2019届高三数学备考冲刺140分问题29立体几何中的最值问题含解析

合集下载

2019届高三数学备考冲刺140分问题19数列中的最值问题含答案解析

2019届高三数学备考冲刺140分问题19数列中的最值问题含答案解析

问题19 数列中的最值问题一、考情分析数列中的最值是高考热点,常见题型有:求数列的最大项或最小项、与n S 有关的最值、求满足数列的特定条件的n 最值、求满足条件的参数的最值、实际问题中的最值及新定义题型中的最值问题等.二、经验分享(1) 数列的最值可以利用数列的单调性或求函数最值的思想求解.解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列.②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断.(2) 最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1,则a n 最小. (3)求等差数列前n 项和的最值,常用的方法:①利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,通过二次函数的性质求最值.另外,对于非等差数列常利用函数的单调性来求其通项或前n 项和的最值. 三、知识拓展已知等差数列{}n a 的公差为d ,前n 项和为n S ,①若0d >,n S 有最小值,若,则k S 最小,若0k a =则1,k k S S -最小; ①若0d <,n S 有最大值,若,则k S 最大,若0k a =则1,k k S S -最大。

四、题型分析(一) 求数列的最大项或最小项求数列中的最大项的基本方法是: (1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)确定数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)确定数列的最小项.(3)利用函数或数列单调性求最大项或最小项. 【例1】已知数列}{n a 的通项公式为n a =2156nn +,求}{n a 的最大项. 【分析】思路1:利用基本不等式求解.思路2:求满足⎩⎨⎧≥≥-+11n nn n a a a a 的n 的值.【解法一】基本不等式法., 120S <,则当0n S >时, n 的最大值为11,故选A(三) 求满足数列的特定条件的n 的最值【例3】【贵州省凯里市第一中学2018届高三下学期一模】已知{}n a 的前n 项和为,且145,,2a a a -成等差数列,,数列{}n b 的前n 项和为n T ,则满足20172018n T >的最小正整数n 的值为( ) A. 8 B. 9 C. 10 D. 11 【分析】先求和,再解不等式. 【答案】C【解析】,当2n ≥时,,由145,,2a a a -成等差数列可得,即,解得2m =-,故2nn a =,则,故,由20172018n T >得,即122019n +>,则111n +≥,即10n ≥,故n 的最小值为10.【小试牛刀】【湖南省邵东县创新实验学校2019届高三月考】已知数列的通项,数列的前项和为,若这两个数列的公共项顺次构成一个新数列,则满足的的最大整数值为( )A .338B .337C .336D .335 【答案】D(四) 求满足条件的参数的最值【例4】已知n S 为各项均为正数的数列{}n a 的前n 项和,.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,若对恒成立,求实数t 的最大值.【分析】(1)首先求得1a 的值,然后利用n a 与n S 的关系推出数列{}n a 为等差数列,由此求得{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后用裂项法求得n T ,再根据数列{}n T 的单调性求得t 的最大值.(2)由32n a n =- ,可得.因为,所以1n n T T +>,所以数列{}n T 是递增数列, 所以,所以实数t 的最大值是1.【点评】(1) 求解与参数有关的问题,一般是分离变量,再构造新函数求解.(2)使用裂项法,要注意正负项相消时,消去了哪些项,保留了哪些项.要注意由于数列{}n a 中每一项n a 均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样多的,切不可漏写未被消去的项,未被消去的项有前后对称的特点. 【小试牛刀】已知数列{}n a 的通项公式为11n a n =+,前n 项和为n S ,若对任意的正整数n ,不等式恒成立,则常数m 所能取得的最大整数为.【答案】5【解析】要使恒成立,只需.因,所以,,数列为等差数列,首项为,,,,,在数列中只有,,为正数的最大值为故选5.【湖南师范大学附属中学2019届高三上学期月考】已知数列的前项和为,通项公式,则满足不等式的的最小值是( )A.62 B.63C.126 D.127【答案】D6.【湖南省岳阳市第一中学2019届高三上学期第三次质检】在数列中,,,若数列满足,则数列的最大项为()A.第5项 B.第6项 C.第7项 D.第8项【答案】B【解析】数列中,,,得到:, ,,,上边个式子相加得:,解得:.当时,首项符合通项.故:.数列满足,则, 由于,故:,解得:,∴当n ∈[1,44]时,{a n }单调递减,当n ∈[45,100]时,{a n }单调递减,结合函数f (x )=x - 2 013x - 2 014的图象可知,(a n )max =a 45,(a n )min =a 44,选C.10.已知函数,且,设等差数列{}n a 的前n项和为n S ,()*n N ∈若()n S f n =,则41n n S aa --的最小值为( ) A .276 B .358 C .143 D .378【答案】【解析】由题意可得等差数列的通项公式和求和公式,代入由基本不等式可得.由题意可得或解得a=1或a=-4,当a=-1时, ,数列{a n}不是等差数列;当a=-4时, , ,,当且仅当1311nn+=+,即131n=时取等号,∵n为正数,故当n=3时原式取最小值378,故选D.11.已知等差数列{}n a的通项公式为n a n=,前n项和为n S,若不等式恒成立,则M的最小值为__________.【答案】6 25912.【江苏省常州2018届高三上学期期末】各项均为正数的等比数列{}n a中,若,则3a的最小值为________.3【解析】因为{}n a是各项均为正数的等比数列,且,所以,则,即,即,即3a13.【福建省闽侯县第八中学2018届高三上学期期末】已知数列{}n na的前n项和为n S,且2nna=,则使得的最小正整数n 的值为__________.【答案】5【解析】,,两式相减,故, 112n n a ++=故,故n 的最小值为5.14.【河北省承德市联校2018届高三上学期期末】设等差数列{}n b 满足136b b +=, 242b b +=,则12222n b b b 的最大值为________.【答案】512【解析】依题意有,解得,故.,故当3n =时,取得最大值为92512=.15.【新疆乌鲁木齐地区2018届高三第一次诊断】设n S 是等差数列{}n a 的前n 项和,若250S >,260S <,则数列的最大项是第________项.【答案】1316.【安徽省淮南市2018届高三第一次(2月)模拟】已知正项数列{}n a 的前n 项和为n S ,当2n ≥时,,且11a =,设,则的最小值是________. 【答案】9【解析】当2n ≥ 时,,即,展开化为:∵正项数列{}n a 的前n 项和为n S∴数列{}n S 是等比数列,首项为1,公比为4.则则当且仅当3611n n +=+即5n =时等号成立. 故答案为919.已知数列{}n a 满足:*1a ∈N ,136a …,且,记集合.(1)若16a =,写出集合M 的所有元素;(2)若集合M 存在一个元素时3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析:(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数.由,可归纳证明对任意n k …,n a 是3的倍数.如果1k =,则M 的所有元素都是3的倍数; 如果1k >,因为12k k a a -=或,所以12k a -是3的倍数,或1236k a --是3的倍数,于是1k a -是3的倍数.类似可得,2k a -,…,1a 都是3的倍数.从而对任意1n …,n a 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.。

第04讲 立体几何中最值问题-培优辅导冲刺高考讲义突破140

第04讲  立体几何中最值问题-培优辅导冲刺高考讲义突破140

一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.
立 体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载
体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类
问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化
【反馈】 1、在三棱锥 P-ABC 中,PA⊥面 ABC,AB⊥AC 且 AC=1,AB=2,PA=3,过 AB 作截面交 PC 于 D,则截面 ABD 的 最小面积为( )
1
10
A.
10
35
B.
5
3 10
C.
10
5
D.
5
2、如图,在正四棱柱 ABCD A1B1C1D1 中, AB 1, AA1 2 ,点 P 是平
D. 2 3
【反馈】 1、如图,在棱长为 1 的正方体 ABCD-A1B1C1D1 中,点 E、F 分别是棱 BC,CC1 的中点,P 是侧面 BCC1B1 内一 点,若 A1P∥平面 AEF,则线段 A1P 长度的取值范围是_____ 。
1、 如图所示,在空间直角坐标系中,D 是坐标原点,有一棱长为 a 的正方体 ABCD A1B1C1D1 , E 和 F 分别是体
第 04 讲 立体几何中最值问题
高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类
问题,既可以考查学生的空间想象能力,又考查运用运 动变化观点处理问题的能力,因此,将是有中等难
度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求

高中数学立体几何中的最值问题

高中数学立体几何中的最值问题

高中数学立体几何中的最值问题在高中数学的学习中,立体几何一直是一个重点和难点,而其中的最值问题更是让许多同学感到头疼。

这类问题往往需要我们综合运用空间想象力、几何知识以及数学方法来求解。

接下来,让我们一起深入探讨立体几何中的最值问题。

一、常见类型及解法1、距离最值问题(1)两点间距离最值在立体几何中,求两点间距离的最值,常常需要我们将空间中的两点转化到同一平面内。

例如,在长方体中,求异面直线上两点的最短距离,就需要通过平移将其转化为共面直线,然后利用平面几何中的知识求解。

(2)点到直线距离最值求点到直线的距离最值时,通常要找到点在直线上的投影。

如果直线是某一平面的斜线,那么可以通过作垂线找到投影,再利用勾股定理计算距离。

(3)点到平面距离最值对于点到平面的距离最值,一般可以利用空间向量法。

先求出平面的法向量,然后通过向量的数量积来计算点到平面的距离。

2、面积最值问题(1)三角形面积最值在立体几何中,涉及三角形面积的最值问题,可能需要考虑三角形的边长关系或者角度大小。

例如,已知三角形的两边及其夹角,当夹角为直角时,面积最大。

(2)四边形面积最值对于四边形,如平行四边形,其面积可以表示为底边乘以高。

当底边长度固定时,高取得最大值时面积最大;或者当四边形的对角线相互垂直时,面积等于对角线乘积的一半。

3、体积最值问题(1)柱体体积最值对于柱体,如圆柱、棱柱,其体积等于底面积乘以高。

当底面积不变时,高最大则体积最大;反之,高最小时体积最小。

(2)锥体体积最值锥体体积为三分之一底面积乘以高。

在求解锥体体积最值时,需要关注底面积和高的变化。

二、例题分析例 1:在棱长为 2 的正方体 ABCD A1B1C1D1 中,E、F 分别是棱AB、BC 的中点,求点 A1 到直线 EF 的距离。

解:连接 A1C1、C1F、EF,因为 A1C1 平行于 EF,所以点 A1 到直线 EF 的距离等于点 A1 到直线 C1F 的距离。

立体几何的最值问题

立体几何的最值问题

立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。

在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。

本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。

解决位置关系问题需要运用空间想象和逻辑推理。

在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。

2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。

在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。

3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。

计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。

4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。

解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。

5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。

解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。

6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。

解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。

7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。

解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。

重难点突破:立体几何中最值问题全梳理

重难点突破:立体几何中最值问题全梳理

重难点突破:立体几何中最值问题全梳理模块一、题型梳理题型一 空间角的最值问题例题1: 如图,四边形和均为正方形,它们所在的平面互相垂直,动点在线段上,分别为的中点.设异面直线与所成的角为,则的最大值为_________.【解析】AB 为x 轴,AD 为y 轴,AQ 为z 轴建立坐标系,设正方形边长为2.cos θ=令[]()0,2)f m m =∈,()f m '=[]0,2,()0m f m '∈∴<,max 2()(0)5f m f ==,即max 2cos 5θ=ABCD ADPQ M PQ ,E F ,AB BC EM AF θθcos例题2: 正四棱柱1111ABCD A B C D -中,4AB =,1AA =.若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 与平面11BCC B 所成角的正切值的最大值为___________.【分析】如图,以D 为原点建立空间直角坐标系,设点(),4,M m n ,由AM MC ⊥得()2224m n -+=,证明11A MB 为1A M 与平面11BCC B 所成角,令22cos ,2sin m n θθ=+=,用三角函数表示出11tan A MB ∠,求解三角函数的最大值得到结果.【解析】如图,以D 为原点建立空间直角坐标系,设点(),4,M m n ,则()()(14,0,0,0,4,0,4,4,A C B ()(),0,,4,4,CM m n AM m n ∴==-,又AM MC ⊥,得2240,AM CM m m n ⋅=-+=即()2224m n -+=;又11A B ⊥平面11BCC B ,11A MB ∴∠为1A M 与平面11BCC B 所成角,令[]22cos ,2sin ,0,m n θθθπ=+=∈,11111tan ∴∠==A B A MB B M==,∴当3πθ=时,11tan A MB ∠最大,即1A M 与平面11BCCB 所成角的正切值的最大值为2.故答案为:2【小结】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.题型二 空间距离的最值问题例题3: 的正三棱柱111ABC A B C -中,ABC ∆的边长为2,D 为棱11B C 的中点,若一只蚂蚁从点A 沿表面爬向点D ,则蚂蚁爬行的最短距离为( )A .3B .C .D .2【分析】将正三棱柱展开,化平面图形中的距离最短的问题.有三种选择,第一种是从A 点出发,经过BC 再到达点D .第二种是从A 点出发,经过11A B 再到达点D .第三种是从A 点出发,经过1BB ,最后到达点D .分别求出三种情况的距离,选其中较小的值,即为所求最短距离.【解析】如图1,将矩形11BCB C 翻折到与平面ABC 共面的位置11BCC B '',此时,爬行的最短距离为AD '=2,将111A B C △翻折到与平面11ABB A 共面的位置111A B C ',易知11A D AA '=1120D A A '∠=︒,此时爬行的最短距离3AD '=;如图3,将矩形11BCB C 翻折到与平面11ABB A 共面的位置11BC C B '',此时,爬行的最短距离AD '=综上,小蚂蚁爬行的最短距离为3.故选:A.【小结】本题考查了空间想象能力,和平面几何的计算能力,解决本题的关键是依据“在平面内,两点之间线段最短”.属于中档题.例题4: 点D 是直角ABC ∆斜边AB 上一动点,3,4AC BC ==,将直角ABC ∆沿着CD 翻折,使'B DC ∆与ADC ∆构成直二面角,则翻折后'AB 的最小值是( )A B C .D【分析】过点B ′作B E CD '⊥于点E ,连接,BE AE ,根据折叠性质设BCD B CD α∠=∠'=,用α表示出,,2B E CE ACE πα'∠=-,在AEC ∆中由余弦定理表示出2AE ,再在Rt AEB ∆'中,由勾股定理即可求得'AB 的最小值.【解析】过点B ′作B E CD '⊥于点E ,连接,BE AE ,如下图所示:设BCD B CD α∠=∠'=,则有4sin 4cos 2B E CE ACE πααα'==∠=-,,,在AEC ∆中,由余弦定理得,2222cos 2AE AC CE AC CE πα⎛⎫=+-⋅⋅- ⎪⎝⎭2916cos 24cos sin ααα=+-,在Rt AEB ∆'中,由勾股定理得,22222916cos 24cos sin 16sin AB AE B E αααα'+'+-+==2512sin 2α=-,∴当4πα=时,AB 'B . 【小结】本题考查了立体几何中折叠问题的综合应用,余弦定理表示出边长,并由三角函数值域的有界性确定最值,属于中档题.题型三 球体的最值问题例题5: 将半径为r 的5个球放入由一个半径不小于3r 的球面和这个球的内接正四面体的四个面分割成的五个空间内,若此正四面体的棱长为r 的最大值为________.【分析】计算正四面体的外接球半径3R =,内切圆半径为11r =,设1OO 与球面相交于点Q ,如图所示,画出剖面图,33R r =≥,1r r ≤,122O Q r =≥,解得答案.【解析】正四面体的棱长为根据对称性知,A 的投影为三角形BCD 的中心1O ,则123O D DM ==高14AO ==,设外接球半径为R ,故()22211R AO R DO =-+,解得3R =,设正四面体内切球半径为1r ,根据等体积法得到:((2211111sin 604sin 6043232r ⋅︒⨯=⨯︒⨯,故11r =, 根据题意33R r =≥,1r r ≤,1r ≤.设1OO 与球面相交于点Q ,如图所示,画出剖面图,1122O Q R OO r =-=≥,故1r ≤.综上所述:1r ≤,故r 的最大值为1.故答案为:1.【小结】本题考查了四面体的外接球内切球问题,意在考查学生的计算能力和空间想象能力.例题6: 已知点,,A B C 在半径为2的球面上,满足1AB AC ==,BC =S 是球面上任意一点,则三棱锥S ABC -体积的最大值为( )A B .36+ C .212+ D .312+ 【分析】要使S ABC -体积的最大,需S 到平面ABC 距离最大,当S 为ABC 外接圆圆心与球心的延长线与球面的交点时取最大值,求出ABC 外接圆的半径,进而求出球心与ABC 外接圆圆心的距离,即可求解.【解析】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,则AD BC ⊥,且O '在AD 上,12AD ==,设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1,||r OO '=∴=要使S ABC -体积的最大,需S 到平面ABC 距离, 即S 为O O '2,所以三棱锥S ABC -体积的最大值为11112)2)3322ABC S ⨯=⨯⨯⨯=【小结】本题考查三棱锥体积的最值、多面体与球的“接”“切”问题,注意应用球的截面性质,属于中档题例题7: 已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于2+,则球O 的体积等于( )A .43πB .83πC .163πD .223π 【分析】由条件可得球心O 为正方形ABCD 的中心,当此四棱锥的高为球的半径时,此四棱锥体积取得最大值. 设球O 的半径为R ,则AB ==,可得SBC ∆为等边三角形,根据条件可得1R =,从而得出答案.【解析】四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内, 所以球心O 为正方形ABCD 的中心,当此四棱锥的高为球的半径时,此四棱锥体积取得最大值.此时四棱锥为正四棱锥.设球O 的半径为R ,则AB ==,SB ==,SBC ∆为等边三角形,则2213sin 6022SBC S SB R ∆==,所以此四棱锥的表面积为22422SBC ABCD S S R ∆+=+=+ 所以1R =.球O 的体积34433V R ππ== ,故选:A【小结】本题考查四棱锥的表面积和外接球的体积问题,属于中档题.例题8: 的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A .12B .12C D 【解析】因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1,又因为鸡蛋的体积为4π3,所以球的半径为1,所以球心到截面的距离2d ==为1,而蛋巢的高度为12,故球体到蛋巢底面的最短距离为112⎛--= ⎝⎭. 【小结】本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.题型四 棱锥的最值问题例题9: 如图,三棱锥P ABC -的四个顶点恰是长、宽、高分别是m ,2,n 的长方体的顶点,此三棱锥的体积为2,则该三棱锥外接球体积的最小值为__________.【分析】由题知,由三棱锥的体积得6mn =, 又三棱锥P ABC -的外接球直径是长方体的体对角线2R . 【解析】P ABC -的外接球直径是长方体的体对角线,∴R =,3334411=3386V R πππ==⨯ 1212=233P ABC ABC mn V S h -∆⋅=⨯⨯= ,6mn ∴=,222=12m n mn ∴+≥,当且仅当=m n =时,等号成立,3311=32463=6V πππ≥⨯,三棱锥外接球体积的最小值为323π,故答案为323π. 【小结】本题考查与球有关外接问题. 与球有关外接问题的解题规律:(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12. (2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.例题10: 有一个长方形木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为( )A .2 B.C .4 D.【分析】先求长方体从同一顶点出发的三条棱的长度,从而可得正四面体模型棱长的最大值.【解析】设长方体从同一顶点出发的三条棱的长分别为,,a b c ,则81224ab ac bc =⎧⎪=⎨⎪=⎩,故246a b c =⎧⎪=⎨⎪=⎩,若能从该长方体削得一个棱长最长的正四面体模型,则该四面体的顶点必在长方体的面内,过正四面体的顶点作垂直于长方体的棱的垂面切割长方体,含正四面体的几何体必为正方体, 故正四面体的棱长为正方体的面对角线的长,而从长方体切割出一个正方体,使得面对角线的长最大,需以最小棱长2为切割后的正方体的棱长切割才可,故所求的正四面体模型棱长的最大值.故选:B.【小结】本题考查正四面体的外接,注意根据外接的要求确定出顶点在长方体的侧面内,从而得到正四面体的各顶点为某个正方体的顶点,从而得到切割的方法,本题属于中档题.例题11: 某三棱锥的三视图如图,且图中的三个三角形均为直角三角形,则x y +的最大值为________.【分析】根据三视图,利用勾股定理列出等式,再结合基本不等式求最值.【解析】由三视图之间的关系可知2210802x y =--,整理得22128x y +=,故22222()2()2562x x y x y x y y =++=++≤, 解得16x y +,当且仅当8x y ==时等号成立,故答案为:16【小结】本题考查三视图之间的关系应用,考查基本不等式,难度不大.例题12:如图,在三棱锥P ABC -中PA PB PC 、、两两垂直,且3,2,1PA PB PC ===,设M 是底面三角形ABC 内一动点,定义:()(,,)f M m n p =,其中m n p 、、分别是三棱锥M PAB -、三棱锥M PBC -、三棱锥M PAC -的体积。

