济南外国语学校2015-2016学年度第一学期初一数学期末考试

合集下载

2015—2016学年度七年级数学期末考试试题

2015—2016学年度七年级数学期末考试试题

2015—2016学年度七年级数学期末考试试题2015—2016学年度七年级数学期末考试试题(一)2015-2016学年七年级上册数学期末试卷及答案汇总关于初中期末考试,欢迎点击查看特别策划:2016初中上学期期末复习资料专题期末考试试题点击下载预览[精]【名优测试】2015-2016学年浙教版七上数学期末经典测试卷1(附答案)[精]2015-2016学年浙教版七年级上册数学期末质量检测卷山东省夏津县万隆实验中学2015-2016学年七年级抽考模拟检测数学试题[精]宁波市2015学年第一学期七年级数学期末测试卷2015-2016学年七年级上数学期末试题4套(无答案)南通市第一初中2015-2016七年级数学(上册)期末复习测试(附答案)[精]人教版七年级上册数学期末模拟测试试卷上海市黄浦区2014-2015学年七年级上学期期末考试数学试题上海市黄浦区2014-2015学年六年级(五四学制)上学期期末考试数学试题山东省济宁市微山县2014-2015学年七年级上学期期末数学试卷【解析版】要测验,要试卷?我们推荐您使用新产品:21组卷-/组卷智能高效,是教学的好帮手!点击进入2015—2016学年度七年级数学期末考试试题(二)最新人教版2015-2016年七年级下期末考试数学试题及答案2015-2016学年度第二学期期终考试七年级数学试卷第Ⅰ卷(选择题,共36分)一、选择题(每小题3分,共36分)1.要反映武汉某一周每天的最高气温的变化趋势,宜采用A.条形统计图.B.扇形统计图.C.折线统计图.D.频数分布直方图.2.下列调查适合全面调查的是A.了解武汉市民消费水平.B.了解全班同学每周体育锻炼的时间C.了解武汉市中学生的眼睛视力情况. D.了解一批节能灯的使用寿命情况.3.下列各组数中互为相反数的是A. 与2.B. -2与3.C. -2与-4.下列无理数中,在﹣2与1之间的是A.﹣B.﹣C. 1. D. -2与2-22. D. 55.如图,能判定EB∥AC的条件是A.∠C=∠ABEC.∠C=∠ABC B. ∠A=∠EBD D. ∠A=∠ABE 第5题图6.若m<n,则下列不等式中,正确的是A. m-4>n-4B.+17.不等式的解集在数轴上表示正确的是mn > C. -3m<-3n D. 2m+1<2n5512015—2016学年度七年级数学期末考试试题(三)【人教版】2015-2016学年七年级下期中数学试卷(含答案)2015-2016学年广东省汕头市潮南区两英镇七年级(下)期中数学试卷一、(共10小题,每小题3分,满分30分)1.49的平方根是()A.7 B.﹣7 C.±7 D.2.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.3.在下列各数:3.1415926、A.2 B.3 C.4 D.5 、0.2、、、、中无理数的个数是()4.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()A.∠1=∠2 B.∠D+∠ACD=180°C.∠D=∠DCE D.∠3=∠45.下列运算正确的是()A.6.点A(A.(﹣B.(﹣3)3=27 C.=2 D.=3 ,1)关于y轴对称的点的坐标是(),﹣1)B.(﹣,1)C.(,﹣1)D.(,1)7.如果∠α=30°,那么∠α的余角是()A.30°B.150°C.60°D.70°8.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)9.下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A.0个B.1个C.2个D.3个10.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)二、填空题(请将正确答案填在每题后面的横线上)11.(1)计算(2)如果x=12.如果式子=;,那么x2= .有意义,则x的取值范围是13.把命题“对顶角相等”改写成“如果…那么…”的形式:.14.如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=度.15.1﹣的相反数是64的立方根是.16.如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=.三、解答题17.计算:(﹣2)3×+|+|+×(﹣1)2016.18.求式中x的值:3(x﹣1)2+1=28.19.如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:【2015—2016学年度七年级数学期末考试试题】∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()四、解答题20.如图,已知:∠1=∠2,∠3=108°,求∠4的度数.21.已知22.已知+|2x﹣3|=0.(1)求x,y 的值;(2)求x+y的平方根.的整数部分为a,小数部分为b.求:(1)a、b的值;(2)式子a2﹣a﹣b的值.五、解答题(每小题9分,共27分)23.在平面直角坐标系xoy中,已知△ABC三个顶点的坐标分别为A(﹣2,0),B(﹣4,4),C(3,﹣3).(1)画出△ABC;(2)画出△ABC向右平移3个单位长度,再向上平移5个单位长度后得到的△A1B1C1,并求出平移后图形的面积.24.已知如图,CD⊥AB于点D,EF ⊥AB于点F,∠1=∠2.(1)求证:CD∥EF;(2)判断∠ADG与∠B的数量关系?如果相等,请说明理由;如果不相等,也请说明理由.25.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.2015—2016学年度七年级数学期末考试试题(四)2015-2016学年度沪科版七年级数学下册期末测试卷及答案2015-2016学年度七年级数学下册期末测试卷时间:120分钟分数:120分一、选择题(每小题3分,共30分)1.实数4的算术平方根是()A.-2 B.2 C.±2 D.±42. 12的负的平方根介于()A.-5与-4之间B.-4与-3之间C.-3与-2之间D.-2与-1之间3. 在数轴上表示不等式x+5≥1的解集,正确的是()A.B.C.D.4.已知关于x的方程2x+4=m-x的解为负数,则m的取值范围是()5.下列计算正确的是()A.a3+a2=a5 B.(3a-b)2=9a2-b2 C.a6b÷a2=a3b D.(-ab3)2=a2b66.(茂名中考)下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)+4C.10x2-5x=5x(2x-1)D.x2-16+6x=(x+4)(x-4)+6x7.在分式中,是最简分式的有()A.0个B.1个C.2个D.3个8.分式方程的解是()A.x=3 B.x=-39.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°10.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是()二、填空题(每小题3分,共30分)11.计算:(2)3(31)012.把7的平方根和立方根按从小到大的顺序排列为13.不等式2x+9≥3(x+2)的正整数解是.14.不等式组的解集是。

2015-2016学年山东省济南外国语学校七年级上学期期末数学试卷(解析版)

2015-2016学年山东省济南外国语学校七年级上学期期末数学试卷(解析版)

A.点 M
B.点 N
C.点 P
D.点 Q
3. (3 分)小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一 周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )
A.
B.
C.
D.
4. (3 分)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相 对的面上标的字是( )
A.大
第 4 页(共 22 页)
好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完 整统计图(每组数据包括右端点但不包括左端点) ,请你根据统计图解决下列 问题:
(1)此次调查抽取了多少用户的用水量数据? (2)补全频数分布直方图,求扇形统计图中“25 吨~30 吨”部分的圆心角度数; (3)如果自来水公司将基本用水量定为每户 25 吨,那么该地 20 万用户中约有 多少用户的用水全部享受基本价格? 27.情景:试根据图中信息,解答下列问题:
,⊕处印刷时被墨盖住了,查后面的 ) D.5
答案,这道题的解为 x=﹣2.5,那么⊕处的数为( A.﹣2.5 B.2.5 C.3.5
11. (3 分)学校组织春游,每人车费 4 元.一班班长与二班班长的对话如下: 一班班长:我们两班共 93 人.二班班长:我们二班比你们一班多交了 12 元的车 费. 由上述对话可知,一班和二班的人数分别是( A.45,42 B.45,48 ) D.51,42
D.7
7. (3 分)全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重 中之重.其中推进燃煤电厂脱硫改造 15000 000 千瓦是《政府工作报告》中确 定的重点任务之一.将数据 15 000 000 用科学记数法表示为( A.15×106 B.1.5×107 C.1.5×108 )

山东省济南市2015-2016学年七年级数学上学期期末测试试题附答案

山东省济南市2015-2016学年七年级数学上学期期末测试试题附答案

山东省济南市2015-2016学年七年级数学上学期期末测试试题姓名:__________ 考试日期:__________ 班主任:__________ 成绩:__________满分:120分 时间:60分钟一、选择题(本大题共12个小题,每个小题4分,共48分)1.有资料表明,被誉为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年森林的消 失量用科学记数法表示应是( )A .15×106公顷 B. 1.5×107公顷 C. 150×i05公顷D 。

