人教版高中数学必修5第三章不等式单元测试题及答案

合集下载

新人教必修五第三章不等式单元综合测试(含答案)

新人教必修五第三章不等式单元综合测试(含答案)

新人教必修五第三章不等式单元综合测试(含答案)新人教必修五第三不等式单元综合测试(含答案)一、选择题:1、若,且,则下列不等式一定成立的是()A.B..D.2、函数的定义域为()A.B..D.3、已知,则()A.B..D.4、不等式的解集为()A.B..D.、已知等比数列的各项均为正数,公比,设,,则与的大小关系是()A.B..D.无法确定6、已知正数、满足,则的最小值是()A.18B.16.8D.107、下列命题中正确的是( )A.当且时B.当,.当,的最小值为D.当时,无最大值8、设直角三角形两直角边的长分别为a和b,斜边长为,斜边上的高为h,则和的大小关系是( )A.B..D.不能确定9、在约束条下,当时,目标函数的最大值的变化范围是()A.B..D.10、若关于的不等式对任意恒成立,则实数的取值范围是()A.B..D.或11、某商品以进价的2倍销售,由于市场变化,该商品销售过程中经过了两次降价,第二次降价的百分率是第一次的两倍,两次降价的销售价仍不低于进价的%,则第一次降价的百分率最大为()A 10%B 1%20%D 2%12、在使成立的所有常数中,把的最大值叫做的“下确界”,例如,则故是的下确界,那么(其中,且不全为的下确界是()A.2B..4D.二、填空题13、设满足且则的最大值是___________14、已知变量满足约束条,若目标函数仅在点处取得最大值,则的取值范围为___________1、设,且,函数有最小值,则不等式的解集为___________16、某公司一年购买某种货物吨,每次都购买吨,运费为万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则_______三、解答题17、已知, 都是正数,并且,求证:18、关于的不等式的解集为空集,求实数的取值范围19、已知正数满足,求的最小值有如下解法:解:∵且∴,∴判断以上解法是否正确?说明理由;若不正确,请给出正确解法.20、制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能出的最大盈利率分别为100%和0%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过18万元,问投资人对甲、乙两个项目各投资多少万元?才能使可能的盈利最大?21、已知函数,当时,;当时,。

(好题)高中数学必修五第三章《不等式》测试(答案解析)

(好题)高中数学必修五第三章《不等式》测试(答案解析)

一、选择题1.设x ,y 满足约束条件5010550x x y x y -≤⎧⎪-+≥⎨⎪+-≥⎩,且(0,0)z ax by a b =+>>的最大值为1,则56a b+的最小值为( ) A .64B .81C .100D .1212.若,x y 满足条件11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-53.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( ) A .2B .1CD .4.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .45.已知实数x y 、满足不等式组21010x x y m x y ≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围是 A.(B.⎡⎣ C.⎡⎤⎣⎦D .[6.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .57.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 8.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<-9.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭10.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) A.720+B.720- C.720+ D.720-11.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |12.若实数,x y 满足约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .0B .4C .8D .12二、填空题13.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 14.已知不等式24xa x ≤+对任意的[]1,3x ∈恒成立,则实数a 的范围为_______. 15.已知0,0ab >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 16.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________.17.已知实数,x y 满足11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值是________________.18.对一切R θ∈,213sin cos 2m m θθ->恒成立,则实数m 的取值范围是_______. 19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 三、解答题21.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫-⎪⎝⎭万元. (1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由. 22.已知函数2(1)2f x x x =++(1)求关于x 的不等式2()(0)f x b b ≥≥的解集;(2)若不等式22[()]2()10f x mf x m -+-≥对于任意[2,1]x ∈-都成立,求m 的取值范围.23.某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,杂志的单价每提高0.1元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元?24.用铁皮做一个体积为350cm ,高为2cm 的长方体无盖铁盒,这个铁盒底面的长与宽各为多少cm 时,用料最省?25.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年). (1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)26.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出可行域,作出目标函数对应的直线,平移该直线得最优解,从而得,a b 的关系式561a b +=,然后用“1”的代换,配凑出积为定值,用基本不等式得最小值. 【详解】作出约束条件表示的可行域,如图,ABC 内部(含边界),作直线直线0ax by += ,z ax by =+中,由于0,0a b >>,ab是直线的纵截距,直线向上平移时,纵截距增大, 所以当直线z ax by =+经过点()5,6时,z 取得最大值, 则561a b +=, 所以()56565661306160121b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当111a b ==时,等号成立,故56a b+的最小值为121. 故选:D .【点睛】关键点点睛:本题考查简单的线性规划,考查用基本不等式求最值.解题思路是利用简单的线性规划求得变量,a b 满足的关系式,然后用“1”的代换凑配出定值,再用基本不等式求得最小值.求最值时注意基本不等式的条件:一正二定三相等,否则易出错.2.A解析:A 【解析】作出不等式组11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫---⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D 【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可. 详解:由题得:因为a 2+ac+ab+bc=2, ∴(a+b )(a+c )=2,又a ,b ,c 均为正实数, ∴2a+b+c=(a+b )+(a+c )()()a b a c ++2, 当且仅当a+b=a+c 时,即b=c 取等号. 故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.4.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值.令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴121121414(2)4422444n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=++=++≥+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.5.D解析:D 【分析】将2z x y =-+化为2y x z =+,作出可行域和目标函数基准直线2y x =(如图所示),当直线2y x z =+将左上方平移时,直线2y x z =+在y 轴上的截距z 增大,由图象,得当直线2y x z =+过点A 时,z 取得最大值,联立2010x y m x y ⎧-+=⎨+-=⎩,得2211,22m m A ⎛⎫-+ ⎪⎝⎭,则22112422m m -+-⨯+≤,解得33m -≤≤;故选D.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.6.B【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值. 联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.7.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 8.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题9.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.10.C解析:C 【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值. 【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点, 可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b +-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b 156-=,a 54=,上式取得最小值, 故选:C . 【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.11.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的; 当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.12.C解析:C 【分析】画出不等式组表示的平面区域,将2z x y =+转化为斜截式,即22x zy =-+,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩表示的可行域,如图所示,将2z x y =+转化为斜截式,即22x z y =-+,平移直线2xy =-,由图可知当直22x zy =-+经过点A 时,直线在y 轴上的截距最大,由4040x y x y +-=⎧⎨-+=⎩,可得40y x =⎧⎨=⎩,所以2z x y =+的最大值为0248+⨯=. 故选:C. 【点睛】方法点睛:本题主要考查线性规划求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值,属于基础题.二、填空题13.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】 根据题中条件,由1222()2212y x y x y y xx y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果. 【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】利用基本不等式求得在的最大值即可求得实数的范围【详解】因为则当且仅当时即等号成立即在的最大值为又由不等式对任意的恒成立所以即实数的范围为故答案为:【点睛】本题主要考查不等式的恒成立问题其中解 解析:1[,)4+∞. 【分析】 利用基本不等式求得24x x +在[]1,3x ∈的最大值,即可求得实数a 的范围. 【详解】 因为[]1,3x ∈,则211444x x x x =≤=++,当且仅当4x x =时,即2x =等号成立, 即24x x +在[]1,3x ∈的最大值为14, 又由不等式24x a x ≤+对任意的[]1,3x ∈恒成立,所以14a ≥ 即实数a 的范围为1[,)4+∞. 故答案为:1[,)4+∞. 【点睛】 本题主要考查不等式的恒成立问题,其中解答中熟练应用基本不等式求得24x x +的最大值是解答的关键,着重考查推理与运算能力.15.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+=⎪⎝⎭, 当且仅当9b a a b=,即3a b =时等号成立. 所以12m ≤故答案为:(],12-∞【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.16.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三解析:8+【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则ABC 的面积为111sin1202sin 602sin 60222ac a c =⋅+⋅︒︒︒, 即22ac a c =+,∴1112a c +=. ∴3(3)a c a c +=+1132242(48c a a c a c ⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭当且仅当338c a a c a c ⎧=⎪⎨⎪+=+⎩即22a c ⎧=+⎪⎨=+⎪⎩.所以,a +3c 的最小值为8+43.故答案为:8+43.【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.17.【分析】画出可行域再分析直线取最大值的最优解即可【详解】由约束条件作出可行域如图联立目标函数由图可知过A 时直线在y 轴上的截距最小z 有最大值为故答案为:【点睛】本题主要考查了线性规划求最大值的问题考查解析:12【分析】画出可行域,再分析直线2z x y =-取最大值的最优解即可.【详解】由约束条件11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩作出可行域如图,联立11(,)122y x A x y =⎧⇒⎨+=⎩.目标函数22z x y y x z =-⇒=-由图可知,过A 时,直线在y 轴上的截距最小, z 有最大值为12. 故答案为:12【点睛】本题主要考查了线性规划求最大值的问题,考查运算求解能力和数形结合思想,属于基础题. 18.【分析】求出的最大值然后解相应的不等式即可得【详解】由得或故答案为:【点睛】本题考查不等式恒成立问题根据参数出现的位置首先求出三角式的最大值然后只要解不等式即可得这实质上就是不等式恒成立问题中的分离 解析:121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】求出sin cos θθ的最大值,然后解相应的不等式即可得. 【详解】11sin cos sin 222θθθ=≤, 由211322m m ->得13m <-或12m >. 故答案为:121,,3⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭. 【点睛】本题考查不等式恒成立问题,根据参数出现的位置,首先求出三角式sin cos θθ的最大值,然后只要解不等式即可得.这实质上就是不等式恒成立问题中的分离参数法,只是本题中不等式已经参变分离了.19.1【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案【详解】画出不等式组对应的可行域如图所示由可得数形结合可得当直线过A 时直线在y 解析:1【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【详解】画出不等式组对应的可行域,如图所示,由3z x y =-可得3y x z =-,数形结合可得当直线3y x z =-过A 时,直线在y 轴上的截距最大,z 有最小值,联立1030x y x y -+=⎧⎨+-=⎩,解得A (1,2),此时z 有最小值为3×1﹣2=1.故答案为:1【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最 解析:4【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B +的最小值得解. 【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--.所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>. 所以121121414(2)()(4)[4]4222A B A B A B A B A B B A B A+=⨯+⨯+=++≥+⋅=. 当且仅当1,12A B ==时取“等号”. 所以12A B+的最小值为4. 故答案为:4【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)最多75人;(2)存在,{}7m ∈.【分析】(1)根据题意直接列出不等式可求解;(2)由①可得2125x m ≥+,由②可得100325x m x ≤++,分别利用函数单调性和基本不等式即可求解.【详解】 (1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元,则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤,4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭, 两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭, 整理得100325x m x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x 取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.22.(1)答案见解析;(2)(,1][5,)-∞-⋃+∞.【分析】(1)根据条件即[(1)][(1)]0x b x b +++-≥,再分0b >和0b =两种情况写出不等式的解集.(2)令()t f x =,则[0,4]t ∈,即22210t mt m -+-≥在[0,4]t ∈上恒成立,从而求出答案.【详解】解:(1)由2()f x b ≥得:22210x x b ++-≥,∴[(1)][(1)]0x b x b +++-≥,①当0b >时,11b b -+>--,所以不等式的解集为{1 1}xx b x b ≥-+≤--∣或;②当0b =时,111b b -+=--=-,2(1)0x +≥,所以不等式的解集为R . (2)函数22()[()]2()10g x f x mf x m =-+-≥对于任意[2,1]x ∈-都成立等价于min ()0g x ≥,令()t f x =,又∵[2,1]x ∈-,∴[0,4]t ∈,则题意等价于22210t mt m -+-≥,即[(1)][(1)]0t m t m -+--≥,所以1t m ≥+或1t m ≤-,由1t m ≥+对[0,4]t ∈恒成立知:1m ≤-,由1t m ≤-对[0,4]t ∈恒成立知:5m ≥, 综上所述,m 的取值范围为(,1][5,)-∞-⋃+∞.【点睛】关键点睛:本题考查解含参数的二次不等式和二次不等式恒成立求参数的范围问题,解答本题的关键是令()t f x =,[0,4]t ∈,则题意等价于22210t mt m -+-≥,即[(1)][(1)]0t m t m -+--≥,所以1t m ≥+或1t m ≤-,属于中档题.23.每本杂志的定价不低于2.5元且不超过4元时,提价后的销售总收入不低于20万元.【分析】设提价后每本杂志的定价为x 元,根据销售总收入等于销售价格乘以销售量,即可得到销售总收入为 2.58000020000.1x x -⎛⎫-⨯⋅ ⎪⎝⎭,再根据题意列出不等式2.58000020002000000.1x x -⎛⎫-⨯⋅≥ ⎪⎝⎭,求解即可. 【详解】设提价后每本杂志的定价为x 元,则销售总收入为2.58000020002000000.1x x -⎛⎫-⨯⋅≥ ⎪⎝⎭,即2213200x x -+≤ 解得,2.54x ≤≤所以,每本杂志的定价不低于2.5元且不超过4元时,提价后的销售总收入不低于20万元.【点睛】本题主要考查函数在生活中的应用,以及一元二次不等式的解法应用,属于基础题. 24.铁盒底面的长与宽均为5cm 时,用料最省.【分析】法一:因为体积为350cm 高为2cm ,所以底面积是定值25,设长为xcm ,则宽为25x ,列出表面积结合基本不等式即可;法二:列出表面积后,利用求导函数的方法求最值.【详解】解法1:设铁盒底面的长为xcm ,宽为25x,则..表面积251002544425S x x x x =++⨯=++.. 100242565x x≥++=.. 当且仅当25x x =,即5x =时,表面积有最小值65. 所以这个铁盒底面的长与宽均为5cm 时,用料最省. 答:这个铁盒底面的长与宽均为5cm 时,用料最省.解法2:设铁盒底面的长为xcm ,宽为25x,表面积为2ycm ,则. ()2510025444250y x x x x x=++⨯=++> 22210041004x y x x-'=-=.. 令2241000x y x-'==得,5x =. 当()0,5x ∈时,0y '<,函数224100x y x-'=为减函数; 当()5,+∈∞x 时,0y '>,函数224100x y x-'=为增函数; 所以当5x =时,y 有最小值65.答:这个铁盒底面的长与宽均为5cm 时,用料最省.25.(1)3.(2)5.【解析】试题分析:(1)求出第年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入-总支出,可得平均利润,利用基本不等式,可得结论.试题(1)设大货车运输到第年年底,该车运输累计收入与总支出的差为万元, 则由,可得 ∵,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入−总支出,∴二手车出售后,小张的年平均利润为,当且仅当时,等号成立∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.考点:根据实际问题选择函数类型, 基本不等式26.(1)()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽.【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x 米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<; (2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫ ⎪ ⎪⎝-⎝⎭⎭2808160648m =-=, 当且仅当1600x x=,即()404,400x =∈时等号成立. 因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题.。

