第六章 压电式传感器
传感器与检测技术习题答案(六)
第6章 压电传感器习题答案
1.为什么说压电式传感器只适用于动态测量而不能用于静态测量?
答:因为压电式传感器是将被子测量转换成压电晶体的电荷量,可等效成一定的电容,如被测量为静态时,很难将电荷转换成一定的电压信号输出,故只能用于动态测量。
2.压电式传感器测量电路的作用是什么?其核心是解决什么问题?
答:压电式传感器测量电路的作用是将压电晶体产生的电荷转换为电压信号输出,其核心是要解决微弱信号的转换与放大,得到足够强的输出信号。
3.一压电式传感器的灵敏度K 1=10pC /MPa ,连接灵敏度K 2=0.008V /pC 的电荷放大器,所用的笔式记录仪的灵敏度K 3=25mm /V ,当压力变化Δp =8MPa 时,记录笔在记录纸上的偏移为多少?
解:记录笔在记录纸上的偏移为
S =10×0.008×25×8=16/mm
4.某加速度计的校准振动台,它能作50Hz 和1g 的振动,今有压电式加速度计出厂时标出灵敏度K =100mV /g ,由于测试要求需加长导线,因此要重新标定加速度计灵敏度,假定所用的阻抗变换器放大倍数为1,电压放大器放大倍数为100,标定时晶体管毫伏表上指示为9.13V ,试画出标定系统的框图,并计算加速度计的电压灵敏度。
解:此加速度计的灵敏度为
3.91100
9130=='K mV/g 标定系统框图如下:。
习题参考答案6-压电式传感器
习题6 六、压电式传感器(一) 习 题6-1. 以钛酸钡为例,在y 轴受到1N/m 2的切应力。
试求出在各方向产生的电荷密度。
答:121111213141516322122232425264331323334353656T T d d d d d d T d d d d d d T d d d d d d T T σσσ⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦=1524313233000000000000000010d d d d d ⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦其中12121212120000250100002501000781078101901000ij d -----⎡⎤⨯⎢⎥⎡⎤=⨯⎢⎥⎣⎦⎢⎥-⨯-⨯⨯⎣⎦12122111112213314415516615525010125010d T d T d T d T d T d T d T C m σ--∴=+++++==⨯⨯=⨯ 22112222332442552660d T d T d T d T d T d T σ=+++++=33113223333443553660d T d T d T d T d T d T σ=+++++=即在x ,y ,z 轴面上产生的电荷密度分别为250×10-12C/m 2,0,0。
6-2 已知电压前置放大器输入电阻及总电容分别为R i =1MΩ,C i =100pF ,求与压电加速度计相配测量1Hz 的振动时幅值误差为多大?答:对于电压前置放大器,其实际输入电压与理想输入电压之比的相对幅频特性为()()21ωτωτω+=A i i C R =τ f πω2=当被测信号的频率为f=1Hz 时,有()()()421261262103.6101001011211010010112212---⨯=⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=+=ππππωi i i i C fR C fR A所以幅值误差为%94.999994.01103.64-=-=-⨯=-δ由此可见测量误差太大了,原因在于输入阻抗太小。
第六章压电传感器
F Poling axis
应力(106 Pa)
20mm Open circuit Voltage F
Q=kF U=Q/C
19
苏州大学城市轨道交通学院
压电材料的应用 高压打火
压电体
20
苏州大学城市轨道交通学院
压电材料的应用 原子力显微镜中的应用 用作微小位移调节探针
high-voltage amplifier
31
苏州大学城市轨道交通学院
压电传感器的信号调节
电荷放大器(一般情况)
-k
ui 等效电路
Cf
C
Q
uo
Q uo = C + Cf + Cf k
qc + qcf = Q
uo = -kui
32
Cui + Cf(ui - uo )= Q
-Cuo /k + Cf(-uo /k - uo )= Q
苏州大学城市轨道交通学院
压电传感器的信号调节