0.15×l08公顷2.在211-,6,—99,0 ,()21--,-3+中,负数的个数有 ( ) A.2个 B.3 个 C.4 个 D.5 个3.有理数a ,b ,c 在数轴上的位置如右图所示,则a c c b b a ++--+= ( )A .-2bB . 2c -2bC .2cD . 04.若832253y x xy n m --与的和是单项式,则m 、n 的值分别是( )A .m =2,n =2B .m =4,n =1C .m =4,n =2D .m =2,n =35.当n 为正整数时,()()n n 21211-+-+的值是( )A 、0B 、-2C 、2D 、不能确定6.下列调查中,适宜采用抽样调查方式的是( )A.调查伦敦奥运会女子铅球参赛运动员兴奋剂的使用情况B .调查我校某班学生的身高情况C.调查一架“歼380”隐形战机各零部件的质量D .调查我国中学生每天体育锻炼的时间7.下列语句正确的有( )①射线AB 与射线BA 是同一条射线②两点之间的所有连线中,线段最短 ③连结两点的线段叫做这两点的距离④欲将一根木条固定在墙上,至少需要2个钉子A .1个B .2个C .3个D .4个8.下列说法不正确的是( )A.为了反映雅安市七县一区人口分布多少情况,通常选择条形统计图B .为了反映我市连续五年来中国民生产总值增长情况,通常选择折线统计图C.为了反映本校中学生人数占全市中学学生人数的比例情况,应选择扇形统计图D.以上三种统计图都可以直接找到所需数目 已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A .a •b >0B .a-b <0C .a+b <0D .a+b >010、计算3的正数次幂,21873,7293,2433,813,273,93,337654321=======65613,8=…观察归纳各计算结果中个位数字的规律,可得20053的个位数字是( )A .1B .3C .7D .911.在一张挂历上,任意圈出同一列上的三个数的和不可能是( ) A.4 B.33 C.51 D.2712.小明解方程32312-+=-a x x 去分母时.方程右边的-3忘记乘6.因而求出的解为x=2,问原方程正确的解为( )A .x=5B .x=7C .x=-13D .x=-l二、选择题(本大题共6个小题,每个小题4分,共24分)1.甲、乙、丙三地的海拔高度分别是20m 、-15m 、-5m ,那么最高的地方比最低的地方高_________m .2.多项式132223-+--x xy y x x 的次数是______.3.从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形 分割成十个三角形,则这个多边形的为________边形.4.把秒化成度、分、秒:3800″=______ °______′_______″.5.已知线段AB=lOcm,点C 是直线AB 上一点,BC=4cm :若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度是_______cm 。

七年级上册数学期末试题 (含答案) (5)

七年级上册数学期末试题 (含答案) (5)

