六年级奥数分数巧算学生版
六年级奥数第1讲:分数的巧算(一)
分数的巧算(一)分数计算是小学数学学习的重要内容,同时也是数学竞赛的重要内容之一。
要使计算准确、快速,关键在于掌握运算技巧。
观察算式的特点及规律,灵活运用运算定律和性质,对启迪思维,提高应变能力,培养学生的综合分析与推理能力都有很大帮助。
常用主要技巧:(1)逆用乘法分配律;(2)代换法;(3)转化法。
例1、计算797-2178+(292-1179)做一做:计算:795-(354+195)-151例2、计算:73151×81做一做:计算:71×5761例3、计算:166201÷41做一做:计算:54÷17例4、计算:(1192+9112)÷(92+112)做一做:计算:(972+792)÷(75+95)例5、计算:293415×2-27179÷13做一做:计算:312615×2-57131÷7例6、计算:4.37.379003.2450079006.303.20-⨯⨯+⨯⨯做一做:计算:3.4874.4)4.4873.4(1995-+⨯⨯⨯例7: 计算:(1+21+31+41+…+20021)×(21+31+41+…+20031)-(1+21+31+41+…+20031)×(21+31+41+ (20021)做一做:计算:(1+21+31+41)×(21+31+41+51)-(1+21+31+41+51)×(21+31+41)课堂精炼1、(135531+357579+975753)×(357579+975753+531135)-(135531+357579+975753+531135)×(357579+975753)2、35217106253121147642321⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++++3、(1- 122 )×(1- 132 )×…×(1- 192 )×(1- 1102 )4、1949×(431-19921)+43×(19491-19921)-1992×(19491+431)+135、299199711996221995111994119931514131211++++++-+-+-+-⋯⋯温故知新1、797-2178+(292-1179) 2、64171×913、48103÷23 4、(3117+11312)÷(1115+1310)5、353×2552+37.9×652 6、109×34.5+111×1.8+54.3÷1917、116498382381498382-+⨯⨯ 8、 3.6×1994.4+2006.9×6.49、8888888888888888123456787654321⨯++++++++++++++10、(111+211+311+411)×(211+311+411+511)-(111+211+311+411+511)×(211+311+411)。
六年级奥数-第一讲[1].分数的速算与巧算.学生版(最新整理)
第一讲:分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.知识点拨一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即,那么有1a b⨯a b <1111(a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:,形式的,我们有:1(1)(2)n n n ⨯+⨯+1(1)(2)(3)n n n n ⨯+⨯+⨯+1111[(1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1) (2)11a b a b a b a b a b b a+=+=+⨯⨯⨯2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
六年级奥数第3讲:分数的巧算(三)
=
×[
-
]
n (n+ k) (n+2k ) (n+3k ) 3k
n (n+ k) (n+2k) (n+ k) ( n+2k) ( n+3k)
1 3 7 15 31 63 127 255
例 1、 计算: + + + + + + +
2 4 8 16 32 64 128 256
做一做: 1 1 +3 1 +5 1 +7 1 +9 1 +11 1 +13 1 +15 1 +19 1 2 4 8 16 32 64 128 256 1024
1 11
1
2、
+ + +… + +1+2+4+8+… +1024
1024 512 256 2
3、 1 + 1 +… +
1
1 2 3 2 3 4 48 49 50
4
4
4
4
4、
+
+… +
+
1 3 5 3 5 7 93 95 97 95 97 99
5、
2
2
+
+
2
+
2
2
+
+
2
3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10
24 120 360 840
3
3
3
3
10、
+
+
+… +
1 2 3 4 2 3 4 5 3 4 5 6 17 18 19 20
六年级奥数分数巧算学习指南
六年级奥数分数巧算学习指南
概述
本文档旨在提供一份六年级奥数分数巧算研究指南,帮助学生
在分数计算方面取得更好的成绩。
以下是一些建议和技巧,以便学
生能够更好地理解和运用分数知识。
1. 分数基础知识
- 分数由分子和分母组成,分子表示部分的数量,分母表示整
体的数量。
- 学生应该熟练理解分数的概念和表示方法。
- 学生需要掌握分数与整数、小数之间的转换方法。
2. 分数运算
- 加法:学生应该掌握分数相加的方法,并能够化简结果。
- 减法:学生需要学会分数相减的方式,同时要注意分数化简。
- 乘法:学生应该熟悉分数相乘的规则,并能够简化结果。
- 除法:学生需要了解分数除法的原理和方法,也要注意分数