2019届高三数学备考冲刺140分问题28立体几何中的折叠问题含答案解析

2019届高三数学备考冲刺140分问题28立体几何中的折叠问题含答案解析

问题28立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点.(2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?【解析】(1)由折起的过程可知,PE ⊥平面ABC,96ABC S ∆=,PED F B CAV(x)= (036x <<(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;636x <<'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值126【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC 外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .ACDBEF图图ABCD PEF解法二图ABCD PEFH(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则1281427. 所以直线AP 与平面PEF 81281. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得61在Rt APH ∆中,所以直线AP 与平面PEF 81281. 【点评】折叠问题分析求解两原则:(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变. 【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D 、E 分别是边AB 、AC 上的点,且满足,如图,将沿DE 折成四棱锥,且有平面平面BCED .求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,AD .其中AB为底面周长的一半,即,2则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为2【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有, ∴分别为二面角,的平面角,∴.在中,,设BD 的中点为O ,则为边上的中线,由可得点H 在CO 的左侧(如图所示), ∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( )A. ①②③B. ②③④C. ①②④D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心,④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D. 【答案】C【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为22B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为222MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB ,BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.5003π3cm 【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x=-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得R 3=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61.【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BC A -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =,E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、(D 3,1,2',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面 平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以; 所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以. 又点为线段的中点,所以.所以四边形为平行四边形. 所以. 又平面,所以平面. 因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以. 又,所以, 所以平面. (2)因为平面,平面,所以, 又因为,平面,平面,, 所以,平面,又因为,所以平面, 又因为平面,所以. 在直角中,, 设点到平面的距离为,由, 则,所以.16.正△ABC 的边长为4,CD 是AB 边上的高,,E F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A DC B --.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E DF C --的余弦值;(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD 过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF ∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠MNE=233,cos ∠MNE=721 (3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31=,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵,在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。

立体几何中体积与面积最值问题的解法

立体几何中体积与面积最值问题的解法

1 声明本文首先以体积最大和面积最小的物体为例,讨论它们的最大/小值的解决方案。

接下来,给定指定的条件,通过拉格朗日型最优化技术对最大化体积最小化面积问题进行剖析。

最后,在说明了结果及其分析之后,讨论此类问题的求解思路及扩展性。

2 体积最大和面积最小的物体体积最大和面积最小的物体是立体几何的典型问题,它可以被看作是一种拉格朗日型优化问题,即在完成最大化体积和最小化面积的条件下寻求平衡点。

典型的体积最大和面积最小物体有球形、柱形、长方体等,也可以拓展到多边形,例如三角形等。

2.1 球形球形是一种立体几何体,其体积最大,面积最小,可以通过满足一定条件解决最大体积最小面积问题。

大体积最小面积问题的解法主要有两种:1) 根据体积最大的物体的方程,可以求出球的半径r,其中`V=4/3πr^3`;2) 因为球的周长是最长,周长和平面面积是相关的,因此可以求出球的周长C,从而计算球的面积`S=4πr^2`;这两个方程使用上面的公式,可以求出球的体积和面积。

根据拉格朗日型优化例子求出:当半径r=1时,体积最大,体积V=4/3πr^3=4.19,面积最小,面积S=4πr^2=12.57;当半径r=2时,体积最小,体积V=33.51,面积最大,面积S=50.27。

2.2 柱形柱形也是一种常用的立体几何物体,它的体积最大,面积最小的条件也可以满足。

柱的体积的最大/小值可以利用柱体的内切球的半径r求出,其中`V=πr²h`; 柱的面积最大/小值可以求出其元表面积`S=(2πrh+2πr²)`。

根据拉格朗日型优化例子求出:当半径r=1时,体积最大,体积V=πr²h=2.14,面积最小,面积S=2πr²+2πrh=10.30;当半径r=2时,体积最小,体积V=12.56,面积最大,面积S=18.85。

2.3 长方体长方体也是常用的立体几何物体,其体积最大,面积最小的条件也可以满足。

长方体的体积的最大/小值可以利用它的公式`V=a*b*c`进行求解,其中a,b,c分别为直角坐标三边的长度;长方体的表面积最大/小值可以求出其元表面积`S=2(a*b+b*c+a*c)`。

2019届高三数学备考冲刺140分问题01数集与点集的运算含解析

2019届高三数学备考冲刺140分问题01数集与点集的运算含解析

问题01 数集与点集的运算一、考情分析集合是高考数学必考内容,一般作为容易题.给定集合判定集合间的关系、集合的交、并、补运算是考查的主要形式,常与函数的定义域、值域、不等式(方程)的解集相结合,在知识交汇处命题,以选择题为主,多出现在试卷的前3题中. 二、经验分享(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;如下面几个集合请注意其区别: ①{}220x x x -=;②{}22x y x x =-;③{}22y y x x =-;④(){}2,2x y y xx =-.(2)二元方程的解集可以用点集形式表示,如二元方程2xy =的整数解集可表示为()()()(){}1,2,2,1,1,2,2,1----.(3)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(4)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系. (5)一般讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(6)解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质. 三、知识拓展1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1. 2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUAB A B U ⇔=∅⇔=痧 .3.奇数集:{}{}{}21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z .4. 数集运算的封闭性,高考多次考查,基础知识如下若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.自然数集N 对加法运算是封闭的;整数集对加、减、乘法运算是封闭的.有理数集、复数集对四则运算是封闭的.对加、减、乘运算封闭的数集叫数环,有限数集{0}就是一个数环,叫零环.设F 是由一些数所构成的集合,其中包含0和1,如果对F 中的任意两个数的和、差、积、商(除数不为0),仍是F 中的数,即运算封闭,则称F 为数域. 四、题型分析(一)与数集有关的基本运算【例1】【2018年理新课标I 卷】已知集合,则A. B.C.D.【分析】首先利用一元二次不等式的解法,求出的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.【点评】对于集合的运算,一般先把参与运算的集合化简,解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果,要注意端点值的取舍.【小试牛刀】【2017全国1理1】已知集合{}1A x x =<,{}31xB x =<,则( ). A. {}0AB x x =< B. A B =R C. {}1A B x x => D. A B =∅【答案】A【解析】{}1A x x =<,{}{}310x B x x x =<=<,所以{}0A B x x =<,{}1AB x x =<.故选A.(二)与点集有关的基本运算 【例2】已知3(,)|3,{(,)|20},2y M x y N x y ax y a M N x -⎧⎫===++==∅⎨⎬-⎩⎭,则=a ( )A .-2B .-6C .2D .一2或-6【分析】首先分析集合M 是除去点(2,3)的直线33y x =-,集合N 表示过定点(1,0)-的直线,MN =∅等价于两条直线平行或者直线20ax y a ++=过(2,3),进而列方程求a 的值.【解析】由3333(2)2y y x x x -=⇒=-≠-若M N φ=,则①:点(2,3)在直线20ax y a ++=上,即2602a a a ++=⇒=-;②:直线33y x =-与直线20ax y a ++=平行,∴362aa -=⇒=-,∴2a =-或6-.【点评】分析集合元素的构成,将集合运算的结果翻译到两条直线的位置关系是解题关键. 【小试牛刀】【2018年理数全国卷II 】已知集合,则中元素的个数为A. 9B. 8C. 5D. 4 【答案】A 【解析】,当时,;当时,;当时,;所以共有9个,选A.(三)根据数集、点集满足条件确定参数范围【例3】设常数a ∈R ,集合A ={|(-1)(-a )≥0},B ={|≥a -1},若A ∪B =R ,则a 的取值范围为( ) A .(-∞,2) B .(-∞,2] C .(2,+∞) D .[2,+∞)【分析】先得到A =(-∞,1]∪[a ,+∞),B =[a -1,+∞),再根据区间端点的关系求参数范围.【点评】求解本题的关键是对a 进行讨论.【小试牛刀】已知P ={|2<<,∈N},若集合P 中恰有3个元素,则的取值范围为________. 【答案】(5,6]【解析】因为P 中恰有3个元素,所以P ={3,4,5},故的取值范围为5<≤6. (四) 数集、点集与其他知识的交汇【例4】已知集合M 是满足下列性质的函数()f x 的全体:存在非零常数T,对任意x ∈R,有()()f x T Tf x +=成立.(1)函数()f x x =是否属于集合M ?说明理由;(2)设函数()(0x f x a a =>且1a ≠)的图象与y x =的图象有公共点,证明:()x f x a =∈M ;(3)若函数()sin f x kx =∈M ,求实数k 的取值范围.【分析】抓住集合M 元素的特征,集合M 是由满足()()f x T Tf x +=的函数构成. 【解析】(1)对于非零常数T ,f (+T )=+T ,Tf ()=T . 因为对任意∈R,+T =T 不能恒成立,所以f ()= M .(2)因为函数f ()=a (a >0且a ≠1)的图象与函数y =的图象有公共点,所以方程组:⎪⎩⎪⎨⎧==x y a y x有解,消去y 得a =,显然=0不是方程的a =解,所以存在非零常数T ,使a T =T . 于是对于f ()=a ,有f (+T )=a +T = a T ·a =T ·a =T f (),故f ()=a ∈M .【点评】集合与其他知识的交汇处理办法往往有两种:其一是根据函数、方程、不等式所赋予的实数的取值范围,进而利用集合的知识处理;其二是由集合的运算性质,得到具有某种性质的曲线的位置关系,进而转化为几何问题处理.【小试牛刀】在直角坐标系xoy 中,全集},|),{(R y x y x U ∈=,集合}20,1s i n )4(c o s |),{(πθθθ≤≤=-+=y x y x A ,已知集合A 的补集A C U 所对应区域的对称中心为M ,点P 是线段)0,0(8>>=+y x y x 上的动点,点Q 是x 轴上的动点,则MPQ ∆周长的最小值为( )A .24B .104C .14D .248+ 【答案】B(五)与数集、点集有关的信息迁移题 【例5】若集合A 具有以下性质: (Ⅰ)0∈A,1∈A ;(Ⅱ)若∈A ,y ∈A ,则-y ∈A ,且≠0时,1x∈A .则称集合A 是“好集”.下列命题正确的个数是( ) (1)集合B ={-1,0,1}是“好集”;(2)有理数集Q 是“好集”;(3)设集合A 是“好集”,若∈A ,y ∈A ,则+y ∈A . A .0 B .1 C .2 D .3【分析】抓住新定义的特点,根据“好集”满足的两个性质,逐个进行验证.【解析】选C,(1)集合B 不是“好集”,假设集合B 是“好集”,因为-1∈B,1∈B ,所以-1-1=-2∈B ,这与-2∉B 矛盾.(2)有理数集Q 是“好集”,因为0∈Q,1∈Q ,对任意的∈Q ,y ∈Q ,有-y ∈Q ,且≠0时,1x∈Q ,所以有理数集Q 是“好集”.(3)因为集合A 是“好集”,所以0∈A ,若∈A ,y ∈A ,则0-y ∈A ,即-y ∈A ,所以-(-y )∈A ,即+y ∈A .【点评】紧扣新定义,抓住新定义的特点,把新定义叙述的问题的本质搞清楚,并能够应用到具体的解题过程中.【小试牛刀】【2017浙江温州高三模拟】已知集合22{(,)|1}M x y x y =+≤,若实数λ,μ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”,则以下集合中,存在“和谐实数对”的是( ) A .{(,)|4}λμλμ+= B .22{(,)|4}λμλμ+= C .2{(,)|44}λμλμ-= D .22{(,)|4}λμλμ-= 【答案】C.【解析】分析题意可知,所有满足题意的有序实数对(,)λμ所构成的集合为{(,)|11,11}λμλμ-≤≤-≤≤,将其看作点的集合,为中心在原点,(1,1)-,(1,1)--,(1,1)-,(1,1)为顶点的正方形及其内部,A,B,D 选项分别表示直线,圆,双曲线,与该正方形及其内部无公共点,选项C 为抛物线,有公共点(0,1)-,故选C. 五、迁移运用1.【安徽省宿州市2018届第三次质检】已知全集,集合,集合,则( )A. B.C.D.【答案】A2.【四川省成都市2018届模拟】设,则是的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】由得或,作出函数和,以及的图象,如图所示,则由图象可知当时,,当时,,因为,所以“”是“”的充分不必要条件,故选A.点睛:本题主要考查了充分条件和必要条件的判定问题,其中正确作出相应函数的图象,利用数形结合法求解是解答的关键,着重考查了数形结合思想方法的应用,以及推理与论证能力.3.【辽宁省葫芦岛市2018届第二次模拟】设集合,,则()A. B. C. D.【答案】B【解析】,的子集个数为故选C.4.【河南省洛阳市2018届三模】设集合,,则的子集个数为()A. 4 B. 8 C. 16 D. 32【答案】C5.【安徽省皖江八校2018届联考】设集合,,若,则()A. B. C. D.【答案】B【解析】∵,∴,即,∴,故选B.6.【山东省济南2018届二模】设全集,集合,集合则下图中阴影部分表示的集合为()A. B. C. D.【答案】D【解析】由题意可得:,,∴故选:D7.【安徽省江南十校2018届二模理】已知全集为,集合,,则()A. B. C. D.【答案】C【解析】因为,,所以,即.8.【2018届四川成都高三上学期一诊模拟】已知集合2{|},{|320},A x x aB x x x=<=-+<若,A B B⋂=则实数a的取值范围是()A. 1a< B. 1a≤ C. 2a> D. 2a≥【答案】D【解析】集合{}{}{}2|,|320|12A x x a B x x x x x =<=-+<=<<, ,A B B B A ⋂=∴⊆,则2a ≥,故选D.9.【2018届安徽蒙城高三上学期“五校”联考】已知集合{}{}0,1,1,0,3A B a ==-+,若A B ⊆,则a 的值为( )A. 2-B. 1-C. 0D. 1 【答案】A【解析】 因为{}{}0,1,1,0,3A B a ==-+,且A B ⊆, 所以31a +=,所以2a =-,故选A.10.【2018届湖南省五市十校教研教改共同体高三12月联考】已知集合{}220M x x x =--<,{N x y ==,则M N ⋃=( )A. {}1x x >- B. {}12x x ≤< C. {}12x x -<< D. {}0x x ≥ 【答案】A【解析】[)[){|12},1,1,2M x x N M N =-<<=+∞∴⋃=,选A. 11.已知集合,,则的元素个数为( )A .B .C .D . 【答案】B12.设集合,,记,则点集所表示的轨迹长度为( )A .B .C .D .【答案】D 【解析】由题意的圆心为,半径为1,而圆心(-3sin α,-3cos α),满足(-3sin α)2+(-3cos α)2=9, 故圆心在以(0,0)圆心,半径为3的圆上,∴集合A 对应的几何图形为圆2+y 2=4和2+y 2=16之间的圆环区域,13.【2017全国2理2】设集合{}1,2,4A =,{}240B x x x m =-+=.若1AB =,则B =().A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C【解析】由题意知1x =是方程240x x m -+=的解,代入解得3m =,所以2430x x -+=的解为1x =或3x =,从而{}13B =,.故选C.14.若集合{}2|870,|3x M x N x x P x N ⎧⎫=∈-+<=∉⎨⎬⎩⎭,则M P 等于( )A.{}3,6B.{}4,5C.{}2,4,5D.{}2,4,5,7 【答案】C【解析】因为{}{}{}2|870|17=2,3,4,5,6,|3x M x N x x x N x P x N ⎧⎫=∈-+<=∈<<=∉⎨⎬⎩⎭,所以{}2,4,5MP =,故选C.15.已知集合{}∅=-==B A x y x A ,1,则集合B 不可能是( )A .{}124+<x x x B .{}1),(-=x y y xC .{}1-=x yD .{})12(log 22++-=x x y y【答案】D 【解析】{}{}11≥=-==x x x y x A ,{}{}1)12(log 22≤=++-=y y x x y y ,故选D. 16.已知集合M 是由具有如下性质的函数()f x 组成的集合:对于函数()f x ,在定义域内存在两个变量12,x x 且12x x <时有1212()()f x f x x x ->-.则下列函数①()(0)x f x e x =>;②ln ()x f x x=;③()f x =()1sin f x x =+在集合M 中的个数是 A .1个 B .2个 C .3个 D .4个【答案】B对于③()()0f x f x '==>,函数()f x 在(0,)+∞单调递增,在定义域内存在两个变量12,x x 且12x x <时,在()f x 单调增区间时有0()1f x '<<,此时只须1x >时可得0()1f x '<<.满足题意 对于④()1sin ,,()cos f x x f x x '=+=,函数()f x 在3(2,2)()22k k k Z ππππ++∈单调递减,在定义域内存在两个变量12,x x 且12x x <时,在()f x 单调减区间时有()0f x '<,满足题意.17.设{}n a 是公比为q 的等比数列,||1q >,令1(1,2,)n n b a n =+=,若数列{}n b 有连续四项在集合{53,23,19,37,82}--中,则q =( )A .32-B .43-C .23-D .32【答案】A18.已知集合A ={(,y )|2+y 2≤1,,y ∈},B ={(,y )|||≤2,|y |≤2,,y ∈},定义集合A ⊗B ={(1+2,y 1+y 2)|(1,y 1)∈A ,(2,y 2)∈B },则A ⊗B 中元素的个数为( )A .77B .49C .45D .30【答案】C【解析】如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A ⊗B 显然是集合{(,y )|||≤3,|y |≤3,,y ∈}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A ⊗B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A ⊗B 中元素的个数为45.故选C.19.非空集合G 关于运算⊕满足:(1)对任意a ,G b ∈,都有G a b ⊕∈;(2)存在G e ∈,使得对一切G a ∈,都有a e e a a ⊕=⊕=,则称G 关于运算⊕为“融洽集”.现给出下列集合和运算:①{}G =非负整数,⊕为整数的加法;②{}G =偶数,⊕为整数的乘法;③{}G =平面向量,⊕为平面向量的加法;④{}G =二次三项式,⊕为多项式的加法;⑤{}G =虚数,⊕为复数的乘法.其中G 关于运算⊕为“融洽集”的是( )A .①③B .②③C .①⑤D .②③④【答案】B20.若集合(){},,,|04,04,04,,,E p q r s p s q s r s p q r s N =≤<≤≤<≤≤<≤∈且,(){},,,|04,04,,,F t u v w t u v w t u v w N =≤<≤≤<≤∈且,用()card X 表示集合X 中的元素个数,则()()card E card F +=( )A .50B .100C .150D .200【答案】D【解析】()()333312*********card E card F +=++++⨯=,故选D.21.【2018届江苏省南京市多校高三上学期第一次段考】已知集合{}1,2,21A m =--,集合{}22,B m =,若B A ⊆,则实数m =__________.【答案】1【解析】由题意得2211m m m =-⇒=,验证满足22.设P 是一个数集,且至少含有两个数,若对任意a 、b P ∈,都有a b +、a b -、ab 、a P b ∈(除数0b ≠),则称P 是一个数域,例如有理数集Q 是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q M ⊆,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .【答案】①④【解析】当a b =时,0,1a a b P b -==∈,故可知①正确;当11,2,2a b Z ==∉不满足条件,故可知②不正确;对③当M 中多一个元素i 则会出现1i M +∉所以它也不是一个数域;故可知③不正确;根据数据的性质易得数域有无限多个元素,必为无限集,故可知④正确,故答案为①④.【点评】本题考查简单的合情推理、新定义问题以及转化与划归思想,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答都围绕新概念“数域” 对任意a 、b P ∈,都有a b +、a b -、ab 、aP b∈这一性质展开的.。