最新人教版高中数学必修5第三章不等式单元测试题及答案

最新人教版高中数学必修5第三章不等式单元测试题及答案

人教版高中数学必修5第三章不等式单元测试题及答案一、选择题(本大题共10小题,每小题5分,共50分)5、不等式0322>-+x x 的解集是 ( )A {x|-1<x <3}B {x|x >3或x <-1}C {x|-3<x <1}D {x|x>1或x <-3}6、二次不等式20ax bx c ++>的解集是全体实数的条件是 ( )A ⎩⎨⎧>∆>00aB ⎩⎨⎧<∆>00aC ⎩⎨⎧>∆<00aD ⎩⎨⎧<∆<00a2.下列说法正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-3 8.已知集合A ={x |x 2-x-2<0},B ={x |-1<x <1},则( )A. A B ⊆B.B AC. A = BD. A ∩B =∅8、已知,,22,,xy c y x R y x ==+∈+那么c 的最大值为 ( )A 1B 21C 22D 41 10、设b a ,为实数且,3=+b a 则ba22+的最小值是 ( )A 6B 24C 22D 6211、不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 ( )A.右上方B.右下方C.左上方D.左下方 10. 设U =R ,M ={x |x 2-2x >0},则 C U M =( )A.[0,2]B.RC.(-∞,0)∪(2,+∞)D.(-∞,0]∪[2,+∞)12、在直角坐标系内,满足不等式x 2-y 2≥0的点(x ,y )的集合(用阴影表示)是( )二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15、不等式255122x x -+>的解集是 .三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0; (3) 0322322≤--+-x x x x18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z =x +3y 的最大值.19、当1>x 时,求11222-+-=x x x y 的最小值. (12分)20、已知15,13a b a b ≤+≤-≤-≤,求32a b -的取值范围。

(好题)高中数学必修五第三章《不等式》测试(有答案解析)

(好题)高中数学必修五第三章《不等式》测试(有答案解析)

一、选择题1.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .952.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+3.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.若,x y 满足条件11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-57.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .18.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,119.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-10.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+11.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( ) A.BC .1D .212.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .2二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.15.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 16.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.17.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.18.已知不等式24xa x ≤+对任意的[]1,3x ∈恒成立,则实数a 的范围为_______. 19.已知0,0ab >>,且33+122a b =++,则2+a b 的最小值为______________.20.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 三、解答题21.设函数2()f x x ax b =-+.(1)若不等式()0f x <的解集是{23}xx <<∣,求不等式210bx ax -+<的解集; (2)当3b a =-时,()0f x ≥恒成立,求实数a 的取值范围.22.给出下面三个条件:①函数()y f x =的图象与直线1y =-只有一个交点;②函数(1)f x +是偶函数;③函数()f x 的两个零点的差为2,在这三个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定问题:二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-,且___________(填所选条件的序号).(1)求()f x 的解析式;(2)若对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,求实数m 的取值范围; (3)若函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.23.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.24.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (*x ∈N )名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫-⎪⎝⎭万元(0a >),剩下的员工平均每人每年创造的利润可以调高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?25.已知函数()245y x x x R =-+∈.(1)求关于x 的不等式2y <的解集;(2)若不等式3y m >-对任意x R ∈恒成立,求实数m 的取值范围. 26.已知函数()0f x m =≥恒成立.(1)求m 的取值范围;(2)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求74a b +的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.2.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=, 则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭仅当34b a b a =,即3133,46a b -==时等号成立,故12a b +的最小值为843+ 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用2x y xy +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.3.A解析:A【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0)当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6; 故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.A解析:A 【解析】作出不等式组11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫--- ⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解. 【详解】解:由2z x y =-得122z y x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小,420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.8.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.9.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D .【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.10.C解析:C【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y t t (,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .4y ≥=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .11.D解析:D【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值.【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D.【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.B解析:B【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值.【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大,此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=.即目标函数z x y =+的最大值为4.故选:B .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.二、填空题13.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B . 代入目标函数z y x =-,得044z =-=-.所以z y x =-的最小值是4-.故答案为:4-【点睛】方法点睛:线性规划问题解题步骤如下:(1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.14.【分析】由已知条件得出由得出可得出利用基本不等式可求得所求代数式的最小值【详解】已知实数均为正实数且可得所以可得令则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最 211- 【分析】由已知条件得出43y x =,2443z x x =-,由0z >得出03x <<,可得出71143x y x y t z t ++-=+-,利用基本不等式可求得所求代数式的最小值. 【详解】已知实数x 、y 、z 均为正实数,且3z x y +=,4z y x+=,可得34z y xy x xy =-=-,43y x ∴=,所以,2443z x x =-, ()2717134343343x x y x y x x z x x x +∴+-=-=---, ()24443033z x x x x =-=->,可得03x <<,令()30,3t x =-∈,则3x t =-, 所以,()()717171311143343433x y x y x t t z x t t ++-=-=--=+-≥=--.当且仅当2t =时,等号成立, 因此,x y x y z ++-的最小值为13-.故答案为:13-. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】根据题中条件,由1222()2212y x y x y y x x y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果.【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点 解析:10【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论.【详解】解:作出不等式组对于的平面区域如图:由32z x y =+,则322z y x =-+, 平移直线322z y x =-+, 由图象可知当直线322z y x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由20y x y =⎧⎨-=⎩,解得(2,2)A ,此时322210max z =⨯+⨯=,故答案为:10.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键. 17.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2【详解】根据题意得到如图可行域是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22z y x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a ++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值. 18.【分析】利用基本不等式求得在的最大值即可求得实数的范围【详解】因为则当且仅当时即等号成立即在的最大值为又由不等式对任意的恒成立所以即实数的范围为故答案为:【点睛】本题主要考查不等式的恒成立问题其中解 解析:1[,)4+∞. 【分析】 利用基本不等式求得24x x +在[]1,3x ∈的最大值,即可求得实数a 的范围. 【详解】 因为[]1,3x ∈,则211444x x x x =≤=++,当且仅当4x x =时,即2x =等号成立, 即24x x +在[]1,3x ∈的最大值为14, 又由不等式24x a x ≤+对任意的[]1,3x ∈恒成立,所以14a ≥ 即实数a 的范围为1[,)4+∞. 故答案为:1[,)4+∞. 【点睛】 本题主要考查不等式的恒成立问题,其中解答中熟练应用基本不等式求得24x x +的最大值是解答的关键,着重考查推理与运算能力. 19.【分析】先利用基本不等式求得的最小值进而求得的最小值即可得到答案【详解】由题意设又由当且仅当时即时等号成立即的最小值为所以的最小值是故答案为【点睛】本题主要考查了利用基本不等式求最值问题其中解答中先解析:3【分析】先利用基本不等式求得(2)2(2)a b +++的最小值,进而求得2+a b 的最小值,即可得到答案.【详解】由题意,设26(2)2(2)z a b a b =++=+++, 又由()()3232336(2)6(2)[(2)2(2)]()992962222222a a b b a b a b a b a b +++++++⋅+=++≥+⨯=+++++++,当且仅当()326(2)=22a b a b ++++时,即22(2)a b +=+时等号成立, 即z 的最小值为962+,所以2+a b 的最小值是623+.故答案为623+.【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中先利用基本不等式求得(2)2(2)a b +++的最小值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.20.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大;联立1{4x x y =+=,可得13x y ,即()1,3A , 联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C ,故:13OC k =,3OA k =,∴133OP k ≤≤, 所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.三、解答题21.(1)13x x ⎧<⎨⎩或12x ⎫>⎬⎭;(2)62a -≤≤. 【分析】 (1)先由一元二次不等式的解集确定对应方程的根,再利用根与系数的关系即得结果; (2)开口向上的二次函数大于等于恒成立,只需限定判别式0∆≤,即解得参数范围.【详解】解:(1)因为不等式20x ax b -+<的解集是{}|23x x <<,所以 2 3x x ==,是方程20x ax b -+=的解 由韦达定理得: 5 6a b ==,, 故不等式210bx ax -+>为26510x x -+>,解不等式26510x x -+>得其解集为13x x ⎧<⎨⎩或12x ⎫>⎬⎭(2)当3b a =-时,2()30f x x ax a =-+-≥恒成立,则2Δ4(3)0a a =--≤,即24120a a +-≤,解得62a -≤≤,所以实数a 的取值范围为62a -≤≤.【点睛】二次函数2()f x ax bx c =++的恒成立问题的解决方法:(1)0a >时()0f x ≥在R 上恒成立等价于对应方程的判别式Δ0≤成立;(2)0a <时()0f x ≤在R 上恒成立等价于对应方程的判别式Δ0≤成立.22.(1). 2()2f x x x =-;(2). 16m ≤- (3). 12t >或12t -= 【分析】(1).首先根据(1)()21f x f x x +-=-求得,a b 的值,再根据① ② ③ 解得c 的值;(2). 将任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立问题转化为2()m f t ≤-在[]2,3t ∈-上恒成立的问题,从而转化为最值问题进行求解;(3).将问题转化为方程()(21)220m t f m ---=有且仅有一个正实根,接着对参数进行分类讨论即可.【详解】(1)因为二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-又22(1)()(1)(1)2f x f x a x b x c ax bx c ax a b +-=++++---=++,所以212x ax a b -=++,221a a b =⎧∴⎨+=-⎩解得:12a b =⎧∴⎨=-⎩ 因为二次函数2()2f x x x c =-+选① :因为函数()y f x =的图象与直线1y =-只有一个交点,所以2(1)11f c -=+=- 0c ∴=;选② :因 为 函数(1)f x +是偶函数,所以22(1)=(1)2(1)1f x x x c x c ++-++=+-,所以c 取任意值.选③ :设 12,x x 是函数()f x 的两个零点,则122x x -=,由韦达定理可知:12122,x x x x c +==所以122x x -=解得:0c ;综上:()f x 的解析式为2()2f x x x =-.(2) 因为对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立, 32(log )m f x ∴≤-,[]31,27,log 2,39x x ⎡⎤∈∴∈-⎢⎥⎣⎦令3log t x =, 原不等式等价于2()m f t ≤-在[]2,3t ∈-上恒成立min (2())2(2)16m f t f ∴≤-=--=-,所以实数m 的取值范围为16m ≤-.(3) 因为函数()()(21)3232x x g x t f =--⨯-有且仅有一个零点, 令30x m =>,所以方程()(21)220m t f m ---=有且仅有一个正实根,因为2()2f x x x =-即2(21)420t m tm ---=有且仅有一个正实根,当21=0t -即12t =时,220m --=解得1m =-不合题意; 当210t ->即12t >时, 2(21)420t m tm ---=表示的二次函数对应的函数图像是开口向上的抛物线,又恒过点(0,2)-,所以方程2(21)420t m tm ---=恒有一个正实根;当210t -<即12t时, 要想2(21)420t m tm ---=有且仅有一个正实根, 只有()21682102021t t t x t ⎧=+-=⎪⎨=>⎪-⎩对解得:12t -=, 综上:实数t 的取值范围为12t >或12t -=. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.23.(1)1;(2)9.【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a +=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值.【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<, 即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --,又不等式的解集为{|02}x x <<,所以2(2)2m --=,解得1m =;(2)由正实数a ,b 满足4a b mab +=,所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号,所以+a b 的最小值为9.【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 24.(1)最多调整500名员工从事第三产业;(2)(]0,5.【分析】(1)根据题意可列出()()10100010.2%101000x x -+≥⨯,进而解不等式求得x 的范围,确定问题的答案.(2)根据题意分别表示出从事第三产业的员工创造的年总利润和从事原来产业的员工的年总利润,进而根据题意建立不等式,根据均值不等式求得求a 的范围.【详解】(1)由题意,得()()10100010.2%101000x x -+≥⨯,即25000x x -≤,又0x >,所以0500x <≤,即最多调整500名员工从事第三产业;(2)从事第三产业的员工创造的年总利润为310500⎛⎫-⎪⎝⎭x a x 万元, 从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+ ⎪⎝⎭x x 万元, 则311010(1000)1500500x a x x x ⎛⎫⎛⎫-≤-+ ⎪ ⎪⎝⎭⎝⎭, 所以23500x ax -≤2110002500x x x +--, 所以221000500x ax x ≤++,即210001500x a x ≤++在(]0,500x ∈时恒成立,因为210004500x x+≥=, 当且仅当21000500x x =,即500x =时等号成立,所以5a ≤, 又0a >,所以05a <≤,所以a 的取值范围为(]0,5.【点睛】本题主要考查了基本不等式在求最值问题中的应用,考查了学生综合运用所学知识,解决实际问题的能力,属于常考题. 25.(1){|13}x x <<;(2)()24.,【分析】(1)利用一元二次不等式的解法求解即得;(2)根据不等式恒成立的意义,确定求函数245y x x =-+的最小值,并利用配方法求得最小值,将问题转化为解关于m 的简单的绝对值不等式,根据绝对值的意义即可求解.【详解】(1)由2y <得2430x x -+<,即13x <<,所以2y <的解集为{|13}x x <<;(2)不等式3y m >-对任意x R ∈恒成立3min m y ⇔-<,由()224521y x x x =-+=-+得y 的最小值为1, 所以31m -<恒成立,即131m -<-<,所以24m <<,所以实数m 的取值范围为()2,4.【点睛】本题考查不含参数的一元二次不等式的求解;考查不等式在实数集上恒成立问题,涉及二次函数的最值和简单绝对值不等式的求解,属基础题,难度一般.26.(1)4m ≤;(2)94. 【分析】(1)函数()0f x m =≥恒成立,即+130x x m +--≥恒成立,设函数()+13g x x x =+-,则()min m g x ≤,利用绝对值不等式的性质求得()min g x 即可得解;(2)由(1)可得21432a b a b +=++,然后利用基本不等式计算即可求得74a b +的最小值.【详解】(1)函数()0f x m =≥恒成立, 即+130x x m +--≥恒成立, 设函数()+13g x x x =+-,则()min m g x ≤, 又13(1)(3)4x x x x ++-≥+--=,即()g x 的最小值为4,所以4m ≤;(2)由(1)知4n =,正数a ,b 满足21432a b a b +=++, 所以()1217474432a b a b a b a b ⎛⎫+=++ ⎪++⎝⎭ ()()121622432a b a b a b a b ⎛⎫=++++⎡⎤ ⎪⎣⎦++⎝⎭ ()()222315432a b a b a b a b ++⎡⎤=++⎢⎥++⎣⎦54944+≥=, 当且仅当23a b a b +=+即3210b a ==时,等号成立, 所以74a b +的最小值为94. 【点睛】 本题考查绝对值不等式的应用,考查基本不等式的应用,考查逻辑思维能力和计算能力,属于常考题.。