山东省济南市育英中学2015~2016学年度七年级上学期期末数学试卷一、选择题(共15小题,每小题3分,满分45分)1.|﹣3|的相反数是()A.﹣3 B.3 C.D.﹣2.如图是由4个大小相等的正方形搭成的几何体,其左视图是()A.B.C.D.3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=24.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个数用科学记数法表示正确的是()A.6.8×109元 B.6.8×108元C.6.8×107元D.6.8×106元5.下列方程中解为x=0的是()A.2x+3=2x+1 B.5x=3x C.+4=5x D.x+1=06.下列计算正确的是()A.﹣3﹣(﹣3)=﹣6 B.﹣3﹣3=0 C.﹣3÷3×3=﹣3 D.﹣3÷3÷3=﹣37.下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查8.内径为120mm的圆柱形玻璃杯,和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为()A.150mm B.200mm C.250mm D.300mm9.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.310.下列解方程去分母正确的是()A.由﹣1=,得2x﹣1=3﹣3xB.由﹣=﹣1,得2(x﹣2)﹣3x﹣2=﹣4C.由=﹣﹣y,得3y+3=2y﹣3y+1﹣6yD.由﹣1=,得12y﹣1=5y+2011.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.10012.如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.4 B.6 C.8 D.1013.在矩形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x(cm),依题意可得方程()A.6+2x=14﹣3x B.6+2x=x+(14﹣3x) C.14﹣3x=6 D.6+2x=14﹣x14.已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2b B.2b+3 C.2a﹣3 D.﹣115.将一列有理数﹣1,2,﹣3,4,﹣5,6,…,按如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数,2008应排在A、B、C、D、E中的位置.其中两个填空依次为()A.﹣28,C B.﹣31,E C.﹣30,D D.﹣29,B二、填空题(本大题共6小题,每小题3分,共18分.)16.在数﹣4,﹣3,﹣1,2中,大小在﹣2和1之间的数是.17.计算63°12′﹣21°54′=.18.把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC=.19.方程(k﹣1)x|k|+2=0是一元一次方程,则k= .20.当m= 时,多项式x2﹣mxy﹣3y2中不含xy项.21.为了做一个试管架,在长为a(cm)(a>6)的木板上钻3个小孔(如图)每个小孔的直径为2cm,则x等于cm.三、解答题(共8小题,满分57分)22.计算:(1)(﹣)×(﹣24)(2)﹣13﹣2×[2﹣(﹣3)2].23.解方程:(1)3x﹣4=2(x+1)(2).24.先化简再求值:(1)(a﹣b)2+9(a﹣b)+15(a﹣b)2﹣(a﹣b),其中a﹣b=.(2)a2﹣(5a2﹣3b)﹣2(2b﹣a2),其中a=﹣1,b=.25.(推理填空)如图所示,点O是直线AB上一点,∠BOC=130°,OD平分∠AOC.求:∠COD的度数.解:∵O是直线AB上一点∴∠AOB=.∵∠BOC=130°∴∠AOC=∠AOB﹣∠BOC=.∵OD平分∠AOC∴∠COD== .26.如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求:(1)AC的长;(2)BD的长.27.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的读书兴趣,2015~2016学年度七年级一班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整数据统计图(每组包括最小值不包括最大值).2015~2016学年度七年级(1)班每天阅读时间在0.5小时以内的学生占全班人数12%.根据统计图解答下列问题:(1)2015~2016学年度七年级(1)班有名学生;(2)补全直方图;(3)2015~2016学年度七年级每天阅读时间在1~1.5小时的学生有180人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?28.在五一黄金周期间,小明、小亮等同学随家人一同到江郎山游玩.如图是买门票时,小明与他爸爸的对话.问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.29.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.山东省济南市育英中学2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.|﹣3|的相反数是()A.﹣3 B.3 C.D.﹣【考点】相反数;绝对值.【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.2.如图是由4个大小相等的正方形搭成的几何体,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从正面看易得第一层有2个正方形,第二层最左边有一个正方形.故选C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求得.【解答】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.4.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个数用科学记数法表示正确的是()A.6.8×109元 B.6.8×108元C.6.8×107元D.6.8×106元【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:680 000 000=6.8×108元.故选B.【点评】本题考查科学记数法的应用.对于较大数用科学记数法表示时,a×10n中的a 应为1≤a<10,n应为整数数位减1.5.下列方程中解为x=0的是()A.2x+3=2x+1 B.5x=3x C.+4=5x D.x+1=0【考点】方程的解.【专题】计算题.【分析】将x=0代入方程检验即可得到结果.【解答】解:A、将x=0代入方程左边=0+3=3,右边=0+1=1,左边≠右边,不合题意;B、将x=0代入方程左边=0,右边=0,左边=右边,符合题意;C、将x=0代入方程左边=+4=4,右边=0,左边≠右边,不合题意;D、将x=0代入方程左边=0+1=1,右边=0,左边≠右边,不合题意,故选B.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列计算正确的是()A.﹣3﹣(﹣3)=﹣6 B.﹣3﹣3=0 C.﹣3÷3×3=﹣3 D.﹣3÷3÷3=﹣3【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的减法运算对A进行判断;根据有理数的加法运算对B进行判断;根据有理数的乘除运算对C、D进行判断.【解答】解:A、原式=0,所以A选项错误;B、原式=﹣6,所以B选项错误;C、原式=﹣1×3=﹣3,所以C选项正确;D、原式=﹣1÷3=﹣,所以D选项错误.故选C.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.7.下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查【考点】全面调查与抽样调查.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.【点评】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.内径为120mm的圆柱形玻璃杯,和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为()A.150mm B.200mm C.250mm D.300mm【考点】一元一次方程的应用;圆柱的计算.【专题】几何图形问题.【分析】根据题意,利用圆柱的体积公式可得等量关系:π×玻璃杯内高=π×32.【解答】解:设玻璃杯内高为x,依据题意得:π×x=π×32解得x=200mm,故选B.【点评】此题的关键是要盛同样的水就要让两个容器体积相等,因此利用圆柱的体积公式可列出等量关系.9.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3【考点】频数(率)分布直方图.【分析】根据频率分布直方图可以知道书法兴趣小组的频数,然后除以总人数即可求出加绘画兴趣小组的频率.【解答】解:∵根据频率分布直方图知道书法兴趣小组的频数为8,∴参加书法兴趣小组的频率是8÷40=0.2.故选C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.10.下列解方程去分母正确的是()A.由﹣1=,得2x﹣1=3﹣3xB.由﹣=﹣1,得2(x﹣2)﹣3x﹣2=﹣4C.由=﹣﹣y,得3y+3=2y﹣3y+1﹣6yD.由﹣1=,得12y﹣1=5y+20【考点】解一元一次方程.【专题】计算题.【分析】将各选项分别乘以分母的最小公倍数去分母,可得出答案.【解答】解:A、不含分母的项漏乘以各分母的最小公倍数6,错误;B、的分子作为一个整体没有加上括号,错误;C、正确;D、不含分母的项漏乘以各分母的最小公倍数15,错误.故选C.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.11.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.100【考点】一元一次方程的应用.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.12.如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.4 B.6 C.8 D.10【考点】两点间的距离.【专题】计算题.【分析】根据线段中点的定义得BC=AB=6,再由AD:CB=1:3可得AD=2,然后利用DB=AB ﹣AD进行计算即可.【解答】解:∵C为AB的中点,∴AC=BC=AB=×12=6,∵AD:CB=1:3,∴AD=2,∴DB=AB﹣AD=12﹣2=10(cm).故选D.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.13.在矩形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x(cm),依题意可得方程()A.6+2x=14﹣3x B.6+2x=x+(14﹣3x) C.14﹣3x=6 D.6+2x=14﹣x【考点】由实际问题抽象出一元一次方程.【分析】设AE为xcm,则AM为(14﹣3x)cm,根据图示可以得出关于AN=MW的方程.【解答】解:设AE为xcm,则AM为(14﹣3x)cm,根据题意得出:∵AN=MW,∴AN+6=x+MR,即6+2x=x+(14﹣3x)故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,要求学生会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.14.已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2b B.2b+3 C.2a﹣3 D.﹣1【考点】整式的加减;数轴;绝对值.【分析】根据a,b两数在数轴上对应的点的位置可得:b<﹣1<1<a<2,然后进行绝对值的化简,最后去括号合并求解.【解答】解:由图可得:b<﹣1<1<a<2,则有:|a+b|﹣|a﹣2|+|b+2|=a+b+(a﹣2)+b+2=a+b+a﹣2+b+2=2a+2b.故选A.【点评】本题考查了整式的加减,解答本题的关键是根据a、b在数轴上的位置进行绝对值的化简.15.将一列有理数﹣1,2,﹣3,4,﹣5,6,…,按如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数,2008应排在A、B、C、D、E中的位置.其中两个填空依次为()A.﹣28,C B.﹣31,E C.﹣30,D D.﹣29,B【考点】规律型:数字的变化类.【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答;用除以5,根据商和余数的情况确定所在峰中的位置即可.【解答】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中C位置的数的是﹣29,∵÷5=401…2,∴2008为“峰402”的第二个数,排在B的位置.故选:D.【点评】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.二、填空题(本大题共6小题,每小题3分,共18分.)16.在数﹣4,﹣3,﹣1,2中,大小在﹣2和1之间的数是﹣1 .【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣3<﹣2<﹣1<1<2,∴大小在﹣2和1之间的数是﹣1.故答案为:﹣1.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.17.计算63°12′﹣21°54′=41°18′.【考点】度分秒的换算.【分析】先根据1°=60′变形为62°72′﹣21°54′,再度、分分别相减即可.【解答】解:63°12′﹣21°54′=62°72′﹣21°54′=41°18′,故答案为:41°18′.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系式解此题的关键.18.把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC=35°.【考点】角的计算;翻折变换(折叠问题).【分析】根据折叠得出全等三角形,根据全等三角形的性质得出∠BOC=∠B′OC,求出∠BOB′,即可求出答案.【解答】解:∵沿OC折叠,B和B′重合,∴△BOC≌△B′OC,∴∠BOC=∠B′OC,∵∠AOB′=110°,∴∠BOB′=180°﹣110°=70°,∴∠B′OC=×70°=35°,故答案为:35°.【点评】本题考查了角的计算,折叠的性质,全等三角形的性质等知识点,关键是求出∠B′OC=∠BOC和求出∠BOB′的度数.19.方程(k﹣1)x|k|+2=0是一元一次方程,则k= ﹣1 .【考点】一元一次方程的定义.【分析】根据已知和一元一次方程的定义得出k﹣1≠0,|k|=1,求出k的值即可.【解答】解:∵方程(k﹣1)x|k|+2=0是一元一次方程,∴k﹣1≠0,|k|=1,解得:k=﹣1,故答案为:﹣1.【点评】本题考查了一元一次方程的定义的应用,能根据一元一次方程的定义得出k﹣1≠0和|k|=1是解此题的关键.20.当m= 时,多项式x2﹣mxy﹣3y2中不含xy项.【考点】多项式.【分析】根据题意结合多项式x2﹣mxy﹣3y2中不含xy项,得出xy项的系数和为0,进而得出答案.【解答】解:∵多项式x2﹣mxy﹣3y2中不含xy项,∴﹣m+=0,解得:m=.故答案为:.【点评】此题主要考查了多项式,正确得出xy项的系数和为0是解题关键.21.为了做一个试管架,在长为a(cm)(a>6)的木板上钻3个小孔(如图)每个小孔的直径为2cm,则x等于cm.【考点】一元一次方程的应用.【专题】计算题.【分析】利用5个x3个直径的长为a列方程得到4x+3×2=a,然后解关于x的一元一次方程即可.【解答】解:根据题意得4x+3×2=a,解得x=.故答案为.【点评】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.三、解答题(共8小题,满分57分)22.计算:(1)(﹣)×(﹣24)(2)﹣13﹣2×[2﹣(﹣3)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12﹣4+9=8+9=17;(2)原式=﹣1﹣2×(﹣7)=﹣1+14=13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.解方程:(1)3x﹣4=2(x+1)(2).【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣4=2x+2,移项合并得:x=6;(2)去分母得:12﹣x﹣5=6x﹣2x+2,移项合并得:5x=5,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.24.先化简再求值:(1)(a﹣b)2+9(a﹣b)+15(a﹣b)2﹣(a﹣b),其中a﹣b=.(2)a2﹣(5a2﹣3b)﹣2(2b﹣a2),其中a=﹣1,b=.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式合并后,将a﹣b的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:(1)原式=16(a﹣b)2+8(a﹣b),当a﹣b=时,原式=1+2=3;(2)原式=a2﹣5a2+3b﹣4b+2a2=﹣2a2﹣b,当a=﹣1,b=时,原式=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.25.(推理填空)如图所示,点O是直线AB上一点,∠BOC=130°,OD平分∠AOC.求:∠COD的度数.解:∵O是直线AB上一点∴∠AOB=180°.∵∠BOC=130°∴∠AOC=∠AOB﹣∠BOC=50°.∵OD平分∠AOC∴∠COD=∠AOC= 25°.【考点】角平分线的定义.【专题】推理填空题.【分析】根据平角和角平分线的定义求解,根据解题步骤填上适当的数.【解答】解:∵O是直线AB上一点∴∠AOB=180°.∵∠BOC=130°∴∠AOC=∠AOB﹣∠BOC=50°.∵OD平分∠AOC∴∠COD=∠AOC=25°.故答案为180°、50°、∠AOC、25°.【点评】根据角平分线定义得出所求角与已知角的关系转化求解.26.如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求:(1)AC的长;(2)BD的长.【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,BC=2AB,AB=6,则BC=12,故AC=AB+BC可求;又因为点D 是AC的中点,则AD=AC,故BD=BC﹣DC可求.【解答】解:(1)∵BC=2AB,AB=6,∴BC=12,∴AC=18;(2)D是AC的中点,AC=18,∴AD=9,∴BD=BC﹣DC=12﹣9=3.故答案为18、3.【点评】做这类题时一定要与图形结合,这样才直观形象,不易出错.利用中点性质转化线段之间的倍分关系是解题的关键.27.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的读书兴趣,2015~2016学年度七年级一班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整数据统计图(每组包括最小值不包括最大值).2015~2016学年度七年级(1)班每天阅读时间在0.5小时以内的学生占全班人数12%.根据统计图解答下列问题:(1)2015~2016学年度七年级(1)班有50 名学生;(2)补全直方图;(3)2015~2016学年度七年级每天阅读时间在1~1.5小时的学生有180人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?【考点】频数(率)分布直方图;扇形统计图.【专题】数形结合.【分析】(1)用2015~2016学年度七年级(1)班每天阅读时间在0.5小时以内的学生人数除以它所占的百分比即可得到全班人数;(2)先计算出0.5﹣1小时的学生人数,然后补全条形统计图;(3)先计算出2015~2016学年度七年级每天阅读时间在1﹣1.5小时以内的学生所占的百分比,再用1分别减去其它三组的百分比即可得到每天阅读时间在0.5﹣1小时以内的学生所占的百分比,然后补全扇形统计图;(4)由扇形统计图得到该年级每天阅读时间不少于1小时的学生所占的百分比为40%,然后用600乘以40%即可.【解答】解:(1)6÷12%=50,所以2015~2016学年度七年级(1)班有50名学生;故答案为50;(2)0.5﹣1小时的学生人数=50﹣6﹣15﹣5=24(名),条形统计图为:(3)2015~2016学年度七年级每天阅读时间在1﹣1.5小时以内的学生所占的百分比=×100%=30%,所以每天阅读时间在0.5﹣1小时以内的学生所占的百分比=1﹣30%﹣10%﹣12%=48%,如图,(4)600×(10%+30%)=240(人),答:该年级每天阅读时间不少于1小时的学生有240人.【点评】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了扇形统计图.28.在五一黄金周期间,小明、小亮等同学随家人一同到江郎山游玩.如图是买门票时,小明与他爸爸的对话.问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.【考点】一元一次方程的应用.【分析】(1)根据题意分别表示出成人与学生所付金额,进而得出等式求出答案;(2)直接求出购买16张门票所付钱数,进而比较得出答案.【解答】解:(1)设x个成人,则(12﹣x)个学生,根据题意可得:35x+(12﹣x)×35×0.5=350,解得:x=8,则12﹣8=4(人).答:小明他们一共去了8个成人,4个学生;(2)当购买16张门票,则需要付款:16×35×0.6=336(元),∵336<350,∴选择团体购票比较合适.【点评】此题主要考查了一元一次方程的应用,根据题意表示成人与学生购票所要付的钱数是解题关键.29.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=25°;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【考点】角的计算.【专题】计算题.【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数.(2)根据OC是∠MOB的角平分线,∠BOC=65°可以求得∠BOM的度数,由∠NOM=90°,可得∠BON的度数,从而可得∠CON的度数.(3)由∠BOC=65°,∠NOM=90°,∠NOC=∠AOM,从而可得∠NOC的度数,由∠BOC=65°,从而得到∠NOB的度数.【解答】解:(1)∵∠MON=90°,∠BOC=65°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°.故答案为:25°.(2)∵∠BOC=65°,OC是∠MOB的角平分线,∴∠MOB=2∠BOC=130°.∴∠BON=∠MOB﹣∠MON=130°﹣90°=40°.∠CON=∠COB﹣∠BON=65°﹣40°=25°.(3)∵∠NOC∠AOM,∴∠AOM=4∠NOC.∵∠BOC=65°,∴∠AOC=∠AOB﹣∠BOC=180°﹣65°=115°.∵∠MON=90°,∴∠AOM+∠NOC=∠AOC﹣∠MON=115°﹣90°=25°.∴4∠NOC+∠NOC=25°.∴∠NOC=5°.∴∠NOB=∠NOC+∠BOC=70°.【点评】本题考查角的计算和旋转的知识,关键是明确题意,灵活变化,找出所求问题需要的量.。

