过程及分离方式,从中所获得的信息直接与样品的结构相关,不仅能得到样品中各种同位素的比值,而且还能给出样品的结构和组成。

因此,质谱学已成为有机、无机、高分子材料结构分析的有力工具。

已高分子材料为例,由于高分子材料的分子量较大,而且不易挥发,所以无法直接用质谱进行鉴定。

但通过软电离方法却可有效地测定各种塑料、橡胶、纤维的主体结构单元以及高分子材料中所使用的各种添加剂的化学结构。

应用热裂解—质谱或热裂解-气相色谱-质谱,可分别获得不同高分子结构特征的热裂解产物,从而进一步揭示聚合物的链节以及序列分布。

这在研究高分子的结构与性质关系方面可发挥很大的作用。

辉光放电质谱(GDMS)和火花源质谱(SSMS)是进行高纯固体材料全面分析的两种主要分析技术。

质谱仪发展历史

质谱仪发展历史

质谱仪发展历史质谱仪是一种高精度的分析仪器,能够通过分析物质的质量来研究物质的成分、结构和性质。

本文将介绍质谱仪的发展历史,主要涵盖以下方面:起源及早期发展、1910年、1912年、质谱学领域里程碑、1934年、1943年、技术进步与新应用、20世纪50年代、20世纪60年代末、20世纪90年代、新时代的技术突破与应用扩展、2002年以及现代发展与趋势。

一、起源及早期发展质谱仪的起源可以追溯到19世纪末期,当时科学家们开始研究如何通过分析物质的质量来研究物质的成分和结构。

英国物理学家汤姆森(J.J.Thomson)在1897年发现了电子,为质谱仪的发展奠定了基础。

随后,英国物理学家阿斯顿(F.W.Aston)在20世纪初期发明了第一台真正意义上的质谱仪。

二、1910年第一台实用质谱仪诞生,由阿斯顿在剑桥大学研制成功。

这台仪器被用于分析有机化合物的成分,为有机化学领域的研究提供了强有力的工具。

三、1912年英国物理学家道布森(F.W.Dobbson)发现了质谱学中的重要原理——道布森效应,为质谱仪的发展作出了重要贡献。

这一发现揭示了离子在电场中的运动轨迹与质量有关,为质谱仪的进一步发展提供了理论基础。

四、质谱学领域里程碑随着时间的推移,质谱学领域不断取得突破性进展。

1927年,阿斯顿研制出第一台单聚焦质谱仪;1946年,第一台双聚焦质谱仪问世;1952年,电子捕获检测器(ECD)被应用于质谱分析;1955年,离子源被引入到质谱分析中,为后续质谱技术的发展奠定了基础。

五、1934年在工业和化学领域,质谱仪得到了广泛应用。

这一时期,人们开始利用质谱仪分析各种有机化合物和无机化合物,为化学工业的发展提供了强有力的支持。

六、1943年质谱仪的快速检测技术取得了重要进展。

美国科学家科克伦(W.H.Cochrane)发明了飞行时间质谱仪(TOF),使得质谱仪的检测速度得到了极大的提升。

这一技术至今仍在广泛应用。

有机化合物波谱解析第四章 质谱(MS)

有机化合物波谱解析第四章  质谱(MS)

电喷雾电离的基本过程 ➢ 电场下的喷雾 ➢ 壳气的作用下 ➢ 电荷的库仑作用 ➢ Rayleigh 极限
Charged Droplets
+ ++
-
+ - -++ -
++
+ +
Evaporation
Rayleigh Limit
Reached
+ +++
+-+--+-- +++
带电雾滴 溶剂的蒸发 带电雾滴的解体 表面张力和库仑斥力的平衡点
• 氩气(Ar)在电离室依靠放电产生氩离子, 高能氩离子经电荷交换得到高能氩原子 流,氩原子打在样品上产生样品离子。 样品置于涂有底物(如甘油)的靶上。 靶材为铜,原子氩打在样品上使其电离 后进入真空,并在电场作用下进入分析 器。
• FAB的优点:
• 电离过程中不必加热气化,因此适合于 分析大分子量、难气化、热稳定性差的 样品。
B + M+
• 加成反应
• BH+ + M
[BHM]+ 或 [BMH]+
ON O N
O
(M.W. 224)
甲糖宁的EI-MS与CI-MS谱比较
化学电离源 分子离子峰
麻黄碱 电子轰击源
• 2.3 场致电离源( Field ionization, FI) • 应用强电场(电压梯度107-108V/cm)诱导样
• 特点:高的灵敏度和专属性

可以测定分子量,确定化合物的
分子式。

用于推断化合物结构。
第一节 有机质谱仪的工作原理

质谱解谱教程 (1)

质谱解谱教程 (1)

第四章:质谱法第一节: 概述1.1 发展历史1.1886年,E. Goldstein在低压放电实验中观察到正电荷粒子.2. 1898年,W. Wen发现正电荷粒子束在磁场中发生偏转.3.现代质谱学之父: J. J. Thomson(获1906年诺贝尔物理奖).4.1922年, F.W.Aston[英]因发明了质谱仪等成就获诺贝尔化学奖. 1942年, 第一台商品质谱仪.5.50年代起,有机质谱研究(有机物离子裂解机理, 运用质谱推断有机分子结构)6.各种离子源质谱, 联机技术的研究及其在生物大分子研究中的应用(CI, FD, FAB, ESI-MS等)1.2 特点:1.灵敏度高(几微克甚至更少的样品, 检出极限可达10-14克)2.是唯一可以确定分子式的方法.3.分析速度快(几秒)4.可同色谱联用.第二节: 基本原理2.1基本原理质谱是唯一可以确定分子式的方法。

而分子式对推测结构是至关重要的。

质谱法的灵敏度远远超过其它方法,测试样品的用量在不断降低,而且其分析速度快,还可同具有分离功能的色谱联用。

具有一定压力的气态有机分子,在离子源中通过一定能量(70ev)的电子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离子, 继而还可裂解为一系列的碎片离子,然后根据这些离子的质荷比(m/z e)的不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离和鉴定。