化简。
3. 分数比较
- 学生应该学会比较分数大小的方法,包括相同分母的分数和不同分母的分数。
- 在比较分数大小时,可以通过找到它们的公共分母来方便比较。
4. 解决实际问题
- 学生应该学会用分数解决实际问题,例如分配问题、比例问题等。
- 在解决实际问题时,学生需要理解问题的背景和要求,并能将其转化为分数计算。
5. 练与巩固
- 学生应该通过做练题来巩固所学的分数知识。
- 需要有系统的练,从简单到复杂,逐步提高难度。
- 学生可以通过参加在线奥数分数巧算练来巩固和提高自己的能力。
以上是六年级奥数分数巧算学习指南的主要内容。
希望通过这些指导,学生能够更好地掌握分数知识和计算技巧,提高在奥数中的表现。
祝愿各位学生取得好成绩!。
小学六年级奥数运算部分的分数计算 (4页)
小学六年级奥数运算部分的分数计算 (4
页)
小学六年级奥数运算部分的分数计算
简介
本文档旨在帮助小学六年级学生进行奥数运算部分的分数计算。
以下将介绍几个常见的分数计算方法。
分数加法
分数加法是将两个或多个分数相加的运算。
要进行分数加法,
必须保持分母相同。
以下是一个示例:
1/4 + 2/4 = 3/4
分数减法
分数减法是将一个分数减去另一个分数的运算。
和分数加法一样,分母必须相同。
以下是一个示例:
3/4 - 1/4 = 2/4
分数乘法
分数乘法是将两个或多个分数相乘的运算。
分数乘法的规则很
简单,只需要将分子相乘得到新的分子,分母相乘得到新的分母。
以下是一个示例:
2/3 * 3/5 = 6/15
分数除法
分数除法是将一个分数除以另一个分数的运算。
分数除法的规
则是将第一个分数的分子乘以第二个分数的倒数。
以下是一个示例:3/4 ÷ 1/2 = 3/4 * 2/1 = 6/4
分数化简
分数化简是将分数转化为最简形式的运算,使分子和分母的公
约数最大化。
例如,将8/12化简为2/3。
将分数化简可以让计算更
简便明了。
总结
通过掌握分数加法、减法、乘法、除法和化简的方法,小学六年级学生可以更好地进行奥数运算部分的分数计算。
以上提供的方法是常见而简单的分数计算技巧,旨在帮助小学六年级的学生更好地理解和应用。
希望能对你有所帮助。
小学数学六年级奥数《分数的巧算(一)》练习题(含答案)
小学数学六年级奥数《分数的巧算(一)》练习题(含答案)一、填空题1.计算:=÷-⨯+⨯2582.432.02588.6 . 2.=⨯÷⎪⎭⎫ ⎝⎛++1919989898199800980019001900980980190190989898191919 . 3.1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到余下的五百分之一,最后剩下 .4.计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 . 5.计算:=+++++++496124811241621311814121 . 6.计算:=+--+3121131211 . 7.计算:=⨯+⨯+⨯655161544151433141 . 8.计算:=++⋅⋅⋅+++++⋅⋅⋅+++199719953991199619943989537425313199719961995199619951994543432321 . 9.计算:=⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 . 10.计算:⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++20115110151161121814112191613181614121 = .二、解答题11.尽可能化简427863887116690151. 12.计算:⎪⎭⎫ ⎝⎛+⋅⋅⋅+-+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+914637281941322314312213211211.13.计算:1999321132112111+⋅⋅⋅++++⋅⋅⋅++++++. 14.计算: ⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-9997319896317531643153314231.———————————————答 案—————————————————————— 1. 513. 原式()12.48.62582582.42582588.6-+=-⨯+⨯= 51351610258==⨯=. 2. 19915. 原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫ ⎝⎛++= 19915192941998199898193==⨯⨯⨯=.3. 2 1000减去它的一半,余下⎪⎭⎫ ⎝⎛-⨯2111000,再减去余下的31, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯3112111000,再减去余下的41, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯4113112111000,…, 直到减去余下的五百分之一,最后剩下:⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯500114113112111000 5004994332211000⨯⋅⋅⋅⨯⨯⨯⨯= 2=4. 10099. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=100199199198141313121211 1009910011=-=. 5. 1615. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=124162162131131181414121211 ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4961248124811241 4961311311811-++-= 163131187161231187⨯+=⎪⎭⎫ ⎝⎛-⨯+=161516187=+=. 6. 542. 原式5425144758745873153116311631==⨯==-+=+--+=.7. 123. 原式655660544550433440⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 123150140130=+++++=.8. 21. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=19972399219962399052842632419971199619961199551441331221=.9. 1原式=()()()532376123765315376231+⨯+-⨯--⨯ 1111=+-=. 10. 14465. 原式⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯+⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯=413121151413121141413121131413121121 ⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛+++=514131214131211 1446560131225201611234612=⨯=⎪⎭⎫ ⎝⎛+⨯+++=.11. 分子数字之和等于30,故它可以被3整除,分母奇位上数字之和与偶位上数字之和的差为32-21=11,所以它可以被11整除,把这此因数提出,得:1131138896717338896717=⨯⨯.12.原式=⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅++++4642413732312822211914131211 91828173727164636261555251+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++ 9183761061265512764128731298212109+-+⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯=9183763534213281845+-+-+-+-= 91837641532730+-+-+=504533=. 13.因为2)1(21+=+⋅⋅⋅++n n n ,所以 原式=200019992432322212⨯+⋅⋅⋅+⨯+⨯+⨯ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2000119991413131212112 100099912000112=⎥⎦⎤⎢⎣⎡-=.14.因为()()()()()()()()()11311131111312+---=+--+-=+--K K K K K K K K K ()()()()()()112211222+-+-=+--=K K K K K K K ,所以 原式()()()()()()()()()()()()()()()()()()()()198198298298197197297297151525251414242413132323+-+-⨯+-+-⨯⋅⋅⋅⨯+-+-⨯+-+-⨯+-+-= 99971009698969995647353624251⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯=97259710041=⨯=.。
六年级奥数专题01:分数的巧算
一、分数的巧算(一)年级 班 姓名 得分一、填空题1.计算:=÷-⨯+⨯2582.432.02588.6 . 2.=⨯÷⎪⎭⎫ ⎝⎛++1919989898199800980019001900980980190190989898191919 . 3.1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到余下的五百分之一,最后剩下 .4.计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 . 5.计算:=+++++++496124811241621311814121 . 6.计算:=+--+321131211 . 7.计算:=⨯+⨯+⨯655161544151433141 . 8.计算:=++⋅⋅⋅+++++⋅⋅⋅+++199719953991199619943989537425313199719961995199619951994543432321 . 9.计算:=⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 . 10.计算: ⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++20115110151161121814112191613181614121 = .二、解答题11.尽可能化简427863887116690151.12.计算:⎪⎭⎫ ⎝⎛+⋅⋅⋅+-+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+914637281941322314312213211211.13.计算:1999321132112111+⋅⋅⋅++++⋅⋅⋅++++++.14.