2015-2016学年济南市历城区七上期末数学试卷

2015-2016学年济南市历城区七上期末数学试卷

2015-2016学年济南市历城区七上期末数学试卷一、选择题(共15小题;共75分)1. 的绝对值是A. B. C. D.2. 截止到年月底,济南机动车总保有量为辆,用科学记数法表示这个数为A. B. C. D.3. 下列调查最适合用抽样调查的是A. 某书稿中的错别字B. 调查七()班学生的身高情况C. 某品牌灯泡的使用寿命D. 企业招聘,对应聘人员进行面试4. 如图所示,直线,被直线所截,与是A. 同位角B. 内错角C. 同旁内角D. 邻补角5. 下列方程变形正确的是A. 由得B. 由得C. 由得D. 由得6. 如图,是一个正方体纸盒的展开图,若在其中的三个正方形,,分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形,,的三个数依次为A. ,,B. ,,C. ,,D. ,,7. 如果与是同类项,那么,的值分别是A. B. C. D.8. 形如的式子叫做二阶行列式,它的运算法则用公式表示为,依此法则计算的结果为A. B. C. D.9. 如图,直线,相交于点,,则与的关系是A. 相等B. 对顶角C. 互余D. 互补10. 下列几种说法:①两点之间线段最短;②任何数的平方都是正数;③几个角的和等于,我们就说这几个角互补;④是次单项式;⑤同旁内角的角平分线相互垂直.其中正确的说法有个.A. B. C. D.11. 如图,已知线段,延长线段到点,使,点是的中点.则等于A. B. C. D.12. 如图,将长方形纸片的沿着折叠(点在上,不与,重合),使点落在长方形内部点处,若平分,则的度数是A. B.C. D. 随折痕位置的变化而变化13. 一家商店将某种服装按成本价提高后标价,又以折(即按标价的)优惠卖出,结果每件服装仍可获利元,则这种服装每件的成本是A. 元B. 元C. 元D. 元14. 四边形和都是正方形,且正方形的边长为,正方形的边长为,连接,和后得到,用含字母和的代数式表示的面积为A. B. C. D.15. 根据如图中箭头指向的规律,从到再到,箭头的方向A. B.C. D.二、填空题(共6小题;共30分)16. .17. 关于的方程的解是,则.18. 一个角的补角加上后,等于这个角的余角的倍,则这个角.19. 上午点分,时钟的时针和分针所构成的锐角度数为.20. 已知,互为相反数,则.21. 如图,已知直线,直角三角板的顶点在直线上,则.三、解答题(共7小题;共91分)22. (1)计算:;(2)计算:;(3)化简:.(4)先化简后求值:,其中,.23. 解方程:(1).(2).24. 直线,,,的位置如图所示,已知,,,求的度数.25. 某天,一蔬菜经营户用元从蔬菜批发市场购进黄瓜和土豆共到菜市场去卖,黄瓜和土豆这天的批发价和零售价(单位:元)如表所示:品名批发价零售价黄瓜土豆(1)他当天购进黄瓜和土豆各多少千克?(2)如果黄瓜和土豆全部卖完,他能赚多少钱?26. 年月日是我国第二个“扶贫日”,某校学生会干部对学生倡导的“扶贫”自愿捐款活动进行抽样调查,对学校部分捐款人数进行调查和分组统计后,得到一组学生捐款情况的数据,将数据整理成如图所示的统计图,(图中信息不完整),已知A,B两组捐款人数的比为.请结合以上信息解答下列问题:被调查的捐款人数分组统计表:组别捐款额元人数(1)求的值和参与调查的总人数;(2)补全“捐款人数分组统计图”并计算扇形B的圆心角度数;(3)已知该校有学生人,请估计捐款数不少于元的学生人数有多少人?27. (1)如图所示,将一副三角尺的直角顶点重合在点处.①与相等吗?说明理由;②与数量上有什么关系吗?说明理由.(2)若将这副三角尺按图所示摆放,直角顶点重合在点处,不添加字母,分析图中现有标注字母所表示的角;①找出图中相等关系的角;②找出图中互补关系的角,并说明理由.28. 如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点表示的数为;点表示的数为(用含的代数式表示).(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点,同时出发,问多少秒时,之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点,同时出发,问点运动多少秒时追上点?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段的长.答案第一部分1. B 【解析】根据绝对值的性质,.2. D 【解析】将用科学记数法表示为:.3. C 【解析】A.某书稿中的错别字适合普查,故A错误;B.调查七()班学生的身高情况,适合普查,故B错误;C.某品牌灯泡的使用寿命,适合抽样调查,故C正确;D.企业招聘,对应聘人员进行面试,适合普查,故D错误.4. A5. D【解析】A、由得;B、由得;C、由得;D、由得.6. A 【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“”与“”是相对面,“”与“”是相对面,“”与“”是相对面,折成正方体后相对的面上的两个数互为相反数,填入正方形,,的三个数依次为,,.7. A 8. A 【解析】由题意得:.9. C 【解析】直线,相交于点,,又,,,与互为余角.10. A【解析】①两点之间线段最短,说法正确;②任何数的平方都是正数,说法错误,例如的平方为;③几个角的和等于,我们就说这几个角互补,说法错误;④是次单项式,说法错误,应为次;⑤同旁内角的角平分线相互垂直,说法错误;正确的说法有个.11. B 【解析】因为,延长线段到点,使,所以,因为点是的中点,所以,12. C 【解析】且平分,,13. B 【解析】设这种服装每件的成本是元,根据题意列方程得:,解这个方程得:,则这种服装每件的成本是元.14. D 【解析】如图,梯形15. B【解析】由图可知,每个数为一个循环组依次循环,,故是第个循环组的第个数,是第个循环组的第个数,是第个循环组的第个数,是第个循环组的第个数.故从到再到,箭头的方向是:.第二部分16.17.【解析】将代入得:.解得:.18.19.【解析】点分,时钟的时针和分针相距份,点分,时钟的时针和分针所构成的锐角度数为.20.【解析】因为,互为相反数,所以,,所以21.【解析】过作,如图,,,,,,即,,则.第三部分22. (1)原式原式(2)原式(3)原式(4)当,时,原式.23. (1)解得:(2)解得:24. 因为,,所以,所以,所以.因为,所以.25. (1)设他当天购进黄瓜千克,则土豆千克,根据题意得:解得:则土豆为(千克).答:他当天购进黄瓜千克,土豆千克.(2)根据题意得:元答:黄瓜和土豆全部卖完,他能赚元.26. (1)依题意有,解得:,调查的样本容量是:.(2) C组的人数是:(人).补全“捐款人数分组统计图”如图所示:扇形的圆心角度数为:.(3)捐款数不少于元的学生人数是:(人).答:捐款数不少于元的学生约有人.27. (1)①与相等.理由如下:因为,所以,即.②.理由如下:因为,所以.(2)①,.②,.理由:因为与都是直角,所以;又因为,所以28. (1);【解析】点表示的数为,在点左边,,点表示的数是,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间为秒,点表示的数是.(2)若点,同时出发,设秒时,之间的距离恰好等于,分两种情况:①点,相遇之前,由题意得,解得;②点,相遇之后,由题意得,解得.答:若点,同时出发,秒或秒时,之间的距离恰好等于.(3)设点运动秒时,在点处追上点,如图,则,,,,解得:,点运动秒时追上点.(4)线段的长度不发生变化,都等于;理由如下:①如图,当点在点,两点之间运动时:.②如图,当点运动到点的左侧时:,线段的长度不发生变化,其值为.第11页(共11 页)。