厉兵秣马,2019高考数学立体几何必考压轴题及解析,冲刺140必备

厉兵秣马,2019高考数学立体几何必考压轴题及解析,冲刺140必备

厉兵秣马,2019高考数学立体几何必考压轴题及解析,冲刺140必备高中数学的立体几何很抽象,一直让不少学生头疼。

然而,每年的高考都会至少考一题立体几何,且往往是分值高的大题,如果没有迎难而上的勇气,一下子就会被别人甩下将近20分;相反,如果你能搞定立体几何,那你就等于甩开了数以万计被立体几何打败的学生,有助你考上理想大学。

高考对于立体几何的考查重点集中在以下几个方面:①几何的机构特征和三视图、直观图,重点是三视图。

②点、线、平面之间的位置关系,重点是平行关系、垂直关系和异面直线③空间的角度,重点是二面角、直线和平面所成的角、异面直线所成的角④空间向量,一般是以解答题的形式出现,这是立体几何考查的一个重要点。

下面是小编为同学们整理的2019年高考数学立体几何必考压轴题及答案解析,希望同学们一定要给予足够的重视!由于篇幅有限文中无法全部为同学们展示,所以,如果同学们需要完整版的话可以点小编的头像私信咨询小编哦~!私信:立体几何高中数学《立体几何》压轴题及答案解析在高一的时候,同学们开始学习立体几何“三视图”时,大家都会觉得这个内容非常难学.这块内容之所以难学其本质的原因是大家空间想象力不够,对空间几何体直观图的框架呈现方式没有深入理解,另平行投影的原理及三视图的边界意义是还原几何体的重点.三视图作为高考数学立体几何部分的核心考点之一,关键是如何还原几何体.涉及立体几何所有知识点:包括空间几何体(棱锥、棱柱、棱台、圆锥、圆柱、圆台、球)的直观图画法;三视图的投影原理(平行投影:长对正、高平齐、宽相等);截面的做法(平面的基本性质的应用);常见几何体的概念及相关计算公式(表面积和体积等).还原几何体过程中还会考虑到空间点、线、面位置关系的判断等,如线面平行、线面垂直的判定定理与性质定理.立体几何中的动态问题或最值问题,这类问题往往困扰成绩比较好的同学,一般成绩较弱的同学其实这类问题就果断放弃了.究其原因,这类问题的知识覆盖面广,很多同学在这方面缺乏专项的训练,常常在解题时没有明确的思路,无从下手.即使偶尔能做对,也是凭着运气成分,并不是实力使然,也不能100%的做对.。