Q uo = C + Cf + Cf k
选用高增益的运放: 电荷放大器的输出电压
K
Q uo = Cf
只与反馈电容的大小、压电体产生的电荷量有关, 而与压电体的电容、电缆的对地电容等无关。
33
苏州大学城市轨道交通学院
压电振动传感器 压电振动传感器
34
苏州大学城市轨道交通学院
37
苏州大学城市轨道交通学院
Typical Frequency Response Curve
low frequency limit determjned by RC roll-off characteristics
Usable Range
自动检测技术及应用6检测教案,第六章
(6-4)
式中Q——压电传感器产生的电荷;
Cf——并联在放大器输入端和输出端之间的反馈电容。
Cf的选择:
当被测振动较小时,电荷放大器的反馈电容应取得小一些,可以取得较大的输出电压。
电荷放大器的低频下限fL主要由电荷放大器的Rf与Cf的乘积决定,即
(6-5)
可根据被测信号的频率下限,用开关SR切换不同的Rf,来获得不同的带宽。
在晶体的弹性限度内,在x轴方向上施加压力Fx时,在x面上产生的电荷为
Q=d11Fx(6-1)
式中d11——压电常数。
自然界中与压电效应有关的现象很多。
举例:在完全黑暗的环境中,将一块干燥的冰糖用榔头敲碎,可以看到冰糖在破碎的一瞬间,发出暗淡的蓝色闪光,这是强电场放电所产生的闪光,产生闪光的机理也是晶体的压电效应。
二、压电材料的分类及特性
压电式传感器中的压电元件材料主要有三类:压电晶体(单晶体)、经过极化处理的压电陶瓷(多晶体)、高分子压电材料。
1.石英晶体
石英晶体:突出优点是性能非常稳定。在20~200℃的范围内压电常数的变化率只有-0.0001/℃。
不足之处:压电常数较小(d=2.3110-12C/N)。
高分子压电材料有聚偏二氟乙烯(PVF2或PVDF)、聚氟乙烯(PVF)、改性聚氯乙烯(PVC)等。其中以PVF2和PVDF的压电常数最高。
高分子压电材料是一种柔软的压电材料。可根据需要制成薄膜或电缆套管等形状。经极化处理后就显现出电压特性。它不易破碎,具有防水性,可以大量连续拉制,制成较大面积或较长的尺度,因此价格便宜。
因此石英晶体大多只在标准传感器、高精度传感器或使用温度较高的传感器中使用,而在一般要求的测量中,基本上采用压电陶瓷。
第6章压电式传感器原理及其应用
6.1 压电效应和压电材料 6.2 压电元件的常用结构 6.3 压电式传感器等效电路和测量电路 6.4 压电式传感器的应用
压电式传感器概述
压电式传感器的压电元件是利用压电材料制成的, 压电式传感器的压电元件是利用压电材料制成的, 它是一种电量型传感器。 它是一种电量型传感器。 工作原理:以某些电介质的压电效应为基础 以某些电介质的压电效应为基础, 工作原理 以某些电介质的压电效应为基础,在外力 作用下,电介质的表面就会产生电荷,有电压输出, 作用下,电介质的表面就会产生电荷,有电压输出, M 从而实现力—电信号转换 再通过检测电荷量( 电信号转换, 从而实现力 电信号转换,再通过检测电荷量(或 输出电压)的大小,即可测出作用力的大小。 输出电压)的大小,即可测出作用力的大小。 压电元件是一种典型的力敏感元件, 压电元件是一种典型的力敏感元件,可用来测量最 终可变换为力的各种物理量,如测量压力、应力、 终可变换为力的各种物理量,如测量压力、应力、 加速度等。由于压电元件具有体积小、重量轻、 加速度等。由于压电元Байду номын сангаас具有体积小、重量轻、结 构简单、可靠性高、频带宽、 构简单、可靠性高、频带宽、灵敏度和信噪比高等 优点,压电式传感器也随之得到了飞速发展。 优点,压电式传感器也随之得到了飞速发展。 在声学、力学、 在声学、力学、医学和航空航天等领域都得到了广 泛应用。其缺点是无静态输出, 泛应用。其缺点是无静态输出,要求有很高的输出 阻抗,需用低电容的低噪声电缆等。 阻抗,需用低电容的低噪声电缆等。
铜芯线充当内电极铜网屏蔽层作外电极管状pvdf高分子压电材料为绝缘层最外层是橡胶保护层为承压弹性元件当管状高分子压电材料受压时其内外表面产生电荷可达到测量的目的图620高分子压电电缆2高分子压电电缆的典型应用高分子压电电缆测速系统由两根高分子压电电缆相隔一段距离平行埋设于柏油公路的路面下50mm处如图621所示
《传感器技术》教学课件第6章
沿电轴方向施加作用力Fx时,在与电轴x垂直的平面上将产生电
荷, 其大小为
qx d11Fx
(6-2)
式中, d11为x方向受力的压电系数。
14