济南外国语学校初一期末数学真题

济南外国语学校初一期末数学真题

济南外国语学校初一期末数学真题一、选择题1. 将$\frac{3}{10}$用百分数表示是:()A. 0.03%B. 3%C. 30%D. 300%2. 已知$a = 2$,$b = -3$,则$ab$的值是:()A. -5B. -6C. 5D. 63. 下列选项中,和$\frac{3}{4}$的差的结果是1的是:()A. $\frac{1}{4}$B. $\frac{5}{4}$C. $\frac{7}{4}$D. $\frac{3}{4}$4. 已知直线$l$的斜率为2,经过点$(1, 2)$,则直线$l$的方程为:()A. $y = 2x + 2$B. $y = 2x - 2$C. $y = -2x + 2$D. $y = -2x - 2$5. 若$a : b = 2 : 5$,且$b = 15$,求$a$的值:()A. 6B. 7C. 8D. 9二、计算题1. 两数之和是25,且较大的数比较小的数是10的两倍,求这两个数。

2. 计算:$3\div\frac{1}{2} + 4\div\frac{1}{3}$。

3. 计算:$(2.4 + 0.3) \times (1.5 - 0.8)$。

4. 解方程:$3x - 4 = 2x + 5$。

5. 已知等比数列的首项$a_1 = 2$,公比$q = 3$,求这个等比数列的前5项的和。

三、应用题1. 一辆汽车以每小时60公里的速度行驶,若行驶5小时,求它行驶的总路程。

2. 直方图表示了一些学生每天阅读时间的情况,根据图中的直方图,回答下列问题:(答案写在各问题后面)a) 每天阅读时间在1小时至2小时之间的学生人数是多少人?b) 每天阅读时间超过3小时的学生人数是多少人?c) 一周当中阅读时间超过20小时的学生人数是多少人?3. 一辆货车每小时行驶50公里,行驶n小时后,运货还剩下300公里。

若货车以相同速度再行驶2小时,货物将全部运完,求货车运送的货物的总路程。

济南外国语学校人教版七年级上册数学期末试卷

济南外国语学校人教版七年级上册数学期末试卷

济南外国语学校人教版七年级上册数学期末试卷一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+ C .23x = D .3-3x x = 2.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣73.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+54.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 5.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 6.下列四个数中最小的数是( ) A .﹣1 B .0 C .2 D .﹣(﹣1) 7.下列各数中,有理数是( )A .2B .πC .3.14D .378.估算15在下列哪两个整数之间( ) A .1,2B .2,3C .3,4D .4,59.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠210.当x=3,y=2时,代数式23x y的值是()A.43B.2 C.0 D.311.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有()①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利60% ,另一个亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利37.5 元C.亏损25 元D.盈利12.5 元二、填空题13.把一张长方形纸按图所示折叠后,如果∠AOB′=20°,那么∠BOG的度数是_____.14.把53°30′用度表示为_____.15.把5,5,35按从小到大的顺序排列为______.16.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.17.如图甲所示,格边长为cma的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;19.|﹣12|=_____. 20.方程x +5=12(x +3)的解是________. 21.3.6=_____________________′22.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?26.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 27.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.28.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.29.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.30.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.31.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.32.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可.2.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.3.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.4.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.解析:C【解析】【分析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.6.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.7.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. 是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.8.C解析:C【解析】确定出15的范围即可求得答案.【详解】∵9<15<16,∴3<15<4,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.11.A解析:A 【解析】①项,因为AP =BP ,所以点P 是线段AB 的中点,故①项正确;②项,点P 可能是在线段AB 的延长线上且在点B 的一侧,此时也满足BP =12AB ,故②项错误;③项,点P 可能是在线段BA 的延长线上且在点A 的一侧,此时也满足AB =2AP ,故③项错误;④项,因为点P 为线段AB 上任意一点时AP +PB =AB 恒成立,故④项错误. 故本题正确答案为①.12.D解析:D 【解析】 【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元.. 故选:D 【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题 13.80° 【解析】 【分析】由轴对称的性质可得∠B′OG =∠BOG ,再结合已知条件即可解答. 【详解】解:根据轴对称的性质得:∠B′OG =∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 14.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 16.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.17.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.18.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.19.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.21.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.22.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.23.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 24.-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.(1)∠MEN =90°;(2)∠MEN =105°;(3)∠FEG =2α﹣180°,∠FEG =180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.27.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.28.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.29.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE =88°,∠BOD =30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE =6∠BOC+6∠COD=4(∠AOE ﹣∠BOD )+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,30.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.31.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点, 32.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,∴MN AB =412=13; ②当点N 在线段AB 的延长线上时,如图2.∵AN ﹣BN=MN .又∵AN ﹣BN=AB ,∴MN=AB=12,∴MN AB =1212=1. 综上所述:MN AB =13或1. 【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.。

七年级上册济南外国语学校华山校区数学期末试卷检测题(Word版 含答案)

七年级上册济南外国语学校华山校区数学期末试卷检测题(Word版 含答案)

七年级上册济南外国语学校华山校区数学期末试卷检测题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.2.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.【答案】(1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30°∴∠MOB=∠AOB=45°∠NOD=∠BOC=15°∴∠MON=∠MOB+∠NOD=45°+15°=60°.(2)解:设∠BOD=γ,∵∠MOD= = ,∠NOB= =∴∠MON=∠MOD+∠NOB-∠DOB= + -γ=(3)解:① 为定值,设运动时间为t秒,则∠DOB=3t-t=2t,∠DOE= ∠DOB=t,∴∠COE=β+t,∠AOD=α+2t,又∵α=2β,∴∠AOD=2β+2t=2(β+t).∴【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。

七年级上册济南市外国语初中部数学期末试卷达标检测卷(Word版 含解析)

七年级上册济南市外国语初中部数学期末试卷达标检测卷(Word版 含解析)

七年级上册济南市外国语初中部数学期末试卷达标检测卷(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;(2)如图2,若∠AOC=140°,则∠BOD=________;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.【答案】(1)145°;45°(2)40°(3)解:∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补(4)解:OD⊥AB 时,∠AOD=30°,CD⊥OB 时,∠AOD=45°,CD⊥AB 时,∠AOD=75°,OC⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;( 2 )如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;故答案为:(1)145°,45°;(2)40°.【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。