立体几何中的最值问题【解析版】

立体几何中的最值问题【解析版】

第四章立体几何专题17 立体几何中的最值问题【压轴综述】在立体几何中,判定和证明空间的线线、线面以及面面之间的位置关系(主要是平行与垂直的位置关系),计算空间图形中的几何量(主要是角与距离)是两类基本问题.在涉及最值的问题中主要有三类,一是距离(长度)的最值问题;二是面(体)积的最值问题;三是在最值已知的条件下,确定参数(其它几何量)的值.从解答思路看,有几何法(利用几何特征)和代数法(应用函数思想、应用基本不等式等)两种,都需要我们正确揭示空间图形与平面图形的联系,并有效地实施空间图形与平面图形的转换.要善于将空间问题转化为平面问题:这一步要求我们具备较强的空间想象能力,对几何体的结构特征要牢牢抓住,有关计算公式熟练掌握.一、涉及几何体切接问题最值计算求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;二.涉及角的计算最值问题1. 二面角的平面角及其求法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.2.求异面直线所成角的步骤:一平移,将两条异面直线平移成相交直线.二定角,根据异面直线所成角的定义找出所成角.三求角,在三角形中用余弦定理或正弦定理或三角函数求角.四结论.3.线面角的计算:(1)利用几何法:原则上先利用图形“找线面角”或者遵循“一做----二证----三计算”. (2)利用向量法求线面角的方法(i分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(ii)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.下面通过例题说明应对这类问题的方法与技巧.【压轴典例】例1.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面 所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C .4D 【答案】A 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26(2S ==,故选A. 例2.(2018·全国高考真题(文))设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .【答案】B 【解析】 如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大 此时,OD OB R 4===2393ABCSAB == AB 6∴=,点M 为三角形ABC 的中心2BM 233BE ∴==Rt OMB ∴中,有22OM 2OB BM =-=DM OD OM 426∴=+=+=()max 19361833D ABC V -∴=⨯=故选B.例3.(2017·全国高考真题(理))a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 【答案】②③ 【解析】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图, 不妨设图中所示正方体边长为1, 故|AC |=1,|AB|=斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系, 则D (1,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′(cosθ,sinθ,0), 其中θ为B ′C 与CD 的夹角,θ∈[0,2π),∴AB ′在运动过程中的向量,'AB =(cosθ,sinθ,﹣1),|'AB|=设'AB 与a 所成夹角为α∈[0,2π], 则cosα()()10102'cos sin a AB θθ--⋅==⋅,,,,, ∴α∈[4π,2π],∴③正确,④错误.设'AB 与b 所成夹角为β∈[0,2π],cosβ()()'11002''AB b cossin AB bbAB θθ⋅-⋅===⋅⋅,,,,|cosθ|, 当'AB 与a 夹角为60°时,即α3π=,|sinθ|3πα===, ∵cos 2θ+sin 2θ=1,∴cosβ2=|cosθ|12=,∵β∈[0,2π],∴β3π=,此时'AB 与b 的夹角为60°, ∴②正确,①错误. 故答案为:②③.例4.(2017·全国高考真题(理))如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【答案】15【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =3x =. ∴35FG SG x ==-,222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=- ⎪ ⎪⎝⎭451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=, 令()0n x '=,即43403x =,得43x ,易知()n x 在43x 处取得最大值. ∴max 154854415V =-=例5.(2016·浙江高考真题(理))如图,在ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而 的面积.当平面PBD⊥平面BDC 时: 四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为例6.(2019·安徽芜湖一中高三开学考试)在Rt AOB ∆中,6OAB π∠=,斜边4AB =.Rt AOC ∆可以通过Rt AOB ∆以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)求直线CD 与平面AOB 所成角的正弦的最大值. 【答案】(1)详见解析;(2277【解析】(1)AOB ∆为直角三角形,且斜边为AB ,2AOB π∴∠=.将Rt AOB ∆以直线AO 为轴旋转得到Rt AOC ∆,则2AOC π∠=,即OC AO ⊥.二面角B AO C --是直二面角,即平面AOC ⊥平面AOB . 又平面AOC平面AOB AO =,OC ⊂平面AOC ,OC ∴⊥平面AOB .OC ⊂平面COD ,因此,平面COD ⊥平面AOB ;(2)在Rt AOB ∆中,6OAB π∠=,斜边4AB =,122OB AB ∴==且3OBA π∠=. 由(1)知,OC ⊥平面AOB ,所以,直线CD 与平面AOB 所成的角为ODC ∠. 在Rt OCD ∆中,2COD π∠=,2OC OB ==,2224CD OD OC OD =+=+,22sin 4OC ODC CD OD ∴∠==+, 当⊥OD AB 时,OD 取最小值,此时sin ODC ∠取最大值,且sin33OD OB π==.因此,22227sin 774OC ODC CD OD ∠==≤=+,即直线CD 与平面AOB 所成角的正弦的最大值为277. 例7.(2019·深圳市高级中学高三月考(文))如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.【答案】(1)见解析;(2);(3)【解析】(1)证明:在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.又PO垂直于圆O所在的平面,所以PO⊥AC.因为DO∩PO=O,所以AC⊥平面PDO.(2)解:因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1.又AB=2,所以△ABC面积的最大值为.又因为三棱锥P-ABC的高PO=1,故三棱锥P-ABC体积的最大值为.(3)解:在△POB中,PO=OB=1,∠POB=90°,所以.同理,所以PB=PC=BC.在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.又因为OP=OB,,所以垂直平分PB,即E为PB的中点.从而,即CE+OE的最小值为.例8.(2016·江苏高考真题)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少? (2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?【答案】(1)312(2)【解析】(1)由PO 1=2知OO 1=4PO 1=8. 因为A 1B 1=AB=6,所以正四棱锥P-A 1B 1C 1D 1的体积正四棱柱ABCD-A 1B 1C 1D 1的体积所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m ),PO 1=h (m ),则0<h<6,OO 1=4h.连结O 1B 1. 因为在中,所以,即于是仓库的容积,从而. 令,得或(舍).当时,,V 是单调增函数; 当时,,V 是单调减函数.故时,V 取得极大值,也是最大值.因此,当m 时,仓库的容积最大.【压轴训练】1.(2019·四川石室中学高三开学考试(文))在ABC △中,已知23AB =6BC =045ABC ∠=,D 是边AC 上一点,将ABD △沿BD 折起,得到三棱锥A BCD -.若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上,设BM x =,则x 的取值范围为( ) A.()23,26 B.()6,23C.()3,6D.()0,23【答案】B 【解析】由将ABD △沿BD 折起,得到三棱锥A BCD -,且A 在底面BCD 的射影M 在线段BC 上, 如图2所示,AM ⊥平面BCD ,则AM BD ⊥, 在折叠前图1中,作AM BD ⊥,垂足为N ,在图1中过A 作1AM BC ⊥于点1M ,当运动点D 与点C 无限接近时,折痕BD 接近BC ,此时M 与点1M 无限接近,在图2中,由于AB 是直角ABM ∆的斜边,BM 为直角边,所以BM AB <, 由此可得1BM BM AB <<,因为ABC ∆中,023,26,45ABC AB BC ∠===,由余弦定理可得23AC =,所以221(23)(6)6BM =-=, 所以623BM <<由于BM x =,所以实数x 的取值范围是()6,23,故选B .2.(2019·四川高三月考(文))已知球O 表面上的四点A ,B ,C ,P 满足2AC BC ==2AB =.若四面体PABC 体积的最大值为23,则球O 的表面积为( ) A .254πB .254π C .2516π D .8π【答案】A 【解析】当平面ABP 与平面ABC 垂直时,四面体ABCP 的体积最大.由AC BC ==2AB =,得90ACB ︒∠=.设点Р到平面ABC 的距离为h,则112323h ⨯=,解得2h =. 设四面体ABCP 外接球的半径为R ,则()22221R R =-+,解得5R=4.所以球O 的表面积为2525444ππ⎛⎫⨯= ⎪⎝⎭. 故选:A .3.(2019·湖南雅礼中学高三月考(理))圆锥的母线长为2,其侧面展开图的中心角为θ弧度,过圆锥顶点的截面中,面积的最大值为2,则θ的取值范围是( ) A.),2π B.π⎡⎤⎣⎦C.}D.,2π⎫⎪⎪⎣⎭【答案】A 【解析】设轴截面的中心角为α,过圆锥顶点的截面的顶角为β,且βα≤ 过圆锥顶点的截面的面积为:122sin β2sin β2⨯⨯⨯=, 又过圆锥顶点的截面中,面积的最大值为2, 故此时β2π=,故απ2π≤<圆锥底面半径r )2sin22α=∈ ∴侧面展开图的中心角为θ弧度2sin222πsin22απα⨯⨯==∈),2π 故选:A.4.(2019·安徽高考模拟(理))如图,已知四面体ABCD 为正四面体,1AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .14B .24C .34D .1【答案】A 【解析】将正四面体补成正方体,如下图所示:EF α⊥ ∴截面为平行四边形MNKL ,可得1NK KL +=又//KL BC ,//KN AD ,且AD BC ⊥ KN KL ∴⊥ 可得2124MNKLNK KL S NK KL +⎛⎫=⋅≤=⎪⎝⎭四边形(当且仅当NK KL =时取等号) 本题正确选项:A5.(2019·湖北高三月考(理))若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( ) A .3 B .2C .3D .33【答案】A 【解析】设正方形的边长为a ,则四棱锥的高为227h a =2a ,则其外接圆的半径22r a =.设球的半径为R ,则()222h R r R -+=,解得44222272727210844108a a R a a a =+=++4322272793441084a a a ≥⋅⋅=,当且仅当42274108a a =,即3a =时等号成立,此时,四棱锥的高为2272739h a ===.故选A. 6.(2019·四川雅安中学高三开学考试(文))已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且2AB BC ==,2AC =,若该三棱锥体积的最大值为1,则这个球的表面积为( )A.50081πB.1009πC.259πD.4π【答案】B 【解析】2AB BC ==,2AC = 222AB BC AC ∴+= AB BC ∴⊥112ABC S AB BC ∆∴=⋅= 如下图所示:若三棱锥D ABC -体积最大值为1,则点D 到平面ABC 的最大距离:3d = 即:3DO '=设球的半径为R ,则在Rt OAO '∆中:()22213R R =+-,解得:53R =∴球的表面积:210049S R ππ==本题正确选项:B7.(2017·山西高三(理))两球1O 和2O 在棱长为1的正方体1111ABCD A B C D -的内部,且互相外切,若球1O 与过点A 的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为( ) A .(323p B .(423pC .(323p +D .(423p【答案】A 【解析】设球1O 与球2O 的半径分别为r 1,r 2,∴r 1+r 23r 1+r 2)= 3 r 1+r 2313+=332-, r 1+r 2⩾12r r 球1O 与球2O 的面积之和为: S =4π(21r+21r)=4π(r 1+r 2)2−8π12r r ⩾()212π13+−2π()2313+=(6−3)π,当且仅当r 1=r 2时取等号 其面积最小值为(6−3π. 故选A.8.(2019·广东高考模拟(理))平面四边形ABCD 中,2AD AB ==5CD CB ==且AD AB ⊥,现将ABD ∆沿对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 的过程中,直线A C '与平面BCD 所成最大角的正切值为( )A .2B .12C 3D 3【答案】D 【解析】 取BD 的中点O,则,,,A B A D BC CD A O BD CO BD '''==∴⊥⊥即BD ⊥平面A OC ',从而平面BCD ⊥平面A OC ',因此A '在平面BCD 的射影在直线OC 上,即A CO '∠为直线A C '与平面BCD 所成角,因为2AD AB ==5CD CB ==AD AB ⊥,所以111,2sin sin sin 22A O A O OC A CO OA C OA C OC '''''==∴∠=∠=∠≤,即A CO '∠最大值为π6,因此直线A C '与平面BCD 所成最大角的正切值为π3tan63=,选D.9.(2019·云南省玉溪第一中学高二月考(理))已知底面边长为42,侧棱长为25的正四棱锥S ABCD -内接于球1O .若球2O 在球1O 内且与平面ABCD 相切,则球2O 的直径的最大值为__________. 【答案】8 【解析】如图所示,正四棱锥S ABCD -内接于球1O ,1SO 与平面ABCD 交于点O , 正方形ABCD 中,42,4AB AO ==, 在直角三角形SAO 中,2222(25)42SO SA OA =-=-=,设球1O 的半径为R ,则在直角三角形1OAO 中,222(2)4R R -+=, 解得5R =, 所以球1O 的直径为10,当求2O 与平面ABCD 相切且与球1O 相切时,球2O 的直径最大, 又因为球2SO =,所以球2O 的直径的最大值为1028-=.10.(2019·山西高三月考)已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是__. 【答案】323【解析】如图所示,设,AB m AC n ==,则12ABCS mn ∆=,ABC ∆22m n +22934m n +-,三棱锥P ABC -的体积公式为222222111(93)(93)324344m n m n m n mn +++⨯-≤⨯-, 设224m n t +=,则1()(93)3f t t t =-+,1()93329f t t t '⎫=-+⎪-⎭,令()0f t '=,解得8t =,()f t 在()0,8单增,[]8,9单减,max 32()(8)3f t f ∴==, 所以三棱锥P ABC -体积最大值为32311.(2019·云南师大附中高三月考)在直三棱柱111ABC A B C -中,90BAC ∠=︒且14BB =,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为2,则球O 的表面积的最小值是_____________. 【答案】28π 【解析】 如图,在Rt ABC △中,设AB c =,=AC b ,则22BC b c =+, 取BC ,11B C 的中点分别为2O ,1O ,则2O ,1O 分别为Rt ABC △和111Rt A B C △的外接圆的圆心,连接2O 1O ,又直三棱柱111ABC A B C -的外接球的球心为O ,则O 为2O 1O 的中点,连接OB ,则OB 为三棱柱外接球的半径.设半径为R ,因为直三棱柱111ABC A B C -,所以1214BB O O ==,所以三棱锥O ABC -的高为2,即22OO =,又三棱锥O ABC -体积为2,所以1122632O ABC V bc bc -=⨯⨯=⇒=.在2Rt OO B △中,2222222221()4424b c b c R BC OO ++⎛⎫=+=+=+ ⎪⎝⎭⎝⎭, 所以2=4πS R =球表22224π4π()16π2π16π12π16π28π4b c b c bc ⎛⎫++=+++=+= ⎪⎝⎭≥,当且仅当b c =时取“=”,所以球O 的表面积的最小值是28π,故答案为28π.12.(2019·湖南高三月考(文))已知三棱锥A BCD -满足3AB BD DC CA ====,则该三棱锥体积的最大值为________. 【答案】3【解析】取AD 中点E ,连接BE ,CE ,因为3AB BD DC CA ====, 所以BE AD ⊥,CE AD ⊥,且BE CE =,由题意可得,当平面⊥BAD 平面CAD 时,棱锥的高最大,等于BE ,此时体积也最大; 所以此时该三棱锥体积为113sin sin 362-∆=⋅⋅=⋅⋅⋅∠⋅=⋅∠A BCD ACD V S BE CA CD ACD BE CE ACD ,设ACD θ∠=,则sin 3cos 22πθθ-⎛⎫=⋅=⎪⎝⎭CE CD , 所以239cos sin 9sin cos 9sin sin 222222θθθθθθ-⎛⎫=⋅=⋅=- ⎪⎝⎭A BCD V , 令sin2θ=x ,因为0θπ<<,所以0sin12θ<<,设3()=-f x x x ,01x <<,则2()13'=-f x x ,由2()130'=->f x x 得303x <<; 由2()130'=-<f x x 得313x <<; 所以函数3()=-f x x x 在30,3⎛⎫ ⎪ ⎪⎝⎭上单调递增,在3,13⎛⎫⎪ ⎪⎝⎭上单调递减; 所以max 333323()33279⎛⎫==-= ⎪ ⎪⎝⎭f x f ,因此三棱锥体积的最大值为239239-=⋅=A BCD V . 故答案为2313.(2019·河南高三月考(文))已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满足6BA BC ==,2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.【答案】323π 【解析】 如图所示:设球心为O ,ABC △所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为6BA BC ==2ABC π∠=,所以ABC △是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABC V PO S -=⋅⋅;因为16632ABCS==,设球的半径为R ,所以2221113PO PO OO R R AO R R =+=-=+-(213333R R ⋅-⋅=,解得:2R =,所以球的体积为:343233R ππ=.14.(2019·四川双流中学高三月考(文))已知球的直径4DC =,A ,B 是该球面上的两点,6ADC BDC π∠=∠=,则三棱锥A BCD -的体积最大值是______.【答案】2 【解析】因为球的直径4DC =,且6ADC BDC π∠=∠=,所以2AC BC ==,23AD BD ==13A BCD BCD V S h -∆=⨯⨯(其中h 为点A 到底面BCD 的距离),故当h 最大时,A BCD V -的体积最大,即当面ADC ⊥面BDC 时,h 最大且满足4223h =⨯3h =112233232A BCD V -=⨯⨯⨯=.15.(2019·河北高三月考)在四棱锥P ABCD -中,PD AC ⊥,AB ⊥平面PAD ,底面ABCD 为正方形,且3CD PD +=,若四棱锥P ABCD -的每个顶点都在球O 的球面上,则球O 的表面积的最小值为_____. 【答案】6π 【解析】∵AB ⊥平面PAD ,∴AB PD ⊥,又PD AC ⊥,∴PD ⊥平面ABCD ,则四棱锥P ABCD -可补形成一个长方体,球O 的球心为PB 的中点,设()03CD x x =<<,则3PD x =-.从而球O 的表面积为()()222223431262x x x x πππ⎛⎫++- ⎪⎡⎤=-+≥⎣⎦ ⎪⎝⎭. 故答案为6π 16.(2016·浙江高考真题(文))如图,已知平面四边形ABCD ,AB=BC=3,CD=1,AD=5,∠ADC=90°.沿直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.6 【解析】试题分析:如图,连接BD′,设直线AC 与'BD 所成的角为θ.O 是AC 的中点.由已知得6AC =,以OB 为x 轴, OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则60,2A ⎛⎫ ⎪ ⎪⎝⎭, 302B ⎛⎫ ⎪ ⎪⎝⎭, 60,2C ⎛⎫- ⎪ ⎪⎝⎭.作DH AC ⊥于H ,连接D′H 翻折过程中, 'D H 始终与AC 垂直, 则266CD CH CA ===则63OH = 15306DH ⨯==因此30630'cos ,sin 636D αα⎛⎫-- ⎪ ⎪⎝⎭(设∠DHD′=α), 则3030630'BD αα⎛⎫= ⎪ ⎪⎝⎭,与CA 平行的单位向量为()0,1,0n =,所以cos cos ',BD n θ= ''BD n BD n⋅==6395cos α+,所以cos 1α=-时, cos θ取得最大值,为66. 17.(2019·重庆一中高三开学考试(理))已知正方形ABCD 的边长为22,将ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B-ACD .若O 为AC 的中点,点M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,则当三棱锥N-AMC 的体积取得最大值时,点N 到平面ACD 的距离为______.【答案】1【解析】由题意知,BO AC ⊥,而平面ABC ⊥平面ACD ,所以BO ⊥平面ACD ,易知BO =2,设BN x =,三棱锥N AMC -的高为NO ,则2NO x =-,由三棱锥体积公式得21122=22(2)(1)3233N AMC V y x x x -=⨯⨯⨯-=--+,∴x =1时,y max =23.此时,211NO =-=. 故本题正确答案为1.18.(2019·浙江高三开学考试)如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 中点,动点P 在底面ABCD 内(不包括边界),使四面体1A BMP 体积为23,则1C P 的最小值是___________. 【答案】2305【解析】 由已知得四面体1A BMP 体积1122,33A MBP MBP V S -∆=⨯⨯= 所以1,MBPS ∆=设P 到BM 的距离为h ,则151,2MBP S h ∆=⨯⨯= 解得25,5h =所以P 在底面ABCD 内(不包括边界)与BM 平行且距离为255的线段l 上, 要使1C P 的最小,则此时P 是过C 作BM 的垂线的垂足.点C 到BM 的距离为45,5所以25,5CP = 此时()221min 252302.55C P ⎛⎫=+= ⎪ ⎪⎝⎭故答案为2305. 19.(2019·安徽合肥一中高考模拟(文))如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 平面1A BM ,则1C P 的最小值是____.【答案】305 【解析】 取BC 中点N ,连结11,,B D B N DN ,作CO DN ⊥,连1C O ,因为面1//B DN 面面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN , 当点P 与点O 重合时,1C P 取得最小值,因为1115222552DN CO DC NC CO ⋅=⋅⇒==, 所以221min 11130()155C P C O CO CC ==+=+=. 20.(2019·湖南高三期末(文))点P 在正方体1111ABCD A B C D -的侧面11BCC B 及其边界上运动,并保持1AP BD ⊥,若正方体边长为2,则PB 的取值范围是__________.【答案】2,2⎡⎤⎣⎦【解析】连结1AB ,AC ,1CB ,易知平面11ACB BD ⊥,故P 点的轨道为线段1CB ,当P 在1CB 当P 与C 或1B 重合时:最大值为2则PB 的取值范围是2⎤⎦.故答案为:2⎤⎦。