若在同一切片上,沿机械轴y方向施加作用力Fy,则电荷仍 在与x轴垂直的平面上产生,其大小为
qy
d12
a b
Fy
(6-3)
式中:d12——y轴方向受力的压电系数,根据石英晶体的对称性, 有d12=-d11;
在自然界中大多数晶体都具有压电效应,但压 电效应十分微弱。随着对材料的深入研究,发现石 英晶体、钛酸钡、锆钛酸铅等材料是性能优良的压 电材料。
7
表6-1 常用压电材料的性能参数
8
6.1.1 压电晶体
以石英晶体为例,它是单晶体中具有代表性同时也是应用 最广泛的一种压电晶体,化学式为SiO2。图6-2(a)表示了天 然结构的石英晶体外形是一个正六面体。
16
石英晶体具有压电效应与内部分子结构有关。图6-3 是一个单元组体中构成石英晶体的硅离子和氧离子,将 硅离子和氧离子在垂直于晶体z轴的xy平面上进行投影, 等效为一个正六边形排列。
当石英晶体未受外力作用时,正、负离子正好分布 在正六边形的顶角上,形成三个互成120°夹角的电偶
极矩P1、P2、P3。 如图6-4(a)所示。
29
压电材料的压电特性可以用压电方程表示,其矩阵形式是: 定义压电系数矩阵D为:
30
压电系数矩阵D是正确选择压电元件、受力状态、变形方 式、能量转换率以及晶片几何切型的重要依据。石英晶体压电 系数矩阵可表示为
式中独立的压电系数是d11和d14;压电系数矩阵可表示为:
其中独立的压电系数是d33、d31和d15三个。
第6章 压电式传感器
应力与电荷密度
力与应力:用F表示力,用T表示应力,即 单位面积上的力:
F T A
电荷与电荷密度:用Q表示电荷,用 表示 电荷密度,即单位面积上的电荷:
Q A
压电效应可以用下面的方程描述:
σ = dT
• 该方程称为压电方程,它描述了压电传感器输 出(电荷密度)与输入(应力)之间的静态关 系 • d相当于灵敏度
A( )
d R 1 [ R(Ca Cc Ci )]
2
d R 1 ( )
2
可得实际增益与理想增益之比:
A( ) k ( ) * 2 A ( ) 1 ( )
k ( )
1 ( )
2
• 当 1 ,即输入信号频率较大, k ( ) 1 , 此时,实际增益趋近于理想增益 • 因此,压电式传感器的高频特性较好,这是压电 式传感器的优点
S = dt E
•
d t 称为逆压电常数矩阵
二、压电方程和压电常数矩阵
压电效应可用压电方程来定量描述,如下:
σ = dT • d称为压电常数矩阵
• 不同的压电材料具有不同的压电常数矩阵 • 相同的压电材料,如果加工方式不同,也会有 不同的压电常数矩阵
应力:如图所示,一 共有6个方向 • T1 , T2 , T3 :分别表 示沿x,y,z方向上的 应力(拉力为正, 压力为负) • T4 , T5 , T6:分别表 示绕x,y,z方向上的 切应力(右旋为正, 左旋为负)
T
三个端面的面积:
• A1 , A2 , A3 :分别表 示与x,y,z垂直的端 面面积
T1 T 因此有: 2 1 d11 d12 d13 ... d16 T3 d d d ... d 2 21 22 23 26 T4 3 d31 d32 d33 ... d36 T 5 T6 写为向量-矩阵形式的压电方程为:
第6章压电式传感器习题
则当输出电压U°=2V时,振动加速度为
a=Uo/K=2 xi03/250=8(g)
F=PS=10>106X20>0-6=200(N)歼4.5,d11=2.31>012C/N
(1)0°切割石英晶体, 等效电容
0rS
Cah =7.97 X1014(F)
8.85 10
3
10 10
受力F产生电荷
Q=diiF=2.31 X1012>200=462 >102(C)=462pC
输出电压
(2)利用纵向效应的
极板并联。若所加力F=0.01sin(1000t)N,求:
(1)两极板间电压峰 一峰值;
(2)晶体厚度的最大变化。
解:(1)石英压电晶片的电容
C
Ca-
d
=4.514 XI0-12(F)
~4.5pF
由于Ra=1014Q,并联电容R并=100MQ=108Q
则总电阻
总电容
又因
所以
d11FmR
.1 RC
=0.756K03(V)=0.756mV
=0.205n
则怕=0.205f0=0.205 30=6.15(kHz)
压电式加速度传感器下限截止频率取决于前置放大器特性,
/n
2—
2%
(取等号计算)
0.981
)2=0.9604+0.9604( )2
()2=24.25
=4.924
3=4.924/tfL=3/2n=4.924/(2)=4.924/(2 RC)=4.924/(2X5X108X109)=1.57(Hz)