计算: ⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-9997319896317531643153314231.一、分数的巧算(二)年级 班 姓名 得分一、填空题1.计算:13471711613122374⨯+⨯+⨯= . 2.计算:⎪⎭⎫ ⎝⎛⨯+÷⨯⎪⎭⎫ ⎝⎛+-25.1522546.79428.0955= . 3.计算:25114373611125373185444.4⨯+÷+÷= . 4.计算:()()015.06.32065.022.0013.000325.0⨯÷-÷= . 5.计算: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= . 6.计算:222345567566345567+⨯⨯+= . 7.计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= . 8.计算:4513612812111511016131+++++++= . 9.计算:()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= . 10.计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ ⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211= .二、问答题11.用简便方法计算:421330112091276523-+-+-.12.计算:()1999119981997199919985.19935.1995÷⨯÷-.(得数保留三位小数)13.计算:⋅⋅⋅+++⋅⋅⋅+++++++++1999219991313233323121222111 1999119992199919981999199919991998++⋅⋅⋅++++.14.计算:299810001299799912001312000211999111999119981199714131211++++⋅⋅⋅+++++++-+⋅⋅⋅+-+-.———————————————答 案一—————————————————————— 1. 513. 原式()12.48.62582582.42582588.6-+=-⨯+⨯= 51351610258==⨯=. 2. 19915. 原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫ ⎝⎛++= 19915192941998199898193==⨯⨯⨯=. 3. 2 1000减去它的一半,余下⎪⎭⎫ ⎝⎛-⨯2111000,再减去余下的31, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯3112111000,再减去余下的41, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯4113112111000,…, 直到减去余下的五百分之一,最后剩下: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯500114113112111000 5004994332211000⨯⋅⋅⋅⨯⨯⨯⨯= 2=4. 10099. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=100199199198141313121211 1009910011=-=.5. 16. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=124162162131131181414121211 ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4961248124811241 4961311311811-++-= 163131187161231187⨯+=⎪⎭⎫ ⎝⎛-⨯+=161516187=+=.6. 542. 原式5425144758745873153116311631==⨯==-+=+--+=.7. 123. 原式655660544550433440⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 123150140130=+++++=.8. 21. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=19972399219962399052842632419971199619961199551441331221=.9. 1原式=()()()532376123765315376231+⨯+-⨯--⨯ 1111=+-=.10. 144. 原式⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯+⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯=413121151413121141413121131413121121 ⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛+++=514131214131211 1446560131225201611234612=⨯=⎪⎭⎫ ⎝⎛+⨯+++=. 11. 分子数字之和等于30,故它可以被3整除,分母奇位上数字之和与偶位上数字之和的差为32-21=11,所以它可以被11整除,把这此因数提出,得:1131138896717338896717=⨯⨯.12.