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解一、攻关方略事物的空间形成,总是表现为不同维数且遵循由低维到高维的发展规律,所谓升维策略,就是把维数、抽象水平较低的或局部的问题转化为维数、抽象水平较高或整体性较强的整体间的关系问题,通过对整体性质或关系的考虑,使原问题获得解决的策略,如平面图形通过翻折或旋转成为空间图形就是二维向三维的转化与变换.在解题时,考虑把高维空间的问题转化为低维空间的问题,这种处理问题的方法叫降维法,也可称之为降维策略,如将立体几何问题转化为平面几何问题.实际上,许多立体几何问题如求空间角、空间距离等,通常总是转化为平面内的问题,通过计算来解决的,当然将空间角、空间距离转变为平面角、平面上点线距离这一步是需要证明的.在立体几何学习中经常碰到几何体中有变角或变动的线段,此时必须根据题意列出沟通已知量与变量之间的关系,运用函数与方程的思想来处理,立体几何中由于动点的变化引起的最值,通常建立关于与动点相关的角度的目标函数,转化为函数最值问题求解.若在空间图形中建立空间直角坐标系,利用向量坐标法,结合条件得到方程(组),则可用解方程(组)求出结果,利用函数与方程的思想方法还可以解空间图形中涉及线面关系、面面关系的探究性问题.真可谓:翻折旋转二维升三,空间问题降维处理.点动角变牵动图形,立几最值函数搞定.1.如图所示,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △、ECA △、FAB 分别是以BC 、CA 、AB 为底边的等腰三角形,沿虚线剪开后,分别以BC 、CA 、AB 为折痕折起DBC △、ECA △、FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【针对训练】2.点P 在ABC 所在平面α外,PA α⊥,PB PC ==,3tan 2PBC ∠=,则点A 到平面PBC 的距离的最大值是______.3.如图所示,在ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体P BCD -的体积的最大值是______.4.已知底面边长为2的正三棱锥-P ABC ,其表面展开图是123PP P ,如图所示,求123PP P 的各边长及此三棱锥的体积V .5.已知球的直径4SC =,A 、B 是该球面上的两点,30ASC BSC ∠=∠=︒,则三棱锥S ABC -的体积的最大值为______.(2021全国新高考Ⅰ卷19)6.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?(2022新高考1卷)7.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27](2022年全国乙卷(文数)第12题)8.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2(2022年全国乙卷(文数)第18题)9.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.10.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将ACD 翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是________.11.已知四边形ABCD ,2AB BD DA ===,BC CD ==ABD △沿BD 折起,使二面角A BD C --的大小在5,66ππ⎡⎤⎢⎥⎣⎦内,则直线AB 与CD 所成角的余弦值取值范围是()A .08⎡⎢⎣⎦,B .08⎡⎢⎣⎦,C .01⎡⎫⎪⎢⎪⎣⎦⎣⎭ D .88⎢⎣⎦,参考答案:1.3【分析】先求得所求三棱锥体积的表达式,然后利用导数或基本不等式求得体积的最大值.【详解】解法一:由题意可知,折起后所得三棱锥为正三棱锥,当ABC 的边长变化时,设ABC 的边长为()0a a >cm ,则ABC 的面积为24a .DBC △的高为56a -,则正三棱锥的高为=∴2503->,∴0a <<.∴所得三棱锥的体积213412V a =⨯=.令45253t a a =-,则34100t a =',由0t '=,得a =此时所得三棱锥的体积最大,为3.解法二:如图所示,连接OD 交BC 于点G ,由题意知,OD BC ⊥,OG 是等边三角形ABC 内切圆半径,21π1sin 3232BC BC OG ⨯⨯=⨯⨯,解得OG =,∴OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,2132ABC S x =⨯=△,则所得三棱锥的体积2213V =⨯=令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭.则()3410050f x x x '=-,令()0f x '≥,即4320x x -≤,得02x <≤.则当50,2x ⎛⎫∈ ⎪⎝⎭时,()()280f x f =≤,∴V ≤.∴所求三棱锥的体积的最大值为3.解法三:如图所示,连接OE 交AC 于点H ,连接AO 、OC ,设OH x =.则AC =,5EH x =-,三棱锥D ABC -2ABC S = ,D ABC V -=2≤=,当且仅当104x x =-,即2x =时取等号.∴所求三棱锥的体积的最大值为3.【点睛】本题为平面图形折叠成空间图形,当折叠终止时,几何体是一个正三棱锥,这个正三棱锥底面边长是一个变元,从而导致三棱锥体积的变化,特别要提醒的是,在折叠问题中,必须注意到折叠过程中哪些要素在变化,哪些要素始终保持不变,其中不变要素见核心要素.根据平面图形的性质,寻找不变的数量关系以及直线与直线平行和垂直的位置关系,是解决折叠问题的突破口,因此折叠问题要通过变图、想图、构图、用图的过程,积极思考,体会解题程序方向性,直击问题的本质,折叠问题既要看清平面转化为空间的过程,又要了解三维空间图形问题的平面化处理,两者是互通的.在建立体积表达式的函数模型之后,结合函数思想求最值,通常用导数法,也可考虑运用基本不等式的方法.策略一:以动正三角形AEC 的边长为变元建立函数关系式,运用导数法求其最大值.策略二:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用导数法求其最大值.策略三:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用基本不等式求最大值,注意等号成立的条件.2【分析】法一,取BC 的中点D ,连接AD 、PD ,设ADP θ∠=,用θ的正余弦表示AD ,PD ,再利用等体积法求解作答.法二,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F ,证明AF ⊥平面PBC ,再利用均值不等式求解作答.【详解】解法一,取BC 的中点D ,连接AD 、PD ,如图,因PB PC =,则PD BC ⊥,而3tan2PBC ∠=,有sin PBC ∠=则有sin PD PB PBC =⋅∠=PA ⊥平面ABC ,,AD BC ⊂平面ABC ,则PA AD ⊥,PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,AD ⊂平面PAD ,则AD BC ⊥,在Rt PAD △中,令(0,)2ADP πθ∠=∈,sin ,cos PA PD AD PD θθ==,设点A 到平面PBC 的距离为h ,11,22PBC ABC S BC PD S BC AD =⋅=⋅ ,由A PBC P ABC V V --=得:1133PBC ABC S h S PA ⋅=⋅ ,即1122BC PD h BC AD PA ⋅⋅=⋅⋅,于是得cos sin 2AD PA PD PD h PD PD θθθ⋅⋅==,当且仅当22=πθ,即4πθ=时取等号,所以点A 到平面PBC解法二,在PBC 中,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F,如图,PA ⊥平面ABC ,BC ⊂平面ABC ,则PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,而BC ⊂平面PBC ,则有平面PAD ⊥平面PBC ,又平面PAD ⋂平面PBC PD =,AF ⊂平面PAD ,因此AF ⊥平面PBC ,即AF 就是点A 到平面PBC 的距离,而3tan 2PBC ∠=,有sin PBD ∠=sin PD PB PBD =⋅∠=,在Rt PAD △中,22211()1222PA AD PD PA AD AF PD PD PD PD +⋅=≤==当且仅当3PA AD ==时取等号,所以点A 到平面PBC3.12##0.5【分析】先求得四面体P BCD -体积的表达式,利用基本不等式或函数的单调性求得体积的最大值.【详解】解法一:由2AB BC ==,120ABC ∠=︒,可得AC =要求四面体P BCD -的体积,关键是寻找底面三角形BCD 的面积BCD S △和点P 到平面BCD 的距离h ,易知2h ≤.设AD x =,则DP x =,DC x =,()12sin 3022DBC xS x =⨯⨯⨯︒=△,其中(0,x ∈,且h x ≤.∴2111366622P BCDBCD x x x x V S h h x -⎛⎫-+=⨯=≤≤= ⎪ ⎪⎝⎭△.当且仅当x x =,即x =P BCD -的体积的最大值是12.解法二:设PD AD x ==,∵PB PA =,PBD ABD ≌△△,1133P BCD BCD V S h -=⨯=△(h 为三棱锥P BCD -的高).当平面PBD ⊥平面BDC 时,使四面体PBCD 的体积较大.作PH BD ⊥,垂足为H ,则PH ⊥平面BCD ,sin sin h PH PD PDB x ADB ==⋅∠=⋅∠.此时,()211sin sin sin 662P BCDx x V ADB ADB ADB -=⋅∠≤∠=∠⎝⎭,当且仅当x =1sin 2P BCD V ADB -=∠,当90ADB ∠=︒,即AD BD ⊥时,P BCD V -最大值为12.解法三:∵13P BCD BCD V S h -=⨯△(h 为三棱锥P BCD -的高),在ABC 中,2AB BC ==,120ABC ∠=︒,则AC =30BAC BCA ∠=∠=︒,设(0PD DA x x ==<<,则DC x =-,1sin 22BCD xS BC CD BCA =⨯⋅∠=△.在ABD △中,由余弦定理,有2222cos BD AD AB AD AB BAC =+-⋅∠.代入整理得BD =PBD △中,由余弦定理,有222cos 2PB BD PD PBD PB BD+-∠=⋅,代值整理得cos PBD ∠∴sin PBD ∠=.过P 作PM BD ⊥,垂足为M ,则PM 为四面体P BCD -的高.∴sin h PM PB PBM ==∠故111336P BCDBCD V S h -===△,t =,∵0x <<12t ≤<,∴224x t -=-.2141466P BCDt V t t t--⎛⎫=⨯=- ⎪⎝⎭在[)1,2t ∈上单调递减.∴当1t =,即x =P BCD -的体积最大为1411612P BCD V --=⨯=.4.1213234PP PP P P ===,3【分析】由12APB CBP ≌△△,分析可得123PP P 是边长为4的正三角形,再由13P ABC ABC S PO V -=⋅ 结合题干数据求解即可.【详解】由题图可知1P 、B 、2P 三点共线,∴12APBCBP ≌△△.∵60ABC ∠=︒,∴1260ABP CBP ∠=∠=︒,1APB △和2CBP △都是正三角形.∴124PP =.同理可知其他两边长也是4,∴123PP P 是边长为4的正三角形.折叠后是棱长为2的正四面体-P ABC ,如图所示.设顶点P 在底面内的投影为O ,连结BO 并延长,交AC 于点D ,则D 为AC 的中点,O 为ABC 的重心,PO ⊥底面ABC .AO AB ==,PO ==.故133P ABC ABC V S PO -=⋅=△.5.2【分析】过AB 作与SC 垂直的截面ABM .通过13S ABC ABM V SC S -=⋅△,分析即得解.【详解】过AB 作平面ABM SC ⊥且SC 平面ABM M =,如图所示,由题意知SAC 、SBC △均为直角三角形.∵4SC =,30ASC BSC ∠=∠=︒,故SAC SBC ≅ ,∴SA =,2CA =,∴SA ACAM BM SC⋅==.∴2141sin 2sin 2332S ABCABM V SC S AMB AMB -=⋅=⨯⨯∠=∠≤△.∴三棱锥S ABC -体积的最大值为2.故答案为:26.(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =,所以1B H =所以DH ==则11sin B D DHB DH∠===所以,当12t =时,()1min 3sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF =D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==,sin θ,当12t =,即112B D =,面11BB C C与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.7.C【分析】设正四棱锥的高为h ,根据题意求出正四棱锥的底面边长与高的关系,再利用导数求解即可.【详解】设球体的半径为R ,由题知:34363R ππ=,所以球的半径3R =.设正四棱锥的底面边长为2a ,高为h ,则222222l h a h =+=+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,设()641=936x f x x ⎛⎫- ⎪⎝⎭,3x ≤≤,所以()5233112449696x x f x x x ⎛⎫⎛⎫-'=-= ⎪⎝⎭⎝⎭,当3x ≤≤()0f x ¢>,()f x 为增函数,当x <≤()0f x '<,()f x 为减函数,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C 8.C【分析】令四棱锥底面四边形外接圆半径为r ,用r 表示四棱锥的高及底面四边形面积最大值,再借助导数求解作答.【详解】设该四棱锥底面四边形为ABCD ,平面ABCD 截球O 所得小圆半径为r ,则球心O到平面ABCD 的距离h =设四边形ABCD 对角线,AC BD 的夹角为α,则1sin 2ABCD S AC BD α=⋅,于是得该四棱锥的体积:12sin 22sin 36623ABCD V S h BD r r rπα=⋅=⋅≤⋅⋅=当且仅当对角线,AC BD 是截面小圆互相垂直的两条直径,即四边形ABCD 为正方形时取等号,令2(0,1)r x =∈,有23r =23(),(0,1)f x x x x =-∈,求导得:22()233()3f x x x x x '=-=-,当203x <<时,()0f x '>,当213x <<时,()0f x '<,因此函数()f x 在2(0,)3上单调递增,在2(,1)3上单调递减,当23x =时,23max 224()(()3327f x =-=,从而当223r =时,max 222(333r =⨯⨯max V =,此时3h ==,故选:C9.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得AC ⊥平面BED ,然后根据面面垂直的判定定理可得平面BED ⊥平面ACD ;(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积或利用等积法及锥体的体积公式即得.【详解】(1)AD CD = ,ADB BDC ∠=∠,BD BD =,ADB CDB ∴≅ ,AB BC ∴=,又E 为AC 的中点.AC BE ∴⊥,AD CD = ,E 为AC 的中点.AC DE ∴⊥,又BE DE E = ,BE ⊂平面BED ,DE ⊂平面BED ,AC ∴⊥平面BED ,又AC ⊂ 平面ACD ,∴平面BED ⊥平面ACD ;(2)方法一:依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =,所以222DE BE BD +=,即DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,所以13,222DF BF DF ===-=,所以34BF BD =,过F 作FH BE ⊥,垂足为H ,则//FH DE ,又DE ⊥平面ABC ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=方法二:AB BC = ,60ACB ∠=︒,2AB =ABC ∴ 是边长为2的等边三角形,BE ∴=连接EF ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,即EF BD ⊥时,AFC △的面积最小,,,2AD CD AD CD AC ⊥== ,E 为AC 的中点,∴1DE =,222DE BE BD +=,BE ED ∴⊥,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,∴32BF ,113222BEF S BF EF ∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∴=+=⋅=⋅= .10.6【分析】取AC 中点O ,连接OB ,过点O 作Oz ⊥平面ABC ,以点O 为原点建立空间直角坐标系,设二面角D AC B '--的大小为α,把直线A C 与BD '所成角的余弦表示为α的函数,求出函数最大值作答.【详解】在ACD 中,90ADC ∠= ,1,CD AD ==则AC =,过D 作DH AC ⊥于H ,连接D H ',如图,显然D H AC '⊥,ACD 绕直线AC 旋转过程中,线段DH 绕点H 在垂直于直线AC 的平面γ内旋转到D H ',取AC 中点O ,连接OB ,因3AB BC ==,有OB AC ⊥,OB =,,663CD ADD H DH CH OH AC⋅'=====,过点O 作Oz ⊥平面ABC ,以点O 为原点,射线,,OB OA Oz 分别为,,x y z 轴非负半轴,建立空间直角坐标系,则A ,B ,(0,2C -,显然有//Oz 平面γ,设二面角D AC B '--的大小为[0,]απ∈,有(,,sin )636D αα'-,则有(,sin )6236BD αα=--' ,CA的方向向量为(0,1,0)n = ,设直线AC 与BD '所成的角为θ,于是得||cos |cos ,|||||n BD n BD n BD θ'⋅'=〈〉=='因[0,]απ∈,则1cos 1α-≤≤,于是得cos 6θ=,当且仅当cos 1α=取等号,所以直线AC 与BD '11.A【分析】取BD 中点O ,连接AO ,CO ,以O 为原点建立空间直角坐标系,利用二面角A BD C --的大小θ的正余弦表示,AB CD的坐标,利用空间向量建立函数关系求解作答.【详解】取BD 中点O ,连接AO ,CO ,而AB =BD =DA =2,BC =CD,则CO ⊥BD ,AO ⊥BD ,且CO =1,AOAOC ∠是二面角A BD C --的平面角,令5[,]66AOC ππθ∠=∈,显然有BD ⊥平面AOC ,BD ⊂平面BCD ,则平面AOC ⊥平面BCD ,在平面AOC 内过O 作Oz OC ⊥,而平面AOC I 平面BCD OC =,因此Oz ⊥平面BCD ,即射线,,OC OD Oz 两两垂直,以O 为原点,射线,,OC OD Oz 分别为,,x y z轴非负半轴,建立空间直角坐标系,如图,则(0,1,0),(1,0,0),(0,1,0)B C D -,)A θθ,,1,),(1,1,0)BA CD θθ==-,设直线AB 与CD 所成的角为α,则||cos |cos ,|||||AB CD AB CD AB CD α⋅=〈〉==,由5[,66ππθ∈得:cos [,]22θ∈,15122θ-≤≤,则5|1|[0,2θ∈,于是得cos[0,]α∈,8.所以直线AB与CD 所成角的余弦值取值范围是[0,]8故选:A答案第18页,共18页。

立体几何解析几何最值问题

立体几何解析几何最值问题

立体几何解析几何最值问题立体几何和解析几何都是数学中的分支领域,它们在研究物体的形状、位置和运动等方面有着不同的方法和应用。

在解析几何中,最值问题是其中一个重要的问题类型,它涉及到找到函数在特定区域内的最大值或最小值。

在立体几何中,我们研究的是空间中的物体,比如点、线、面、体等。

解析几何则是研究平面几何与坐标系统之间的关系,通常使用坐标点来表示点、线、曲线等。

解析几何中最值问题的解决方法通常是通过求导来进行。

我们可以将问题转化为一个函数,然后求该函数的导数,找到导数为0的点,再通过比较得出最大值或最小值。

这种方法在求解平面最值问题时非常有效。

而在立体几何中,最值问题通常涉及到体积、面积或长度等量的最大化或最小化。

解决这类问题可以利用几何性质和定理来进行推导和求解。

比如,要求一个几何体的体积的最大值,我们可以通过寻找几何体的特定形状的体积公式以及几何性质来得出最优解。

具体地说,在立体几何中,最值问题的解决方法可以归纳如下:1.求解体积最大问题:对于已知形状的几何体,我们可以通过推导体积公式,并利用一些方法来求解体积的最大值。

例如,求解一个长方体在给定表面积约束条件下的最大体积,我们可以设长方体的长、宽、高分别为x、y、z,然后利用约束条件和体积公式写出等式,最后通过求解方程组可得到最优解。

2.求解表面积最小问题:类似地,我们可以通过推导表面积公式,并利用一些方法来求解表面积的最小值。

例如,求解一个包含给定体积的圆柱体的表面积最小值,我们可以设圆柱体的底面半径为r、高度为h,然后通过体积公式将h表示为r的函数,并利用表面积公式得到表面积的表达式,最后求解表面积的最小值。

3.求解长度最短问题:有时候我们需要找到连接两个点的最短路径,可以利用几何性质和定理求解。

例如,求解从一个点到直线的最短距离,我们可以利用点到直线的距离公式,并通过求导的方法求解最短距离的点。

总而言之,立体几何和解析几何最值问题的求解方法有所不同,但都可以通过推导公式、利用几何性质和定理以及求导等方法来解决。

立体几何中的最值问题

立体几何中的最值问题

立体几何中的最值问题1、利用垂直关系确定高的最值锥体的体积由底面面积和高决定,底面确定只要高最大即可,借助面面垂直的性质和特殊位置关系确定高的最值进而求得体积最值。

例1.表面积为60π的球面上有四点S、A、B、C,且△ABC是等边三角形,球心O到平面ABC的距离为,若平面SAB⊥平面ABC,则棱锥S﹣ABC体积的最大值为.1.如图,四棱锥P﹣ABCD中,P A⊥底面ABCD,底面ABCD是矩形,AB =2,AD=3,P A=4,E为棱CD上一点,则三棱锥E﹣P AB的体积为.2.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为.2、利用圆锥曲线定义转化为点到面距离的最值例2.已知正方形ABCD的边长为6,空间有一点M(不在平面ABCD内)满足|MA|+|MB|=10,则三棱锥A﹣BCM的体积的最大值是()A.48B.36C.30D.243、利用侧面展开图求距离的最小值解决空间图形中表面距离最短的问题,常采用“化曲为直”的思想,把空间图形沿侧棱(或母线)展开,达到化空间几何问题为平面几何问题。

例3.如图,在正三棱柱ABC﹣A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N,求P点的位置.1、圆台的上、下底面半径分别为5cm、10cm,母线长AB=20cm,从圆台母线AB的中点M拉一条绳子绕圆台侧面转到B点(B在下底面),求:(1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离;(3)圆锥底面半径为r,母线长为4r,求从底面边缘一点A出发绕圆锥侧面一周再回到A的最短距离.2.如图,正方体ABCD﹣A1B1C1D1的棱长为a,点E为AA1的中点,在对角面BB1D1D上取一点M,使AM+ME最小,其最小值为.4、利用目标函数求体积的最值解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量构建目标函数,常利用导数或利用基本不等式,求其最值。

专题4.4 立体几何中最值问题(解析版)

专题4.4 立体几何中最值问题(解析版)