由此可见质谱最简单形式的三项基本功能是:(1)气化挥发度范围很广的化合物;(2)使气态分子变为离子(除了在气化过程中不产生中性分子而直接产生离子的化合物);(3)根据质荷比(m/z e)将它们分开,并进行检测、记录。

由于多电荷离子产生的比例比单电荷离子要小得多,通常取z等于1,e为常数(1个电子的电荷),因而就表征了离子的质量。

这样,质谱就成为了产生并称量离子的装置。

由于各化合物所形成的离子的质量以及各种离子的相对强度都是各化合物所特有的,故可从质谱图形中确定分子量及其结构。

有机化学中的质谱(MS)技术

有机化学中的质谱(MS)技术

有机化学中的质谱(MS)技术质谱(Mass Spectrometry,简称MS)是一种在有机化学领域中广泛应用的分析技术。

它通过测量分子或原子在电离后,在电磁场中的轨迹曲线来获得分子的质量和结构信息。

质谱技术的应用范围十分广泛,包括化合物鉴定、结构鉴定、反应机理研究等等。

在本文中,我将介绍有机化学中常见的质谱技术及其应用。

一、电离技术质谱技术中最关键的步骤是电离,它将分析物转化为离子。

常用的电离技术包括电子轰击电离(EI)、化学电离(CI)、电喷雾电离(ESI)和大气压化学电离(APCI)等。

1.1 电子轰击电离(EI)电子轰击电离是常见的质谱电离技术,它使用高能电子轰击分析物,将其转化为分子离子和碎片离子。

EI技术广泛应用于有机化合物的结构鉴定和定性分析。

1.2 化学电离(CI)化学电离是一种软化电离技术,常用于高沸点化合物和易挥发的化合物的分析。

CI技术通过在离子源中引入反应气体,与分析物发生化学反应生成共轭离子,从而得到分析物的质谱图。

1.3 电喷雾电离(ESI)电喷雾电离是一种常用的离子化技术,适用于极性、热不稳定和大分子化合物的分析。

ESI技术将样品通过电喷雾产生微滴,然后在高电压下蒸发溶剂,形成气溶胶,再经过电离,使得样品离子化。

1.4 大气压化学电离(APCI)大气压化学电离是一种高效的电离技术,适用于极性和非极性有机化合物的分析。

APCI技术中,样品与雾化气体混合形成雾化云,然后在电离源中产生离子。

二、质谱仪器质谱仪器是进行质谱分析的关键设备,常见的质谱仪器包括质谱质谱(MS/MS)、气相质谱仪(GC-MS)和液相质谱仪(LC-MS)等。

2.1 质谱质谱(MS/MS)质谱质谱仪是一种高级别的质谱仪器,它可以通过串联质谱(MS/MS)技术进一步提高分析的准确性和灵敏度。

MS/MS技术将质谱仪分为两个部分,分别进行两次质谱分析,从而获得更详细的结构和质量信息。

2.2 气相质谱仪(GC-MS)气相质谱仪是将气相色谱(GC)和质谱联用的仪器。

质谱(MS)

质谱(MS)


Sensitive: single ion detection Lifetime of approximately 5 years
质谱仪器的主要技术指标
质量范围: 指质谱计所检测的单电荷离子的质核比范围 分辨率(R):分辨率是质谱计分开相邻两离子质量的能力。
R = m / m
m为质谱计可分辨的相邻两峰的质量差
基质辅助激光解析电离 Matrix-Assisted Laser Desorption Ionization (MALDI)
MALDI可使热敏感或不挥发的化合物由固相直接得到离子。 待测物质的溶液与基质的溶液混合后蒸发,使分析物
ห้องสมุดไป่ตู้
与基质成为晶体或半晶体,用一定波长的脉冲式激光进行
照射时,基质分子能有效的吸收激光的能量,使基质分子 和样品分子进入气相并得到电离。
He Vacuum pump
Sample
To MS
Sample Introduction: Liquid Chromatography-MS (LC-MS)

Direct infusion of sample in solution

Syringe pump: slow steady infusion Separation and identification of components Must remove solvent to ―see‖ analyte ESI: see later
CH4+· + CH4 → CH5+ + CH3· (48%) CH3+ + CH4 → C2H5+ + H2 (41%) CH2+· + 2CH4 → C3H5+ + 2H2 (6%)