输出电压
8
Q
C
[整理版]传感器原理与应用习题_第6章压电式传感器
[整理版]传感器原理与应用习题_第6章压电式传感器《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章压电式传感器6-1 何谓压电效应,何谓纵向压电效应和横向压电效应,答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
且其电位移D(在MKS单位制中即电荷密度σ)与外应力张量T成正比: D = dT 式中 d—压电常数矩阵。
当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S与外电场强度E成正比: S=dE 式中 d——逆压电常数矩阵。
这种现象称为逆压电tt效应,或称电致伸缩。
6-2 压电材料的主要特性参数有哪些,试比较三类压电材料的应用特点。
答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。
压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。
此外,还在光电、微声和激光等器件方面都有重要应用。
不足之处是质地脆、抗机械和热冲击性差。
压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。
新型压电材料:既具有压电特性又具有半导体特性。
因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。
6-3 试述石英晶片切型()的含意。
yxlt,50:/45:6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。
答:(1)并联:C′,2C,q′=2q,U′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。
传感器原理与应用习题第6章压电式传感器
《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章 压电式传感器6-1 何谓压电效应?何谓纵向压电效应和横向压电效应?答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比: D = dT 式中 d —压电常数矩阵。
当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S 与外电场强度E 成正比: S=d t E 式中 d t ——逆压电常数矩阵。
这种现象称为逆压电效应,或称电致伸缩。
6-2 压电材料的主要特性参数有哪些?试比较三类压电材料的应用特点。
答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。
压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。
此外,还在光电、微声和激光等器件方面都有重要应用。
不足之处是质地脆、抗机械和热冲击性差。
压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。
新型压电材料:既具有压电特性又具有半导体特性。
因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。
6-3 试述石英晶片切型(︒︒+45/50yxlt )的含意。
6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。
答:(1)并联:C ′=2C ,q ′=2q,U ′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。
压电传感器(第六章)
电路并联
电路串联
C 2C,Q ' 2Q,U ' U C ' C ,U ' 2U ,Q ' Q
2
U’
+++++++++++ +
____________ _
___________
+++++++++++
+ _
U’
+++++++++++ + ___________ _ ++ + + + + + + + + + + _ ____________ +
第六章 压电传感器
主要内容
1.压电效应 2.压电材料 3.压电元件结构 4.等效电路与测量电路 5.压电传感器的应用
1
概述