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中数学 第3章 不等式单元检测试卷1.设a b <,c d <,则下列不等式中一定成立的是 ( )A .d b c a ->-B .bd ac >C .d b c a +>+D .c b d a +>+2. “0>>b a ”是“222b a ab +<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .105.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 8.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . x x -+229.下列各组不等式中,同解的一组是 ( )A .02>x 与0>xB .01)2)(1(<-+-x x x 与02<+xC .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A. }8|{<a aB. }8|{>a aC. }8|{≥a aD. }8|{≤a a 11.若+∈R b a ,,则b a 11+与ba +1的大小关系是 .12.函数121lg+-=x xy 的定义域是 . 13.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.14. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.15.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 16.解不等式:21582≥+-x x x17.已知1<a ,解关于x 的不等式12>-x ax.18.已知0=++c b a ,求证:0≤++ca bc ab 。

(易错题)高中数学必修五第三章《不等式》检测卷(答案解析)

(易错题)高中数学必修五第三章《不等式》检测卷(答案解析)

一、选择题1.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-2.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .3.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D .24.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .55.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+6.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .67.不等式ax 2+bx+2>0的解集是,则a+b 的值是( ) A .10B .﹣10C .14D .﹣148.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.9.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a > 10.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.如果0a b >>,0t >,设b M a =,b t N a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.已知实数,x y 满足约束条件1210320y x y x y c ≥⎧⎪-+≥⎨⎪+-≤⎩,若2z y x =-的最大值为11,则实数c的值为____.15.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________17.已知1,1,1,x y x y ≤⎧⎪≤⎨⎪+≥⎩当z x y =+取到最小值时,xy 的最大值为________.18.若x ,y 满足约束条件10,20,220,x y x y x y -+≤⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为______.19.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 20.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.三、解答题21.某位病人为了维持身体的健康状态,需要长期服用药物类营养液以补充食物难以提供的两种微量元素α和β.根据医学建议:病人每天微量元素α的摄入量应控制在[]300,330(单位:微克),微量元素β的摄入量应控制在[]250,280(单位:微克).目前,市面上可供选择的营养液主要是A 和B .已知1毫升营养液A 中含微量元素α是30微克,含微量元素β是10微克,每毫升费用5元;1毫升营养液B 中含微量元素α是15微克,含微量元素β是20微克,每毫升费用4元.(1)若该病人每天只吃单价较便宜的营养液B ,判断他的两种微量元素的摄入量能否同时符合医学建议,并说明理由;(2)如果你是医生,为了使得该病人两种微量元素的摄入量同时符合医学建议,且每天所需的费用最低,应该推荐病人每天服用营养液A 和营养液B 各多少毫升?该病人每天所需的营养液最低费用是多少元?22.解关于x 的不等式2(41)40ax a x -++>. 23.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m . (1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值. 24.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.25.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1. 26.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.2.C解析:C 【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.3.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为d ==小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.4.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B .【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.5.C解析:C 【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y tt (,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .244x x y e e -≥⋅=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .6.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1ba++1a b +=a b a b ab +++ =2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B . 【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.7.D解析:D 【解析】试题分析:不等式ax 2+bx+2>0的解集是,说明方程ax 2+bx+2=0的解为,把解代入方程求出a 、b 即可. 解:不等式ax 2+bx+2>0的解集是即方程ax 2+bx+2=0的解为故则a=﹣12,b=﹣2.考点:一元二次方程的根的分布与系数的关系.8.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。

(完整版)必修5第三章不等式单元测试题及答案

(完整版)必修5第三章不等式单元测试题及答案

第三章不等式单元测试题一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x 的解集是( )A .{x |x ≥2}B .{x |x ≤2}C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2} 2.下列说法正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-38.若关于x 的函数y =x +m 2x在(0,+∞)的值恒大于4,则( )A .m >2B .m <-2或m >2C .-2<m <2D .m <-2 9.已知定义域在实数集R 上的函数y =f (x )不恒为零,同时满足f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-1<f (x )<0 C .f (x )>1 D .0<f (x )<110.若x +23x -5<0,化简y =25-30x +9x 2-(x +2)2-3的结果为( )A .y =-4xB .y =2-xC .y =3x -4D .y =5-x二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.三、解答题(本大题共2小题,共25分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0.18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z =x +3y 的最大值.20.(13分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a 4元;(3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元. 经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边;②矩形厂房利用旧墙的一面长x ≥14. 试比较①②两种方案哪个更好.必修5第三章《不等式》单元测试题命题:水果湖高中 胡显义1.解析:原不等式化为x 2-2x ≥0,则x ≤0或x ≥2. 答案:D2.解析:A 中,当c =0时,ac 2=bc 2,所以A 不正确;B 中,当a =0>b =-1时,a 2=0<b 2=1,所以B 不正确;D 中,当(-2)2>(-1)2时,-2<-1,所以D 不正确.很明显C 正确.答案:C3.解析:当x =y =0时,3x +2y +5=5>0,所以原点一侧的平面区域对应的不等式是3x +2y +5>0,可以验证,仅有点(-3,4)的坐标满足3x +2y +5>0.答案:A4.解析:x -1x +2>1⇔x -1x +2-1>0⇔-3x +2>0⇔x +2<0⇔x <-2.答案:A5.解析:M -N =2a (a -2)+3-(a -1)(a -3)=a 2≥0, 所以M ≥N . 答案:B6.解析:在平面直角坐标系中,画出不等式组表示的平面区域,如下图中的阴影部分.则平面区域是△ABC . 答案:A7.解析:画出可行域如下图中的阴影部分所示.解方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y =0.得A (2,1).由图知,当直线y =x -z 过A 时,-z 最大,即z 最小,则z 的最小值为2-1=1.答案:A8.解析:∵x +m 2x≥2|m |,∴2|m |>4.∴m >2或m <-2. 答案:B9.解析:令x =y =0得f (0)=f 2(0), 若f (0)=0,则f (x )=0·f (x )=0与题设矛盾. ∴f (0)=1.又令y =-x ,∴f (0)=f (x )·f (-x ),故f (x )=1f (-x ).∵x >0时,f (x )>1,∴x <0时,0<f (x )<1,故选D.答案:D10.解析:∵x +23x -5<0,∴-2<x <53.而y =25-30x +9x 2-(x +2)2-3=|3x -5|-|x +2|-3=5-3x -x -2-3=-4x .∴选A.答案:A二、填空题(填空题的答案与试题不符)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是__________.解析:式子1kx 2+kx +1恒有意义,即kx 2+kx +1>0恒成立.当k ≠0时,k >0且Δ=k 2-4k <0,∴0<k <4;而k =0时,kx 2+kx +1=1>0恒成立,故0≤k <4,选C.答案:C ?12.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.解析:求原函数定义域等价于解不等式组⎩⎪⎨⎪⎧x -2≥0,x -3≠0,4-x >0,解得2≤x <3或3<x <4.∴定义域为[2,3)∪(3,4). 答案:[2,3)∪(3,4)13.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________. 解析:如下图中阴影部分所示,围成的平面区域是Rt △OAB .可求得A (4,0),B (0,4),则OA =OB =4,AB =42,所以Rt △OAB 的周长是4+4+42=8+4 2. 答案:8+4 214.已知函数f (x )=x 2-2x ,则满足条件⎩⎪⎨⎪⎧f (x )+f (y )≤0,f (x )-f (y )≥0的点(x ,y )所形成区域的面积为__________.解析:化简原不等式组⎩⎪⎨⎪⎧(x -1)2+(y -1)2≤2,(x -y )(x +y -2)≥0, 所表示的区域如右图所示,阴影部分面积为半圆面积. 答案:π 15.(2010·浙江高考)某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.解析:由已知条件可得,七月份销售额为500×(1+x %),八月份销售额为500×(1+x %)2,一月份至十月份的销售总额为3860+500+2[500(1+x %)+500(1+x %)2],可列出不等式为4360+1000[(1+x %)+(1+x %)2]≥7000.令1+x %=t ,则t 2+t -6625≥0,即⎝⎛⎭⎫t +115⎝⎛⎭⎫t -65≥0.又∵t +115≥0,∴t ≥65,∴1+x %≥65,∴x %≥0.2,∴x ≥20.故x 的最小值是20. 答案:20三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.解:e a -c -eb -d =e (b -d )-e (a -c )(a -c )(b -d )=(b -a )+(c -d )(a -c )(b -d )e .∵a >b >0,c <d <0,∴a -c >0,b -d >0,b -a <0,c -d <0.又e <0,∴e a -c -e b -d >0.∴e a -c >eb -d.17.(12分)解下列不等式:(1)-x 2+2x -23>0;(2)9x 2-6x +1≥0.解:(1)-x 2+2x -23>0⇔x 2-2x +23<0⇔3x 2-6x +2<0.Δ=12>0,且方程3x 2-6x +2=0的两根为x 1=1-33,x 2=1+33,∴原不等式解集为{x |1-33<x <1+33}.(2)9x 2-6x +1≥0⇔(3x -1)2≥0. ∴x ∈R .∴不等式解集为R .18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0. 解:当m =-3时,不等式变成3x -3>0,得x >1; 当-3<m <-2时,不等式变成(x -1)[(m +3)x-m ]>0,得x >1或x <mm +3;当m <-3时,得1<x <mm +3.综上,当m =-3时,原不等式的解集为(1,+∞);当-3<m <-2时,原不等式的解集为⎝⎛⎭⎫-∞,mm +3∪(1,+∞);当m <-3时,原不等式的解集为⎝⎛⎭⎫1,mm +3.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z =x +3y 的最大值.解:(1)由x ,y 取非负实数,根据线性约束条件作出可行域,如下图所示阴影部分.(2)作出直线l :x +3y =0,将直线l 向上平移至l 1与y 轴的交点M 位置时,此时可行域内M 点与直线l 的距离最大,而直线x +y -3=0与y 轴交于点M (0,3).∴z max =0+3×3=9. 20.(13分)(2009·江苏苏州调研)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值. 解:(1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|) =⎩⎪⎨⎪⎧(30+t )(40-t ), 0≤t <10,(40-t )(50-t ), 10≤t ≤20. (2)当0≤t <10时,y 的取值范围是[1200,1225], 在t =5时,y 取得最大值为1225;当10≤t ≤20时,y 的取值范围是[600,1200], 在t =20时,y 取得最小值为600.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a4元;(3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元.经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边; ②矩形厂房利用旧墙的一面长x ≥14. 试比较①②两种方案哪个更好.解:方案①:修旧墙费用为ax4(元),拆旧墙造新墙费用为(14-x )a2(元),其余新墙费用为(2x +2×126x-14)a (元),则总费用为y =ax 4+(14-x )a 2+(2x +2×126x -14)a =7a (x 4+36x-1)(0<x <14),∵x 4+36x ≥2x 4·36x=6, ∴当且仅当x 4=36x即x =12时,y min =35a ,方案②:利用旧墙费用为14×a 4=7a2(元),建新墙费用为(2x +252x-14)a (元),则总费用为y =7a 2+(2x +252x -14)a =2a (x +126x )-212a (x ≥14),可以证明函数x +126x在[14,+∞)上为增函数,∴当x =14时,y min =35.5a . ∴采用方案①更好些.。