有机质谱法分析介绍

有机质谱法分析介绍

有机质谱法分析介绍有机质谱法是一种广泛应用于化学、生物、环境等领域的分析技术。

它通过将样品中的有机化合物转化为气态离子,并在高真空环境下进行质量分析,从而得到有机化合物的结构和组成信息。

本文将重点介绍有机质谱法的原理、仪器和应用。

一、原理有机质谱法的分析原理基于质荷比(m/z)的测量。

首先,样品中的有机化合物要经过一系列的预处理步骤,例如蒸馏、萃取、萃取/冷凝等方式,将其转化为气态。

然后,气态化合物通过一定的方法(例如电子轰击、化学离子化等)转化为离子,并通过质谱仪分析。

在质谱仪中,离子首先被加速,并通过磁场进行质量的分离。

不同质量的离子在磁场作用下遵循不同的轨道,最后在检测器上形成不同的电流信号。

质谱仪会将这些电流信号转化为质量谱图,质谱图可以反映样品中各种有机化合物的相对含量和相对分子质量。

二、仪器有机质谱仪通常由离子源、质量分析器和检测器组成。

离子源是样品与离子化剂相互作用产生气态离子的地方。

常见的离子源包括电子轰击源、化学离子化源等。

电子轰击源是最常用的离子源,通过在真空环境中使用高能电子轰击样品,将样品分子击碎并产生离子。

化学离子化源则是通过一系列化学反应将样品转化为离子。

质量分析器是对产生的离子进行质量分析的部分,其作用是根据离子的质量荷比,将不同质量的离子分离。

常见的质量分析器有四极杆质量分析器、飞行时间质量分析器、磁扇质量分析器等。

检测器是将质量分析器分离得到的离子转化为电信号的部分。

常用的检测器包括离子倍增器、光电倍增管等,它们能够将离子信号转化为可以记录和分析的电信号。

三、应用有机质谱法在各个领域有着广泛的应用。

在化学领域,有机质谱法可用于有机合成反应的过程监控和鉴定。

通过质谱图谱的对比分析,可以确定有机合成反应的产物和杂质的结构。

在生物化学领域,有机质谱法可用于分析生物样品中的代谢物、药物和蛋白质组。

通过分析质谱图,可以了解生物体内代谢物的种类和含量,揭示生物代谢途径的变化。

有机质谱分析

有机质谱分析
生物质谱则是一个全新的领域,尚需作进 一步探讨研究。
相对而言,有机质谱是质谱中的最大分支, 不仅应用学科领域广泛、部门多,而且仪器数 量很大。
据不完全统计,上世纪80年代,我国每年引进 有机质谱仪器30多台,90年代每年引进50多台,进 入新世纪后,每年更是超过100 台。从事这项工作 的人数也很多,目前我国从事有机质谱分析研究工 作的专职科技人员近3000人。可以这样说,一切与 有机化学有关联的学科与部门,诸如生物化学、生 命科学、化工、医药、试剂、轻工、食品、商检、 林业、农药、石油、地质、公安、法检、航天、国 防、环境监测、致癌物质和兴奋剂检测等,都要装 备有机质谱仪。
用质谱技术分析研究糖、核酸、多肽、蛋 白质,这方面的许多成功的研究工作都标志着 质谱作为一种生化分析方法将占据重要的地位,
有机质谱已跨出了近代结构化学和分析化学领 域而进入了生命科学的范畴,生物质谱正在成 为质谱研究中的一个热点。
同位素质谱和无机质谱是质谱中的小分支, 前者主要在与放射性同位素有关的部门应用, 后者主要在矿产、地质、冶金、半导体材料和 原子能工业中应用。
与其它“三大谱”相比,它提供了有机化 合物最直观的特征信息,即分子量及官能团碎 片结构信息。在某些情况下,这些信息足以确 定一个有机化合物的结构。
在高分辨条件下,将质谱信号通过计算机运算, 可以获知其元素组成,因此,质谱仪还具有元素分 析的功能,广泛应用于各种有机化合物的结构分析。 同时,由于与分离型仪器(气相色谱仪、液相色谱 仪等)实现了联用,质谱可以直接分析混合有机物, 成为复杂混合物成分分析的最有效工具。这些混合 物包括天然产物、食品、药物、代谢产物、污染物 等等。它们的组分可多至数百个甚至上千个,含量 也可千差万别,用别的方法分析这类样品所耗费的 时间,代价为人们难以承受,有时则根本不可能进 行,而用色谱-质谱联用法则可能在较短的时间内 很方便地进行。因此,它的问世,被认为是分析化 学中的一个里程碑。

(完整版)质谱原理与应用

(完整版)质谱原理与应用

第二部分 质谱仪器与工作原理
2.1 质谱基本原理
质谱:称量离子质量的特殊天平。
第二部分 质谱仪器与工作原理
质谱分析法就是通过测定被测样品离子的质荷比来 获得物质分子量的一种分析方法。
第二部分 质谱仪器与工作原理
质谱分析法主要是通过对样品离子质荷比的分析而实现对样品进 行定性和定量的一种方法 电离装置把样品电离为离子 质量分析装置把不同质荷比的离子分开 经检测器检测之后可以得到样品的质谱图
15eV。
• 可提供丰富的结构信息。 • 有些化合物的分子离子不出现或很弱。
第二部分 质谱仪器与工作原理
2 化学电离源(Chemical Ionization CI)
高能电子束(100~240eV)轰击离子室内的反应气(甲烷等; 10~100Pa,样品的103~105倍),产生初级离子,再与试样分 子碰撞,产生准分子离子。
第二部分 质谱仪器与工作原理
2.3.3 离子源(Ion Source)
电子电离 Electron Ionization, EI 化学离子 Chemical Ionization, CI 场电离,场解吸 Field Ionization FD, Field Desorption FD 快原子轰击 Fast Atom Bombardment, FAB 基质辅助激光解析电离 Matrix-Assisted Laser Desorption Ionization, MALDI 电喷雾电离 Electrospray Ionization, ESI 大气压化学电离 Atmospheric Pressure Chemical Ionization, APCI
第一部分 质谱分析概述
质谱就是把化合物分子用一定方式裂解后生成的各种离子,按 其质量大小排列而成的图谱。

有机质谱分析课件

有机质谱分析课件

真空监测
实时监测质谱仪内部的真空状态,确保分析 过程的稳定性和可靠性。
联用技术
色谱-质谱联用(GC-MS)
将色谱的分离能力与质谱的鉴定能力相结合,广泛应用于挥发性化合物的定性和定量分 析。
液相色谱-质谱联用(LC-MS)
将液相色谱的分离能力与质谱的鉴定能力相结合,广泛应用于生物样品和药物的分析。
质谱-质谱联用(MS-MS)
06
有机质谱分析的未来展望
新技术的应用
人工智能与机器学习
利用人工智能和机器学习技术对质谱数据进行深度挖 掘,提高分析的准确性和效率。
纳秒级质谱技术
开发纳秒级质谱技术,实现对快速化学反应过程的实 时监测。
新型离子源
探索新型离子源,提高离子化效率和稳定性,降低干 扰。
分析方法的改进
串联质谱技术
发展串联质谱技术,实现对复杂有机化合物的结构解析和定量分 析。
仪器维护与校准问题
要点一
总结词
仪器的维护与校准对于有机质谱分析的准确性和可靠性至 关重要。
要点二
详细描述
为了确保仪器的正常运行和数据的准确性,需要定期对仪 器进行维护和校准。这包括清洗离子源、更换喷针、校准 质量轴等。此外,还需要对仪器的性能进行定期评估,以 确保其性能符合要求。同时,对于不同的仪器和不同的应 用,需要采用不同的维护和校准方法。因此,建议在专业 人员的指导下进行仪器的维护和校准工作。
生物样品分析
蛋白质组学研究
有机质谱分析可以用于鉴定蛋白质的序列、 修饰和相互作用,有助于深入了解蛋白质的 功能和生物学过程。
代谢组学研究
有机质谱分析可以用于鉴定生物体内的代谢物,有 助于了解生物体的代谢过程和代谢变化。
临床诊断