一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一距离最值问题【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为()A.B.1 C.D.2【答案】B【解析】以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系如图所示,则C1(4,4,4),设E(0,0,z),z∈[0,4],F(x,0,0),x∈[0,4],则|AF|=x.=(4,4,4﹣z),=(x,0,﹣z).因为C1E⊥EF,所以,即:z2+4x﹣4z=0,x=z﹣.当z=2时,x取得最大值为1.|AF|的最大值为1.故选:B.【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D.【举一反三】1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为A.B.C.D.【答案】A【解析】解:根据三视图知,该几何体是一个正四棱锥,画出图形如图所示;则,,底面CDEB,结合图形中的数据,求得,在中,由勾股定理得,同理求得,.故选:A .2、【河南省顶级名校2019届高三第四次联合测评】在侧棱长为的正三棱锥中,侧棱OA ,OB ,OC 两两垂直,现有一小球P 在该几何体内,则小球P 最大的半径为 A . B . C .D .【答案】B 【解析】当小球与三个侧面,,及底面都相切时,小球的体积最大此时小球的半径最大,即该小球为正三棱锥的内切球设其半径为由题可知因此本题正确选项:3、如右图所示,在棱长为2的正方体1111ABCD A B C D 中, E 为棱1CC 的中点,点,P Q 分别为面1111A B C D和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.【解析】将面1111A B C D 与面11BB C C 折成一个平面,设E 关于11B C 的对称点为M ,E 关于1B C 对称点为N,则PEQ ∆周长的最小值为MN ==类型二 面积的最值问题【例2】【河南省郑州市2019年高三第二次质量检测】在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为( )A .B .C .D .【答案】C 【解析】补全截面EFG 为截面EFGHQR 如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小,∴三角形面积的最小值为,故选:C.【指点迷津】截面问题,往往涉及线面平行,面面平行定义的应用等,考查空间想象能力、逻辑思维能力及计算求解能力.解题的关键是注意明确截面形状,确定几何量.本题由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P所在线段,得解.【举一反三】1、【湖南省衡阳市2019届高三二模】如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为()A.B.C.D.【答案】B【解析】如图,,,分别为,,的中点,作面,作面,连,,易知点即为四面体的外接球心,,,.设,,则,,,.【处理一】消元化为二次函数..【处理二】柯西不等式..所以.2、如图,在正四棱柱1111D C B A ABCD -中,2,11==AA AB ,点P 是平面1111D C B A 内的一个动点,则三棱锥ABC P -的正视图与俯视图的面积之比的最大值为( )A .1B .2C .21D .41 【答案】BABC P -的正视图与俯视图的面积之比的最大值为2;故选B .3、【福建省2019届高三模拟】若某几何体的三视图如图所示,则该几何体的所有侧面和底面中,面积的最大值为( )A .2B .C .3D .【答案】C【解析】由三视图可得,该几何体的直观图如图所示,其中,为的中点,平面,,.所以,,.又因为,,所以,故,所以.故选C.类型三体积的最值问题【例3】如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.【答案】A【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的. 【举一反三】1、已知AD 与BC 是四面体ABCD 中相互垂直的棱,若6AD BC ==,且60ABD ACD ∠=∠=,则四面体ABCD 的体积的最大值是A. B. C. 18 D. 36 【答案】A2、如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )A. B.16 C.48 D.144 【答案】C 【解析】,,DA DA βααβ⊂⊥∴⊥面.,,DA CB αα⊥⊥PAD ∴∆和PBC ∆均为直角三角形.,APD BPC PAD ∠=∠∴∆∽PBC ∆.4,8,2AD BC PB PA ==∴=.学科&网过P 作PM AB ⊥,垂足为M .则PM β⊥.令AM t =,()t R ∈.则2222PA AM PB BM -=-,即()222246PA t PA t -=--,2124,PA t PM ∴=-∴=底面四边形ABCD 为直角梯形面积为()1486362S =+⨯=.学科&网136483P ABCD V -∴=⨯=.故C 正确.3.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】已知一个高为l 的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,内有 一个体积为的球,则的最大值为( ) A . B .C .D .【答案】A 【解析】依题意,当球与三棱锥的四个面都相切时,球的体积最大, 该三棱锥侧面的斜高为,,,所以三棱锥的表面积为,设三棱锥的内切球半径为, 则三棱锥的体积,所以,所以,所以,故选A.类型四 角的最值问题【例4】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为.【答案】25【解析】建立坐标系如图所示.设1AB =,则11(1,,0),(,0,0)22AF E =.设(0,,1)(01)M y y ≤≤,则1(,,1)2EM y =-,由于异面直线所成角的范围为(0,]2π,所以cos θ==.2281145y y +=-+,令81,19y t t +=≤≤,则281161814552y y t t+=≥++-,当1t =时取等号.所以2cos 5θ==≤=,当0y =时,取得最大值.C【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.当点M 在点P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当点M 向左移动时,.EM 与AF 所成角逐渐变小,点M 到达点Q 时,角最小,余弦值最大. 【举一反三】1、矩形ABCD 中,,,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.B.C.D.【答案】C2、在正方体1111D C B A ABCD -中,O 是BD 中点,点P 在线段11D B 上,直线OP 与平面BD A 1所成的角为α,则αsin 的取值范围是( ) A .]33,32[B .]21,31[C .]33,43[D .]31,41[ 【答案】A3.【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】如图,在正方体中,点P为AD的中点,点Q为上的动点,给出下列说法:可能与平面平行;与BC所成的最大角为;与PQ一定垂直;与所成的最大角的正切值为;.其中正确的有______写出所有正确命题的序号【答案】【解析】解:由在棱长为1的正方体中点P为AD的中点,点Q为上的动点,知:在中,当Q为的中点时,,由线面平行的判定定理可得PQ与平面平行,故正确;在中,当Q为的中点时,,,,可得,故错误;在中,由,可得平面,即有,故正确;在中,如图,点M为中点,PQ与所成的角即为PQ与所成的角,当Q与,或重合时,PQ与所成的角最大,其正切值为,故正确;在中,当Q 为的中点时,PQ 的长取得最小值,且长为,故正确.故答案为:.4、在正四面体P ABC -中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN AB λ=,设异面直线NM 与AC 所成角为α,当1233λ≤≤时,则cos α的取值范围是__________.【答案】,3838⎡⎢⎣⎦ 【解析】设P 到平面ABC 的射影为点O ,取BC 中点D ,以O 为原点,在平面ABC 中,以过O 作DB 的平行线为x 轴,以OD 为y 轴,以OP 为z 轴,建立空间直角坐标系,如图,设正四面体P −ABC的棱长为则()()(((0,4,0,,,,A B C P M --,由AN AB λ=,得(),64,0N λ-,∴((),56,NM AC λ=--→-=-,∵异面直线NM 与AC 所成角为α, 1233λ≤≤,∴2NM AC cos NM AC α⋅==⋅,设32t λ-=,则5733t 剟∴222111124626()41t cos t t t tα==-+-⋅+,∵1313375t <剟cos α.∴cos α的取值范围是⎣⎦.三.强化训练一、选择题1、【甘肃省2019届高三第一次高考诊断】四棱锥的顶点均在一个半径为3的球面上,若正方形的边长为4,则四棱锥的体积最大值为()A.B.C.D.【答案】D【解析】设正方形的中心为,当在于球心的连线上时,四棱锥高最高,由于底面面积固定,则高最高时,四棱锥体积取得最大值.设高为,,球的半径为,故,解得.故四棱锥的体积的最大值为.故选D.2.【广东省东莞市2019届高三第二次调研】已知一个四棱锥的正主视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A.B.C.4 D.2【答案】A【解析】解:如图所示,由题意知,平面平面ABCD,设点P到AD的距离为x,当x最大时,四棱锥的高最大,因为,所以点P的轨迹为一个椭圆,由椭圆的性质得,当时,x取得最大值,即该四棱锥的高的最大值为.故选:A.3.【四川省教考联盟2019届高三第三次诊断】已知四棱锥的底面四边形的外接圆半径为3,且此外接圆圆心到点距离为2,则此四棱锥体积的最大值为()A.12 B.6 C.32 D.24【答案】A【解析】由锥体的体积公式v=,可知,当s和h都最大时,体积最大.由题得顶点P到底面ABCD的距离h≤2.当点P在底面上的射影恰好为圆心O时,即PO⊥底面ABCD时,PO最大=2,即,此时,即四边形ABCD为圆内接正方形时,四边形ABCD的面积最大,所以此时四边形ABCD的面积的最大值=,所以.故选:A4.【安徽省蚌埠市2019届高三第一次检查】某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,三棱锥表面上的点M在俯视图上的对应点为A,三棱锥表面上的点N在左视图上的对应点为B,则线段MN的长度的最大值为A .B .C .D .【答案】D 【解析】由三视图可知,该三棱锥的底面是直角三角形, 一条侧棱与底面垂直(平面),为几何体的直观图如图,在上,重合,当与重合时, 线段的长度的最大值为.故选D .5.如图,在矩形ABCD 中, 2,1AB AD ==,点E 为CD 的中点, F 为线段CE (端点除外)上一动点现将DAF ∆沿AF 折起,使得平面ABD ⊥平面ABC 设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A.13 B. 4 C. 12 D. 23【答案】C 【解析】如图:在矩形中,过点作的垂线交于点,交于点设,6.【2019年4月2019届高三第二次全国大联考】已知正四面体的表面积为,点在内(不含边界). 若,且,则实数的取值范围为( ) A . B . C .D .【答案】A 【解析】 设正四面体的棱长为则,解得则正四面体的高为记点到平面、、的距离分别为则因为,所以,则故又,故即实数的取值范围为本题正确选项:二、填空题7.【山东省青岛市2019届高三3月一模】在四棱锥中,底面是边长为2的正方形,面,且,若在这个四棱锥内有一个球,则此球的最大表面积为__________.【答案】【解析】在这个四棱锥内有一个球,则此球的最大表面积时,对应的球应该是内切球,此时球的半径最大,设内切球的球心为O半径为R,连接球心和ABCD四个点,构成五个小棱锥,根据体积分割得到,五个小棱锥的体积之和即为大棱锥的体积,,根据AB垂直于AD,PD垂直于AB 可得到AB垂直于面PDA,故得到AB垂直于PA,同理得到BC垂直于PC,表面积为:,此时球的表面积为:.故答案为:.8.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知正四棱柱和半径为的半球O,底面ABCD在半球O底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.【答案】4【解析】设正四棱柱的高为h,底面棱长为a,则正四棱柱的底面外接圆直径为,所以,.由勾股定理得,即,得,其中,所以,正四棱柱的体积为,其中,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,则.因此,该正四棱柱的体积的最大值为4.9.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.10.【江西省上饶市2019届高三二模】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.【答案】【解析】由题该正四面体在铁盒内任意转动,故其能在正方体的内切球内任意转动,内切球半径为6,设正四面体棱长为a, 将此正四面体镶嵌在棱长为x的正方体内,如图所示:则x=,外接球的球心和正方体体心O重合,∴外接球的球半径为:=6,a=4又正四面体的高为∴该正四面体的体积为故答案为11.【河北省衡水市第二中学2019届高三上期中】已知体积为的正四棱锥外接球的球心为,其中在四棱锥内部.设球的半径为,球心到底面的距离为.过的中点作球的截面,则所得截面圆面积的最小值是___________.【答案】【解析】如图取底面的中心为,连接平面,且球心在上,由条件知,,连接,,则,于是底面的边长为.又,故四棱锥的高是,所以,即,从而,,于是,过的中点的最小截面圆是以点为圆心的截面圆,该截面圆的半径是,故所求面积为.12.【江西省临川第一中学等九校2019届高三3月联考】如图所示,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为__________.【答案】【解析】过球心,又是边长为的等边三角形,,,三角形是等腰直角三角形,,,又因为,在平面内,由线面垂直的判定定理可得平面,即平面,设,,则三棱锥体积,当且仅当,即时取等号,故答案为.13.【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.【答案】【解析】因为,所以,所以,同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则且,所以,当平面时,平面截球的截面面积最小,此时截面为圆面,其半径为,故截面的面积为.填.14.【江西师范大学附属中学2019高三上学期期末】若一个四棱锥的底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球的体积最小时,它的高为_________.【答案】【解析】设四棱锥底面边长为a,高为h,底面对角线交于O,由条件四棱锥P-ABCD为正四棱锥,其外接球的球心M在高PO上,设外接球半径为R,在直角三角形MAO中,,又该四棱锥的体积为9,所以所以,,,时,时,所以时R极小即R最小,此时体积最小.故答案为3.15.【江西省上饶市2019届高三二模】已知正方体的棱长为,平面与对角线垂直且与每个面均有交点,若截此正方体所得的截面面积为,周长为,则的最大值为______.【答案】【解析】因为平面与对角线垂直,所以平面与对角面平行,作出图象,为六边形,设则,所以,由对称性得平面过对角线中点时截面面积取最大值为,则的最大值为.16.【河南省洛阳市2019届高三第二次统考】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.【答案】【解析】如下图,正方体中作出一个正四面体将正三角形和正三角形沿边展开后使它们在同一平面内,如下图:要使得最小,则三点共线,即:,设正四面体的边长为,在三角形中,由余弦定理可得:,解得:,所以正方体的边长为2,正四面体的体积为:,设四正面体内切球的半径为,由等体积法可得:,整理得:,解得:,所以该四面体内切球的体积为.17.【2019届湘赣十四校高三联考第二次考试】如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.【答案】【解析】设,,当时,取得最大值,此时为中点,经过点,且,,所以可求,,因此易求,,,,又∵,∴.。

高考数学复习压抽题专项突破—立体几何中最值问题

高考数学复习压抽题专项突破—立体几何中最值问题

高考数学复习压抽题专项突破—立体几何中最值问题一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力。

最值问题一般涉及到距离、面积、体积、角度等四个方面。

此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一空间角的最值问题【例1】(2020·浙江高三期末)如图,四边形ABCD ,4AB BD DA ===,BC CD ==现将ABD ∆沿BD 折起,当二面角A BD C --的大小在2[,]33ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .2268B .6224C .2268+D .2264+【答案】C【解析】取BD 中点O ,连结AO ,CO ,∵AB =BD =DA =4.BC =CD =CO ⊥BD ,AO ⊥BD ,且CO =2,AO =,∴∠AOC 是二面角A ﹣BD ﹣C 的平面角,以O 为原点,OC 为x 轴,OD 为y 轴,过点O 作平面BCD 的垂线为z 轴,建立空间直角坐标系,B (0,﹣2,0),C (2,0,0),D (0,2,0),设二面角A ﹣BD ﹣C 的平面角为θ,则2,33ππθ⎡⎤∈⎢⎥⎣⎦,连AO 、BO ,则∠AOC =θ,A(0θθ,),∴()2BA θθ= ,,()220CD =- ,,,设AB 、CD 的夹角为α,则cosαAB CD AB CD ⋅==⋅ ,∵2,33ππθ⎡⎤∈⎢⎥⎣⎦,∴cos 1122θ⎡⎤∈-⎢⎥⎣⎦,,∴|1θ|∈[0,1+32].∴cos α的最大值为2268.故选:C.【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.【举一反三】[来1.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是()A .13B .33C .12D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1,设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0),D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=--- ,DB (1,= 1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,= y ,z),则1n DB 0n DC 0x y y z⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=- ,1B E // 平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,= 1,0),11AB B E cosθAB B E⋅∴==⋅ 2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,sinθ∴==3==≥=.∴直线1B E 与直线AB 所成角的正弦值的最小值是33.故选B .2.(2020·河南高三月考(理))如图,在菱形ABCD 中,∠ABC =60°,E ,F 分别是边AB ,CD 的中点,现将△ABC 沿着对角线AC 翻折,则直线EF 与平面ACD 所成角的正切值最大值为()AB.3C.3D .2【答案】D【解析】如图,以AC 的中点O 为坐标原点,建立空间直角坐标系,设二面角B AC D --为θ,可证BOD ∠=θ,设棱形的边长为4,则()0,2,0A -,(),0,B θθ,),Eθθ-,()0,2,0C,()D,)F)FE θθ∴=-- ,易知平面ACD 的法向量()0,0,1n = 设直线EF 与平面ACD 所成角为α,则()()()222222231cos 3sin 3sin sin 106cos 253cos 3cos 143sin n FE n FE θθθαθθθθ⎛⎫⋅- ⎪==== ⎪---++⋅⎝⎭令()2153x f x x-=-,()1,1x ∈-,()()()()()22231331033535x x x x f x x x ---+'==--则()0f x '>时113x -<<即()f x 在11,3⎛⎫- ⎪⎝⎭上单调递增;()0f x '<时113x <<即()f x 在1,13⎛⎫ ⎪⎝⎭上单调递减;()max 1239f x f ⎛⎫∴== ⎪⎝⎭,()2max 1sin 3α∴=则()2max 2cos 3α=()222max sin 1tan cos 2ααα∴==,()max 2tan 2α∴=,故选:D 3.AB 是圆锥 S O 的直径,SB 是它的一条母线,E 、F 是SB 的两个三等分点(E 点靠近S 点),C 点在圆O 上运动(不与A 、B 两点重合),则二面角 --E AC F 的平面角为α则tan α的最大值是_______.【解析】设圆锥的高为,,h BC a =如图所示,二面角E AC B --的平面角为1,EDN α=∠,二面角F AC B --的平面角为2FGH α=∠,则1221233tan ,tan 25536h h h h a a a a αα====,设1222tan t,tan 55h h t a a αα====,所以12223335555tan tan()221211555t t t t t t t t ααα-=-===≤+⨯++.所以tan max α==.类型二空间距离的最值问题【例2】(2020银川一中模拟)正方体1111ABCD A B C D 的棱长为1,M 、N 分别在线段11A C 与BD 上,MN 的最小值为【答案】1【解析】分析:方法一,该题可以结合正方体的结构特征,将其转化为两异面直线的距离来求;方法二,可设出变量,构建相应的函数,利用函数的最值求解;方法三,建立空间直角坐标系,利用点的坐标以及距离公式表示出目标函数,然后利用函数方法求解最值.方法一(定义转化法)因为直线11A C 与BD 是异面直线,所以当MN 是两直线的共垂线段时,MN 取得最小值。

2019届高三数学备考冲刺140分问题29立体几何中的最值问题含解析

2019届高三数学备考冲刺140分问题29立体几何中的最值问题含解析

问题29立体几何中的最值问题一、考情分析立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从两个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是直接法,即根据几何体的结构特征或平面几何中的相关结论,直接判断最值.纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.二、经验分享1.解决立体几何中的最值问题常见方法有:(1)建立函数法是一种常用的最值方法,很多情况下,我们都是把这类动态问题转化成目标函数,最终利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法;二次数的配方法、公试法;有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.(2)公理与定义法通常以公理与定义作依据,直接推理问题的最大值与最小值,一般的公理与定理有:两点之间以线段为最短,分居在两异面直线上的两点的连线段中,以它们的公垂线段为短.球面上任意两点间的连线中以过这两点与球心的平面所得圆的劣弧长为最短等.如果直接建立函数关系求之比较困难,而运用两异面直线公垂线段最短则是解决问题的捷径.(3)解不等式法是解最值问题的常用方法、在立体几何中同样可利用不等式的性质和一些变量的特殊不等关系求解:如最小角定理所建立的不等关系等等.(4)展开体图法是求立体几何最值的一种特殊方法,也是一种常用的方法,它可将几何题表面展开,也可将几何体内部的某些满足条件的部分面展开成平面,这样能使求解问题,变得十分直观,由难化易.(5)变量分析法是我们要透过现象看本质,在几何体中的点、线、面,哪些在动,哪些不动,要分析透彻,明白它们之间的相互关系,从而转化成求某些线段或角等一些量的求解最值总题的方法.除了上述5种常用方法外,还有一些使用并不普遍的特殊方法,可以让我们达到求解最值问题的目的,这就是:列方程法、极限思想法、向量计算法等等其各法的特点与普遍性,大家可以通过实例感受其精彩内涵与思想方法所在.2.决定棱锥体积的量有两个,即底面积和高,当研究其体积的最值问题时,若其中有一个量确定,则只需另一个量的最值;若两个量都不确定,可通过设变量法,将体积表示为变量的函数解析式,利用函数思想确定其最值;将空间问题转化为平面问题是转化思想的重要体现,通过旋转到一个平面内,利用两点之间距离最短求解3.解决几何体体积最值问题的方法(1) 根据条件建立两个变量的和或积为定值,利用基本不等式求体积的最值;通过建立相关函数式,将所求的最值问题转化为函数的最值问题求解,此法应用最为广泛;由图形的特殊位置确定最值,如垂直求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.4.解题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次从本文所标定的方法顺序思考,必能找到解题的途径三、题型分析(一) 距离最值问题1.空间中两点间距离的最值问题A C与BD上,求MN的最小值.【例1】正方体的棱长为1,M、N分别在线段11【分析】方法一,该题可以结合正方体的结构特征,将其转化为两异面直线的距离来求;方法二,可设出变量,构建相应的函数,利用函数的最值求解;方法三,建立空间直角坐标系,利用点的坐标以及距离公式表示出目标函数,然后利用函数方法求解最值.A C与BD是异面直线,所以当MN是两直线的共垂线段时,MN 【解析】方法一(定义转化法)因为直线11取得最小值.取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.下证明之.在矩形11BDD B 中,PQ 为中位线,所以1//PQ BB ,又因为1BB ⊥平面ABCD ,所以PQ ⊥平面ABCD又因为BD ⊆平面ABCD ,所以PQ BD ⊥.同理可证11PQ A C ⊥,而, ,所以线段PQ 就是两异面直线11A C 与BD 的共垂线段,且1PQ =.由异面直线公垂线段的定义可得,故MN 的最小值为1.方法二:(参数法)如图,取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.由正方体的棱长为1可得1PQ =.连结AC ,则11//AC A C ,所以BQC ∠为两异面直线11A C 与BD 所成角.在正方形ABCD 中,AC BD ⊥,所以.过点M 作MH AC ⊥,垂足为H ,连结NH ,则//MH PQ ,且.设PM m =,QN t =,则QH m =.在Rt QNH ∆中,,在Rt MHN ∆中,.显然,当0m n ==时,2MN 取得最小值1,即MN 的最小值为1.方法三:(向量法)如图,以D 为坐标原点,分别以射线DA 、DC 、1DD 为x 、y 、z 轴建立空间直角坐标系.设DN m =,1A M n =.则,即;,即.所以,故当m n ==时,2MN 取得最小值1,即MN 的最小值为1.【点评】空间中两点距离的最值,最基本的方法就是利用距离公式建立目标函数,根据目标函数解析式的结构特征求解最值.对于分别在两个不同对象上的点之间距离的最值,可以根据这两个元素之间的关系,借助立体几何中相关的性质、定理等判断并求解相应的最值.如【典例1】中的两点分别在两条异面直线上,显然这两点之间距离的最小值即为两异面直线的公垂线段的长度.另外注意直线和平面的距离,两平面的距离等的灵活运用.【小试牛刀】【湖南省长沙市2019届上学期高三统一检测】设正方体的棱长为,为的中点,为直线上一点,为平面内一点,则,两点间距离的最小值为()A. B. C. D.【答案】B【解析】结合题意,绘制图形结合题意可知OE是三角形中位线,题目计算距离最短,即求OE与两平行线的距离,,所以距离d,结合三角形面积计算公式可得,解得,故选B。