高中数学必修5第三章《不等式》单元检测卷含解析

高中数学必修5第三章《不等式》单元检测卷含解析

必修5第三章《不等式》单元检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知a 和b 均为非零实数,且b a <,则下面表达正确的是( )A . 22b a < B. 22ab b a < C.ba ab 2211< D.b aa b < 2.若,01,0<<-<b a 则有 ( )A .2ab ab a >>B .2ab ab a <<C .2ab a ab >>D .a ab ab >>23.若角α,β满足-2π<2α<β<2π,则2α-β的取值范围是 ( )A .(-π,0)B .(-π,π)C .(-23π,2π) D .(-π23,23π) 4.如果不等式20(0)ax bx c a ++<≠解集为 ,那么 ( ) A .0,0>∆<aB .0,0≤∆<aC .0,0≤∆>aD .0,0≥∆>a5.设{}42≥-=x x A ,{}42<-=x x B ,则集合B A ,满足( ) A .B A C R = B .A B R = C .A B ϕ= D .A B C R =6.如果关于x 的一元二次不等式20ax bx c ++>的解集为{|24}x x x <->或,那么对于函数应有( )A.(5)(2)(1)f f f <<-B. (2)(5)(1)f f f <<-C. (1)(2)(5)f f f -<<D. (2)(1)(5)f f f <-<7.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a <B.7a ≥C.57a <≤D.5a <或7a ≥8.如果2()(1)1f x mx m x =+-+在区间]1,(-∞上为减函数,则m 的取值范围( ) A .10,3⎛⎤ ⎥⎝⎦ B .10,3⎡⎫⎪⎢⎣⎭ C .10,3⎡⎤⎢⎥⎣⎦ D 1.0,3⎛⎫ ⎪⎝⎭9.设计用232m 的材料制造某种长方体形状的无盖车厢,按交通部门的规定车厢宽度为2m ,则车厢的最大容积是( )A .(38-3)73m 2B .16 m 2C . 42 m 2D .14 m 210.定义在R 上的奇函数()f x 为减函数,设0a b +≤,给出下列不等式: ①()()0f a f a ⋅-≤ ②()()0f b f b ⋅-≥③()()()()f a f b f a f b +≤-+- ④()()()()f a f b f a f b +≥-+- 其中正确的不等式序号是( )A. ①②④B. ①④C. ②④D. ①③ 11.在R 上定义运算:a b ad bc c d ⎛⎫=-⎪⎝⎭,若不等式1211x a a x --⎛⎫≥ ⎪+⎝⎭对任意实数x 成立,则实数a 的最大值为( ) A .12-B .32-C .12D .3212.二次函数c bx ax x f ++=2)(中,其中0>a 且1≠a ,若对任意的R x ∈都有)1()3(x f x f -=-,设)1(loga f m a=、])1[(2log a af n =,则 A. n m = B. n m < C. n m > D. n m ,的大小关系不能确定第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知关于x 的不等式101ax x ->+的解集是1(,1)(,)2-∞-+∞ .则a = . 14.已知D 是由不等式组2030x y x y -≥⎧⎨+≥⎩,所确定的平面区域,则圆 224x y +=在区域D 内的弧长为 .15.设.11120,0的最小值,求且yx y x y x +=+>> . 16.如图,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车的运营总利润y (单位:十万元)与营运年数()x x N *∈为二次函数关系.若使营运的年平均利润最大,则每辆客车应营运 年.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(1)求2y =的最小值;(2)若00a b >>,,且2212b a +=,求18.(本小题满分12分)已知二次函数2()(1)f x mx m x m =--+,其中m 是实数. (1)若函数()f x 没有零点,求m 的取值范围;(2)设不等式()f x mx m <+的解集为A ,当m 为什么正数时,集合(,3)A ⊆-∞?19. (本小题满分12分)已知二次函数2()f x ax bx c =++的图象过点(1,0)-,问是否存在常数,,a b c ,使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立?20.(本小题满分12分) 制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元才能使可能的盈利最大?21. (本小题满分12分)已知a ,b 为正数,求证:(11>1的正数x ,恒有1xax b x +>-成立;(2)若对于任何大于1的正数x ,恒有1xax b x +>-1>22.(本小题满分12分)(1)设不等式2x -1>m (x 2-1)对满足|m |≤2的一切实数m 的取值都成立,求x 的取值范围;(2)是否存在m 使得不等式2x -1>m (x 2-1)对满足|x |≤2的一切实数x 的取值都成立.必修5第三章《不等式》单元检测题参考答案【第1题解析】选项C 取1,2=-=b a ,可排除A ﹑B ﹑D 三个答案,由2211ab a b-= 220a ba b -<,故选C.【第4题解析】解析2(0)y ax bx c a =++≠为二次函数,若开口向上,判别式小于零时就没有小于零的函数值所以0,0≥∆>a ,故选D.【第5题解析】由集合A 得:{}|8A x x =≤,{}|28B x x =≤<,故选C. 【第6题解析】0a > -2+4=-a b ,∴2b a -=-,∴ 二次函数图象的对称轴2b x a=-=1 由二次函数图象可知,D 正确. 故选D. 【第7题解析】如图,不等式组502x y x -+0⎧⎨⎩≥,≤≤表示的平面区域是一个梯形,它的一个顶点坐标是(2,7),用平行于x 轴的直线y ≥a 截梯形得到三角形,则a 的取值范围是57a <≤,故选C.【第8题解析】依题意知,若m=0,则成立;若m≠0,则开口向上,对称轴不小于1,从而取并集解得C .故选C.【第9题解析】设长方体的长为xm,高为hm ,则V=2xh ,而2x+2h×2+xh×2=32,∴可 求得B. 故选B.【第12题解析】2log 1log121-==-a a a a,21)1()1(21log 2log 1==a a a a ,由)1()3(x f x f -=-知抛物线c bx ax x f ++=2)(对称轴为1-=x ,∵0>a ,∴开口方向向上,∴)21()0()2(f f f <=-,即n m <.故选B.【第13题解析】由不等式判断可得0a ≠且不等式等价于(1)()0a x x a+->,由解集特点可得0a >且112a =,故2a =. 故填2. 【第14题解析】如图示,图中阴影部分所在圆心角所对弧长即为所求,易知图中两直线的斜率分别是1,213-,所以圆心角α即为两直线的所成夹角,所以11|()|23tan 1111|23α--==+⋅-(),所以4πα=,而圆的半径是2,所以弧长是2π.【第16题解析】由题图知抛物线顶点坐标为(6,11),且过点(4,7).设()1162+-=x a y ,将(4,7)代入,得()116472+-=a ,∴1-=a .∴()251211622-+-=+--=x x x y .∴年平均利润为⎪⎭⎫ ⎝⎛+-=+--=x x x x x y 25121225.∵1025≥+x x (当且仅当x x 25=,即5x =时,取“=”),∴当5x =时,xy有最大值2.故填5. 【第17题答案】(1)25;(2)423. 【第17题解析】(1))1(41444522222t t x x x x x y +=++++=++=,令)2(42≥+=t x t ,则)2(012≥=+-t yt t .令)2(1)(2≥+-=t yt t t f ,1)0(=f ,显然012=+-yt t 只有一个大于或等于2的根,0)2(≤∴f ,即250124)2(≥⇒≤+-=y y f ,即4522++=x x y 的最小值是25.(2)120022=+>>b a b a ,, ,∴≤==当⎪⎪⎪⎩⎪⎪⎪⎨⎧>>=++=0012212222b a b a b a ,2223==⇒b a ,时,21b a +的最大值为423【第19题答案】存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立. 【第19题解析】假设存在常数,,a b c 满足题意,∵()f x 的图象过点(1,0)-,∴(1)0f a b c -=-+= ①又∵不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立, ∴当1x =时,211(1)(11)2f ≤≤+,即11a b c ≤++≤,∴1a b c ++= ②由①②可得:11,22a c b +==,∴211()()22f x ax x a =++-,由21()(1)2x f x x ≤≤+对一切x R ∈都成立得:22111()(1)222x ax x a x ≤++-≤+恒成立,∴2211()022(21)20ax x a a x x a ⎧-+-≥⎪⎨⎪-+-≤⎩的解集为R , ∴0114()042a a a >⎧⎪⎨--≤⎪⎩且21018(21)0a a a -<⎧⎨+-≤⎩,即20(14)0a a >⎧⎨-≤⎩且212(14)0a a ⎧<⎪⎨⎪-≤⎩, ∴14a =,∴14c =, ∴存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立.【第20题答案】投资人用4万元投资甲项目,6万元投资乙项目,才能使可能的盈利最大. 【第20题解析】设投资人分别用x ,y 万元投资甲,乙两个项目,由题意,得10,0.30.1 1.8,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数为z =x+0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.作直线l 0:x+0.5y=0,并作平行于直线l 0的一组直线x+0.5y=z ,z∈R,与可行域相交,其中有一条直线经过可行域上的点M ,此时z 最大,这里点M 是直线x+y=10与直线0.3x+0.1y=1.8的交点. 解方程组10,0.30.1 1.8,x y x y +=⎧⎨+=⎩得4,6,x y =⎧⎨=⎩此时,z=4+0.5×6=7(万元).∴ 当x=4,y=6时,z 取得最大值.答:投资人用4万元投资甲项目,6万元投资乙项目,才能使可能的盈利最大.min 1x ax b x ⎡⎤+>⎢⎥-⎣⎦而21(1)111)11x ax a x a a x x +=-+++≥+=--, 当仅且当1(1)1a x x -=-,即11x =>时取等号.故2min1)1x ax x ⎡⎤+=⎢⎥-⎣⎦.则21)b >1b >.(2) 令f (x )= 2x -1-m (x 2-1)= -mx 2+2x +(m -1),使|x |≤2的一切实数都有2x -1>m (x 2-1)成立. 当0=m 时,f (x )= 2x -1在221<≤x 时,f (x )0≥.(不满足题意) 当0≠m 时,f (x )只需满足下式: 012(2)0m m f ->⎧⎪⎪≤-⎨⎪->⎪⎩或01200m m ->⎧⎪⎪-<<⎨⎪∆<⎪⎩或0(2)0(2)0m f f -<⎧⎪>⎨⎪->⎩ 解之得结果为空集.故没有m 满足题意.。

高中数学必修5第三章《不等式》单元质量测评(含答案)

高中数学必修5第三章《不等式》单元质量测评(含答案)

高中数学必修5第三章《不等式》单元质量测评(含答案)满分150分,考试时间120分钟.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a <0,-1<b <0,则( )A .-a <ab <0B .-a >ab >0C .a >ab >ab 2D .ab >a >ab 22.已知集合{}2|540A x N x x =∈-+≤, {}2|40B x x =-=,下列结论成立的是( )A. B A ⊆B. A B A ⋃=C. A B A ⋂=D. {}2A B ⋂= 3.区域113x y x y ≥⎧⎪≥⎨⎪+≤⎩构成的几何图形的面积是( )A. 2B. 1C.14 D. 124.若集合20{|}6A x x x +=-<,230B x xx =≤⎧+⎫⎨⎬-⎩⎭,则A B I 等于( ) A .()3,3- B .[)2,2-C .()2,2-D .[)2,3-5.不等式2103x x ->+的解集是( ) A. 1,2⎛⎫+∞⎪⎝⎭ B. ()4,+∞ C. ()(),34,-∞-⋃+∞ D. ()1,3,2⎛⎫-∞-⋃+∞ ⎪⎝⎭6.已知关于x 的不等式24x x m -≥对任意(]0,1x ∈恒成立,则有( )A. 3m ≤-B. 3m ≥-C. 30m ≤<-D. 4m ≥-7.若实数x,y 满足x 12104x y x y ≥⎧⎪--≤⎨⎪+≤⎩,则z 2+x y =的最大值为( )A. 2B. 5C. 7D. 88.已知实数x ,y 满足x 2+y 2=1,则(1-xy )(1+xy )有( )A .最小值12和最大值1B .最小值34和最大值1C .最小值12和最大值34D .最小值19.设满足约束条件y 01030x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则z 3x y =-的最大值为( )A. 3B.C. 1D.10.已知直线l 过点P (2,1),且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,则△OAB 面积的最小值为( )A .1B . 2C .2 2D .411.某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如图所示),若要使其营运的年平均利润最大,则每辆客车需营运()A .3年B .4年C .5年D .6年12.若直线20ax by +-=(0,0a b >>)始终平分圆22222x y x y +--=的周长,则112a b+的最小值为( )A.34-B. 32-C. 32+D. 34+ 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. 14.对任意实数x ,不等式2()(2)2240a x a x ---<-恒成立,则实数a 的取值范围是_______.15.已知x 、y 满足条件040328x y x y ≤≤⎧⎪≤≤⎨⎪+≤⎩,则25z x y =+的最大值为________.16.若不等式20x ax b --<的解集为{}23x x <<,则不等式2b 10x ax -->的解集为__________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知直角三角形两条直角边的和等于10 cm ,求面积最大时斜边的长.18. (本小题满分10分)求函数2710,(1)1x x y x x ++=>-+的值域. 19.(本小题满分10分) 已知不等式2230x x --<的解集为A ,不等式260x x +-<的解集是B . (1)求AB ;(2)若不等式20x ax b ++<的解集是,AB 求20ax x b ++<的解集.20.(本小题满分12分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16.(1)求不等式g (x )<0的解集;(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,求实数m 的取值范围.21.(本小题满分14分)实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx,求z 的最大值和最小值,并求z 的取值范围; (2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围.22.(本小题满分14分)已知关于x 的不等式2320ax x -+≤的解集为{|1}x x b ≤≤. (1)求实数,a b 的值; (2)解关于x 的不等式: 0x cax b->-(为常数)参考答案 一.选择题二.填空题13.x <y 14. (-2,2] 15.19 16.11--23x x ⎧⎫<<⎨⎬⎩⎭三、解答题17. 解:设一条直角边长为x cm(0<x <10),则另一条直角边长为(10-x ) cm ,面积S =12x (10-x )≤12⎣⎢⎡⎦⎥⎤x +10-x 22=252(cm 2), 等号在x =10-x ,即x =5时成立, ∴面积最大时斜边长L =x 2+10-x 2=52+52=52(cm).18. 解:27104(1)5,11x x y x x x ++==+++++当1x >-,即10x +>时,59y ≥=,当且仅当1x =时取等号.19.解:(1)解2-230x x -<得,-13x <<,所以(1,3)A =-.解260x x +-<得,-32x <<,所以(3,2)B =-,(1,2)A B ∴⋂=-.(2)由2+a 0x x b +<的解集是(1,2)-,所以1-a 0420b a b +=⎧⎨++=⎩,解得a -1-2b =⎧⎨=⎩所以2-+-20x x <,解得解集为R 。

(典型题)高中数学必修五第三章《不等式》检测(包含答案解析)(1)

(典型题)高中数学必修五第三章《不等式》检测(包含答案解析)(1)