有机分子的质谱分析

有机分子的质谱分析

有机分子的质谱分析有机分子的质谱分析是一种用于研究有机化合物结构和性质的重要技术手段。

通过对有机分子在质谱仪中的离子化和质谱分离,可以得到有机分子的质谱图,从而推断碎裂途径和分子结构。

本文将介绍有机分子的质谱分析方法和应用。

一、质谱仪的原理质谱仪是用于分离和检测质子化分子离子的一种仪器。

其主要由四个部分组成:样品进样系统、离子源、质谱分析器和检测器。

样品进样系统将待测样品导入质谱仪,离子源将样品分子离子化,质谱分析器将离子按照质荷比(m/z)进行分离,检测器测量离子数目,将数据输出为质谱图。

二、质谱图的解读质谱图通常由两个轴组成,横轴表示质荷比(m/z),纵轴表示离子信号强度。

根据离子信号强度的大小可以推断有机分子中各个离子的相对丰度。

根据质荷比可以推断有机分子分子离子和碎裂片的结构和可能的组成。

三、碎裂规律有机分子在质谱分析中经历离子化和碎裂的过程。

离子化通常使用电子轰击或电离法,产生分子离子。

分子离子在碰撞中容易发生碎裂,生成碎片离子。

碎裂规律主要有α键断裂、β键断裂、α氢迁移和1,2-等。

α键断裂指的是分子中相邻原子间的键断裂,生成相应的碎片离子。

β键断裂发生在α键断裂后的碎片上,同样会生成相应的碎片离子。

α氢迁移指的是氢离子从一个位置迁移到相邻位置。

1,2-等指的是相邻位置的原子或基团发生碎裂。

四、应用领域质谱分析在化学、生物化学和药学等领域具有广泛应用。

在化学领域中,质谱分析可以用于分析有机化合物的结构和组成,推断分子的碎裂途径。

在生物化学领域中,质谱分析可以用于分析生物大分子的结构和修饰。

在药学领域中,质谱分析可以用于药物代谢动力学研究和药物成分鉴定。

结论有机分子的质谱分析是一种重要的分析技术,可以用于研究有机化合物的结构和性质。

通过对质谱图的解读,可以推断分子的碎裂途径和可能的结构。

质谱分析在化学、生物化学和药学等领域具有广泛应用,对于推动相关领域的研究和发展具有重要意义。

有机波谱分析4 质谱共107页

有机波谱分析4 质谱共107页

CH4+·+ CH4 CH5++ CH3· CH3+ + CH4 C2H5++H2
小C量H5样+和品C(2H试5+样不与与甲中烷性之甲比烷为进1一1步00反0)应导,入一离旦 子源,试样分子(RH)发生下列反应:
CH5++ RH RH2+ +CH4
C2H5++RH R++ C2H6 RH2+ 和R+然后可能碎裂,产生质谱。 由(M+H)或(M-H)离子很容易测得其 相对分子质量。
方式进行反应,转移一个质子给试样或由试样移去
一个电子,试样则变成带+1电荷的离子。 化学电离
源一般在1.3102~1.3103Pa (现已发展为大气压
下化学电离技术)压强下工作,其中充满甲烷CH4。
首先用高能电子,使CH4电离产生CH5+和C2H5+,
即:
CH4 + e CH4+·+ 2e
CH4+· CH3+ + H· 即C:H4+·和CH3+很快与大量存在的CH4分子起反应,
• EI是硬电离,是最常用的电离技术。
• EI的缺陷是大多数有机化合物分子离子峰 很低,有些化合物得不到分子离子峰。
• 因此需要采用软电离技术,它的主要优点 是分子离子或准分子离子丰度大;缺点是 碎片离子峰少,不利结构分析。
• 软电离技术包括化学电离、场致电离、快 原子轰击电离和激光电离等。
(2 ). 化学电离源(CI):
• ③、50年代初:质谱仪器开始商品化,并广泛用于各类有
机物的结构分析;同时质谱方法与NMR、IR等方法结合成为 分子结构分析的最有效的手段。

质谱法MassSpectrometry质谱的发展历史及进展质谱的诞生

质谱法MassSpectrometry质谱的发展历史及进展质谱的诞生

质谱法Mass Spectrometry第一节质谱的发展历史及进展质谱的诞生1886. E. Goldstein低压放电实验中观察到正离子W. Wein 正电荷粒子束在磁场中发生偏转20世纪初J.J.Thomson (1906 诺贝尔物理奖)发明质谱法⏹Rays of Positive Electricity and Their Application to Chemical Analysis⏹撰写本书的主要宗旨之一是希望它能启发其他科学家,特别是化学家尝试采用这个方法。

我深信化学中存在的许多问题可以凭借这个方法得以解决……J.J.THOMSON19131911,C. F. Knipp,电子轰击电离源1918,A.J. Dempster,mass spectrometer1919,F. W. Astonmass spectrograph1920 mass spectrum1942 第一台商品质谱仪⏹20世纪40年代:同位素质谱、无机质谱⏹Aston “… 1910年协助Thomson研究气体放电中发出的带正电的射线….首次发现非放射性元素有同位素存在………研制了新式质谱仪,测出许多其它元素都有同位素。