压电式传感器是一种典型的自发电型传感 器,以电介质的压电效应为基础,外力作用 下在电介质表面产生电荷,从而实现非电量 测量。 压电式传感器可以对各种动态力、机械 冲击和振动进行测量,在声学、医学、力学、 导航方面都得到广泛的应用。
25
聚偏氟乙烯压电材料
聚 偏 氟 乙 烯 压 电 效 应
26
高分子压电材料制作的压电薄膜和电缆
27
可用于波形分析及报警的高分子压电踏脚板
28
压电式脚踏报警器
29
6.3 压电元件结构形式
单片压电元件产生的电荷量甚微,为了提高压电传 感器的输出灵敏度, 在实际应用中常采用两片(或两 片以上)同型号的压电元件粘结在一起。 由于压电材 料的电荷是有极性的,因此接法也有两种。
压电磁敏传感技术
介电常数:对于一定形状、 尺寸的压电元件, 其固有电容与介电常数有关; 而固有电容又影响着压电传感器的频率下限。
机械耦合系数:在压电效应中, 其值等于转换输出能量(如电能)与输入的能量(如机械能)之比的平方根; 它是衡量压电材料机电能量转换效率的一个重要参数。
电阻压电材料的绝缘电阻将减少电荷泄漏, 从而改善压电传感器的低频特性。
明显呈现压电效应的敏感功能材料叫压电材料
压电材料可以分为两大类: 压电晶体和压电陶瓷 。 压电材料的主要特性参数有: (1) 压电常数:压电常数是衡量材料压电效应强弱的参数, 它直接关系到压电输出的灵敏度。 (2) 弹性常数:压电材料的弹性常数、 刚度决定着压电器件的固有频率和动态特性。
04
质量块用高比重的金属块,对压电元件施加预载荷
四 压电式传感器的应用
它主要由压电元件、质量块、预压弹簧、基座及外壳等组成。 整个部件装在外壳内, 并用螺栓加以固定。
测量时,将底座与被测量加速度的构件刚性地连接在一起,使质量块感受与构件完全相同的运动。当构件产生加速度时,质量块将产生惯性力F1,其方向与加速度方向相反,大小为F1=ma。此惯性力与预紧力F0叠加后作用在压电元件上,使得作用在压电元件上的压力F为:
01
压电元件上产生与加速度a对应的电荷,即
02
2、工作原理
由上式可知,电荷放大器的输出电压的增量
1
与加速度a成正比。因此,只要将
2
测出,即可测出构件的加速度。
3
如果在电路中增加一级或两级积分电路,则还可测出构件的速度或位移量。
4
压电式玻璃破碎报警器
01
检测原理:它利用压电元件对振动敏感的特性来感知玻璃受撞击和破碎时产生的振动波。传感器把振动波转换成电压输出,输出电压经放大、滤波、比较等处理后提供给报警系统。
第6章压电式传感器课件
6.1.1 压电效应
1.石英晶体的压电效应 石英晶体是最常用的压电晶
体 之 一 。 其 化 学 成 分 为 SiO2 , 是 单晶体结构。它理想的几何形状 为正六面体晶柱,实际上两端为 晶锥形状。通过上下晶锥顶点的z 轴称为光轴,在此方向不产生压 电效应。
为了使压电陶瓷具有压电效 应,就必须在一定温度下对其进 行极化处理,即给压电陶瓷加外 电场,使电畴规则排列,从而具 备压电性能。
6.1.1 压电效应
外加电场的方向即是压电陶瓷的极化方向,通 常取沿z轴方向。左图为施加外电场时的情形。外加 电场去掉后,电畴极化方向基本保持原极化方向,如 右图所示。因此,压电陶瓷的极化强度不恢复为零, 而是存在着很强的剩余极化强度。
6.1.2 压电材料
(4)温度性能 要求压电材料具有较高的居里 点,以便获得较宽的工作温度范围,这是因为居 里点是压电材料开始失去压电效应的温度。
(5)长期稳定性 要求压电材料的压电特性不 随时间蜕变。
6.1.2 压电材料
1.压电晶体 由晶体学可知,无对称中心的晶体通常具有压
电效应,具有压电效应的单晶体统称为压电晶体。 石英晶体是最典型而常用的压电晶体,其特点是
P ql
式中,q为电荷量;l为正负电荷 间的距离。
6.1.1 压电效应
当石英晶体沿x轴方向被压缩时,沿y方向产生 拉伸变形,使正负离子的相对位置改变。P1、P2、P3 的矢量和不再为零,在x轴方向的分量小于零,因而 在x轴正方向的晶体表面上产生负电荷,在相对表面 上产生正电荷。
然而,电偶极矩的矢量和在 y轴和z轴的分量还是零,所以在 垂直于y轴和z轴的晶体表面上不 会出现电荷,d21=d31=0。
第六章 压电式传感器
1 CR
2
i
d 33 Fm C
2
arctan RC
当R无限大时 电压幅值比:
U im Um
Um
RC
1 1 RC
CR 2 1
U im 1 2 Um 1 1 i arctan 1 2
第六章:压电式传感器
主讲人:贾鹤萍
压电式传感器是一种自发电式传感器。它以某些 电介质的压电效应为基础,在外力作用下,在电介质 表面产生电荷,从而实现非电量电测的目的。