一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .82.已知()()22log 1log 24a b -++=,则+a b 的最小值为( ) A .8B .7C .6D .33.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .34.若x ,y 满足约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则6z x y =+的最大值为( )A .30B .14C .25D .365.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9 B .94C .52D .26.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R7.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( ) A .254B .499C .14425D .225498.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .69.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A.BC .1D .210.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) A.720+B.720- C.720+ D.720-11.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<12.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163B .13C .2D .4二、填空题13.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.14.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.15.已知2z y x =-,式中变量x ,y 满足下列条件:213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为______.16.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 17.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2c cosB =2a +b ,若△ABC 的面积为12c ,则ab 的最小值为_______. 19.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.20.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.三、解答题21.设函数2()f x x ax b =-+.(1)若不等式()0f x <的解集是{23}xx <<∣,求不等式210bx ax -+<的解集; (2)当3b a =-时,()0f x ≥恒成立,求实数a 的取值范围.22.已知函数()()212log 1f x x =+,()26g x x ax =-+.(1)若关于x 的不等式()0g x <的解集为{}|23x x <<,当1x >时,求()1g x x -的最小值;(2)若对任意的1[1,)x ∈+∞、2[2,4]x ∈-,不等式12()()f x g x ≤恒成立,求实数a 的取值范围.23.已知实数x ,y 满足不等式组204030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,求目标函数23z x y =-的最值及相应的最优解.24.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 25.已知定义在R 上的函数()()2232f x x x a x =+--+(其中a R ∈). (1)若关于x 的不等式()0f x <的解集为()2,2-,求实数a 的值; (2)若不等式()30f x x -+≥对任意2x >恒成立,求a 的取值范围. 26.已知函数2()(3)2f x ax a x =+-+(其中a ∈R ). (1)当a =-1时,解关于x 的不等式()0f x <; (2)若()1f x ≥-的解集为R ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6, 此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.B解析:B 【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值. 【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦,所以,()()1216a b -+=且有10a ->,20b +>, 由基本不等式可得()()()()122128a b a b -++≥-+=,所以,7a b +≥,所以(1)(2)16a b -+=,且10a ->,20b +>, 当且仅当124a b -=+=时等号成立. 因此,+a b 的最小值为7. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.D解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.4.A解析:A 【分析】画出约束条件所表示的平面区域,结合目标函数确定出最优解,代入即可求解. 【详解】画出约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩所标示平面区域,把目标函数6z x y =+,化为直线166zy x =-+,当直线166zy x =-+平移到点A 时, 此时直线在y 轴上的截距最大,目标函数取得最大值,又由32100220x y x y --=⎧⎨-+=⎩,解得()6,4A ,所以目标函数的最大值为666430z x y =+=+⨯=. 故选:A.【点睛】根据线性规划求解目标函数的最值问题的常见形式:(1)截距型:形如z ax by =+ .求这类目标函数的最值常将函数z ax by =+ 转化为直线的斜截式:a z y x b b =-+ ,通过求直线的截距zb的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =-+-,转化为可行域内的点到定点的距离的平方,结合点到直线的距离公式求解; (3)斜率型:形如y bz x a-=-,转化为可行域内点与定点的连线的斜率,结合直线的斜率公式,进行求解.5.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.6.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.7.C解析:C根据z 的最大值求得,a b 的关系式,结合点到直线的距离公式,求得22a b +的最小值. 【详解】 由2203260x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩. 画出可行域如下图所示,由于0,0a b >>,所以目标函数()0,0z ax by a b =+>>在点()4,3取得最大值4312a b +=.22a b +的最小值等价于原点到直线43120x y +-=的距离的平方,原点到直线43120x y +-=的距离为221212534-=+, 所以22a b +的最小值为212144525⎛⎫= ⎪⎝⎭.故选:C【点睛】本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题.8.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1b a++1a b +=a b a b ab +++ =2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.9.D解析:D 【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值. 【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D. 【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.C解析:C 【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值. 【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点, 可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b +-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b 156-=,a 54=,上式取得最小值, 故选:C . 【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.11.A【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.12.B解析:B 【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案. 【详解】根据题意,正数x ,y 满足x +y =1,则2211x y y x +++=22(1)(1)11--+++y x y x=(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13[8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13, 所以3m ≤,则m 的最大值为13; 故选:B . 【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题.二、填空题13.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯, 所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2].故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.14.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.15.23【分析】先画出约束条件所表示的可行域结合图象确定目标函数的最优解代入最优解的坐标即可求解【详解】画出不等式组所表示的可行域如图所示可得交点又由解得目标函数可化为当直线过点C 时直线在轴上的截距最大解析:23 【分析】先画出约束条件所表示的可行域,结合图象确定目标函数的最优解,代入最优解的坐标,即可求解. 【详解】画出不等式组213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩所表示的可行域,如图所示,可得交点(0,1),(7,1)A B ,又由21211x y y x -=-⎧⎨-=⎩,解得(3,7)C ,目标函数2z y x =-可化为122zy x =+,当直线122zy x =+过点C 时,直线在y 轴上的截距最大,此时目标函数取得最大值, 将C 代入直线320x y k +-=,解得23k =.故答案为:23【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出不等式组所表示的平面区域,结合图象得出目标函数的最优解是解答的关键,着重考查数形结合法,以及计算能力.16.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案. 【详解】0a >,0b >,且a ,1,b 依次成等差数列,∴2a b +=,∴()411411414941(52)2222b a b a a b a b a b a b a b ⎛⎫⎛⎫+=++=+++≥+⋅= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4b a a b =,即43a =,23b =,取等号, 故14a b +的最小值为92.故答案为:9 2.【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.17.【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单的线性规解析:1,22⎡⎤⎢⎥⎣⎦【分析】作出可行域,yx表示(),x y与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解.【详解】如图,不等式组201030yx yx y-⎧⎪--⎨⎪+-⎩表示的平面区域ABC(包括边界),所以yx表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B,,所以122OA OBk k==,,故1,22yx⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.18.【解析】分析:由正弦定理将2ccosB=2a+b转化成由三角形内角和定理将利用两角和的正弦公式展开化简求得的值由余弦定理三角形的面积公式及基本不等式关系求得ab的最小值详解:2ccosB=2a+b由解析:13【解析】分析:由正弦定理将2c cosB =2a +b 转化成2sin cos 2sin sin C B A B =+,由三角形内角和定理,将()sin sin A B C =+,利用两角和的正弦公式展开,化简求得sin C 的值,由余弦定理、三角形的面积公式及基本不等式关系,求得ab 的最小值. 详解:2c cosB =2a +b ,由正弦定理转化成2sin cos 2sin sin C B A B =+∴()2sin cos 2sin sin C B B C B =++化简得:2sin cos sin 0B C B +=, 又0,sin 0BB π<,得1cos 2C =-,0C π<<,得23C π=, 则△ABC的面积为1sin 2S ab C ==,即3c ab =,由余弦定理得2222cos c a b ab C =+-,化简得22229a b ab a b ++=,222a b ab +≥,当且仅当a b =时取等, ∴2229ab ab a b +≤,即13ab ≥, 故ab 的最小值是13. 故答案为13. 点睛:本题考查正余弦定理、三角形内角和定理及基本不等式相结合.19.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然解析:16 【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移, 当直线经过A 时,z 最大由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =. 故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.20.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成 解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围. 【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭,因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.三、解答题21.(1)13x x ⎧<⎨⎩或12x ⎫>⎬⎭;(2)62a -≤≤.【分析】(1)先由一元二次不等式的解集确定对应方程的根,再利用根与系数的关系即得结果; (2)开口向上的二次函数大于等于恒成立,只需限定判别式0∆≤,即解得参数范围. 【详解】解:(1)因为不等式20x ax b -+<的解集是{}|23x x <<, 所以 2 3x x ==,是方程20x ax b -+=的解 由韦达定理得: 5 6a b ==,, 故不等式210bx ax -+>为26510x x -+>, 解不等式26510x x -+>得其解集为13x x ⎧<⎨⎩或12x ⎫>⎬⎭(2)当3b a =-时,2()30f x x ax a =-+-≥恒成立, 则2Δ4(3)0a a =--≤,即24120a a +-≤,解得62a -≤≤,所以实数a 的取值范围为62a -≤≤. 【点睛】二次函数2()f x ax bx c =++的恒成立问题的解决方法:(1)0a >时()0f x ≥在R 上恒成立等价于对应方程的判别式Δ0≤成立; (2)0a <时()0f x ≤在R 上恒成立等价于对应方程的判别式Δ0≤成立.22.(1)3(2)112a -≤≤【分析】(1)根据二次不等式的解集得5a =,再根据基本不等式求解即可; (2)根据题意将问题转化为261x ax -+≥-在[]2,4x ∈-恒成立,再令()27F x x ax =-+,(24x -≤≤),分类讨论即可求解.【详解】(1)由关于x 的不等式()0<g x 的解集为{}23x x <<,所以知235a =+=∴()()256213111g x x x x x x x -+==-+----又∵1x >,∴()21331x x -+-≥-,取“=”时1x = ∴()31g x x ≥-即()1g x x -的最小值为3-,取“=”时1x = (2)∵1≥x 时,212x +≥,()()212log 11f x x =+≤-∴根据题意得:261x ax -+≥-在[]2,4x ∈-恒成立 记()27F x x ax =-+,(24x -≤≤)①当4a ≤-时,()()min 2211F x F a =-=+ 由1121102a a +≥⇒≥-,∴1142a -≤≤-②当48a -<<时,()2min724a a F x F ⎛⎫==-+ ⎪⎝⎭由2704a a -+≥⇒-≤≤∴4a -<≤③当8a ≥时,()()min 4423F x F a ==-+由2342304a a -+≥⇒≤,a ∈∅综上所述,a 的取值范围是112a -≤≤【点睛】本题的第二问中关键是采用动轴定区间的方法进行求解,即讨论对称轴在定区间的左右两侧以及对称轴在定区间上的变化情况,从而确定该函数的最值.23.在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【分析】作出可行域,作出目标函数对应的直线,平移直线可得最优解. 【详解】作出可行域,如图ABC 内部(含边界),由2=030x y x -+⎧⎨-=⎩得()3A ,5,由+4=030x y x -⎧⎨-=⎩得()31B ,,由2=0+40x y x y -+⎧⎨-=⎩得()13C ,,作直线:230l x y -=,向上平移直线l ,z 减小,当l 过点()3A ,5时,z 取得最小值23359⨯-⨯=-;向下平移直线l ,z 增大,当l 过点()31B ,时,z 取得最大值23313⨯-⨯=;所以目标函数23z x y =-在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【点睛】本题考查简单的线性规划问题,解题方法是作出可行域,作出线性目标函数对应的直线,平移直线求得最优解,如果目标函数不是线性的,则可根据其几何意义求解,如直线的斜率、两点间的距离等,属于中档题. 24.(1)()2111424f x x x =++;(2)答案见解析. 【分析】 (1)由题得104a b -+=,20b a =-≤△且0a >,化简即得,a b 的值,即得函数的解析式;(2)由题得220cx x c -+<,再对c 分类讨论解不等式. 【详解】(1)()1104f a b -=-+=, 因为()0f x ≥恒成立,则20b a =-≤△且0a >,即221110,0,444a a a a ⎛⎫⎛⎫+-≤∴-≤∴= ⎪ ⎪⎝⎭⎝⎭,12b =, ()2111424f x x x ∴=++ (2)()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭, 即22111131424424x x c x x c ⎛⎫⎛⎫++>+-++ ⎪ ⎪⎝⎭⎝⎭ 220cx x c ∴-+<当0c时:解得0x >;当0c >时:244c =-故当1c ≥时:2440c =-≤,不等式无解;故当1c <时:2440c =->221111c c x --+-<<综上所述,0c,不等式解集为0,;1c ≥时,不等式解集为∅;01c <<时,不等式解集为11c c ⎛⎫+ ⎪ ⎪⎝⎭【点睛】本题主要考查二次函数的解析式的求法,考查二次不等式的恒成立的问题,考查一元二次不等式的解法,意在考查学生对这些知识的理解掌握水平. 25.(1)3;(2)[2,)-+∞ 【分析】(1)先因式分解得到()()()21=---⎡⎤⎣⎦f x x x a ,再根据关于x 的不等式()0f x <的解集为()2,2-,由12322+=-=-+x x a 求解.(2)将不等式()30f x x -+≥对任意2x >恒成立,根据2x >,转化为2452x x a x -+≥--求解. 【详解】(1)()()()()223221=+--+=---⎡⎤⎣⎦f x x x a x x x a ,因为关于x 的不等式()0f x <的解集为()2,2-, 所以1230+=-=x x a , 解得3a =(2)因为不等式()30f x x -+≥对任意2x >恒成立, 所以()()2245-≥--+a x x x 对任意2x >恒成立,因为2x >, 所以20x ->所以2452x x a x -+≥--,对任意2x >恒成立,而24512222-+⎛⎫-=--+≤- ⎪--⎝⎭x x x x x ,当且仅当 122x x -=-,即 3x =时,取等号, 所以 2a ≥-,所以a 的取值范围[2,)-+∞. 【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式恒成立问题,基本不等式的应用,还考查了转化求解问题的能力,属于中档题.26.(1)(2)(62)-∞--+∞,,;(2)99a -+≤【分析】(1)当0a =时,解一元二次不等式求得不等式()0f x <的解集.(2)化简不等式()1f x ≥-,对a 分成0a ≠和0a >两种情况进行分类讨论,结合一元二次不等式恒成立,求得实数a 的取值范围.【详解】(1)当1a =-时,由()0f x <得,2420x x --+<,所以2420x x +->,所以不等式的解集为(2)(62)-∞-+∞,,;(2)因为()1f x ≥-解集为R ,所以2(3)21ax a x +-+-≥在R 恒成立,当0a =时,得321x -+-≥,不合题意;当0a ≠时,由2(3)30ax a x +-+≥在R 恒成立,得()203120a a a >⎧⎪⎨--≤⎪⎩,所以99a -+≤【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。

人教版高中数学必修5第三章不等式单元测试题及答案

人教版高中数学必修5第三章不等式单元测试题及答案

疼痛三两三类方治疗冠心病.疼痛三两三组成:当归、川芎、鸡血藤、三七?主治:心脉瘀阻型心绞痛?主症:胸痛胸憋、固定不移、舌黯有瘀斑、脉弦涩?方解:当归养血活血,川芎行气活血,鸡血藤养血?通络,三七化瘀活血止痛,为活血止痛的经典组方。

冠心病心绞痛属中医胸痹心痛范畴,多为本虚标实之证,急性期重在活血化瘀治其标。

行气活血三两三组成:四逆散合疼痛三两三?主治:气滞血瘀型心绞痛?主症:生气后胸痛憋闷、固定不移、舌黯有瘀斑、脉弦?方解:四逆散主行气解郁,疼痛三两三活血?通脉。

多适用于自发性心绞痛。

.益气活血三两三组成:疼痛三两三加黄芪、党参、甘草?主治:气虚血瘀型心绞痛?主症:劳累后胸痛憋闷,休息缓解,伴心悸?气短、自汗、舌黯有瘀斑、脉弦细或细弱方解:劳则伤气,气虚不运,血脉不畅,而?致心脉瘀阻,诱发胸痛。

重用黄芪、党参、甘草益气扶正疼痛三两三活血通脉,通荣兼备而不伤正。

多用于初发劳力型心绞痛。

益气养阴三两三组成:疼痛三两三加黄芪、党参、丹参、玄?参、元胡;经年日久者加水蛭、土元、地龙主治:气阴两虚、心脉瘀阻型心绞痛?主症:劳累后胸痛憋闷,休息缓解,伴乏力?口干、心悸气短、自汗盗汗、舌黯红有瘀斑、脉弦细。

方解:诸药合用,益气养阴,活血通脉。

适?用于劳力型心绞痛恶化者。

化痰逐瘀三两三组成:疼痛三两三加瓜蒌、半夏、薤白、陈?皮、茯苓、水蛭、土元、地龙主治:痰瘀交阻型心绞痛?主症:胸中闷痛或窒闷,固定不移、体胖多?痰、舌黯有瘀、脉弦滑方解:理气化痰、行气活血、通络止痛。

?清化逐瘀三两三半夏、黄芩、黄?连、竹茹、水蛭、土元、地龙主治:痰热内阻、血瘀心脉型心绞痛?主症:胸中闷痛或窒闷,固定不移、体胖多?痰、舌红有瘀、脉弦滑数方解:本方以小陷胸汤合疼痛三两三为基本?方,清热化痰,活血通脉。

益气养阴化痰逐瘀三两三党参、丹参、玄?参、元胡、瓜蒌、半夏、薤白、日久者加水蛭、土元、地龙主治:气阴两虚、痰瘀交阻型心绞痛?主症:劳力后胸中闷痛或窒闷,休息后好转、?伴乏力口干、心悸气短、自汗盗汗、体胖多痰、舌黯红有瘀斑、舌苔厚腻,脉弦细滑方解:益气养阴,理气活血、化痰逐瘀?.当归、川芎、鸡血藤、三七血瘀日久:水蛭、土元、地龙黄芪党参甘草痰热气虚冠心病心绞痛半黄芩夏黄连薤竹茹白茯玄参阴丹参.。

必修五第三章《不等式》单元水平检测题及答案

必修五第三章《不等式》单元水平检测题及答案

必修五第三章《不等式》单元水平检测题一、选择题。

(60分)1.设a<b<0,则下列不等式中不能成立的是( )A .1a >1bB .1a-b >1aC .a bD .22b a >2.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )。

A. 10 B. 10- C. 14 D. 14-3、一元二次不等式02>++n mx mx 的解集是{}12|<<-x x ,则m ,n 的值分别是( )A 、3,23=-=n mB 、3,23==n mC 、3,23-==n mD 、3,23-=-=n m 4、不等式0322>-+x x 的解集是( )A.{x|-1<x <3}B.{x|x >3或x <-1}C.{x|-3<x <1}D.{x|x>1或x <-3}-5、若对于任何实数,二次函数y=a x 2-x+c 的值恒为负,那么a 、c 应满足( )A 、a >0且a c ≤41 B 、a <0且a c <41 C 、a <0且a c >41 D 、a <0且a c <0 6、在坐标平面上,不等式组⎪⎩⎪⎨⎧≥+-≥+≤020,3y x y x x 所表示的平面区域的面积为( )A .28B .16C .439 D .121 7、不等式6)23)(5(-≥-+x x 的解集是( )A 、}29,1|{≥-≤x x x 或B 、}291|{≤≤-x xC 、}1,29|{≥-≤x x x 或D 、}129|{≤≤-x x 8.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( )A .最小值21和最大值 1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值2而无最小值9、不等式1213≥--xx 的解集是( ) A .⎭⎬⎫⎩⎨⎧≤≤243|x x B .⎭⎬⎫⎩⎨⎧<≤243|x x C .⎭⎬⎫⎩⎨⎧≤>432|x x x 或 D .{}2|<x x 【10、关于x 的方程ax 2+2x -1=0至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-111、、对于任意实数x ,不等式04)2(2)2(2<----x a x a 恒成立,则实数a 取值范围是( )A 、()2,∞-B 、(]2,∞-C 、(-2,2)D 、(]2,2-12、的取植范围是的两侧,则)在直线,)和(,点(a a y x 0236413=+--( ) A .24,7>-<a a 或 B. 24,7=-=a a 或 C. 247<<-a D. 724<<-a 二填空题。