原式=⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅++++4642413732312822211914131211 91828173727164636261555251+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++ 9183761061265512764128731298212109+-+⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯=9183763534213281845+-+-+-+-= 91837641532730+-+-+= 504533=.13.因为2)1(21+=+⋅⋅⋅++n n n ,所以 原式=200019992432322212⨯+⋅⋅⋅+⨯+⨯+⨯ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2000119991413131212112 100099912000112=⎥⎦⎤⎢⎣⎡-=.14.因为()()()()()()()()()11311131111312+---=+--+-=+--K K K K K K K K K ()()()()()()112211222+-+-=+--=K K K K K K K ,所以 原式()()()()()()()()()()()()()()()()()()()()198198298298197197297297151525251414242413132323+-+-⨯+-+-⨯⋅⋅⋅⨯+-+-⨯+-+-⨯+-+-= 99971009698969995647353624251⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯=97259710041=⨯=.———————————————答 案二——————————————————————1. 16 原式162874131413122374=⨯=⎪⎭⎫ ⎝⎛++⨯=.2. 90 原式⎪⎭⎫ ⎝⎛⨯+⨯⨯⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=45522455378.0942955 ()⎪⎭⎫ ⎝⎛+⨯⨯-=522537458.08 90457210452.7=⨯=⨯⨯=.3. 9. 原式25114373625114373137825114⨯+⨯+⨯= ⎪⎭⎫ ⎝⎛++⨯=37363731378251149377525114=⨯=.4. 1 原式1100131351536325=⨯⨯⨯⨯=.5. 1.1 原式1.110119854321011674523==⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=6. 1.原式()2223455663455663455672223451566566345567++⨯⨯+=+⨯+⨯+=1567566345566345567=+⨯⨯+=.7. 205. 原式322330433440544550655660766770⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 205120130140150160=+++++++++=.8. 54 原式1092542432322⨯+⋅⋅⋅+⨯+⨯+⨯= ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=101915141413131212 54101212=⎪⎭⎫ ⎝⎛-=.9. 1. 原式2960285933423313231603059332231130⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= 13130321605934333229283216059323130=⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=.10.21. 令a =+++++766554433221,则 原式⎪⎭⎫ ⎝⎛-⨯+-⨯+=21)1(212a a a a 2121212122=⎪⎭⎫ ⎝⎛-+-+=a a a a .11. 原式767665655454434332322121⨯+-⨯++⨯+-⨯++⨯+-⨯+= ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=71616151514141313121211 76711=-=.12. 原式199919981200019982⨯⎪⎭⎫ ⎝⎛-⨯= 199811998199824000+⨯⎪⎭⎫ ⎝⎛-= ⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-=199811199824000 1998199821998240004000⨯--+= 1998199821998224000⨯-++= 001.4002≈.13. 因为kk k k k k k k k k k k k k k -+⋅⋅⋅+++=+++⋅⋅⋅+-++-+⋅⋅⋅+++)321(212311321 k kk k k =-+=)1(,所以, 原式19990002200019991999321=÷⨯=+⋅⋅⋅+++=.14. 分子⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⨯-⎪⎭⎫ ⎝⎛+++⋅⋅⋅++++=1998161412121999119981199714131211 ⎪⎭⎫ ⎝⎛+⋅⋅⋅+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++=9991312111999131211 199911001110001+⋅⋅⋅++= 分母3998139961200412002120001++⋅⋅⋅+++= ⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯=1999110011100012 原式211999110011100012199911001110001=⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯+⋅⋅⋅++=.。