压电传感元件是力敏感元件,它可以测量最终能 变换为力的那些非电物理量,例如动态力、动态压力 、振动加速度等,但不能用于静态参数的测量。 压电式传感器具有体积小、质量轻、频响高、信 噪比大等特点。由于它没有运动部件,因此结构坚固 、可靠性、稳定性高。
1、工作原理--压电效应
图6-1 压电转换元件受力变形的几种基本形式
返回
1、工作原理--压电效应 压电传感器中的压电元件材料一般有三类: 压电晶体(如上述的石英晶体); 经过极化处理的压电陶瓷; 高分子压电材料。
1、工作原理----石英晶体 天然结构的石英晶体呈六角形晶柱,
Z轴为光轴,是晶体的对称轴,光线沿Z轴通过晶体 不产生双折射现象。
q1 q11 q12 q13 q14 q15 q16
q1 d111 d12 2 d13 3 d14 4 d15 5 d16 6 q2 d211 d22 2 d23 3 d24 4 d25 5 d26 6 q3 d311 d32 2 d33 3 d34 4 d35 5 d36 6 [D] 1
【课件】传感器与检测技术---压电式传感器解析
P1 -
P3
P2 +
-
X
零,即
P1+P2+P3=0
(a) FX=0
当晶体受到沿X方向的压力(FX<0)作用时,晶体沿X方 向将产生收缩,正、负离子相对位置随之发生变化,如 图(b)所示。此时正、负电荷中心不再重合,电偶极矩 在X方向的分量为(P1+P2+P3)X>0
在Y、Z方向上的分量为:
(P1+P2+P3)Y=0 (P1+P2+P3)Z=0
(二) 压电陶瓷
1、 钛酸钡压电陶瓷 钛酸钡(BaTiO3)是由碳酸钡(BaCO3)和二氧化
钛(TiO2)按1:1分子比例在高温下合成的压电陶瓷。 它具有很高的介电常数和较大的压电系数(约为石
英晶体的50倍)。不足之处是居里温度低(120℃), 温度稳定性和机械强度不如石英晶体。
2、 锆钛酸铅系压电陶瓷(PZT) 锆钛酸铅是由PbTiO3和PbZrO3组成的固溶体Pb(Zr、
F ----- - +++++
极化方向 ----- ++++++
正压电效应示意图 (实线代表形变前的情况,虚线
代表形变后的情况)
同样,若在陶瓷片上加一个与极化方向相同的电场, 如图,由于电场的方向与极化强度的方向相同,所以电 场的作用使极化强度增大。这时,陶瓷片内的正负束缚 电荷之间距离也增大,就是说,陶瓷片沿极化方向产生 伸长形变(图中虚线)。同理,如果外加电场的方向与 极化方向相反,则陶瓷片沿极化方向产生缩短形变。这 种由于电效应而转变为机械效应或者由电能转变为机械 能的现象,就是逆压电效应。
FY CX
(二) 压电陶瓷的压电效应
压电陶瓷属于铁电体一类的物质,是人工制造的多晶压电材 料,它具有类似铁磁材料磁畴结构的电畴结构。电畴是分子自发 形成的区域,它有一定的极化方向,从而存在一定的电场。在无 外电场作用时,各个电畴在晶体上杂乱分布,它们的极化效应被 相互抵消,因此原始的压电陶瓷内极化强度为零,见图(a)。 在外电场的作用下,电畴的极化方向发生转动,趋向于按外电场 的方向排列。从而使材料得到极化,如图 (b)所示。极化处理之后, 陶瓷材料内部仍存在有很强的剩余极化。如图 (c)所示。
第六章压电传感器(河南理工大学)
聚偏氟乙烯压电材料
聚 偏 氟 乙 烯 压 电 效 应
26
高分子压电材料制作的压电薄膜和电缆
27
可用于波形分析及报警的高分子压电踏脚板
28
表6-1 常用压电材料的主要性能(P104)
29
(1)压电系数:dij
i=1,2,3,表示电学量方向,分 别表示X轴、Y轴、Z轴方向。 j=1,2,3,4,5,6,力学方向,分别 表示沿X轴、Y轴、Z轴方向作 用的正力和YOZ平面、ZOX平 面、XOY平面作用的切应力。
20
➢ 施加外电场时,电畴的极化方向发生转动,趋 向外电场方向排列。外电场强度达到饱和程度时 ,所有的电畴与外电场一致。 ➢外电场去掉后,电畴极化方向基本不变,剩余 极化强度很大。所以,压电陶瓷极化后才具有压 电特性。
21
极化过程示意图
➢ 晶体极化时,在沿极化方向加一直流电压, 形成外加电场,使电畴的方向与外加电场的方 向一致。 ➢ 晶体极化后,沿极化方向产生剩余极化强度。
Pxx----极化强度; Fx-----沿X轴方向的压缩力; d11----压电系数;
l、b----石英晶体的长度和宽度;
σxx ---压缩应力。
而极化强度Pxx又等于晶片表面的电荷密度,即
或
10
电荷的极性 (1)在X轴方向施加压缩力 时,则X轴正向为正电荷;
(2)在X轴方向施加拉力 时,则X轴正向为负电荷;