(典型题)高中数学必修五第三章《不等式》测试(包含答案解析)(1)

(典型题)高中数学必修五第三章《不等式》测试(包含答案解析)(1)

一、选择题1.设0,0a b >>,若4a b +=.则49a b+的最小值为( ) A .254B .252 C .85D .1252.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .63.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-14.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .4 5.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .56.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,117.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .88.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3- 9.设a=3x 2﹣x+1,b=2x 2+x ,则( )A .a >bB .a <bC .a≥bD .a≤b10.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭11.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( ) A .514z ≤≤B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤12.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .13二、填空题13.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.14.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________.15.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.16.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.17.已知不等式24xa x ≤+对任意的[]1,3x ∈恒成立,则实数a 的范围为_______. 18.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.19.已知11()2x x f x e e a --=++只有一个零点,则a =____________.20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 三、解答题21.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围.22.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1. 23.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值. 24.已知函数2()(3)22f x x a x a b =+-+++,,a b ∈R .(1)若关于x 的不等式()0f x >的解集为{|4x x <-或2}x >,求实数a ,b 的值; (2)若关于x 的不等式()12f x b <+的解集中恰有3个整数,求实数a 的取值范围. 25.已知函数2()3f x x ax a =-++. (1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围. 26.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用“1”的代换凑配出定值后用基本不等式可得最小值. 【详解】0,0,4a b a b >>+=()(4914914912513134444b a a b a b a b a b ⎛⎫⎛⎫∴+=++=++≥⨯+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当49b aa b =,即812,55a b ==时取等号.故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.3.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.4.D解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-,由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.6.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.7.C解析:C 【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18.故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.8.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.9.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.10.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -,此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值,由21010x yx y-+=⎧⎨+-=⎩,得1323xy⎧=⎪⎪⎨⎪=⎪⎩,即1(3A,2)3代入221z x y=--得125221333z=⨯-⨯-=-,故5[3z∈-,5)故选:D.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.11.B解析:B【分析】画出不等式组对应的平面区域,由,x y都取最大值得出z的最小值,当z取最大值时,点(),x y落在直线250x y+-=上,再结合基本不等式得出z的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y==时,112zx y=+取得最小值111442+=当点(),x y落在直线250x y+-=上时,112zx y=+取得最大值此时25x y+=,2225224x yxy+⎛⎫≤=⎪⎝⎭112542225x yzx y xy xy+∴=+==≥当且仅当2x y=,即55,24x y==时取等号,显然55,24⎛⎫⎪⎝⎭在可行域内即1524z≤≤故选:B 【点睛】关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.12.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.二、填空题13.【分析】根据对数的运算性质可得设原不等式可化为由可得令小于等于的最小值即可【详解】由题意设则又所以原不等式可化为由可得则原不等式可化为又当且仅当时等号成立所以即的最大值为故答案为:【点睛】关键点点睛解析:3+【分析】根据对数的运算性质,可得1212lg 2020log 2020lg lg x x x x =-,23232lg 20202log 2020lg lg x x x x =-,1313lg 2020log 2020lg lg x x k k x x =-,设12lg lg a x x =-,23lg lg b x x =-,原不等式可化为12k a b a b +≥+,由0,0a b >>,可得()12k a b a b ⎛⎫≤++ ⎪⎝⎭,令k 小于等于()12a b a b ⎛⎫++ ⎪⎝⎭的最小值即可. 【详解】 由题意,121122lg 2020lg 2020log 2020lg lg lg x x x x x x ==-,2322332lg 20202lg 20202log 2020lg lg lg x x x x x x ==-,131133lg 2020lg 2020log 2020lg lg lg x x k k k x x x x ==-, 设12lg lg a x x =-,23lg lg b x x =-,则13lg lg x x a b -=+, 又lg 20200>,所以原不等式可化为12ka b a b+≥+, 由1230x x x >>>,可得0,0a b >>,则原不等式可化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭, 又()1221233b a a b a b a b ⎛⎫++=+++≥+=+⎪⎝⎭2b a a b =时,等号成立,所以3k ≤+k的最大值为3+故答案为:3+ 【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭.本题中利用对数的运算性质,将三个对数转化为以10为底的对数,进而设12lg lg a x x =-,23lg lg b x x =-,可将原不等式化为12k a b a b+≥+,进而结合,a b 的范围可得到()12k a b a b ⎛⎫≤++ ⎪⎝⎭.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.9【分析】首先由已知确定然后利用基本不等式求最小值【详解】因为所以又所以所以当且仅当时等号成立所以的最小值为9故答案为:9【点睛】易错点睛:易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件解析:9 【分析】首先由已知确定1,1a b >>,然后利用基本不等式求最小值. 【详解】因为abx y xy ==,所以1a y x-=,1b x y -=,又1,1x y >>,所以10,10a b ->->,111(1)(1)()b a b a b x y x x -----===,所以(1)(1)1a b --=,4(1)4(1)52(1)4(1)59a b a b a b +=-+-+≥-⨯-+=,当且仅当14(1)a b -=-时等号成立,所以4a b +的最小值为9. 故答案为:9. 【点睛】易错点睛:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【解析】作可行域如图则直线z=x+2y 过点A (20)时z 取最小值2点睛:线性规划的实质是把代数问题几何化即数形结合的思想需要注意的是:一准确无误地作出可行域;二画目标函数所对应的直线时要注意与约束条解析:【解析】作可行域,如图,则直线z=x+2y 过点A (2,0)时z 取最小值2.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.17.【分析】利用基本不等式求得在的最大值即可求得实数的范围【详解】因为则当且仅当时即等号成立即在的最大值为又由不等式对任意的恒成立所以即实数的范围为故答案为:【点睛】本题主要考查不等式的恒成立问题其中解解析:1[,)4+∞.【分析】利用基本不等式求得24xx +在[]1,3x ∈的最大值,即可求得实数a 的范围. 【详解】因为[]1,3x ∈,则211444x x x x =≤=++,当且仅当4x x =时,即2x =等号成立, 即24xx +在[]1,3x ∈的最大值为14, 又由不等式24x a x ≤+对任意的[]1,3x ∈恒成立,所以14a ≥ 即实数a 的范围为1[,)4+∞.故答案为:1[,)4+∞.【点睛】本题主要考查不等式的恒成立问题,其中解答中熟练应用基本不等式求得24xx +的最大值是解答的关键,着重考查推理与运算能力.18.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy 所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000 【分析】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,列出实际问题中x 、y 所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y =+的最大值. 【详解】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y =+可转化直线3122000y x z =-+,数形结合知当直线经过点A 时z 取得最大值.解方程组24002500x y x y +=⎧⎨+=⎩,可得点()200,100A ,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.19.【分析】由函数只有一个零点转化为方程有唯一的实数解结合基本不等式求得得到即可求解【详解】由题意函数只有一个零点即有唯一的实数根即方程有唯一的实数解令因为所以当且仅当时即等号成立因为方程有唯一的实数解 解析:1-【分析】 由函数11()2x x f x e e a --=++只有一个零点,转化为方程112x x e e a --+=-有唯一的实数解,结合基本不等式,求得111122x x x x e e e e ----+⋅≥=,得到22a -=,即可求解. 【详解】由题意,函数11()2x x f x ee a --=++只有一个零点,即()0f x =有唯一的实数根,即方程112x x e e a --+=-有唯一的实数解, 令()11x x g x e e --=+因为110,0x x ee -->>,所以()111122x x x x g x e e e e ----≥+⋅==,当且仅当11x x e e --=时,即1x =等号成立,因为方程112x x e e a --+=-有唯一的实数解,所以22a -=,即1a =-. 故答案为:1-. 【点睛】本题主要考查了根据函数的零点公式求解参数问题,以及基本不等式的应用,其中解答中把函数的零点个数转化为方程解得个数,结合基本不等式求解是解答的关键,着重考查推理与运算能力.20.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x+-的最值,进而即可得到结论. 【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x xx x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4.故答案为:4. 【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.三、解答题21.(1)1或3;(2)02a <<. 【分析】(1)首先根据分段函数求得(0)1f =,然后根据2a与1的大小关系分类计算(1)f ,由(1)1f =求得a 值;(2)()0f x >恒成立,转化两个二次函数在某个区间上大于0恒成立,即当2x a<时,210x ax -+>恒成立和2x a≥时,230x ax +->恒成立,两者结合即得. 【详解】解:(1)因为0a >,所以20a>,从而()01f =. 当21>a即02a <<时,()()()01111f f f a ==-+=,解得1a =,符合; 当21a≤即2a ≥时,()()()01131f f f a ==+-=,解得3a =,符合. 所以a 的值为1或3.(2)因为()f x 的图象在x 轴的上方,所以对任意的x ∈R ,()0f x >恒成立. ①当2x a<时,210x ax -+>恒成立,其中0a >. 1︒ 当22a a <即02a <<时,则()2min 4024a af x f -⎛⎫==> ⎪⎝⎭,解得02a <<. 2︒ 当22a a ≥即2a ≥时,则224210f a a aa ⎛⎫=-⨯+≥ ⎪⎝⎭,解得02a <≤,所以2a =.所以02a <≤. ②当2x a≥时,230x ax +->恒成立,其中0a >. 则()2min22230f x f a a a a ⎛⎫⎛⎫⎛⎫==+⨯-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得02a <<.综上,02a <<. 【点睛】本题考查分段函数,考查不等式恒成立问题,解题关键是转化为二次函数大于0在某个区间上恒成立,结合二次函数知识易得. 22.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->, 所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1,解得x <1或x 1a>, 所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 23.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-.【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解. 【详解】(1)当2a =时,不等式为23440x x -++>, 所以23440x x --<,所以()23203x x ⎛⎫+-< ⎪⎝⎭,解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-,解得13m =,112a =-.【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.24.(1)1,12a b ==-;(2)[)(]3,410,11.【分析】(1)由一元二次不等式的解集与一元二次方程的根的关系,应用韦达定理可求得,a b ; (2)易得方程()12f x b =+的解为2x =和5x a =-,由一元二次不等式的解与一元二次方程的根的关系可得5a -的范围,从而得结论. 【详解】(1)因为函数2()(3)22,,f x x a x a b a b =+-+++∈R ,()0f x >的解集为{|4x x <-或2}x >,所以4-,2是方程2(3)220x x a a b +-+++=的两根. 由42(3)4222a a b -+=--⎧⎨-⨯=++⎩,解得112a b =⎧⎨=-⎩.(2)由()12f x b <+,得2(3)2100x a x a +-+-<.令2()(3)210h x x a x a =+-+-,则()()()[25h x x x a =---],所以()20h =.故()0h x <的解集中的3个整数只能是3,4,5或1-,0,1. 若解集中的3个整数是3,4,5, 则556a <-≤,得1011a <≤; 若解集中的3个整数是1-,0,1, 则251a -≤-<-,得34a ≤<. 综上,实数a 的取值范围为[)(]3,410,11.【点睛】本题考查解一元二次不等式,掌握一元二次不等式与一元二次方程、二次函数的关系是解题关键.25.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-. 【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集. (2)利用判别式列不等式,解不等式求得a 的取值范围. 【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->,∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题. 26.(1)3;(2)6b ≥-【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值; (2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围.【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x -≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.。

(典型题)高中数学必修五第三章《不等式》检测卷(有答案解析)(1)

(典型题)高中数学必修五第三章《不等式》检测卷(有答案解析)(1)