他发现了天然存在的287中核素中的212种”因研制质谱仪并用于准确测量原子及分子质量以及发现大量核素,获1922年诺贝尔化学奖⏹20世纪50-60年代:有机质谱⏹有机化合物质谱分析;研究有机物质谱裂解机理⏹著作:⏹ F. W. Maclaffety: Interpretation of Mass SpectraJ.H.Beynon: Mass Spectrometry and ItsApplication to Organic Chemistry(1960)H.Budzikiewiez,C.Djerassi, H.D,Williams,Mass spectrometry of Organic Compounds(1967)杂志:Organic Mass Spectrometry (1968年创刊)⏹1966 化学电离法(Chemical ionization)⏹1974 等离子体解析质谱PD-MS(plasma⏹desorption mass spectrometry)⏹1981 快原子轰击质谱FAB-MS(fast atom⏹bombardment mass spectrometry)历史性突破⏹J .B. Fenn 于1984~1987 年间发明的电喷雾电离( Electrospray Ionisation , ESI) 技术及其应用⏹K. Tanaka 于1987~1988 年间发明的软激光解吸电离(Soft Laser Desorption , SLD) 及其应用⏹质谱方法测定生物大分子的分子量超过105质量分离器的发展-扫描范围宽,分辨率高⏹四极质谱⏹离子阱质谱⏹飞行时间质谱⏹离子回旋共振质谱⏹傅立叶变换质谱FTMS(Fourier transform mass spectrometry)技术趋势⏹多种质量分析器组合使用1.QqQ(MS/MS)2.Q-TOF3.TOF-TOF4.Q-TRAP⏹色谱质谱联用技术GC-MSLC-MS色质联用仪数据质谱图色谱图质量色谱图第二节有机质谱仪mass spectrograph一、质谱仪的构造及功能1、真空系统。

有机化合物的质谱分析

有机化合物的质谱分析

有机化合物的质谱分析(一)分子离子峰分子受电子束轰击后失去一个电子而生成的离子M.+称为分子离子,例如:M+e¨→M.+ + 2e¨在质谱图中由M.+ 所形成的峰称为分子离子峰.因此,分子离子峰的m/z值就是中性分子的相对分子质量Mr,而Mr是有机化合物的重要质谱数据. 分子离子峰的强弱,随化合物结构不同而异,其强弱一般为:芳环>醚>酯>胺>酸>醇>高分子烃.分子离子峰的强弱可以为推测化合物的类型提供参考信息.(二)碎片离子峰当电子轰击的能量超过分子离子电离所需要的能量时(约为50~70eV),可能使分子离子的化学键进一步断裂,产生质量数较低的碎片,称为碎片离子.在质谱图上出现相应的峰,称为碎片离子峰.碎片离子峰在质谱图上位于分子离子峰的左侧.(三)同位素离子峰在组成有机化合物的常见十几种元素中,有几种元素具有天然同位素,如C,H,N,O,S,Cl,Br 等.所以,在质谱图中除了最轻同位素组成的分子离子所形成的M.+峰外,还会出现一个或多个重同位素组成的分子离子峰.如(M+1).+,(M+2).+,(M+3).+等,这种离子峰叫做同位素离子峰.对应的m/z为M+1,M+2,M+3表示.人们通常把某元素的同位素占该元素的原子质量分数称为同位素丰度.同位素峰的强度与同位素的丰度是相对应的.下表列出了有机化合物中元素的同位素丰度及峰类型.由下表可见,S,Cl,Br等元素的同位素丰度高,因此,含S,C,Br等元素的同位素其M+2峰强度较大.一般根据M和M+2两个峰的强度来判断化合物中是否含有这些元素.(四)重排离子峰分子离子裂解成碎片时,有些碎片离子不是仅仅通过键的简单断裂有时还会通过分子内某些原子或基团的重新排列或转移而形成离子,这种碎片离子称为重排离子.质谱图上相应的峰称为重排峰. 重排的方式很多,其中最重要的是麦氏重排(Mclafferty Rearrangement).可以发生麦氏重排的化合物有醛,酮,酸,酯等.这些化合物含有C=X(X为O,S,N,C)基团,当与此基团相连的键上具有γ氢原子时,氢原子可以转移到X原子上,同时β键断裂.例如,正丁醛的质谱图中出现很强的m/z=44峰,就是麦氏重排所形成的.重排离子形成的机理如下:[略,如有参考需要,可查阅原出处].(五)亚稳离子峰前面所阐述的离子都是稳定的离子.实际上,在电离,裂解,重排过程中有些离子处于亚稳态.例如,在离子源中生成质量为m1的离子,在进入质量分析器前的无场飞行时发生断裂,使其质量由m1变为m2, 形成较低质量的离子.这类离子具有质量为m1离子的速度,进入质量分析器是具有m2的质量,在磁场作用下,离子运动的偏转半径大,它的表观质量m*=[m2]^2/m1,这类离子叫亚稳离子,m*形成的质谱峰叫亚稳离子峰,在质谱图上,m*峰不在m2处,而出现在比m2更低的m*处. 由于在无场区裂解的离子m*不能聚焦与一点,故在质谱图上m*峰弱而钝一般可能跨2~5个质量单位,并且m/z常常为非整数,所以m*峰不难识别.例如,在十六烷的质谱图中,有若干个亚稳离子峰,其m/z分别位于32.9,29.5,28.8,25.7,21.7处.m/z=29.5的m*,因41^2/57≈29.5,所以m*=29.5表示存在如下裂解机理: C4H9+→C3H5+ +CH4 m/z=57 m/z=41 由此可见,根据m1和m2就可计算m*,并证实有m1+→m2+的裂解过程,这对解析一个复杂质谱图很有参考价值.一、分子量的确定规律:1、分子离子峰一定是质谱中质量数最大的峰;2、分子离子峰应有合理的质量丢失:例如:在比分子离子峰小4-14及20-25质量单位处不应有离子峰出现,因为一个有机化合物不可能失去4-14个氢而不断链,但如果断链,失去最小碎片应为CH3,质量数为15,同理,不可能失去20-25质量单位。