2019届高三数学备考冲刺140分问题32与圆有关的最值问题含答案解析

2019届高三数学备考冲刺140分问题32与圆有关的最值问题含答案解析

问题32 与圆有关的最值问题一、考情分析通过对近几年的高考试题的分析比较发现,高考对直线与圆的考查,呈现逐年加重的趋势,与圆有关的最值问题,更是高考的热点问题.由于圆既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活,故与圆相关的最值问题备受命题者的青睐. 二、经验分享1. 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.2.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化 三、知识拓展1.圆外一点P 到圆C 上点的距离距离的最大值等于,最小值等于PC r -.2.圆C 上的动点P 到直线l 距离的最大值等于点C 到直线l 距离的最大值加上半径,最小值等于点C 到直线l 距离的最小值减去半径.3.设点M 是圆C 内一点,过点M 作圆C 的弦,则弦长的最大值为直径,最小的弦长为.四、题型分析(一) 与圆相关的最值问题的联系点 1.1 与直线的倾斜角或斜率的最值问题利用公式k =tan α(α≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值.处理方法:直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0). 【例1】坐标平面内有相异两点,经过两点的直线的的倾斜角的取值范围是( ). A .,44ππ⎡⎤-⎢⎥⎣⎦ B . C .D .3,44ππ⎡⎤⎢⎥⎣⎦ 【答案】C 【解析】,且0AB k ≠.设直线的倾斜角为α,当01AB k <≤时,则,所以倾斜角α的范围为04πα≤≤.当时,则,所以倾斜角α的范围为34παπ≤<. 【点评】由斜率取值范围确定直线倾斜角的范围要利用正切函数y =tan x 的图象,特别要注意倾斜角取值范围的限制;求解直线的倾斜角与斜率问题要善于利用数形结合的思想,要注意直线的倾斜角由锐角变到直角及由直角变到钝角时,需依据正切函数y =tan x 的单调性求k 的范围. 【小试牛刀】若过点的直线与圆224x y +=有公共点,则该直线的倾斜角的取值范围是( )A .0 6π⎛⎫ ⎪⎝⎭,B .0 3π⎡⎤⎢⎥⎣⎦, C. 0 6π⎡⎤⎢⎥⎣⎦, D .0 3π⎛⎤ ⎥⎝⎦, 【答案】B【解析】当过点的直线与圆224x y += 相切时,设斜率为k ,则此直线方程为,即.由圆心到直线的距离等于半径可得,求得0k =或3k =故直线的倾斜角的取值范围是[0,]3π,所以B 选项是正确的.1.2 与距离有关的最值问题在运动变化中,动点到直线、圆的距离会发生变化,在变化过程中,就会出现一些最值问题,如距离最小,最大等.这些问题常常联系到平面几何知识,利用数形结合思想可直接得到相关结论,解题时便可利用这些结论直接确定最值问题. 【例2】 过点()1,2M 的直线l 与圆C :交于,A B 两点,C 为圆心,当ACB∠最小时,直线l 的方程是 . 答案:解析:要使ACB ∠最小,由余弦定理可知,需弦长AB 最短.要使得弦长最短,借助结论可知当()1,2M 为弦的中点时最短.因圆心和()1,2M 所在直线的,则所求的直线斜率为1-,由点斜式可得.【点评】与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.此题通过两次转化,最终转化为求过定点的弦长最短的问题. 【例3】若圆C :关于直线对称,则由点(,)a b 向圆C 所作的切线长的最小值是( )A .2B .3C .4D .6 【答案】C 【解析】圆C :化为(x+1)2+(y-2)2=2,圆的圆心坐标为(-1,2)半径. 圆C :关于直线2ax+by+6=0对称,所以(-1,2)在直线上,可得-2a+2b+6=0,即a=b+3.点(a,b )与圆心的距离,,所以点(a,b )向圆C 所作切线长:当且仅当b=-1时弦长最小,为4【点评】与切线长有关的问题及与切线有关的夹角问题,解题时应注意圆心与切点连线与切线垂直,从而得出一个直角三角形.【小试牛刀】【安徽省合肥一中、马鞍山二中等六校教育研究会2019届高三第二次联考】已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为( )A .B .C .D .【答案】D 【解析】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.1.3 与面积相关的最值问题与圆的面积的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法,基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解. 【例4】 在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线相切,则圆C 面积的最小值为( )A.45πB.34πC.(65)π-D.54π 【答案】A 【解析】设直线l :.因为,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线.圆C 半径最小值为,圆C 面积的最小值为选A. 【例5】动圆C 经过点(1,0)F ,并且与直线1x =-相切,若动圆C 与直线总有公共点,则圆C 的面积( )A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π 【答案】D【解析】设圆心为(,)a b ,半径为r ,,即,即214a b =,∴圆心为21(,)4b b ,2114r b =+,圆心到直线的距离为,∴或2b ≥,当2b =时,,∴.【小试牛刀】【山东省恒台第一中学2019届高三上学期诊断】已知O 为坐标原点,直线.若直线l 与圆C 交于A ,B 两点,则△OAB 面积的最大值为( ) A .4 B . C .2 D .【答案】C 【解析】由圆的方程可知圆心坐标,半径为2,又由直线,可知,即点D 为OC 的中点, 所以,设,又由,所以,又由当,此时直线,使得的最小角为,即当时,此时的最大值为2,故选C 。

例谈立体几何最值问题的几种解法

例谈立体几何最值问题的几种解法

思路探寻立体几何最值问题侧重于考查同学们的空间想象、逻辑推理和数学运算等能力.常见的立体几何最值问题是求立体几何图形中某条线段、某个角、体积、表面积的最值,那么如何求解呢?一、利用函数思想在大多数情况下,我们可以把与动点有关的立体几何问题看作函数问题来求解.以其中某一个量,如动点的坐标、线段的长、角的大小为变量,建立关于该变量的关系式,并将其视为函数式,即可利用一次函数、二次函数、三角函数的性质和图象求得最值.例1.如图1,正方体ABCD-A1B1C1D1的棱长为1,P为AA1的中点,M在侧面AA1B1B上,若D1M⊥CP,则ΔBCM).C.5D.2图1图2解:过M作MG⊥平面ABCD,垂足为G,作GH⊥BC于点H,连接MH,以D为坐标原点,建立如图2所示的空间直角坐标系,可得D()0,0,0,C()0,1,0,A()1,0,0,P()1,0,12,D1(0,0,1),B()1,1,0.设M()1,a,b,则D1M=()1,a,b-1,CP=()1,-1,12,∵D1M⊥CP,∴ D1M⋅ CP=12b-a+12=0,∴b=2a-1,∴CH=1-a,MG=2a-1,∴MH=()1-a2+()2a-12=5a2-6a+2,∴SΔBCM=12BC⋅MH=1=可知当a=35时,ΔBCM面积取最小值,为SΔBCM=12×=故选B.在建立空间直角坐标系后,设出点M的坐标,以a、b为变量,构建关于a的函数式SΔBCM=然后将5a2-6a+2看作二次函数式,对其配方,根据二次函数的性质即可知函数在a=35时取最小值.二、运用基本不等式在解答立体几何最值问题时,我们往往可以先根据立体几何中的性质、定义、定理求得目标式;然后将其进行合理的变形,采用拆项、凑系数、补一次项,去掉常数项等方式,配凑出两式的和或积,就可以直接运用基本不等式来求得最值.在运用基本不等式求最值时,要把握三个条件:一正、二定、三相等.例2.已知三棱锥P-ABC的4个顶点均在球心为O、直径为23的球面上,PA=2,且PA,PB,PC两两垂直.当PC+AB取最大值时,三棱锥O-PAB的体积为().A. C.6解:∵PA,PB,PC两两互相垂直,∴三棱锥P-ABC可补全为如图3所示的长方体.则长方体的外接球即为三棱锥P-ABC的外接球,∴PA2+PB2+PC2=()232=12,又PA=2,∴PB2+PC2=10,∵AB2=PA2+PB2=2+PB2,∴PC2+AB2=2+PB2+PC2=12,∴()PC+AB2-2PC⋅AB=12,又PC⋅AB≤()PC+AB22,∴12=()PC+AB2-2PC⋅AB≥()PC+AB2-2()PC+AB22=12()PC+AB2,当且仅当PC=AB时取等号,∴()PC+AB max=26,此时PC=AB=6,PB=图347思路探寻AB 2-PA 2=2,∴V O -PAB =12V C -PAB =16S △PAB ⋅PC =112PA ⋅PB⋅PC =112×2×2×6故选B.根据长方体的性质得到()PC +AB 2-2PC ⋅AB =10后,可发现该式中含有PC 、AB 的和与积,根据基本不等式a +b ≥2ab 求解,即可得到三棱锥O -PAB 的体积.三、转化法运用转化法求解立体几何最值问题有两种思路.一是将问题转化为平面几何问题.先将几何体的表面展开,或将几何体内部满足条件的某些面展开成平面;再在平面内利用平面几何知识,如正余弦定理、两点间的距离最短、三角形的两边之和大于第三边等求解,这样问题就变得十分直观,容易求解了.另一种思路是根据题意和几何图形中的点、线、面的位置关系,明确其中改变的量和不变的量及其关系,根据简单几何体的性质、表面积公式、体积公式,将问题转化为求某些线段或角的最值.再结合简单几何体的性质,几何图形中点、线、面的位置关系求得最值例3.如图4,在正三棱柱ABC -A 1B 1C 1中,AA 1=AB =2,D 在A 1C 上,E 是A 1B 的中点,则()AD +DE 2的最小值是().A.6-7 B.27 C.3+7 D.5+7图4图5解:将平面A 1BC 与平面A 1AC 翻折到同一平面上,连接AE ,如图5所示,设AE ⋂A 1C =F .由题意可知A 1A =AC =BC =2,A 1C =A 1B =22,所以AA 21+AC 2=A 1C 2,所以AA 1⊥AC ,则∠AA 1C =45°,由余弦定理可得cos∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ⋅A 1C=8+8-42×22×22=34,则sin∠BA 1C =1-cos 2∠BA 1C =故cos∠AA 1B =cos ()∠AA 1C +∠BA 1C =cos ∠AA 1C cos ∠BA 1C -sin ∠AA 1C sin ∠BA 1C =32-148.因为E 是A 1B 的中点,所以A 1E =2,由余弦定理可得AE 2=AA 21+A 1E 2-2AA 1⋅A 1E cos∠BA 1A=4+2-2×2×2×32-148=3+7.因为D 在A 1C 上,所以AD +DE ≥AE ,当A 、E 、D 三点共线时,等号成立,则()AD +DE 2≥3+7.故选C .将平面A 1BC 与平面A 1AC 翻折到同一平面上,就可以把立体几何问题转化为平面几何问题,即可根据勾股定理和余弦定理求得A 1E 以及AE 的值.分析图形可知当A 、E 、D 三点共线时,AD +DE 取得最大值,再结合余弦定理求解即可.例4.已知球O 的表面积为60π,四面体P -ABC 内接于球O ,ΔABC 是边长为6的正三角形,平面PBC ⊥平面ABC ,则四面体P -ABC 体积的最大值为().A.18B.27C.32D.81解:因为球O 的表面积为60π,所以球的半径R ==15,由题意知四面体P -ABC 底面三角形的面积为定值,要使四面体的体积最大,只须使顶点P 到底面的距离最大,又因为平面PBC ⊥平面ABC ,所以当PB =PC 时,点P 到底面的距离最大,而ΔABC 外接圆的半径r =62sin60°=23,则O 到面ABC 的距离为d =R 2-r 2=3,且O 到面PBC 的距离为h =12r =3,设点P 到平面ABC 的距离为H ,则R 2=()H -d 2+h 2,解得H =33,此时体积最大值为V max =13×12×6×6×sin60°×33=27.故选B.解答本题,首先根据球的表面积求得球的半径;再根据题意和几何体的特征明确当PB =PC 时,点P 到底面的距离最大;最后根据外接圆的性质、勾股定理求出点P 到底面的距离,即可求出最大值.除了上述三种方法外,有时还可采用定义法、构造法来求立体几何最值问题的答案.总之,同学们在解题时,要先根据题意和几何体的结构特征寻找取得最值的情形,求得目标式;然后根据目标式的特征,选用合适的方法求最值.(作者单位:贵州省江口中学)48。

2019届高三数学备考冲刺140分问题32与圆有关的最值问题含解析

2019届高三数学备考冲刺140分问题32与圆有关的最值问题含解析

问题32 与圆有关的最值问题一、考情分析通过对近几年的高考试题的分析比较发现,高考对直线与圆的考查,呈现逐年加重的趋势,与圆有关的最值问题,更是高考的热点问题.由于圆既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活,故与圆相关的最值问题备受命题者的青睐. 二、经验分享1. 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题. 2.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化 三、知识拓展1.圆外一点P 到圆C 上点的距离距离的最大值等于,最小值等于PC r -.2.圆C 上的动点P 到直线l 距离的最大值等于点C 到直线l 距离的最大值加上半径,最小值等于点C 到直线l 距离的最小值减去半径.3.设点M 是圆C 内一点,过点M 作圆C 的弦,则弦长的最大值为直径,最小的弦长为.四、题型分析(一) 与圆相关的最值问题的联系点 1.1 与直线的倾斜角或斜率的最值问题利用公式k =tan α(α≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值.处理方法:直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0). 【例1】坐标平面内有相异两点,经过两点的直线的的倾斜角的取值范围是( ).A .,44ππ⎡⎤-⎢⎥⎣⎦ B . C .D .3,44ππ⎡⎤⎢⎥⎣⎦ 【答案】C 【解析】,且0AB k ≠.设直线的倾斜角为α,当01AB k <≤时,则,所以倾斜角α的范围为04πα≤≤.当时,则,所以倾斜角α的范围为34παπ≤<. 【点评】由斜率取值范围确定直线倾斜角的范围要利用正切函数y =tan x 的图象,特别要注意倾斜角取值范围的限制;求解直线的倾斜角与斜率问题要善于利用数形结合的思想,要注意直线的倾斜角由锐角变到直角及由直角变到钝角时,需依据正切函数y =tan x 的单调性求k 的范围. 【小试牛刀】若过点的直线与圆224x y +=有公共点,则该直线的倾斜角的取值范围是( )A .0 6π⎛⎫ ⎪⎝⎭,B .0 3π⎡⎤⎢⎥⎣⎦, C. 0 6π⎡⎤⎢⎥⎣⎦, D .0 3π⎛⎤ ⎥⎝⎦, 【答案】B 【解析】当过点的直线与圆224x y += 相切时,设斜率为k ,则此直线方程为,即.由圆心到直线的距离等于半径可得,求得0k =或3k =,故直线的倾斜角的取值范围是[0,]3π,所以B 选项是正确的.1.2 与距离有关的最值问题在运动变化中,动点到直线、圆的距离会发生变化,在变化过程中,就会出现一些最值问题,如距离最小,最大等.这些问题常常联系到平面几何知识,利用数形结合思想可直接得到相关结论,解题时便可利用这些结论直接确定最值问题.【例2】 过点()1,2M 的直线l 与圆C :交于,A B 两点,C 为圆心,当ACB ∠最小时,直线l 的方程是 . 答案:解析:要使ACB ∠最小,由余弦定理可知,需弦长AB 最短.要使得弦长最短,借助结论可知当()1,2M 为弦的中点时最短.因圆心和()1,2M 所在直线的,则所求的直线斜率为1-,由点斜式可得.【点评】与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.此题通过两次转化,最终转化为求过定点的弦长最短的问题. 【例3】若圆C :关于直线对称,则由点(,)a b 向圆C 所作的切线长的最小值是( )A .2B .3C .4D .6 【答案】C 【解析】圆C :化为(x+1)2+(y-2)2=2,圆的圆心坐标为(-1,2)半径为2.圆C :关于直线2ax+by+6=0对称,所以(-1,2)在直线上,可得-2a+2b+6=0,即a=b+3.点(a,b )与圆心的距离,,所以点(a,b )向圆C 所作切线长:当且仅当b=-1时弦长最小,为4【点评】与切线长有关的问题及与切线有关的夹角问题,解题时应注意圆心与切点连线与切线垂直,从而得出一个直角三角形.【小试牛刀】【安徽省合肥一中、马鞍山二中等六校教育研究会2019届高三第二次联考】已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为( ) A .B .C .D .【答案】D 【解析】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.1.3 与面积相关的最值问题与圆的面积的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法,基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解.【例4】 在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线相切,则圆C 面积的最小值为( )A.45πB.34πC.(625)π-D.54π 【答案】A 【解析】设直线l :.因为,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线.圆C 半径最小值为,圆C 面积的最小值为选A.【例5】动圆C 经过点(1,0)F ,并且与直线1x =-相切,若动圆C 与直线总有公共点,则圆C的面积( )A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π 【答案】D【解析】设圆心为(,)a b ,半径为r ,,即,即214a b =,∴圆心为21(,)4b b ,2114r b =+,圆心到直线的距离为,∴或2b ≥,当2b =时,,∴.【小试牛刀】【山东省恒台第一中学2019届高三上学期诊断】已知O 为坐标原点,直线.若直线l 与圆C 交于A ,B 两点,则△OAB 面积的最大值为( )A .4B .C .2D .【答案】C 【解析】由圆的方程可知圆心坐标,半径为2,又由直线,可知,即点D 为OC 的中点, 所以,设,又由,所以,又由当,此时直线,使得的最小角为,即当时,此时的最大值为2,故选C 。