一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53 B .2 C .73 D .62.已知2244x y +=,则2211x y +的最小值为( ) A .52 B .9 C .1 D .943.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( ) A .53- B .15- C .13 D .954.设x ,y R +∈,1x y +=,求14x y +的最小值为( ). A .2 B .4 C .8 D .95.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( ) A .1- B .2 C .3 D .46.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .7 7.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16 B .25 C .36 D .498.若函数()1x y a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( )A .[]2,4 B.⎤⎦ C .(][)1,24,⋃+∞ D.([)2,⋃+∞ 9.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( )A .3B .4C .5D .610.设x ,y 满足约束条件1x y a x y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( ) A .5- B .3 C .5-或3 D .5或3- 11.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .60 12.设a=3x 2﹣x+1,b=2x 2+x ,则( )A .a >bB .a <bC .a≥bD .a≤b 二、填空题13.设点(),P x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩,所表示的区域内(含边界),则目标函数4z x y =-的最大值是_________.14.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 15.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.16.已知正实数,x y 满足x y xy +=,则3211x y x y +--的最小值为______. 17.对一切R θ∈,213sin cos 2m m θθ->恒成立,则实数m 的取值范围是_______. 18.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________. 19.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sin cos 66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.20.当x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩时,|2|x y a -≤恒成立,则实数a 的取值范围是________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(k y k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)23.已知函数2()(3)22f x x a x a b =+-+++,,a b ∈R .(1)若关于x 的不等式()0f x >的解集为{|4x x <-或2}x >,求实数a ,b 的值; (2)若关于x 的不等式()12f x b <+的解集中恰有3个整数,求实数a 的取值范围. 24.已知定义在R 上的函数()()2232f x x x a x =+--+(其中a R ∈). (1)若关于x 的不等式()0f x <的解集为()2,2-,求实数a 的值;(2)若不等式()30f x x -+≥对任意2x >恒成立,求a 的取值范围.25.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-. (1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围.26.解关于x 的不等式:()2230x a a x a -++>.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】 由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等.所以x y +的最小值为2.故选:B【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.D解析:D【分析】利用22222211111(4)4x y x y xy ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】 由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立. 故选:D .【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.D解析:D【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2y x -的几何意义求z 的最大值.【详解】 24222x y y z x x +-==+-- 设2y m x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦, 即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题. 4.D解析:D【分析】由“1”有代换利用基本不等式可得最小值.【详解】因为x ,y R +∈,1x y +=, 所以141444()5529x y x y x y x y x y y x y x ⎛⎫+=++=++≥+⨯= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立. 故选:D .【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.5.D解析:D【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论.【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-,由图象可知,当直线2y x z =-经过点A 时,使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A , 所以目标函数的最大值为2324z =⨯-=,故选:D.【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.A解析:A【分析】由111a b+=得:(1,1)1ab a ba=>>-,代入41611a b+--化简,利用基本不等式可求函数最小值.【详解】由111a b+=得:(1,1)1ab a ba=>>-,代入41611a b+--得到:4164164416(1)216(1)16 1111111a aaa b a a aa+=+=+-≥⋅-=-------当且仅当:4=16(1)1a a --即32a =时取等号. 故选:A【点睛】 本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.8.B 解析:B【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B .【点睛】 本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.9.B解析:B【分析】由等比中项定义得1ab = ,再由基本不等式求最值.【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1b a++1a b +=a b a b ab +++ = 2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B .【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.10.B解析:B【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值.【详解】根据题中约束条件1x y a x y +≥⎧⎨-≤-⎩可画出可行域如图所示, 两直线交点坐标为:11,22a a A -+⎛⎫ ⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫ ⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B. 【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.11.C解析:C【分析】 由已知可得2294(3)(8)(4)(9)37b a b a a b a b a b++=++=++,然后结合基本不等式即可求解. 【详解】解:因为正数a ,b 满足2a b +=,所以229494(3)(8)(4)(9)3737249b a b a b a a b a b a b a b++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C .【点睛】 本题主要考查了利用基本不等式求解最值,属于基础题.12.C解析:C【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0.解:∵a=3x 2﹣x+1,b=2x 2+x ,∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0,∴a≥b ,故选C .考点:不等式比较大小.二、填空题13.【分析】根据线性约束条件画出可行域将目标函数化为直线方程通过平移即可求得目标函数的最大值【详解】由题意作出可行域如图目标函数可化为上下平移直线数形结合可得当直线过点A 时z 取最大值由可得所以故答案为:解析:163【分析】根据线性约束条件,画出可行域,将目标函数化为直线方程,通过平移即可求得目标函数的最大值.【详解】由题意作出可行域,如图,目标函数4z x y =-可化为4y x z =-,上下平移直线4y x z =-,数形结合可得,当直线过点A 时,z 取最大值,由2103x y x y -+=⎧⎨+=⎩,可得54,33A ⎛⎫⎪⎝⎭, 所以54164333max z =⨯-=. 故答案为:163.【点睛】方法点睛:求线性目标函数的在约束条件下的最值问题的求解步骤是:①作图,画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ; ②平移,将l 平行移动,以确定最优解所对应的点的位置;③求值,解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值.14.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】 根据题中条件,由1222()2212y x y x y y xx y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果. 【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立.故答案为:7. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可. 【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩,即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--. 故答案为()2,1--. 【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.16.【详解】正实数满足故得到等号成立的条件为点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才解析:5+. 【详解】正实数,x y 满足x y xy +=,1111132321111111111x y x y x y x y x y yx ⎧=-⎪⎪+=⇒⇒+=+⎨--⎪--=-⎪⎩故得到113121323211=5++111111x 1111y x y x x y y x y x y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=++≥------()()1111-y x ⎫⎫-⎪⎪⎭⎭. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.17.【分析】求出的最大值然后解相应的不等式即可得【详解】由得或故答案为:【点睛】本题考查不等式恒成立问题根据参数出现的位置首先求出三角式的最大值然后只要解不等式即可得这实质上就是不等式恒成立问题中的分离解析:121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】求出sin cos θθ的最大值,然后解相应的不等式即可得. 【详解】11sin cos sin 222θθθ=≤,由211322m m ->得13m <-或12m >. 故答案为:121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查不等式恒成立问题,根据参数出现的位置,首先求出三角式sin cos θθ的最大值,然后只要解不等式即可得.这实质上就是不等式恒成立问题中的分离参数法,只是本题中不等式已经参变分离了.18.【分析】可先根据得出可转化为然后乘以利用基本不等式即可求解【详解】即的最小值为故答案为:【点睛】本题主要考查等差数列的相关性质以及基本不等式的应用属于综合题 解析:34+ 【分析】可先根据1122S =得出574a a +=,7811572a a a a a 可转化为5721a a ,然后乘以574a a ,利用基本不等式即可求解. 【详解】111571111112222a a a a S ,574a a ,781178117511117557575757572222221a a a a a a a a a a a a a a a a a a a a a a , 75575757572112134244a a a a a a a a a a , 570a a ,75570,024a a a a ,757557573332222422444a a a a a a a a , 即57213224a a , 7811572a a a a a.故答案为:34+. 【点睛】本题主要考查等差数列的相关性质,以及基本不等式的应用,属于综合题.19.【分析】由已知结合辅助角公式可求然后结合基本不等式即可求解【详解】由题意可知(为辅助角)由题意可得故由解得故答案为【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用属于中档题解析:22⎡-⎢⎣⎦ 【分析】由已知结合辅助角公式可求2294a b +=,然后结合基本不等式22222a b a b ++⎛⎫≤ ⎪⎝⎭即可求解. 【详解】由题意可知sincos666y a t bt c t c πππθ⎛⎫=++=++ ⎪⎝⎭,(θ为辅助角) 由题意可得3=,故2294a b +=, 由2229228a b a b ++⎛⎫≤= ⎪⎝⎭,解得22a b -≤+≤, 故答案为22⎡-⎢⎣⎦. 【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用,属于中档题.20.【分析】先根据条件作出可行域然后求出的取值范围由恒成立即即可得出答案【详解】由满足作出可行域如图设则表示直线在轴上的截距的相反数则由得当直线过点时有最大值4当直线过点时有最小值所以所以故答案为:【点解析:)4,⎡+∞⎣ 【分析】先根据条件作出可行域,然后求出2z x y =-的取值范围,由|2|x y a -≤恒成立,即max |2|x y a -≤,即可得出答案.【详解】由x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩,作出可行域,如图.设2z x y =-,则2y x z =-,z 表示直线2y x z =-在y 轴上的截距的相反数. 则()()1,0,1,3A C ,由27010x y x y +-=⎧⎨--=⎩,得()3,2B .当直线2y x z =-过点()3,2B 时,z 有最大值4,当直线2y x z =-过点()1,3C 时,z 有最小值-1.所以|2|4x y -≤,所以4a ≤故答案为:[)4+∞,. 【点睛】本题考查简单的线性规划问题和恒成立求参数的问题,属于中档题.三、解答题21.(1)20k =,()16002440,010L x x x =--≥+;(2)30万元. 【分析】(1)0x =,28,y =代入已知模型求出k ,得年销售量函数解析式,求出销售价格后可得 利润函数;(2)利用基本不等式求最值. 【详解】(1)由题意,可知当0x =时,28,y =283010k ∴=-, 解得20k =203010y x ∴=-+ 又每件产品的销售价格为801601.5yy+⨯元, ()801601.580160y L y y x y ⎛⎫+∴=⨯-++ ⎪⎝⎭4080y x =+-2040803010x x ⎛⎫- ⎝=+⎪⎭-+()16002440,010x x x =--≥+ (2)0x ≥, ()()102160016001601021600107001010101010x x x x x x ∴+=+++++++-≥-=-= 当且仅当16001010x x =++时等号成立, 2440702370y ∴≤-=max 2370y ∴=故该工厂计划投入促销费为30万元时,才能获得最大利润,最大利润为2370万元. 【点睛】关键点点睛:本题考查函数的应用,在已知函数模型时,需从题目中选取恰当的数据求出参数值,然后根据提示模型求出函数解析式.函数应用题中求最值方法一是利用基本不等式求得最值,一是利用函数的单调性求得最值.基本不等式要注意其最值存在的条件. 22.(1)3. (2)5. 【解析】 试题分析:(1)求出第年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入-总支出,可得平均利润,利用基本不等式,可得结论. 试题(1)设大货车运输到第年年底,该车运输累计收入与总支出的差为万元,则由,可得∵,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入−总支出, ∴二手车出售后,小张的年平均利润为,当且仅当时,等号成立∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大. 考点:根据实际问题选择函数类型, 基本不等式 23.(1)1,12a b ==-;(2)[)(]3,410,11.【分析】(1)由一元二次不等式的解集与一元二次方程的根的关系,应用韦达定理可求得,a b ; (2)易得方程()12f x b =+的解为2x =和5x a =-,由一元二次不等式的解与一元二次方程的根的关系可得5a -的范围,从而得结论. 【详解】(1)因为函数2()(3)22,,f x x a x a b a b =+-+++∈R ,()0f x >的解集为{|4x x <-或2}x >,所以4-,2是方程2(3)220x x a a b +-+++=的两根. 由42(3)4222a a b -+=--⎧⎨-⨯=++⎩,解得112a b =⎧⎨=-⎩.(2)由()12f x b <+,得2(3)2100x a x a +-+-<.令2()(3)210h x x a x a =+-+-,则()()()[25h x x x a =---],所以()20h =.故()0h x <的解集中的3个整数只能是3,4,5或1-,0,1. 若解集中的3个整数是3,4,5, 则556a <-≤,得1011a <≤; 若解集中的3个整数是1-,0,1, 则251a -≤-<-,得34a ≤<. 综上,实数a 的取值范围为[)(]3,410,11.【点睛】本题考查解一元二次不等式,掌握一元二次不等式与一元二次方程、二次函数的关系是解题关键.24.(1)3;(2)[2,)-+∞ 【分析】(1)先因式分解得到()()()21=---⎡⎤⎣⎦f x x x a ,再根据关于x 的不等式()0f x <的解集为()2,2-,由12322+=-=-+x x a 求解.(2)将不等式()30f x x -+≥对任意2x >恒成立,根据2x >,转化为2452x x a x -+≥--求解. 【详解】(1)()()()()223221=+--+=---⎡⎤⎣⎦f x x x a x x x a ,因为关于x 的不等式()0f x <的解集为()2,2-, 所以1230+=-=x x a , 解得3a =(2)因为不等式()30f x x -+≥对任意2x >恒成立, 所以()()2245-≥--+a x x x 对任意2x >恒成立,因为2x >, 所以20x ->所以2452x x a x -+≥--,对任意2x >恒成立,而24512222-+⎛⎫-=--+≤- ⎪--⎝⎭x x x x x ,当且仅当 122x x -=-,即 3x =时,取等号, 所以 2a ≥-,所以a 的取值范围[2,)-+∞. 【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式恒成立问题,基本不等式的应用,还考查了转化求解问题的能力,属于中档题. 25.(1)3;(2)6b ≥- 【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围. 【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x-≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立,所以6b -≤,所以6b ≥-, 综上,实数b 的取值范围为6b ≥-. 【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题. 26.见解析 【分析】由题意,将不等式()2230x a ax a-++>变形为2(0)()x a x a -->,分三种情况讨论,分别求解不等式的解集,即可得到答案. 【详解】将不等式()2230x a ax a-++>变形为()()20x a x a -->.当a <0或1a >时,有a < a 2,所以不等式的解集为{|x x a <或2}x a >; 当a =0或1a =时,a = a 2=0,所以不等式的解集为{|,x x R ∈且}x a ≠; 当0< a <1时,有a > a 2,所以不等式的解集为2{|x x a <或}x a >; 【点睛】本题主要考查了含参数的一元二次不等式的求解问题,其中解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.。

必修5第三章不等式单元测试题及答案

必修5第三章不等式单元测试题及答案

必修5第三章《不等式》单元测试题 班级 姓名 座号 分数一、选择题(本大题共6小题,每小题6分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式(x -1)(x -3)>0的解集为 ( ) A.{x |x <1} B. {x |x >3} C. {x |x <1或x >3} D.{x |1<x <3}2.不等式2x+y+1<0表示的平面区域在直线2x+y+1=0( )A 、右上方B 、右下方C 、左上方D 、左下方3.设中最大的是 ( )A. B. b C. 2ab D.4.给出平面区域如下图所示,其中A (5,3),B (1,1),C (1,5),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a 的值是( )A .32B .21C .2D .235.已知1273,023++=-+y x y x 则的最小值是 ( )A. 393B. 221+C. 6D. 76.已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为( )A 、11{|}32x x -<<B 、11{|}32x x x <->或 C 、{|32}x x -<< D 、{|32}x x x <->或二、填空题(本大题共4小题,每小题6分,共24分,将答案填在题后的横线上)1.已知集合M={x |x >6},N={x |x 2-6x -27<0},则M ∩N=2.若关于x 的不等式342+++x x a x >0的解集为{x|-3<x<-1或x>2},则a= 3.已知x >2,则y =21-+x x 的最小值是 . 4.对于任意实数x ,不等式()()222240a x a x ----<恒成立,则实数a 的取值范围是三、解答题(本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤)1.解下列关于x 的不等式:(1)x 2-5x +6>0; (2)(x+a)(x-2a+1) <02.已知x 、y 满足不等式⎪⎩⎪⎨⎧-≥≥+-≤-+10303y y x y x ,求z =3x +y 的最大值与最小值。

必修五第三章不等式习题(含答案)

必修五第三章不等式习题(含答案)