山东省济南外国语学校学七年级数学上学期期末试题(含解析) 新人教版

山东省济南外国语学校学七年级数学上学期期末试题(含解析) 新人教版

山东省济南外国语学校2014-2015学年度七年级数学上学期期末试题一、选择题(共15题,每题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣2.已知2x3y2和﹣x3m y2是同类项,则m的值是()A.1 B.2 C.3 D.43.数a,b在数轴上的位置如图所示,则a+b是()A.正数 B.零C.负数 D.都有可能4.下列各式,运算结果为负数的是()A.﹣(﹣2)﹣(﹣3)B.(﹣2)×(﹣3)C.﹣32D.(﹣3)25.如图是一无盖的正方体盒子,下列展开图不能叠合成无盖正方体的是()A.B.C.D.6.下列调查中,适宜采用抽样调查方式的是()A.调查我市中学生每天体育锻炼的时间B.调查某班学生的视力情况C.调查一架“歼20”隐形战机各零部件的质量D.调查伦敦奥运会女子铅球参赛运动员兴奋剂的使用情况7.下列运算中,正确的是()A.(﹣6)÷(﹣2)=﹣3 B.C.2a+3b=5ab D.3a﹣a=28.下列说法中,正确的是()A.直线AB和直线BA表示的是两条直线B.射线比直线短C.连接两点的线段叫做这两点间的距离D.过六边形的一个顶点作对角线,可以将这个六边形分成4个三角形9.已知关于x的方程5x+3k=21与5x+3=0的解相同,则k的值是()A.﹣10 B.7 C.﹣9 D.810.下列运算正确的是()A.x2+x3=x5B.(﹣3pq)2=6p2q2C.(﹣bc)4÷(﹣bc)2=﹣b2c2 D.4×2n×2n﹣1=22n+111.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.4 B.33 C.51 D.2712.如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()A.8cm B.2cm C.4cm D.不能确定13.若m﹣n=4,m2﹣n2=12,则(m+n)2的值是()A.20 B.16 C.12 D.914.小明解方程﹣1去分母时,方程右边的﹣1忘记乘6,因而求出的解为x=﹣2,那么原方程正确的解为()A.x=5 B.x=﹣7 C.x=﹣13 D.x=115.将边长为1的正方形纸片如图1所示的方法进行对折,记第一次对折后得到的图形面积为 S1,第2次对折后得到的图形面积为S2…,第n次对折后得到的图形面积为S n,请根据图2化简S1+S2+S3…S2014=()A.1﹣ B.C.1﹣ D.二、填空题(共6题,每题3分,共18分.把答案填在题中的横线上.)16.有资料表示,地球上的森林正在以每年15000000公倾的速度从地球上消失,每年森林的消失量15000000用科学记数法可表示为.17.若单项式﹣的系数是m,次数是n,则mn的值等于.18.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=80°,则∠B′OG的度数为.19.若|a|=3,b是2的相反数,a b= .20.36x2﹣axy+81y2是一个完全平方式,则a= .21.观察下列各式,探索发现规律:22﹣1=1×3;42﹣1=15=3×5;62﹣1=35=5×7;82﹣1=63=7×9;102﹣1=99=9×11;…用含正整数n的等式表示你所发现的规律为.三、解答题(本大题共7题,共57分,解答应写出文字说明、证明过程或演算步骤)22.计算:(1)﹣14+16÷(﹣2)3+|﹣3﹣1|;(2)(﹣4)2015×0.252014﹣(π﹣3)0.23.(1)化简:(2a﹣5b)﹣2(﹣a+3b)(2)先化简再求值:[(2x+y)2﹣y(y+4x)﹣8xy]÷2x,其中x=2,y=﹣3.24.(1)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请你在方格中画出这个几何体的主视图和左视图:(2)解方程:x﹣﹣3.25.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.26.小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一类服装.为了缓解资金压力,小张决定将这类服装打折销售.若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)请你算一算每件服装的标价和进价各是多少元?(2)该服装改款后,小张又以同样的进价进货500件,若标价不变,按标价销售了300件后,剩下的进行甩卖,为了尽快减少库存,又要保证盈利2万元,请你告诉小张最低能打几折?27.我县各学校2015届九年级学生在体育测试前,都在积极训练自己的考试项目,王强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“排球”部分所对应的圆心角度数为°;(4)若全校有3000名学生,请估算出全校“其他”部分的学生人数.28.沿图1中的虚线将原长方形平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形的边长可表示为;(2)观察图2请你写出代数式(m+n)2、(m﹣n)2、mn之间的等量关系式;(3)根据你得到的关系式解答下列问题:若x+y=﹣7,xy=5,求(x﹣y)2的值;(4)实际上有许多代数恒等式可以用图形的面积来表示,如图3,它表示了(2m+n)(m+n)=2m2+3mn+n2,试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.山东省济南外国语学校2014~2015学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(共15题,每题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣【考点】倒数.【分析】根据倒数的定义求解.【解答】解:﹣6的倒数是﹣.故选D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.已知2x3y2和﹣x3m y2是同类项,则m的值是()A.1 B.2 C.3 D.4【考点】同类项.【分析】本题根据同类项的定义中相同字母的指数也相同,列出关于m的方程,求解.【解答】解:根据同类项的定义,得3m=3,解得m=1.故选A.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点.3.数a,b在数轴上的位置如图所示,则a+b是()A.正数 B.零C.负数 D.都有可能【考点】数轴;有理数的加法.【专题】数形结合.【分析】首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.【解答】解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.【点评】本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.4.下列各式,运算结果为负数的是()A.﹣(﹣2)﹣(﹣3)B.(﹣2)×(﹣3)C.﹣32D.(﹣3)2【考点】有理数的乘方;有理数的减法;有理数的乘法.【专题】计算题.【分析】利用有理数的减法,乘方,以及乘法法则计算得到结果,即可做出判断.【解答】解:A、原式=2+3=5,不合题意;B、原式=6,不合题意;C、原式=﹣9,符合题意;D、原式=9,不合题意.故选C.【点评】此题考查了有理数的乘方,有理数的乘法,以及有理数的减法,熟练掌握运算法则是解本题的关键.5.如图是一无盖的正方体盒子,下列展开图不能叠合成无盖正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及无盖正方体的展开图解题.【解答】解:由四棱柱四个侧面和底面的特征可知,ABD可以拼成无盖的正方体,而C拼成的是上下都无底,且有一面重合的立体图形.故一个无盖的正方体盒子的平面展开图可以是下列图形中的是C.故选:C.【点评】此题主要考查了正方形侧面展开图的应用,解题时勿忘记四棱柱的特征及无盖正方体展开图的各种情形.6.下列调查中,适宜采用抽样调查方式的是()A.调查我市中学生每天体育锻炼的时间B.调查某班学生的视力情况C.调查一架“歼20”隐形战机各零部件的质量D.调查伦敦奥运会女子铅球参赛运动员兴奋剂的使用情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查我市中学生每天体育锻炼的时间,人是众多,意义不大,应采用抽样调查;B、调查某班学生的视力情况,人数较少,应采用普查;C、调查一架“歼20”隐形战机各零部件的质量,意义重大,应采用普查;D、调查伦敦奥运会女子铅球参赛运动员兴奋剂的使用情况,意义重大,应采用普查;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.下列运算中,正确的是()A.(﹣6)÷(﹣2)=﹣3 B.C.2a+3b=5ab D.3a﹣a=2【考点】合并同类项;有理数的除法;有理数的乘方.【分析】根据有理数的除法,可判断A,根据有理数的乘方,可判断B,根据合并同类项,可判断C、D.【解答】解:A(﹣6)÷(﹣2)=3,故A错误;B =,故B正确;C 2a+3b=2a+3b,故C错误;D 3a﹣a=2a,故D错误;故选:B.【点评】本题考查了合并同类项,合并同类项系数相加字母部分不变,注意不是同类项的不能合并.8.下列说法中,正确的是()A.直线AB和直线BA表示的是两条直线B.射线比直线短C.连接两点的线段叫做这两点间的距离D.过六边形的一个顶点作对角线,可以将这个六边形分成4个三角形【考点】直线、射线、线段;两点间的距离;多边形的对角线.【专题】探究型.【分析】根据选项,将错误的选项举出反例即可本题.【解答】解:直线AB和直线BA表示的是同一条直线,故选项A错误;射线和直线都无法测量长度,故选项B错误;连接两点的线段的长度叫做这两点间的距离,故选项C错误;过六边形的一个顶点作对角线,可以将这个六边形分成6﹣2=4个三角形,故选项D正确;故选D.【点评】本题考查直线、射线、线段,两点间的距离,多边形的对角线,解题的关键是明确它们各自的含义.9.已知关于x的方程5x+3k=21与5x+3=0的解相同,则k的值是()A.﹣10 B.7 C.﹣9 D.8【考点】一元一次方程的解.【分析】根据解方程,可得方程的解,再根据方程的解满足方程,可得关于k的一元一次方程,根据解方程,可得答案.【解答】解:5x+3=0,解得x=﹣0.6,把x=﹣0.6代入5x+3k=21,得5×(﹣0.6)+3k=21,解得k=8,故选:D.【点评】本题考查了一元一次方程的解,利用了解一元一次方程的方法.10.下列运算正确的是()A.x2+x3=x5B.(﹣3pq)2=6p2q2C.(﹣bc)4÷(﹣bc)2=﹣b2c2 D.4×2n×2n﹣1=22n+1【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项、积的乘方、整式的除法和整式的乘法进行计算即可.【解答】解:A、x2+x3=x2+x3,错误;B、(﹣3pq)2=9p2q2,错误;C、(﹣bc)4÷(﹣bc)2=b2c2,错误;D、×2n×2n﹣1=22n+1,正确.故选D.【点评】此题考查合并同类项、积的乘方、整式的除法和整式的乘法,关键是根据合并同类项、积的乘方、整式的除法和整式的乘法的法则进行解答.11.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.4 B.33 C.51 D.27【考点】列代数式.【分析】因为挂历上同一列的数都相对于前一个数相差7,所以设第一个数为x,则第二个数、第三个数分别为x+7、x+14,求出三数之和,发现其和为3的倍数,对照四选项即可求解.【解答】解:设圈出的第一个数为x,则第二数为x+7,第三个数为x+14,∴三个数的和为:x+(x+7)+(x+14)=3(x+7)∴三个数的和为3的倍数由四个选项可知只有A不是3的倍数,故选A.【点评】此题主要考查了列代数式,解决此题的关键是找出三数的关系,然后根据三数之和与选项对照求解.12.如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()A.8cm B.2cm C.4cm D.不能确定【考点】两点间的距离.【专题】计算题.【分析】(1)当A,B,C三点在一条直线上时,分点B在A、C之间和点C在A、B之间两种情况讨论;(2)当A,B,C三点不在一条直线上时,A,C两点之间的距离有多种可能即不能确定;【解答】解:(1)当A,B,C三点在一条直线上时,分点B在A、C之间和点C在A、B之间两种情况讨论.①点B在A、C之间时,AC=AB+BC=5+3=8cm;②点C在A、B之间时,AC=AB﹣BC=5﹣3=2cm.