猛烈撞击陶瓷压电组件4,产生压电效应,从而在正负两极 面上产生大量电荷,正负电荷通过高压导线5在尖端放电产 生火花,使得燃气被点燃。
煤气灶压电陶瓷打火器不仅使用方便,安全可靠,而且
使用寿命长,据有关资料介绍,采用压电陶瓷制成的打火器
可使用100万次以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 压电式传感器 四、压电材料 压电材料具备主要特性: 压电材料具备主要特性:
①转换性能。要求具有较大的压电常数。 转换性能。要求具有较大的压电常数。 ②机械性能。机械强度高、刚度大。 机械性能。机械强度高、刚度大。 ③电性能。高电阻率和大介电常数。 电性能。高电阻率和大介电常数。
指压电材料开 始丧失压电特 性的温度。 性的温度。
返回
第六章 压电式传感器
F
F
++++++ ------ F
------ ++++++ F
第六章 压电式传感器
第六章 压电式传感器
第六章 压电式传感器
第六章 压电式传感器
第六章 压电式传感器
逆压电效应(电致伸缩效应) 逆压电效应(电致伸缩效应) 当在电介质的极化方向施加电场 当在电介质的极化方向施加电场,这些电介质就 极化方向施加电场, 一定方向上产生机械变形或机械压力 上产生机械变形或机械压力, 在一定方向上产生机械变形或机械压力,当外加电 场撤去时,这些变形或应力也随之消失的现象。 场撤去时,这些变形或应力也随之消失的现象。 正压电效应 机械能
Y、Z轴方向无电荷
+
这种沿Y 轴施加力, 而在垂直于X 这种沿 Y 轴施加力 , 而在垂直于 X 轴晶面上产生电荷 的现象即为横向压电效应 横向压电效应。 的现象即为横向压电效应。
第六章 压电式传感器
第六章 压电式传感器
第六章 压电式传感器 Y + P1 P2 + + X
返回
P3
受Z轴力: 轴力: 晶体沿x方向和沿y方向所产生的正应变完全相同, 晶体沿x方向和沿y方向所产生的正应变完全相同,所 负电荷中心保持重合, 以,正、负电荷中心保持重合,电偶极矩矢量和等于 这就表明,在沿z(即光轴)方向的力Fz 作用下, z(即光轴 零。这就表明,在沿z(即光轴)方向的力Fz 作用下, 晶体不产生压电效应。 晶体不产生压电效应。
返回
- ---
+ + + +
+ + + +
-- - -
a q y = d12 Fy b
d12——y轴方向受力的压电系数; 轴方向受力的压电系数; 轴方向受力的压电系数 石英晶体对称性, 石英晶体对称性, 有d12= -d11; a-厚度;b-宽度。 厚度; 宽度 宽度。 厚度
压电电荷符号 与受力方向
电极
束缚电荷会吸附自由电荷 陶瓷片对外不表现极性 无外力作用时电压表不能测出陶瓷片内的极化程度
第六章 压电式传感器
F ----- +++++++
加 外 力
q = d 33 F
d33 :压电陶瓷压电系数 压电陶瓷压电系数 F:作用力
极化方向
- - - - - -- +++++
电畴偏转, 电畴偏转,极化强度 变小, 变小,自由电荷释放 这种由机械效应转变为电效应, 这种由机械效应转变为电效应,或者由机械能转变为 正压电效应。 电能的现象,就是正压电效应 电能的现象,就是正压电效应。
石英在高温下相对介电常数 相对介电常数 的温度特性
第六章 压电式传感器
优点: 优点: 性能非常稳定,机械强度高,绝缘性能也相当好。 性能非常稳定,机械强度高,绝缘性能也相当好。 缺点: 缺点: 价格昂贵, 压电系数比压电陶瓷低得多。 价格昂贵,且压电系数比压电陶瓷低得多。用于 标准仪器或要求较高的传感器中 或要求较高的传感器中。 标准仪器或要求较高的传感器中。 组成: 组成: 天然和人工培养两种类型 两种类型。 天然和人工培养两种类型。因其物理和化学性质 几乎没有区别,广泛应用成本较低的人造石英晶体。 几乎没有区别,广泛应用成本较低的人造石英晶体。 切割: 切割: 各向异性晶体,按不同方向切割,物理性质 如弹性、 压电效应、 温度特性等) 相差很大。 ( 如弹性 、 压电效应 、 温度特性等 ) 相差很大 。 根 据不同使用要求正确地选择石英片的切型 石英片的切型。 据不同使用要求正确地选择石英片的切型。
第六章 压电式传感器 一、压电效应 二、石英晶体(SiO2)的压电效应 石英晶体( ) 第一节 压电效应及压电材料 三、陶瓷的压电效应 四、压电材料
第六章 压电式传感器 一、压电效应