六年级奥数第3讲:分数的巧算(三)
分数的巧算(三)在前面学习分数数列求和的基础上,本讲我们继续学习较复杂的分数数列求和,以及对分数数列求和的灵活应用。
本讲中要学习的方法是将各分母分解成恰当的整数乘积的形式,以便于拆项,而且拆开以后可以消去一些项,从而简化运算。
以下是一些常用公式: (1))2()1(1+⨯+⨯n n n =21×[)1(1+n n ⨯-)2()1(1++n n ⨯] (2))2()(1k n k n n ++⨯⨯=k 21×[)(1k n n +⨯-)2()(1k n k n ++⨯](3))3()2()1(1+++n n n n ⨯⨯⨯=31×[)2()1(1++n n n ⨯⨯-)3()2()1(1n n n ⨯⨯++] (4))3()2()(1k n k n k n n +++⨯⨯⨯= k 31×[)2()(1k n k n n ++⨯⨯-)3()2()(1k n k n k n +++⨯⨯]例1、计算:21+43+87+1615+3231+6463+128127+256255做一做:121+341+581+7161+9321+11641+131281+152561+1910241例2、计算:141-209+3011-4213+5615做一做:107-4013+8819-15425+23831例3、计算:31+61+101+151+211+281+361+451做一做:计算:61+301+701+1261+1981例4、从21,32,43,54,65,…,9897,9998,10099中任选10个数,使这10个数之和等于9,这10个数分别是多少?(答案不唯一)做一做:从21,32,43,54,…, 10099中任选五个数,使这五个数之和等于4。
例5、计算:3211⨯⨯+4321⨯⨯+111091⨯⨯做一做:计算:4321⨯⨯+5431⨯⨯+…+10981⨯⨯例6、计算:6421⨯⨯+8641⨯⨯+…+10098961⨯⨯做一做:计算:53 11⨯⨯+7531⨯⨯+9751⨯⨯++9997951⨯⨯例7 、计算:61+241+601+1201+2101做一做:计算:1201+2101+3361+50411、21+322⨯+4323⨯⨯+54324⨯⨯⨯+654325⨯⨯⨯⨯2、1921+4801+9601+168013、1051+3151+6931+12871+214514、有七个单位分数的和等于1,其中的三个是51,151和251,其余四个分数的分母都是偶数,求这四个分数(答案不唯一)。
六年级奥数分数的速算与巧算
六年级奥数分数的速算与巧算介绍本文档旨在介绍六年级奥数中分数的速算与巧算方法。
通过掌握这些方法,学生可以更高效地解决分数相关的计算题目。
分数的基本概念分数由分子和分母组成,表示部分与整体之间的比例关系。
例如,1/2表示将一个整体分成两个相等的部分,其中一个部分为1。
分子表示部分的数量,分母表示整体被分成的块数。
分数的速算方法相同分母的分数相加当两个分数的分母相同,我们只需要将分子相加,分母不变即可。
例如:1/4 + 2/4 = (1+2)/4 = 3/4。
相同分母的分数相减同样,当两个分数的分母相同,我们只需要将分子相减,分母不变即可。
例如:3/4 - 1/4 = (3-1)/4 = 2/4。
不同分母的分数相加与相减当两个分数的分母不同,我们需要找到它们的最小公倍数作为通分的分母。
然后将分子按照最小公倍数进行转换,并进行相应的计算。
例如:1/3 + 1/4 = 4/12 + 3/12 = 7/12。
分数的乘法分数的乘法可以直接将分子相乘,分母相乘得到结果。
例如:2/3 * 3/4 = (2*3)/(3*4) = 6/12。
分数的除法分数的除法可以转换为乘法的倒数计算。
即,将第二个分数的分子与分母交换位置,然后进行乘法计算。
例如:2/3 ÷ 1/4 = 2/3 * 4/1 = 8/3。
分数的巧算方法取整当分子比分母大于等于1时,分数可以通过取整来近似计算。
例如:7/4 可以近似为 2。
转化为小数可以将分数转化为小数进行计算。
例如:1/2 可以转化为 0.5。
分数的倍数关系分数之间存在倍数关系时,可以利用这种关系来进行巧算。
例如:1/2 + 1/4 = 2/4 + 1/4 = 3/4。
约分将分数约分至最简形式,可以更方便进行计算。
例如:4/8 可以约分为 1/2。
结论通过掌握以上分数的速算与巧算方法,六年级的奥数学生可以更快速、准确地解决分数相关的计算题目。
同时,这些方法也可在实际生活中应用到日常计算中。
六年级奥数分数乘法的巧算一
分数乘法的巧算(一)一、拆分因数,使计算简便。
1、拆分分数:一个分数接近单位“1”(小于单位“1”或大于单位“1”) 例:1. 计算 3334 × 27 2. 计算2322 × 17练习1:4850 × 13 4341 × 13 3334 × 13 3938 × 252、拆分整数:整数接近分数的分母或接近分母的倍数例: 1. 计算2010 ×1232009 2. 计算 93 ×2346练习2:52 ×3750 1001 ×1011002 199 ×8999 4365× 129二、先分拆分数,然后运用乘法分配律进行简便运算。