所以A、C两点间的距离是8cm或2cm.(2)当A,B,C三点不在一条直线上时,A,C两点之间的距离有多种可能即不能确定;故选D.【点评】本题考查了两点间的距离,属于基础题,关键是分类讨论A,B,C三点是否在一条直线上时.13.若m﹣n=4,m2﹣n2=12,则(m+n)2的值是()A.20 B.16 C.12 D.9【考点】完全平方公式.【分析】根据完全平方公式公式,即可解答.【解答】解:m2﹣n2=12(m+n)(m﹣n)=124(m+n)=12m+n=3,则(m+n)2=9.故选:D.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.14.小明解方程﹣1去分母时,方程右边的﹣1忘记乘6,因而求出的解为x=﹣2,那么原方程正确的解为()A.x=5 B.x=﹣7 C.x=﹣13 D.x=1【考点】解一元一次方程.【分析】﹣1去分母时,方程右边的﹣1忘记乘6,则所得的方程是2(2x﹣1)=3(x+a)﹣1,把x=﹣2代入即可求得a的值,然后把a的值代入原方程,解方程即可.【解答】解:﹣1去分母时,方程右边的﹣1忘记乘6,则所得的方程是2(2x﹣1)=3(x+a)﹣1,把x=﹣2代入方程得2(﹣4﹣1)=3(﹣2+a)﹣1,解得:a=﹣1.把a=﹣1代入方程,得.去分母,得2(2x﹣1)=3(x﹣1)﹣6,去括号,得4x﹣2=3x﹣3﹣6,移项,得4x﹣3x=﹣3﹣6+2,合并同类项,得x=﹣7.故选B.【点评】本题立意新颖,借助解方程时出现的错误,实际考查解一元一次方程的解法;解一元一次方程常见的过程有去分母、去括号、移项、系数化为1等.15.将边长为1的正方形纸片如图1所示的方法进行对折,记第一次对折后得到的图形面积为 S1,第2次对折后得到的图形面积为S2…,第n次对折后得到的图形面积为S n,请根据图2化简S1+S2+S3…S2014=()A.1﹣ B.C.1﹣ D.【考点】规律型:图形的变化类.【分析】观察图形的变化发现每次折叠后的面积与正方形的关系,从而写出面积和的通项公式.【解答】解:观察发现S1+S2+S3+…+S2014=+++…+=1﹣,故选C【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.二、填空题(共6题,每题3分,共18分.把答案填在题中的横线上.)16.有资料表示,地球上的森林正在以每年15000000公倾的速度从地球上消失,每年森林的消失量15000000用科学记数法可表示为 1.5×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于15000000有8位,所以可以确定n=8﹣1=7.【解答】解:15 000 000=1.5×107.故答案为:1.5×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.17.若单项式﹣的系数是m,次数是n,则mn的值等于﹣2 .【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.然后求出m和n的值,相乘即可,m=﹣,n=3,mn=﹣2.【解答】解:∵单项式﹣的系数是m,次数是n,∴m=﹣,n=3,mn=﹣2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.18.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=80°,则∠B′OG的度数为50°.【考点】平行线的性质;翻折变换(折叠问题).【分析】求出∠B′OB=100°,根据折叠求出∠B′OG=∠BOG,即可求出答案.【解答】解:∵∠AOB′=80°,∴∠B′OB=180°﹣80°=100°,∵把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,∴∠B′OG=∠BOG=∠BOB′=50°,故答案为:50°.【点评】本题考查了折叠的性质和平行线的性质的应用,能求出∠B′OG=∠BOG是解此题的关键.19.若|a|=3,b是2的相反数,a b= .【考点】有理数的乘方;相反数;绝对值.【专题】推理填空题.【分析】根据|a|=3,b是2的相反数,可以得到a、b的值,从而可以解答本题.【解答】解:∵若|a|=3,b是2的相反数,∴a=±3,b=﹣2,∴a=3,b=﹣2时,,a=﹣3,b=﹣2时,,故答案为:.【点评】本题考查有理数的乘方、相反数、绝对值,解题的关键是明确有理数的乘方的计算方法,明确什么是相反数、什么是绝对值.20.36x2﹣axy+81y2是一个完全平方式,则a= ±108.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a的值.【解答】解:∵36x2﹣axy+81y2是一个完全平方式,∴﹣axy=±2•6x•9y,∴a=±108.故答案为:±108.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.21.观察下列各式,探索发现规律:22﹣1=1×3;42﹣1=15=3×5;62﹣1=35=5×7;82﹣1=63=7×9;102﹣1=99=9×11;…用含正整数n的等式表示你所发现的规律为(2n)2﹣1=(2n﹣1)(2n+1).【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】等式的左边2,4,6,8,10为等差数列可表示为(2n)2﹣1;等式右边的整式中:1、3、5、7、9和3、5、7、9、11,可以看出是等差数列可分别表示为(2n﹣1),(2n+1),然后两数列公式相乘.【解答】解:左边:4n2﹣1=(2n)2﹣1,右边:两个等差数列分别是:2n﹣1,2n+1,即(2n﹣1)(2n+1),∴规律为(2n)2﹣1=(2n﹣1)(2n+1).【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键找到是等号左边是偶数的平方与1的差,等式右边是与该偶数相邻的两个奇数的乘积.三、解答题(本大题共7题,共57分,解答应写出文字说明、证明过程或演算步骤)22.计算:(1)﹣14+16÷(﹣2)3+|﹣3﹣1|;(2)(﹣4)2015×0.252014﹣(π﹣3)0.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算除法运算,最后算加减运算即可得到结果;(2)原式利用积的乘方,零指数幂法则计算即可得到结果.【解答】解:(1)原式=﹣1﹣2+4=1;(2)原式=(﹣4×0.25)2014×(﹣4)﹣1=﹣4﹣1=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(1)化简:(2a﹣5b)﹣2(﹣a+3b)(2)先化简再求值:[(2x+y)2﹣y(y+4x)﹣8xy]÷2x,其中x=2,y=﹣3.【考点】整式的混合运算—化简求值;整式的加减.【分析】(1)首先去括号,然后合并同类项即可求解;(2)首先利用完全平方公式以及单项式与多项式的乘法法则计算括号内的式子,然后对括号内的式子合并同类项,进行多项式与单项式的除法计算,然后代入数值计算即可.【解答】解:(1)原式=2a﹣5b+2a﹣6b=4a﹣11b;(2)原式=【4x2+4xy+y2﹣y2﹣4xy﹣8xy】÷2x=【4x2﹣8xy】÷2x=2x﹣4y.当x=2,y=﹣3时,原式=4+12=16.【点评】本题主要考查整式的混合运算,理解完全平方公式,熟记公式并灵活运用是解题的关键.24.(1)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请你在方格中画出这个几何体的主视图和左视图:(2)解方程:x﹣﹣3.【考点】作图-三视图;解一元一次方程.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,1,左视图有2列,每列小正方形数目分别为2,3.据此可画出图形.(2)首先方程两边同时乘以15去分母,然后再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)如图所示:;(2)去分母得:15x﹣3(x﹣2)=5(2x﹣5)﹣45,去括号得:15x﹣3x+6=10x﹣25﹣45,移项得:15x﹣3x﹣10x=﹣25﹣45﹣6,合并同类项得:2x=﹣76,把x的系数化为1得:x=﹣38.【点评】此题主要考查了画三视图,以及解一元一次方程,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.25.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.26.小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一类服装.为了缓解资金压力,小张决定将这类服装打折销售.若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)请你算一算每件服装的标价和进价各是多少元?(2)该服装改款后,小张又以同样的进价进货500件,若标价不变,按标价销售了300件后,剩下的进行甩卖,为了尽快减少库存,又要保证盈利2万元,请你告诉小张最低能打几折?【考点】一元一次方程的应用.【专题】销售问题.【分析】(1)设每件服饰的标价为a元,进价为b元,根据题意列出关于a与b的方程组,求出方程组的解即可得到结果;(2)设小张最低打x折,根据题意列出方程,求出方程的解即可得到结果.【解答】解:(1)设每件服饰的标价为a元,进价为b元,根据题意得:,解得:a=200,b=120,则每件服饰的标价为200元,进价为120元;(2)设小张最低能打x折,根据题意得:300×200+200×200×﹣500×120=20000,解得:x=5,则小张最低能打5折.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.27.我县各学校2015届九年级学生在体育测试前,都在积极训练自己的考试项目,王强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有30 名学生;(2)补全条形统计图;(3)在扇形统计图中,“排球”部分所对应的圆心角度数为115.2 °;(4)若全校有3000名学生,请估算出全校“其他”部分的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形图可得跳绳人数为15人,根据扇形图可得跳绳人数占30%,然后利用15÷30%可得总人数;(2)首先计算出跳远人数和其它人数,然后再补全图形即可;(3)利用360°乘以“排球”部分在总体中所占的比例即可;(4)利用样本估计总体的方法,用3000乘以调查的“其他”部分的人数所占百分比.【解答】解:(1)15÷30%=50(名).故答案为:30;(2)跳远人数:50×18%=9(名),其它人数:50﹣15﹣16﹣9=10(名).如图所示:(3)“排球”部分所对应的圆心角度数为:360°×=115.2°.故答案为:115.2°;(4)3000×=600(人).答:全校“其他”部分的学生人数为600人.【点评】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.28.沿图1中的虚线将原长方形平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形的边长可表示为(m﹣n)2;(2)观察图2请你写出代数式(m+n)2、(m﹣n)2、mn之间的等量关系式(m+n)2﹣(m﹣n)2=4mn ;(3)根据你得到的关系式解答下列问题:若x+y=﹣7,xy=5,求(x﹣y)2的值;(4)实际上有许多代数恒等式可以用图形的面积来表示,如图3,它表示了(2m+n)(m+n)=2m2+3mn+n2,试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.【考点】列代数式;代数式求值.【分析】(1)可直接用正方形的面积公式得到;(2)掌握完全平方公式,并掌握和与差的区别;(3)结合完全平方公式进而将原式变形求出即可;(4)可参照图3进而画出符合题意的图形.【解答】解:(1)阴影部分的边长为(m﹣n),阴影部分的面积为(m﹣n)2;故答案为:(m﹣n)2;(2)由题意可得:(m+n)2﹣(m﹣n)2=4mn;故答案为:(m+n)2﹣(m﹣n)2=4mn;(3)∵x+y=﹣7,xy=5,∴(x﹣y)2=(x+y)2﹣4xy=(﹣7)2﹣20=29;(4)答案不唯一:它的面积为:m2+4mn+3n2..【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.。