质谱分析法

质谱分析法
解决办法: 加一静电场Ee,实现能量分散:
mv 2 2 EM Ee Re Re
2 EM Re Ee
对于动能不同的离子,通过调节电 场能,达到聚焦的目的。
双聚焦分析器的特点:分辨率高
3 四极杆分析器 (quadrupole analyzer) 由 4根 棒状电极 组成,电 极材料是 镀金陶瓷 或钼合金。
3 四极杆分析器 (quadrupole analyzer) 4 离子阱分析器 (Ion trap)
5 飞行时间分析器(time of flight)
6 傅立叶变换离子回旋共振
(Fourier tranform ion cyclotron resonance)
(1)单聚焦分析器(single focusing mass analyzer)
这些碎片可能是分子离子、同位素离子、碎片离子、 重排离子、多电子离子、亚稳离子、第二离子等,通 过这些碎片可以确定化合物的分子量,分子式和其结 构。
1、质谱仪的发展史 1912年:
40年代:
世界第一台质谱装置
质谱仪用于同位素测定
50年代: 分析石油 60年代: 研究GC-MS联用技术 70年代: 计算机引入 80年代: 研究LC-MS联用技术 90年代: 研究蛋白质分析技术
大气压化学电离源
(Atmospheric pressure chemical Ionization, APCI)
常压下通过电晕放电,使空气中某些中性 分子电离,产生H3O+、N2+、O2+和O+ 离子,这些离子与样品分子发生离子- 分子反应,产生分子离子。 特点: 质谱碎片少,主要是准分子离子,化合 物相对分子质量小于1000,适宜分析中 等极性化合物。
8.2 质谱分析基本原理

质谱发展历史-基础知识

质谱发展历史-基础知识

传递部分能量(多小于6ev)形成离子及部分碎片.
EI的优缺点

优点
1.级的灵敏度
2.有达10万个化合物的 数据库可快速检索
3.可根据碎片方式鉴定 未知物
4.从碎片离子判定结构

缺点
1.质量范围小
2.有可能汽化前发生解 离
3.碎片过多有时看不到 分子离子
B. FBI快速原子/离子轰击离子源 Fast Atom/Ion Bombardment
第一节 进样部分
要求: 大气压下的样品要进入高真空的质谱仪,
而不影响仪器的真空度。 方式:
进样板进样 进样头进样 毛细管进样(从气相色谱及液相色谱柱)
第二节 离子源
▪ A :EI源 Electron Ionization

是1980年以前的主要离子化方式,只能用于远远小于生物有机分子的小分子
(400Da以下)的检测,样品需经过汽化(通常热解吸附)进入电离区,与电子流撞击.电子流
DC+RF
四极杆质量分析器的 优点
四极杆质量分析器通常与EI、ESI源联接 1、能容忍相对低的真空度(约10x10⁻⁵Torr) 2、m/z可达3000, ESI离子源产生的多电荷
生物分子离子m/z正好多在3000以内。 3、开销低廉。
B、离子阱质量分析器
三维的四极杆,RF加在环形电极上。
环形电极
品光降解。
4、串联质谱功能较弱,除非接反 射装置进行源后衰变测量。
5、不能分析非共价键相互作用。 6、定量时需要内校准。 7、如没有反射飞行装置,不能分
析多肽修饰。
8、对各种赋形剂的容忍度低(如 含磷酸缓冲液,大于150mM的盐
等。