1、分母一样的,拆分成一个分数与另一个因数的积的形式,再运用乘法分配律进行计算 例:1. 计算 34 × 27 + 14 × 39 2. 计算 57 × 27- 27 × 29练习3:16 × 45 + 56 × 15 57 × 19 — 8 ×472、将一个带分数拆分成整数加分数的形式,再运用乘法分配律进行计算 例:计算 15311 ×17 4457 ×49练习4:2137 ×15 2915 ×56 3429 ×911 2916 ×67作业(一)2728 × 15 1002 ×1001001 35 × 31 + 15 × 7 2623 ×15作业(二)22311 ×17 3842 × 43 13 × 45 + 23 × 15 3940 × 13 131 ×3865 57 × 9 —47 ×6作业(四)1738 × 37 103 ×15104 57 × 5 + 47 × 6 2517 ×78二、乘法分配律的进一步运用 例1:计算527 ×5 + 457 ×923练习1:335 ×25 25 + 37910 ×625 338 ×4+ 558 ×535 1049 ×4 — 249 ×712例2:计算22×17 + 11×27 + 337 ×211练习2:39×14 + 25×34 + 264 ×313 9×38 + 15×18 —54 ×350.7×149 +234 × 15 + 0.7 ×59 + 14 × 15 9×35 + 24×15 —115 ×38作业(一)(325 + 523 +635 + 613 )×(3 —311 ) 1614 ×45 + 1717 ×78 + 1315 ×56625 ×7 + 335 ×1013 22×15 + 11×25 + 335 ×211作业(二)(449 + 856 + 759 + 716 )×(3 —314 ) 1915 ×56 + 1919 ×89 — 2513 ×34425 ×1025 +17910 ×535 39×17 + 25×37 + 267 ×313作业(三)(1227 — 235 — 325 +1757 )×(8 —38 ) 715 ×56 +13 12 ×23 + 2225 ×57758 ×4+ 438 ×535 9×313 + 15×113 —1013 ×35专题训练:例1:计算12 + 14 + 18 + 116 + 132 + 164 + 1128巩固练习:12 + 14 + 18 + 116 + 132 + 164 12 + 14 + 18 + 116 + 132 + 164 + 1128 + 1256分数乘法的巧算综合作业:计算下面各题1.4950 × 12 3839 × 40 58 × 15 + 38 × 23 2.978 ×8 + 867 × 7+ 756 ×6 +645 ×579617 ×59 + 119 ×517 + 50×19 999+1002×10001001×1002—32001×20032002 + 2002×20042003 + 40052002×2003。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数分数巧算学生版TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】分数的速算与巧算1、裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.知识点拨一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b<,那么有1111() a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2) n n n⨯+⨯+,1(1)(2)(3)n n n n⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
三、整数裂项(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+(2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+ 二、换元解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简. 三、循环小数化分数 1、循环小数化分数结论:0.9a =; 0.99ab =; 0.09910990ab =⨯=; 0.990abc =,…… 2、单位分数的拆分: 例:110=112020+=()()11+=()()11+=()()11+=()()11+ 分析:分数单位的拆分,主要方法是: 从分母N 的约数中任意找出两个m 和n,有:11()()()()m n m n N N m n N m n N m n +==++++=11A B+ 本题10的约数有:1,10,2,5.。
例如:选1和2,有: 本题具体的解有:例题精讲 模块一、分数裂项【例 1】 计算:57191232348910+++=⨯⨯⨯⨯⨯⨯ .【解析】 如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第n 个数恰好为n 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为23n +,所以()()()()()()2323121212n n n n n n n n n +=+⨯+⨯++⨯+⨯+⨯+,再将每一项的()()212n n +⨯+与()()312n n n ⨯+⨯+分别加在一起进行裂项.后面的过程与前面的方法相同.【巩固】 计算:5717191155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯()【巩固】 计算:3451212452356346710111314++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯【解析】 本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题。