济南外国语学校华山校区七年级上册数学期末试卷(含答案)

济南外国语学校华山校区七年级上册数学期末试卷(含答案)

济南外国语学校华山校区七年级上册数学期末试卷(含答案)一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b 4.-2的倒数是( )A .-2B .12-C .12D .25.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( )A .3B .4C .5D .66.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个7.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个8.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y9.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限 10.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定 11.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1 12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元 二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.15.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.16.若523m x y +与2n x y 的和仍为单项式,则n m =__________.17. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.18.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期 交易明细10.16 乘坐公交¥ 4.00- 10.17转帐收入¥200.00+ 10.18体育用品¥64.00- 10.19零食¥82.00- 10.20餐费¥100.00-19.写出一个比4大的无理数:____________.20.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.21.若∠1=35°21′,则∠1的余角是__.22.用“>”或“<”填空:13_____35;223-_____﹣3. 23.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题25.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.26.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.27.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现 ()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______. ()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.28.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.29.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?30.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.31.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?32.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.4.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握5.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键. 6.D解析:D【解析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52+25x x a x x a =⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x a x a =⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a 使得x=y,本选项正确④方程组解得25-15x a y a =⎧⎨=-⎩由题意得:x-3a=5把25-15x a y a =⎧⎨=-⎩代入得 25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键7.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA ⊥OC ,OB ⊥OD ,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD ,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD 不一定等于90°,故③错误;图中小于平角的角有∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD 一共6个,故④正确;综上所述,说法正确的是①②④.故选C .【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.8.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A 、两边都加上3,等式仍成立,故本选项不符合题意.B 、两边都减去3,等式仍成立,故本选项不符合题意.C 、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D 、两边开方,则x =y 或x =﹣y ,故本选项符合题意.故选:D .【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.9.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.10.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6或6.故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题13.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离. 解:2﹣(﹣1)=3.故答案为3考点:数轴.14.684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90解析:141︒【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.16.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.17.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.18.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 19.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.20.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 21.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.22.< >【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:< >【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】 解:13<35;223->﹣3. 故答案为:<、>.【点睛】 此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.23.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.24.46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB是平角且它等于∠1、∠2和∠COE三个角之和是解题关键.三、压轴题25.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032.(4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.26.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个. 结论: 连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个. 应用: 边长为1的正三角形有=625(个), 边长为2的正三角形有(个). 故答案为探究三:16,6;结论:n²,;应用:625,300. 【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.27.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

济南外国语学校2015-2016学年度第一学期
初一数学期末考试
一、选择题
1.2-的倒数是()
A.2
B.12-
C.1
2
D.2-
2.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是()
A.点M
B.点N
C.点P
D.点Q
3.小军将一个直角三角板绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()
A. B. C. D.
4.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()
A.大
B.伟
C.国
D.的
5.用平面去截一个几何体,如果截面的形状是长方形,则这个几何体不可能是() A.正方体 B.棱柱 C.圆柱 D.圆锥
6.如图是由一些相同的小正方体搭成的几何体的三视图,则构成这个几何体的小正方体的个数为()
A.4个
B.5个
C.6个
D.7个
7.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重,其中推进燃煤电厂脱硫改造15000000千瓦是《政府工作报告》中确定的中点任务之一,将数据15000000用科学记数法表示为()
A.61510⨯
B.71.510⨯
C.81.510⨯
D.80.1510⨯
8.一个多边形从一个顶点最多能引出三条对角线,这个多边形是() A.三角形 B.四边形 C.五边形 D.六边形
9.若一个代数式与236x x -+-的和是223x x -+-,则这个代数式为() A.2529x x -+- B.23x + C.29x - D.229x x +-
Q
N
P
M


中的


主视图
左视图
俯视图
10.某书中一道方程题
213
x
x +⊕+=.⊕处印刷时被墨盖住了,查后面的答案,这道题的解为 2.5x =-,那么⊕处的数为()
A. 2.5-
B.2.5
C.3.5
D.5
11.学校组织春游,每人车费4元,一班班长与二班班长的对话如下: 一班班长:我们两班共93人.
二班班长:我们二班比你们一班多交了12元的车费. 由上述对话可知,一班和二班的人数分别是()
A.45,42
B.45,48
C.48,51
D.51,42
12.小明在某月的日历上圈出相邻的三个数,算出这三个数的和是78,则这三个数的排列方式一定不可能是() A.
B.
C.
D.
13.已知0a b c ++=,则代数式()()()a b b c c a abc ++++的值为() A.1- B.1 C.0 D.2
14.已知线段6cm AB =,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为() A.1cm B.2cm C.1.5cm D.1cm 或2cm
15.用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n 个图案中正方形的个数是()
A.n
B.43n +
C.41n -
D.32n - 二、填空题
16.小明做这样一道题“计算:()3-+■”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果等于6.,那么“■”表示的数是____________.
17.已知某计算程序如图所示,若输入x 的值为1,则输出的y 的值应为__________.
18.如果()235k k x y --是关于x ,y 的六次单项式,则k =__________.
19.若两个单项式4345m a b 与92
3
n a b 的和是一个单项式,则m =__________,n =____________.
20.图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该正方体的宽是高的2倍,则它的体积是___________3cm
.
第1

第2
个第3

21.有一组算式按如下规律排列,则第6个算式的结果为_________;第n 个算式的结果为__________;(用含n 的代数式表示,其中n 是正整数). 11=
()()()2349-+-+-=- 3456725++++=
()()()()()()()45678+91049-+-+-+-+--+-=- 567891011121381++++++++= …
三、解答题 22.计算:
(1)()()1056186-+⨯--÷- (2)()()2
2
1832632
⎛⎫
-+⨯-+-÷- ⎪⎝⎭
23.解下列方程:
(1)()43203x x --=
(2)141
123
x x --=- 24.(1)化简:()()
25332a b a b ---
(2)先化简,再求值:()()
222
22213m n mn m n mn +---+,其中2m =-,12
n =
25.在用尺规作线段AB 等于线段a 时,小明作射线AM ,在射线AM 上截取AB a =,如图所示.
已知:如图所示,线段b.
(1)请你仿照小明的作法,再在射线BM 上作线段BD ,使得BD b =(不要求写作法) (2)在(1)的条件下,取AD 的中点E ,若10AB =,6BD =,求线段BE 的长.
26.某地为提倡节约用时,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点)请你根据统计图解决下列问题:
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数
.
图1



图2
M
B
A
b
)用户用水量统计图
用户用水量扇形统计图
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格? 27.情景:
试根据图中的信息,解答下列问题:
(1)购买6根跳绳需_________元,购买12根跳绳需___________元.
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.
28.已知:如图数轴上两点A ,B 所对应的数分别为3-,1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.
(1)直接写出线段AB 的中点所对应的数;
(2)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;
(3)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度,并问此时数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.
29.如图1,AOB α∠=,COD β∠=,OM ,ON 分别是AOC ∠,BOC ∠的角平分线.
(1)若50AOB ∠=︒,30COD ∠=︒,当C O D ∠绕着点O 逆时针旋转至射线OB 与OC 重合时(如图2),
求MON ∠的大小;
(2)在(1)的条件下,继续绕着点O 逆时针旋转COD ∠,当10BOC ∠=︒时(如图3),求MON ∠的大小并说明理由.
(3)在COD ∠绕点O 逆时针旋转过程中,MON ∠=__________.(用含α、β的式子表示).
跳绳每根25元
超过10根,享受八折优惠
“五一”大酬宾小红
小明
收银台
她付的钱怎么比我还少?
-3
B O
A
M
C B N
D 图1
A
M
B C ()
N
D
O
图2
A
M
B
C N
D
O
图3。

相关文档
最新文档