中国临床质谱发展历史

中国临床质谱发展历史

中国临床质谱的发展历史可以追溯到20世纪80年代。

以下是中国临床质谱发展的主要里程碑:
1.1980年代初:中国开始引入质谱技术,建立了第一个质谱实验室,并开始进行质谱分
析方面的研究。

2.1990年代初:中国研究人员开始在临床领域应用质谱技术,特别是对于药物代谢和生
化标记物的检测。

3.1995年:中国科学院成都有机化学研究所在上海建立了国内第一个临床质谱实验室,
为临床实验室提供质谱服务和技术支持。

4.2000年:中国临床质谱学会成立,推动了临床质谱领域的学术交流和合作。

5.2003年:中国国家自然科学基金委员会设立了“质谱与色谱基础研究及应用”项目,
为临床质谱研究提供了更多的经费支持。

6.2010年:中国开展了国家重大科技专项“临床应用质谱技术与设备研制”项目,旨在
促进临床质谱技术的发展和应用。

7.近年来:中国临床质谱领域取得了显著进展,涉及领域包括药物代谢研究、生物标志物
鉴定、毒理学检测以及临床诊断等。

越来越多的医院和实验室引入质谱设备,并在临床实践中应用质谱技术。

中国临床质谱的发展历程仍在继续,随着技术的不断进步和应用的扩大,临床质谱在疾病诊断、治疗监测和个体化医学方面的应用前景非常广阔。

《有机化合物的结构》质谱法分析结构

《有机化合物的结构》质谱法分析结构

《有机化合物的结构》质谱法分析结构《有机化合物的结构——质谱法分析结构》在化学的领域中,准确了解有机化合物的结构对于研究其性质、反应以及应用具有至关重要的意义。

而质谱法作为一种强大的分析工具,为我们揭示有机化合物结构的奥秘提供了有力的手段。

质谱法的基本原理其实并不复杂。

它是通过将有机化合物分子转化为带电离子,然后在电场和磁场的作用下,按照其质荷比(m/z)进行分离和检测。

简单来说,就是根据分子的质量和所带电荷的比值来区分不同的分子。

当有机化合物进入质谱仪时,首先会经历一个电离的过程。

这个过程可以通过多种方式实现,比如电子轰击电离、化学电离、电喷雾电离等。

电离后的分子会带上正电荷或者负电荷,形成离子。

这些离子随后会在电场的加速下进入磁场。

在磁场中,由于离子的质荷比不同,它们会受到不同程度的偏转。

质荷比小的离子偏转角度大,质荷比大的离子偏转角度小。

通过检测这些离子的偏转情况,我们就可以得到一张质谱图。

质谱图看起来可能有些复杂,但实际上它包含了丰富的信息。

横坐标通常表示质荷比,纵坐标则表示离子的相对丰度。

从质谱图中,我们可以获得很多关于有机化合物结构的重要线索。

比如,分子离子峰可以告诉我们化合物的相对分子质量。

分子离子峰就是质谱图中质荷比最大的峰,但需要注意的是,有时候分子离子峰可能并不明显,或者因为分子的不稳定性而难以观察到。

此外,通过对质谱图中碎片离子峰的分析,我们能够了解分子中某些特定的化学键的断裂方式,从而推断出分子的结构特征。

比如,某些官能团在特定条件下容易发生断裂,产生具有特征质荷比的碎片离子。

例如,对于醇类化合物,羟基容易发生断裂,产生失去羟基的碎片离子。

而对于羧酸类化合物,羧基容易脱去二氧化碳形成相应的碎片离子。

除了上述基本的分析方法,质谱法还有一些高级的应用。

比如,串联质谱法可以通过对离子进行多次裂解和分析,获取更详细的结构信息。

在实际应用中,质谱法常常与其他分析方法结合使用,以更全面、准确地确定有机化合物的结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机质谱历史及解析第一节: 概述1.1 发展历史1. 1886年,E. Goldstein在低压放电实验中观察到正电荷粒子.2. 1898年,W. Wen发现正电荷粒子束在磁场中发生偏转.3. 现代质谱学之父: J. J. Thomson(获1906年诺贝尔物理奖).4. 1922年, F.W.Aston[英]因发明了质谱仪等成就获诺贝尔化学奖. 1942年, 第一台商品质谱仪.5. 50年代起,有机质谱研究(有机物离子裂解机理, 运用质谱推断有机分子结构)6. 各种离子源质谱, 联机技术的研究及其在生物大分子研究中的应用(CI, FD, FAB, ESI-MS等) 1.2 特点:1. 灵敏度高(几微克甚至更少的样品, 检出极限可达10-14克)2. 是唯一可以确定分子式的方法.3. 分析速度快(几秒)4. 可同色谱联用.第二节: 基本原理2.1基本原理质谱是唯一可以确定分子式的方法。

而分子式对推测结构是至关重要的。

质谱法的灵敏度远远超过其它方法,测试样品的用量在不断降低,而且其分析速度快,还可同具有分离功能的色谱联用。

具有一定压力的气态有机分子,在离子源中通过一定能量(70ev)的电子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离子, 继而还可裂解为一系列的碎片离子,然后根据这些离子的质荷比(m/ze)的不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离和鉴定。

由此可见质谱最简单形式的三项基本功能是:(1)气化挥发度范围很广的化合物;(2)使气态分子变为离子(除了在气化过程中不产生中性分子而直接产生离子的化合物);(3)根据质荷比(m/ze)将它们分开,并进行检测、记录。

由于多电荷离子产生的比例比单电荷离子要小得多,通常取z等于1,e为常数(1个电子的电荷),因而就表征了离子的质量。

这样,质谱就成为了产生并称量离子的装置。

由于各化合物所形成的离子的质量以及各种离子的相对强度都是各化合物所特有的,故可从质谱图形中确定分子量及其结构。

(一) 电离方式:一般,MS测定采用电子轰击法(electron impact ionization,简称EI),故称EIMS。

它是应用最普遍、发展最成熟的电离方法。

测定EI-MS时,需要先将样品加热气化,而后才能电离。

故容易发生热分解的化合物,如醇、糖苷、部分羧酸等,往往测不到分子离子峰,看到的只是其碎片峰。

而一些大分子物质,如糖的聚合物、肽类等,也因难于气化而无法测定。

故近来多将一些对热不稳定的样品,如糖类、醇类等,进行乙酰化或三甲基硅烷化(TMS化),形成对热稳定性好的挥发性衍生物后再进行测定。

近二十余年来,在电离方式的研发方面取得了巨大成绩,针对生物大分子等大极性、难气化、不稳定的化合物,开发了多种使样品不必加热气化而直接电离或者防止化合物热分解的新电离方法(软电离方法),如:1. 化学电离(Chemical ionization,简称CI)2. 场致电离(field ionization, 简称FI)和场解析电离(field desorption ionization,简称FD)3. 快速原子轰击电离(fast atom bombardment, 简称FAB)4. 基质辅助激光解吸电离(matrix-assisted laser desorption ionization,简称MALDA)5. 电喷雾电离(electrospray ionization,简称ESI)6. 大气压化学电离(atmospheric pressure chemical,简称APCI)等。

目的是一方面使质谱能显示出那些不稳定、高极性、难气化、难电离的化合物的分子离子峰,另一方面通过检测多电荷离子,使质量分析器检测的质量提高几十倍甚至更高。

要注意的是,软电离方法一般显示明显的准分子离子峰,如[M+H]+或[M-H]+ 峰、有时会出现[M+Na]+、[M+K]+峰等,而碎片离子峰往往很少,甚至没有。

由于各化合物所形成的离子的质量以及各种离子的相对强度都是各化合物所特有的,故可从质谱图形中确定分子量及其结构.理论公式: (1). zV = mv2/2(2). mv2/R = Hzv → v = HzR/m(3). m/z = H2R2/2V2.2 测定方法三种仪器:1. 单聚焦质谱仪:2. 双聚焦质谱仪3. 四极质谱仪质谱仪的主体为: 进样系统,离子源, 质量分析器和离子检测器.2.3质谱图1.质谱图的表示方法(1)图示法(2)数据法2.质谱图中离子峰的种类(1)分子离子峰(2)碎片离子峰(3)同位素峰(4)亚稳离子峰(5)多电荷离子峰第三节. 分子量和分子式的确定3.1 分子量的确定从理论上讲,除同位素峰外,分子离子峰(Molecular Ion, M+.)呈现在谱图中的最高质量位置。