此类问题需要从最简单的项开始入手,通过公式的运算寻找规律。
从第一项开始,对分母进行等差数列求和运算公式的代入有112(11)11122==+⨯⨯,112(12)212232==+⨯+⨯,……, 【例 2】22222211111131517191111131+++++=------ . 【解析】 这题是利用平方差公式进行裂项:22()()a b a b a b -=-⨯+, 【解析】 找通项(1)(1)2(1)(1)212n n nn n a n n n n +⨯⨯+==+⨯⨯+--【例 3】 计算:22222223992131991⨯⨯⨯=---__________(项公式:()()()()()221111112n n n a n n n n ++==+++-+)【巩固】 计算:222222129911005000220050009999005000+++=-+-+-+ 【解析】 本题的通项公式为221005000n n n -+,没办法进行裂项之类的处理.注意到分母()()()2100500050001005000100100100n n n n n n -+=--=----⎡⎤⎣⎦,可以看出如果把n 换成100n -的话分母的值不变,所以可以把原式子中的分数两两组合起来,最后单独剩下一个22505050005000-+.将项数和为100的两项相加,得()()()()22222222210010022001000021005000100500010050001001001005000n n n n n n n n n n n n n n -+--++===-+-+-+---+,所以原式249199=⨯+=.(或者,可得原式中99项的平均数为1,所以原式19999=⨯=)【解析】 虽然很容易看出321⨯=3121-,541⨯=5141-……可是再仔细一看,并没有什么效果,因为这不象分数裂项那样能消去很多项.我们再来看后面的式子,每一项的分母容易让我们想到公式 ,于是我们又有)12()1(632112222+⨯+⨯++++n n n n =..减号前面括号里的式子有10项,减号后面括号里的式子也恰好有10项,是不是“一个对一个”呢?【解析】模块二、换元与公式应用【例 4】 计算:3333333313579111315+++++++【例 5】 计算:234561111111333333++++++设234561111111333333S =++++++则23451111133133333S =++++++,61333S S -=-,整理可得3641729S =.【例 6】 计算:22222222(246100)(13599)12391098321+++⋅⋅⋅+-+++⋅⋅⋅++++⋅⋅⋅+++++⋅⋅⋅+++【例 7】 计算:222222222212233445200020011223344520002001+++++++++⋅⋅⋅+⨯⨯⨯⨯⨯ 【例 8】 ()20078.58.5 1.5 1.5101600.3-⨯-⨯÷÷-=⎡⎤⎣⎦ . 【例 9】 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+ 三、循环小数与分数互化【例 10】 计算:0.1+0.125+0.3+0.16,结果保留三位小数.【例 11】 某学生将1.23乘以一个数a 时,把1.23误看成,使乘积比正确结果减少.则正确结果该是多少?【例 12】【例 13】 有8个数,0.51,23,59,0.51,2413,4725是其中6个,如果按从小到大的顺序排列时,第4个数是0.51,那么按从大到小排列时,第4个数是哪一个数?【例 14】 真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少【例 15】 【例 16】 【例 17】20022009和1287化成循环小数后第100位上的数字之和是_____________. 【解析】 如果将20022009和1287转化成循环小数后再去计算第100位上的数字和比较麻烦,通过观察计算我们发现2002112009287+=,而10.9⋅=,则第100位上的数字和为9. 注:这里要先选10的三个约数,比如5、2和1,表示成连减式5-2-1和连加式5+2+1.【例 18】 所有分母小于30并且分母是质数的真分数相加,和是__________。
【例 19】 若1112004a b=+,其中a 、b 都是四位数,且a<b ,那么满足上述条件的所有数对(a,b )是课后练习:练习1. 计算:333313599++++=___________.练习2. 计算:1111111111112200723200822008232007⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-+++⨯+++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭练习3. ⑴ ····110.150.2180.3111⎛⎫+⨯⨯ ⎪⎝⎭; ⑵ ()2.2340.9811-÷ (结果表示成循环小数)月测备选 【备选1】计算:23993!4!100!+++= . 【备选2】计算:222222221223200420052005200612232004200520052006++++++++⨯⨯⨯⨯ 【备选3】计算:33312320061232006+++⋅⋅⋅++++⋅⋅⋅+【备选4】计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【备选5】计算200920091199900999909901⎛⎫-⨯⎪⎝⎭ (结果表示为循环小数)。