顺(正)压电效应: 压电效应: 某些电介质,当沿着一定方向 一定方向对其施力而使它 某些电介质,当沿着一定方向对其施力而使它 变形时,内部就产生极化现象,同时在它的一定表 极化现象 变形时,内部就产生极化现象,同时在它的一定表 上便产生符号相反的电荷,当外力去掉后, 面上便产生符号相反的电荷,当外力去掉后,又重 新恢复到不带电状态;当作用力方向改变时, 新恢复到不带电状态 ; 当作用力方向改变时 , 电荷 极性也随之改变。 极性也随之改变。这种机械能转化为电能的现象称 为正压电效应或顺压电效应。 为正压电效应或顺压电效应。
石英压电效应
第六章 压电式传感器
2、纵向压电效应
a z
X FX X FX
+ + + +
y b c
-- - -
+ + + +
x
- - --
qx = d11Fx
d11为x方向受力的压电系数 d11=2.31×10-12C/N 31× FX为作用力
返回
第六章 压电式传感器
3、横向压电效应 X FY X FY
+ + + + +
P1 P2
+ P3 +
-
- - - -
X
轴的正向出现负电荷, 方向则不出现电荷。 在X轴的正向出现负电荷,在Y、Z方向则不出现电荷。 轴的正向出现负电荷 方向则不出现电荷 轴施加力, 这种沿X轴施加力,而在垂直于X轴晶面上产生电 荷的现象即为纵向压电效应 纵向压电效应。 荷的现象即为纵向压电效应。
正、负离子在正六边形顶角
P1、P2、P3互成120º夹角 互成120 120º
正负电荷中心重合 电偶极矩的矢量和等于零
-
P 1+P 2+P 3=0
第六章 压电式传感器 Y + P3 P2 +
受X方向压力(FX<0)时 方向压力( 正、负电荷中心不再重合 P1减小,P2、P3增大 减小, (P1+P2+P3)X>0 (P1+P2+P3)Y=0 (P1+P2+P3)Z=0
X轴力
第六章 压电式传感器 Y FY
- - - -
+
P1
+ P3 P2
+ +
受Y轴拉力FY>0 轴拉力F 与X方向压力(FX<0)相同 方向压力( <0)
+
X
(P1+P2+P3)X>0
X轴的正向: 正电荷 轴的正向: Y、Z轴方向无电荷
-
+ + FY
第六章 压电式传感器 Y + + + + FY 受Y轴压力FY<0 轴压力F - + 轴拉力( 与X轴拉力(FX >0 )相同 P3 - P1 P1+P2+P3)X<0 - - X P2 - X轴的正向:负电荷 轴的正向: + FY
返回
第六章 压电式传感器 三、陶瓷的压电效应
人造多晶体: 人造多晶体:经极化处理后的人工多晶铁电体
电畴
无外电场作用时 总极化强度为零
施加外电场时 电畴自发极化方向 与外电场一致
外电场去掉后 具剩余极化强度
剩余极 化强度
第六章 压电式传感器
电极 自由电荷 束缚电荷
----- +++++ 极化方向 ----- +++++
第六章 压电式传感器 结论: 结论:
方向的压力作用时, ① 当晶片受到x方向的压力作用时,qx只与作用 成正比,而与晶片的几何尺寸无关; 力Fx成正比,而与晶片的几何尺寸无关; 方向向晶片施加压力时, ② 沿机械轴y方向向晶片施加压力时,产生的电 荷是与几何尺寸有关的; 荷是与几何尺寸有关的; 石英晶体不是在任何方向都存在压电效应; ③ 石英晶体不是在任何方向都存在压电效应; 晶体在哪个方向上有正压电效应, ④ 晶体在哪个方向上有正压电效应,则在此方 向上一定存在逆压电效应; 向上一定存在逆压电效应; 无论是正或逆压电效应,其作用力(或应变) ⑤ 无论是正或逆压电效应,其作用力(或应变) 与电荷(或电场强度)之间皆呈线性关系。 与电荷(或电场强度)之间皆呈线性关系。
1.00 0.99
dt / d20
斜率: -0.016%/℃
0.98 0.97 0.96 0.95 20 40 60 80 100 120 140 160 180 200
t℃
6 相 对5 介4 电3 常 数2 ε 1 0
居里点 t/℃
100 200 300 400 500 600
石英的d11系数 系数相对于20℃的d11温度变化 特性
FX - - + - - P1
FX
+ X +
+ +
轴的正向出现正电荷, 轴方向则不出现电荷。 在X轴的正向出现正电荷,在Y、Z轴方向则不出现电荷。 轴的正向出现正电荷 轴方向则不出现电荷
第六章 压电式传感器 Y
FX FX 方向拉力( 受X方向拉力(FX>0) 方向拉力 ) P1增大, P2、 P3减小 增大, 、 减小 增大 (P1+P2+P3)X<0 (P1+P2+P3)Y=0 (P1+P2+P3)Z=0
返回
第六章 压电式传感器
第六章 压电式传感器
------ ++++++ 极化 方向 ------ ++++++ 压电 电 电 电 场 方 向
第六章 压电式传感器