【最易丢分的送分题】2019届高三数学(理)三轮:立体几何(含解析)

【最易丢分的送分题】2019届高三数学(理)三轮:立体几何(含解析)

《最易丢分的送分题(数学)》2019届高三三轮【拣分必备】之8.立体几何1.(莆田模拟)如图,一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为( ).[:A .①②B .②③C .③④D .①④[: 答案 B2.(温州市适应性考试)已知球的直径SC =4,A 、B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( ). A .3 3 B .2 3 C. 3 D .1 解析 由题意知,如图所示,在棱锥S -AB C 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,因此V =13×34×(3)2×4= 3. 答案 C3.(2019年青岛模拟)如图所示,b ,c 在平面α内,a ∩c =B ,b ∩c =A ,且a ⊥b ,a ⊥c ,b ⊥c ,若C ∈a ,D ∈b ,E 在线段AB 上(C ,D ,E 均异于A ,B),则△ACD 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:∵a ⊥b ,b ⊥c ,a ∩c =B ,∴b ⊥面ABC ,∴AD ⊥AC ,故△ACD 为直角三角形.答案:B4.(金丽衢模拟)已知α,β是不同的两个平面,m,n是不同的两条直线,则下列A.若m∥n,m⊥α,则n⊥αB.若m⊥α,m⊥β,则α∥βC.若m⊥α,m⊂β,则α⊥β[:D.若m∥α,α∩β=n,则m∥n解析对于A,如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于该平面,故选项A正确;对于B,如果一条直线同时垂直于两个平面,那么这两个平面相互平行,故选项B正确;对于C,如果一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直,故选项C正确;对于D,注意到直线m与直线n可能异面,因此选项D不正确.综上所述,选D.答案 D5.如图所示,E、F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面DCC1D1上的投影是________(填序号).[:解析B在面DCC1D1上的投影为C,F、E在面DCC1D1上的投影应分别在边CC1和DD1上,而不在四边形的内部,故①③④错误.答案②[:6.(2019年浙江卷)已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直解析:找出图形在翻折过程中变化的量与不变的量.对于选项A,过点A作AE⊥BD,垂足为E,过点C作CF⊥BD,垂足为F,在图(1)中,由边AB,BC不相等可知点E,F不重合.在图(2)中,连接CE,若直线AC与直线BD垂直,又∵AC∩AE=A,∴BD⊥面ACE,∴BD⊥CE,与点E,F不重合相矛盾,故A错误.对于选项B,若AB⊥CD,又∵AB⊥AD,AD∩CD=D,∴AB⊥面ADC,∴AB⊥AC,由AB<BC可知存在这样的等腰直角三角形,使得直线AB与直线CD垂直,故B正确.对于选项C,若A D⊥BC,又∵DC⊥BC,AD∩DC=D,∴BC⊥面ADC,∴BC⊥AC.已知BC=2,AB=1,BC>AB,∴不存在这样的直角三角形.∴C错误.由上可知D错误,故选B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题29立体几何中的最值问题一、考情分析立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从两个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是直接法,即根据几何体的结构特征或平面几何中的相关结论,直接判断最值. 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.二、经验分享1.解决立体几何中的最值问题常见方法有:(1)建立函数法是一种常用的最值方法,很多情况下,我们都是把这类动态问题转化成目标函数,最终利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法;二次数的配方法、公试法;有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.(2)公理与定义法通常以公理与定义作依据,直接推理问题的最大值与最小值,一般的公理与定理有:两点之间以线段为最短,分居在两异面直线上的两点的连线段中,以它们的公垂线段为短.球面上任意两点间的连线中以过这两点与球心的平面所得圆的劣弧长为最短等.如果直接建立函数关系求之比较困难,而运用两异面直线公垂线段最短则是解决问题的捷径.(3)解不等式法是解最值问题的常用方法、在立体几何中同样可利用不等式的性质和一些变量的特殊不等关系求解:如最小角定理所建立的不等关系等等.(4)展开体图法是求立体几何最值的一种特殊方法,也是一种常用的方法,它可将几何题表面展开,也可将几何体内部的某些满足条件的部分面展开成平面,这样能使求解问题,变得十分直观,由难化易.(5)变量分析法是我们要透过现象看本质,在几何体中的点、线、面,哪些在动,哪些不动,要分析透彻,明白它们之间的相互关系,从而转化成求某些线段或角等一些量的求解最值总题的方法.除了上述5种常用方法外,还有一些使用并不普遍的特殊方法,可以让我们达到求解最值问题的目的,这就是:列方程法、极限思想法、向量计算法等等其各法的特点与普遍性,大家可以通过实例感受其精彩内涵与思想方法所在.2.决定棱锥体积的量有两个,即底面积和高,当研究其体积的最值问题时,若其中有一个量确定,则只需另一个量的最值;若两个量都不确定,可通过设变量法,将体积表示为变量的函数解析式,利用函数思想确定其最值;将空间问题转化为平面问题是转化思想的重要体现,通过旋转到一个平面内,利用两点之间距离最短求解3.解决几何体体积最值问题的方法(1) 根据条件建立两个变量的和或积为定值,利用基本不等式求体积的最值;通过建立相关函数式,将所求的最值问题转化为函数的最值问题求解,此法应用最为广泛;由图形的特殊位置确定最值,如垂直求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.4.解题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次从本文所标定的方法顺序思考,必能找到解题的途径三、题型分析(一) 距离最值问题1.空间中两点间距离的最值问题A C与BD上,求MN的最小值. 【例1】正方体的棱长为1,M、N分别在线段11【分析】方法一,该题可以结合正方体的结构特征,将其转化为两异面直线的距离来求;方法二,可设出变量,构建相应的函数,利用函数的最值求解;方法三,建立空间直角坐标系,利用点的坐标以及距离公式表示出目标函数,然后利用函数方法求解最值.A C与BD是异面直线,所以当MN是两直线的共垂线段时,MN 【解析】方法一(定义转化法)因为直线11取得最小值.取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.下证明之.在矩形11BDD B 中,PQ 为中位线,所以1//PQ BB ,又因为1BB ⊥平面ABCD ,所以PQ ⊥平面ABCD又因为BD ⊆平面ABCD ,所以PQ BD ⊥.同理可证11PQ A C ⊥,而, ,所以线段PQ 就是两异面直线11A C 与BD 的共垂线段,且1PQ =.由异面直线公垂线段的定义可得,故MN 的最小值为1.方法二:(参数法)如图,取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.由正方体的棱长为1可得1PQ =.连结AC ,则11//AC A C ,所以BQC ∠为两异面直线11A C 与BD 所成角.在正方形ABCD 中,AC BD ⊥,所以.过点M 作MH AC ⊥,垂足为H ,连结NH ,则//MH PQ ,且. 设PM m =,QN t =,则QH m =.在Rt QNH ∆中,, 在Rt MHN ∆中,.显然,当0m n ==时,2MN 取得最小值1,即MN 的最小值为1.方法三:(向量法)如图,以D 为坐标原点,分别以射线DA 、DC 、1DD 为x 、y 、z 轴建立空间直角坐标系.设DN m =,1A M n =.则,即;,即.所以,故当2m n ==时,2MN 取得最小值1,即MN 的最小值为1.【点评】空间中两点距离的最值,最基本的方法就是利用距离公式建立目标函数,根据目标函数解析式的结构特征求解最值.对于分别在两个不同对象上的点之间距离的最值,可以根据这两个元素之间的关系,借助立体几何中相关的性质、定理等判断并求解相应的最值.如【典例1】中的两点分别在两条异面直线上,显然这两点之间距离的最小值即为两异面直线的公垂线段的长度.另外注意直线和平面的距离,两平面的距离等的灵活运用.【小试牛刀】【湖南省长沙市2019届上学期高三统一检测】设正方体的棱长为,为的中点,为直线上一点,为平面内一点,则,两点间距离的最小值为()A. B. C. D.【答案】B【解析】结合题意,绘制图形结合题意可知OE是三角形中位线,题目计算距离最短,即求OE与两平行线的距离,,所以距离d,结合三角形面积计算公式可得,解得,故选B。

2.几何体表面上的最短距离问题【例2】正三棱柱ABC—A1B1C1中,各棱长均为2,M为AA1中点,N为BC的中点,则在棱柱的表面上从点M到点N的最短距离是多少?并求之.【分析】将正三棱柱的表面展开,即可转化为平面内两点间距离的最小值问题求解.注意两种不同的展开方式的比较.【解析】 (1)从侧面到N,如图1,沿棱柱的侧棱AA1剪开,并展开,则.(2)从底面到N点,沿棱柱的AC、BC剪开、展开,如图2.则=∵∴.图(1)图(2)【点评】求解几何体表面上的最短距离问题,往往需要将几何体的侧面或表面展开,将问题转化为平面图形中的最值,进而利用平面几何中的相关结论判断并求解最值.如【典例2】中就是利用了平面内两点间线段最短来确定最值,但要注意几何体表面的展开方式可能有多种,求解相关最值时,需要比较才能得到正确结论. 【小试牛刀】在侧棱长为的正三棱锥中, ,过作截面,交于,交于,则截面周长的最小值为__________.【答案】6【解析】将棱锥的侧面沿侧棱展开,如图,的长就是截面周长的最小值,由题意,由等腰三角形的性质得.(二) 面积的最值1.旋转体中面积的最值【例3】一个圆锥轴截面的顶角为56π,母线为2,过顶点作圆锥的截面中,最大截面面积为 .【分析】本题是截面问题中的常见题,应根据几何体的结构特征确定截面形状,然后求解截面的数字特征,进而确定其最值.【解析】设圆锥的轴截面顶角是α,母线长为l ,则截面面积的最大值为. 由题意可知圆锥的轴截面顶角为56π, ∴最大面积为21. 【点评】由圆锥的性质可知,过圆锥顶点的截面一定是等腰三角形,且腰长等于圆锥的母线长,该等腰三角形的顶角的最大值为轴截面的顶角,所以截面面积的最大值取决于轴截面顶角的取值范围,不能误认为轴截面的面积就是最大值.【小试牛刀】圆柱轴截面的周长l 为定值,求圆柱侧面积的最大值.【解析】设圆柱的底面直径为d ,高为h .则由题意得:. 所以12d h L +=. 而圆柱的侧面积为. 由均值不等式可得,即216L dh ≤(当且仅当d h =时等号成立). 所以圆柱侧面积为,即圆柱侧面积的最大值为216L π. 2.多面体中的面积最值 【例4】如图中1所示,边长AC =3,BC =4,AB =5的三角形简易遮阳棚,其A 、B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角,试问:遮阳棚ABC 与地面成多大角度时,才能保证所遮影面ABD 面积最大?【分析】首先分析几何体的结构特征,明确遮影面ABD 中的定值——AB,则所求最值问题转化为该边上的高的最值,进而根据已知——太阳光的照射角度将其与ABC ∆中AB 上的高建立联系,从而确定最值.【解析】 易知,ΔABC 为直角三角形,由C 点引AB 的垂线,垂足为Q,则应有DQ 为CQ 在地面上的斜射影,且AB 垂直于平面CQD,如图2所示.因太阳光与地面成30°角,所以∠CDQ =30°,又知在ΔCQD 中,CQ =512, 由正弦定理,有︒30sin CQ =QCDQD ∠sin , 即 QD =56sin ∠QCD. 为使面ABD 的面积最大,需QD 最大,只有当∠QCD =90°时才可达到,从而∠CQD =60°.故当遮阳棚ABC 与地面成60°角时,才能保证所遮影面ABD 面积最大.【点评】求解几何体中的面积最值,首先要明确所求图形面积的表示式,区分该图形中的定值与变量,然后根据几何体的结构特征和已知条件确定变量的最值即可.如该题中抓住QD 的变化,建立与已知——太阳光的照射角的关系是准确确定最值的关键所在.【小试牛刀】在三棱锥A —BCD 中,ΔABC 和ΔBCD 都是边长为a 的正三角形,求三棱锥的全面积的最大值.【解析】 如图,取BC 中点M,连AM 、DM,∴ΔABC 和ΔBCD 都是正三角形,∴∠AMD 是二面角A-BC-D 的平面角,设∠AMD =θ,又∵ΔABD ≌ΔACD,且当∠ACD =90°时,ΔACD 和ΔABD 面积最大,此时AD =2a,在ΔAMD 中,由余弦定理cos ∠AMD =-31, ∴当1cos 3θ=-时,三棱锥A-BCD 的全面积最大.(三) 体积的最值问题【例5】如图3,已知在∆A B C 中,∠=︒C 90,P A ⊥平面ABC,AE P B ⊥于E,AF P C ⊥于F, ,∠=A E F θ,当θ变化时,求三棱锥PA E F -体积的最大值.图3【分析】θ的变化是由AC与BC的变化引起的,要求三棱锥P-AEF 的体积,则需找到三棱锥P-AEF 的底面积和高,高为定值时,底面积最大,则体积最大.【解析】因为P A ⊥平面ABC,B C ⊂平面ABC,所以P A B C⊥ 又因为,所以B C ⊥平面PAC,又A F ⊂平面PAC,所以B C A F ⊥, 又,所以A F ⊥平面PBC,即A F E F⊥.EF 是AE 在平面PBC 上的射影,因为A E P B ⊥,所以E F P B ⊥,即P E ⊥平面AEF.在三棱锥PA E F -中, , 所以,,因为02<<θπ,所以因此,当θπ=4时,V P A E F -取得最大值为26. 【点评】几何体体积的最值问题的解决,要根据几何体的结构特征确定其体积的求解方式,分清定量与变量,然后根据变量的取值情况,利用函数法或平面几何的相关结论判断相应的最值.如该题中确定三棱锥底面的面积最值是关键.【小试牛刀】【重庆市九龙坡区2019届期末】我国古代数学名著九章算术中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,,,当堑堵的外接球的体积为时,则阳马体积的最大值为A.2 B.4 C.D.【答案】D【解析】堑堵的外接球的体积为,其外接球的半径,即,又,.则..即阳马体积的最大值为.故选D.(四) 角的最值【例6】如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA =AB=BC =2,AD =1.M是棱SB的中点.(Ⅰ)求证:AM∥面SCD;(Ⅱ)求面SCD与面SAB所成二面角的余弦值;(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为θ,求sinθ的最大值,【分析】直接根据几何体的结构特征建立空间直角坐标系,求出相关点的坐标和向量坐标,利用向量运算进行证明计算即可.【解析】(Ⅱ)易知平面SAB 的法向量为()11,0,0n =.设平面SCD 与平面SAB 所成的二面角为ϕ,则,即3cos ϕ=. ∴平面SCD 与平面SAB 所成二面角的余弦值为36.(Ⅲ)设,则.又,面SAB 的法向量为()11,0,0n =,所以,..当531=x ,即35=x 时,.【小试牛刀】在棱长为1的正方体ABCD —A 1B 1C 1D 1中,P 是A 1B 1上的一动点,平面PAD 1和平面PBC 1与对角面ABC 1D 1所成的二面角的平面角分别为α、β,试求α+β的最大值和最小值.解析:如图.对角面A 1B 1CD ⊥对角面ABC 1D 1,其交线为EF.过P 作PQ ⊥EF 于Q,则PQ ⊥对角面ABC 1D 1.分别连PE 、PF.∵EF ⊥AD 1,PE ⊥AD 1(三垂线定理).故由二面角的平面角定义知 ∠PFQ =α,同理,∠PFQ =β.设A 1P =x,(0≤x≤1),则PB 1=1-x. ∵EQ =A 1P,QF =PB 1,PQ =22,∴当0<x <1时,有tan α=x 22,tan β=)1(22x -,∴tan(α+β)===,而当x =0时α=2π,tan(α+β)=tan(2π+β)=-cot β=-E A EF 1=-2,上式仍成立;类似地可以验证.当x =1时,上式也成立,于是,当x =21时,tan(α+β)取最小值-22;当x =0或1时,tan(α+β)取最大值-2.又∵ 0<α+β<π,∴(α+β)max =π-arctan 2,(α+β)min =π-arctan22. 五、迁移运用1.【湖北省荆门市2019届高三月考】在棱长为4的正方体中,是中点,点是正方形内的动点(含边界),且满足,则三棱锥的体积最大值是( )A .B .C .D .【答案】D【解析】因为在棱长为4的正方体中,是中点,点是正方形内的动点(含边界),且满足, 所以,所以,即,令点P在DC上的投影点为O,,,所以,整理得,根据函数单调性可得当时,有最大值为16,所以的最大值为,因为,所以三棱锥体积最大值为:,故选D。

相关文档
最新文档