但当分子离子不稳定时,可能导致分子离子峰不在谱图中出现,或生成大于或小于分子离子质量的(M+H)+、(M-H)+ 或(M+Na)+峰等。

M + e → M+. + 2e对于纯化合物而言,判断分子离子峰时应注意:1. 峰的强度分子离子峰的强度依赖于分子离子的稳定性。

当分子具有大的共轭体系时,其稳定性高;其次是有双键的化合物的分子离子稳定性较高;环状结构因断裂一个键后仍未改变质量,其分子离子峰也强;支链越多,分子离子越不稳定; 杂原子携带正电荷的能力按周期表自上而下的位置依次增强, 因而硫醇和硫醚的分子离子比醇和醚稳定.通常有机化合物在质谱中表现的稳定性有以下次序:芳香环 >脂环> 硫醚、硫酮> 共轭烯 > 直链碳氢化合物 > 羰基化合物 > 醚 > 胺 >支链烃 >晴 > 伯醇 > 仲醇 >叔醇 > 缩醛.2. 氮规则 (Nitrogen Rule)对于只含有C、H、O、N的有机化合物,若其分子中不含氮原子或含有偶数个氮原子,则其分子量为偶数;若其分子中含有奇数个氮原子,则其分子量为奇数。

凡是奇电子离子(包括碎片离子)都符合氮规则,而偶电子离子则刚刚相反。

3. 中性碎片(小分子及自由基)的丢失是否合理如一般由M+.减去4 ~ 14个质量单位或减去21~ 25个质量单位是不可能的。

4. 可采用软电离方法验证a.降低电子束能量。

b.降低样品加热温度。

c.扩散法。

d.(M+H)+峰的判别。

e.软电离方法:场电离(FI)、场解吸(FD)、化学电离(CI)、解吸化学电离(DCI)、快原子轰击(FAB)、电喷雾电离(ESI)等软电离方法一般显示明显的准分子离子峰,如 [M+H]+或[M-H]+ 峰、有时会出现[M+Na]+、[M+K]+峰等,而碎片离子峰往往很少,甚至没有。

3.2.分子式测定1.同位素丰度法[贝农(Beynon)表]分子式测定可采用同位素丰度法[贝农(Beynon)表],但此法对分子量大或结构复杂、不稳定的化合物是不适用的。

现在一般都采用高分辨质谱法测定,可直接显示可能分子式及可能率。

若测出的分子量数据与按推测的分子式计算出的分子量数据相差很小(与仪器精密度有关, 一般小于0.003), 则可认为推测可信的。

表:有机化合物常见元素同位素及其丰度12C(100%), 13C(1.08%); 1H(100%), 2H(0.016%);16O(100%), 17O(0.04%), 18O(0.20%); 14N(100%), 15N(0.37%);32S(100%), 33S(0.80%), 34S(4.60%); 35Cl(100%), 37Cl(32.5%);79Br(100%), 81Br(98.0%).例1. 某化合物的质谱图上显示[M+.] m/z 150(100%)、[M+1] + m/z 151(10.2%)、[M+2] +m/z 152(0.88%)。

试推断其分子式。

例2.某化合物的质谱图上显示[M+.] m/z 151(100%)、[M+1] + m/z 152(9.5%)、[M+2] + m/z153(32.1%)。

试推断其分子式。

例3. 某化合物的质谱图上显示[M+.] m/z 206(25.90%)、[M+1] + m/z 207(3.24%)、[M+2]+ m/z 208(2.48%)。

试推断其分子式。

(1答案:C9H10O2);(2答案:C8H6NCl);(3答案:C10H22S2)1. 高分辨质谱法:(1) 质谱仪的电脑软件直接显示可能分子式及可能率.(2) 若测出的分子量数据与按推测的分子式计算出的分子量数据相差很小(与仪器精密度有关, 一般小于0.003), 则推测可信.第四节电子轰击电离过程1. 电离:ABC + e- → ABC+ +2e- ABC + e- → ABCn+ +(n+1)e-2。

碎裂:ABC+ + e- → A+ + BC (AB+ + C或A + BC+ )简单断裂ABC+ + e- → AC+ + B 重排3。

分子-离子反应ABC+ + ABC → ABCABC+ 缔合ABC+ + ABC → ABCA+ + BC 原子或基团剥夺4。

共振俘获:ABC + e- → ABC-5.离解共振俘获:ABC + e- → AB- + C6.生成离子偶:ABC+ + e- → AB+ + C- + e-目前,大多数质谱仪的分析数据取自正离子。

3.2.分子式测定1.同位素丰度法[贝农(Beynon)表]分子式测定可采用同位素丰度法[贝农(Beynon)表],但此法对分子量大或结构复杂、不稳定的化合物是不适用的。

现在一般都采用高分辨质谱法测定,可直接显示可能分子式及可能率。

若测出的分子量数据与按推测的分子式计算出的分子量数据相差很小(与仪器精密度有关, 一般小于0.003), 则可认为推测可信的。

表:有机化合物常见元素同位素及其丰度12C(100%), 13C(1.08%); 1H(100%), 2H(0.016%);16O(100%), 17O(0.04%), 18O(0.20%); 14N(100%), 15N(0.37%);32S(100%), 33S(0.80%), 34S(4.60%); 35Cl(100%), 37Cl(32.5%);79Br(100%), 81Br(98.0%).例1. 某化合物的质谱图上显示[M+.] m/z 150(100%)、[M+1] + m/z 151(10.2%)、[M+2] +m/z 152(0.88%)。

试推断其分子式。

例2.某化合物的质谱图上显示[M+.] m/z 151(100%)、[M+1] + m/z 152(9.5%)、[M+2] + m/z153(32.1%)。

相关文档
最新文档