最新整理一、选择题.1.若a€ R,则下列不等式恒成立的是A. a2 + 1 > a B.1~2-a2.下列函数中,最小值为第三章不等式C. a2 + 9 >6aD. lg(a2 + 1) >lg|2a|1B. y = Ig X + , 1 V xV 10Ig XC. y = 3X + 3-X, x€ R1D. y = sin x +sin Xn0V XV -2X3.不等式组XA.280 表示的平面区域的面积等于(2 0B.16C.3944.不等式lgx2V Ig2的解集是(A. B. (100, +s )C. 丄,1 U (100 , +8 )1005 . 不等式(X4- 4)-( X2 - 2)> 0的解集是(B.-迈W XW 72D.121D. (0, 1) U (100, W )C. XV -73 或x> 73D. -42 V XV 726.若X, y€ R,且X + y = 5,贝U 3X + 3y的最小值是A.10D. 18^3 27.若x> 0 , y > 0 ,且一1,则Xy有(A.最大值64B.最小值 164C.最小值D.最小值648.若y 则目标函数z = 2x + y的取值范围是(A. [0,6] B. [2,4]C. [3,6]D. [0,5]9.若不等式ax :2 + bx + c>0的解是0 V aV XV 3,则不等式CX2 - bx +a>0 的解为(1 1A. 1 V XV -a 3C.-丄V XV --a 310.若a > 0, b> 0 ,且a b 1 ,1 1B.-丄V XV --3 a—V XV —3 a电1的最小值是(b2D.最新整理不计.试设计污水池的长和宽,使总造价最低,并求出最低造价.A.9B. 8C.7D. 6二、填空题.1.函数 「1的定义域是764 X 22.若X , 3.函数{X + 2y - 5 W0 xA 1y> 0 x + 2y - 3> 0X —X ^的最大值为,则1的最大值为X__,最小值为4.若直角三角形斜边长是 1,则其内切圆半径的最大值是 5. 6. 若集合 A = {(X , y) | XI + |y|w 1}, B = {(X , y) |(y- x)( y + x) w 0} , M = A n B ,贝U M 的面积为 若不等式2x - 1 > m(x 2 - 1)对满足-2w mW2的所有m 都成立,贝U x 的取值范围是 ____________三、解答题.1.若奇函数f(x)在其定义域(-2, 2)上是减函数,且f(1 - a) + f(1 - a 2) < 0,求实数的取值范围.2.已知a > b >0,求a 2一的最小值.b(a b)(选)3.设实数X , y 满足不等式组L y + 2 > |2x- 3|(1)作出点(X , y)所在的平面区域;(2)设a > -1,在(1)所求的区域内,求 f(x , y)= y - ax 的最大值和最小值.4.某工厂拟建一座平面图形为矩形,且面积为 200 m 2的三级污水处理池(平面图如右).如果池外圈周壁建 造单价为每米 400元,中间两条隔墙建筑单价为每米 248元,池底建造单价为每平方米 80 元,池壁的厚度忽略最新整理、选择题.1. A【解析】A : a2- a + 1 = a2- a +—44= aB :当时,左=右.C:当时,左=右.D:当 a = ± 1时,左=右.2. C【解析】A : y没有最小值.B: 1 < XV10,••• 0< Ig x<1 .••• y>2.Ig x=1,即X =10 时,y min =2.此时不符合1< x< 10.C:v 3X> 0,••• y = 3X + 丄 >2.3XX = 0 时,y min =2 .0 < x< —,2sin x>0.y> 2.sin X = ^—时,此时sin x =1, si nx3.参考答案2+ - > 0. a2 + 1> a 恒成立.4X = n,不符合0<2x< —.2【解析】由不等式组,画出符合条件的平面区域(下图阴影部分)解两两直线方程组成的方程组,1=-•|AB| |X A-X C| = 2 -X 8 X 4 = 16 .24. D「x2> 0, 可得A(3, 5) , B(3, -3) , C(- 1,-'L x> 0,最新整理【解析】由题知,ba且 a < 0.•••( x + 1)( x + 1)< 0. •/ 0< <【解析】•••••• x > 0.V Ig x 2< lg 2x ,.・. lg 2x- 2lg x>0. • Ig x>2,或 Ig x< 0,.・.x> 100,或 0< x< 1 . 5. A【解析―x 4- 4) - (x 2-2)> 0,.・.x 4- x 2 - 2> 0,.・.(x 2- 2) (x 2 + 1)> 0. • x 2> 2.••• x > 罷, 或xW - 忌• 6. D【解析】3x+ 3y> 2J 3X 3y= 2••• 3x + 3y>2X 9X ^3 = 18丽,当 x = y = -时,等号成立.27. D【解析】2 A > 2 2 8 = 8 丄,当 £ x y v y V xy x时,8匚匚取最大值,即 xy 取最小值64. y =16l/xy8. A【解析】据不等式组画出可行域. 易知 A(- 1 , 2) , B(2, 2).将y = -2x 进行平移,当直线过 A 点时, 当直线过B 点时,Z max = 6 .9. Cc= a().c_a•-所求不等式可代为a( ) x 2+a( )x + a >0.--()X 2+( )x + 1 <0.丄 2 . 2 ,‘、2 2,2 C C 丄1a 2b + 1 = (a b) 2 a__— + 1 = 2 +1 A ——2__2+ 1 = 9. •••当a = b=l时,a2b2a2b2ab a b 2 22••• x2< 64, -8V XV 8,即(-8, 8).€ [0, 2n],1•- y max =—,此时2,恵14. ----- .n n V2—,X = cos —= -4 4 2【解析】2x<-1310. A原式取最小值9.二、填空题.1. (-8, 8).2. 2,0.【解析】据不等式组画出可行域.由图可知,0.yX maxmin3. 12【解析】设X =cos€[0,--y = cos sin= 1sin 2 .2【解析】1b2【解析】•••64 - x2>06.42解得1<x < 1一—,或 一—<x < 1,又x = 1时,亦符合题意. 2 2•亠7< x <』.2 2三、解答题.1.由 f( 1 - a)+ f( 1 -a 2) < 0,得 f( 1 - a) < - f(1 -a 2).又因为函数f (x )为奇函数,所以-f(1 - a 2) = f( a 2- 1)._x 2- 1 > 0如图, b 1 _ a_bT~a 2b 21 _ 42 1 _ 72 1 22厂丁.当且仅当a =b =琴时,r “ 1 max =【解析】如图, M 为阴影部分的面积为丄血2= 1.2【解析】令f( m)= m( x 2-1)-(2x- 1)( xM± 1),把它看作关于 m 的一次函数.由于-2w mW 2 时,f(m) < 0恒成立,1< 0( 2)< 0f (-2)< 0••• f(1 - a) < f(a 2- 1).又••• 函数f(x)在其定义域(-2, 2)上是减函数, 1 - a > a 2- 1 -2< a < 12< 1 - a <2解得-1< a < 3-2< a2 - 1< 2最新整理当且仅当a23. (1) (-3, 7)【解析】「- 1- 2a, -1 < aw 2(2) 最大值为7+3a,最小值为L 1 - 3a, a > 2200 -2 + 80 X 200 = 800 x xI 324> 1 600 J x ——+ 16 000 = 44 800 .V x当且仅当x =324,即x = 18, 325 x x答:当污水池长为18 m,宽为100m9时,总造价最低,最低为44 800元.••• y = 400 2x 2 200 + 248 xm,水池外圈周壁长2x + 2 迴(m),中x二a € (-1, 1).2.由a> b> 0 知, a-b>0,--b (a - b)wa2 +b(a16 耸=16.a4.【解】设污水池总造价为y元,污水池长为x m.贝y宽为200间隔墙长2 •型 (m),池底面积x200 (m2).即当a = 2罷,b = 42时, a2 +16取得最小值16. b(ab)324—+ 16 000x罟时,炯=44 800.。

(典型题)高中数学必修五第三章《不等式》测试题(含答案解析)

(典型题)高中数学必修五第三章《不等式》测试题(含答案解析)

一、选择题1.设0,0a b >>,若4a b +=.则49a b+的最小值为( ) A .254B .252 C .85D .1252.设x ,y 满足约束条件5010550x x y x y -≤⎧⎪-+≥⎨⎪+-≥⎩,且(0,0)z ax by a b =+>>的最大值为1,则56a b+的最小值为( ) A .64B .81C .100D .1213.若x ,y 满足约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则6z x y =+的最大值为( )A .30B .14C .25D .364.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .5.某校的一个者愿者服务队由高中部学生组成,成员同时满足以下三个条件:(1)高一学生人数多于高二学生人数;(2)高二学生人数多于高三学生人数;(3)高三学生人数的3倍多于高一高二学生人数之和.若高一学生人数为7,则该志愿者服务队总人数为( ) A .15人B .16人C .17人D .18人6.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( )A .[]2,4 B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞7.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >nD .不确定8.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .69.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A.(1,1 B.()1++∞ C .(1,3)D .(3,+∞)11.设变量,x y 、满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭二、填空题13.若实数x ,y 满足约束条件23023030x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则y x x y +的取值范围是______.14.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________.15.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 16.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________. 18.已知x ,y 是正数,121x y +=,则21x y xy ++的最小值为________. 19.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 三、解答题21.用铁皮做一个体积为350cm ,高为2cm 的长方体无盖铁盒,这个铁盒底面的长与宽各为多少cm 时,用料最省?22.已知函数2()(3)22f x x a x a b =+-+++,,a b ∈R .(1)若关于x 的不等式()0f x >的解集为{|4x x <-或2}x >,求实数a ,b 的值; (2)若关于x 的不等式()12f x b <+的解集中恰有3个整数,求实数a 的取值范围. 23.如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米? 24.设1x >,且4149(1)x x +--的最小值为m .(1)求m ;(2)若关于x 的不等式20ax ax m -+的解集为R ,求a 的取值范围.25.已知a >0,b >0,a +b =3.(1)求11+2+a b的最小值; (2)证明:92+a b b aab26.已知函数2()3f x x ax a =-++. (1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用“1”的代换凑配出定值后用基本不等式可得最小值. 【详解】0,0,4a b a b >>+=()(4914914912513134444b a a b a b a b a b ⎛⎫⎛⎫∴+=++=++≥⨯+= ⎪ ⎪⎝⎭⎝⎭当且仅当49b aa b =,即812,55a b ==时取等号. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.D解析:D 【分析】作出可行域,作出目标函数对应的直线,平移该直线得最优解,从而得,a b 的关系式561a b +=,然后用“1”的代换,配凑出积为定值,用基本不等式得最小值.【详解】作出约束条件表示的可行域,如图,ABC 内部(含边界),作直线直线0ax by += ,z ax by =+中,由于0,0a b >>,ab是直线的纵截距,直线向上平移时,纵截距增大, 所以当直线z axby =+经过点()5,6时,z 取得最大值, 则561a b +=, 所以()56565661306160121b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当111a b ==时,等号成立,故56a b+的最小值为121. 故选:D .【点睛】关键点点睛:本题考查简单的线性规划,考查用基本不等式求最值.解题思路是利用简单的线性规划求得变量,a b 满足的关系式,然后用“1”的代换凑配出定值,再用基本不等式求得最小值.求最值时注意基本不等式的条件:一正二定三相等,否则易出错.3.A解析:A 【分析】画出约束条件所表示的平面区域,结合目标函数确定出最优解,代入即可求解. 【详解】画出约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩所标示平面区域,把目标函数6z x y =+,化为直线166z y x =-+,当直线166zy x =-+平移到点A 时, 此时直线在y 轴上的截距最大,目标函数取得最大值,又由32100220x y x y --=⎧⎨-+=⎩,解得()6,4A ,所以目标函数的最大值为666430z x y =+=+⨯=. 故选:A.【点睛】根据线性规划求解目标函数的最值问题的常见形式:(1)截距型:形如z ax by =+ .求这类目标函数的最值常将函数z ax by =+ 转化为直线的斜截式:a z y x b b =-+ ,通过求直线的截距zb的最值间接求出z 的最值; (2)距离型:形如()()22z x a y b =-+-,转化为可行域内的点到定点的距离的平方,结合点到直线的距离公式求解; (3)斜率型:形如y bz x a-=-,转化为可行域内点与定点的连线的斜率,结合直线的斜率公式,进行求解.4.C解析:C 【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴2121bacaa⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴2b ac aa=-⎧⎪=-⎨⎪<⎩,2222(2)y ax bx c ax ax a a x x=++=--=--,图象开口向下,两个零点为2,1-.故选:C.【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.5.D解析:D【分析】设高二学生人数为x,高三学生人数为y,根据题意列不等式组,画出不等式组表示的平面区域,根据不等式的解为整数,可得结果.【详解】设高二学生人数为x,高三学生人数为y,则737y xy x<<⎧⎨≥+⎩,画出不等式组表示的平面区域,如图阴影部分,根据不等式的解为整数,则阴影部分只有()6,5A满足,6,5x y∴==,该志愿者服务队总人数为76518++=人.故选:D.【点睛】本题主要考查二元一次不等式组的解的问题,于基础题.6.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.7.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥-- ()12242a a +-⋅=-,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综 上可得m >n ,故选C .8.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1b a++1a b +=a b a b ab +++ =2()a b + ≥ 44ab= .当且仅当1a b == 时,等号成立.故选B . 【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【解析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A .考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.11.D解析:D 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C ,平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.12.D解析:D【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围.【详解】作出可行域如下:由221z x y =--得12z y x +=-, 平移直线12z y x +=-, 由平移可知当直线12z y x +=-,经过点C 时, 直线12z y x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12z y x +=-,经过点A 时, 直线12z y y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3 代入221z x y =--得125221333z =⨯-⨯-=-, 故5[3z ∈-,5) 故选:D .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.二、填空题13.【分析】作出可行域利用表示可行域内点与原点连线的斜率求得它的取值范围再根据函数的单调性可得的范围【详解】作出可行域如图内部(含边界)表示出可行域内点与原点连线斜率由已知得所以记由勾形函数性质知在上递 解析:52,2⎡⎤⎢⎥⎣⎦【分析】 作出可行域,利用y x 表示可行域内点与原点连线的斜率求得它的取值范围,再根据函数的单调性可得y x x y+的范围.【详解】作出可行域,如图ABC 内部(含边界),y x 表示出可行域内点与原点连线斜率,由已知得(1,2),(2,1)A B ,2OA k =,12OB k =, 所以1,22y t x ⎡⎤=∈⎢⎥⎣⎦, 1y x t x y t +=+,记1()f t t t =+,由勾形函数性质知()f t 在1,12⎡⎤⎢⎥⎣⎦上递减,在[1,2]上递增, 1522f ⎛⎫= ⎪⎝⎭,(1)2f =,5(2)2f =,∴5()2,2f t ⎡⎤∈⎢⎥⎣⎦. 故答案为:52,2⎡⎤⎢⎥⎣⎦.14.【分析】变换得到利用均值不等式计算得到答案【详解】当且时即时等号成立故答案为:【点睛】本题考查了利用均值不等式求最值意在考查学生的计算能力和转化能力解析:716【分析】变换得到22816132s t s s s t s s t+=++,利用均值不等式计算得到答案. 【详解】24s t +=,2221172832116321616162s s s s t s t s s t s s t t +=+=++≥-+=+, 当232t s s t =且0s <时,即23s =-,163t =时等号成立.故答案为:716. 【点睛】 本题考查了利用均值不等式求最值,意在考查学生的计算能力和转化能力. 15.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出 解析:8【解析】由题意可得:()211182121116110211161102219,a b a b a b a b b a a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛⎫+≥+⨯ ⎪ ⎪+⎝⎭= 则2a b +的最小值为918-=.当且仅当3,52a b ==时等号成立. 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.16.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >. 考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.17.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三 解析:843+ 【分析】 根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可. 【详解】 如图所示,则ABC的面积为111sin1202sin 602sin 60222ac a c =⋅+⋅︒︒︒, 即22ac a c =+,∴1112a c +=. ∴3(3)a c a c +=+1132242(423)843c a a c a c ⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭. 当且仅当33843c a a c a c ⎧=⎪⎨⎪+=+⎩即2232233a c ⎧=+⎪⎨=+⎪⎩时取等号. 所以,a +3c 的最小值为8+43.故答案为:8+43.【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.18.【分析】首先将题中已知条件转化可得利用基本不等式可求得之后应用不等式的性质求得结果【详解】由可得即所以由得当且仅当时取等号所以有所以所以的最小值为当且仅当时取等号故答案为:【点睛】该题考查的是有关求解析:89【分析】首先将题中已知条件转化,可得2x y xy +=,利用基本不等式可求得8xy ≥,之后应用不等式的性质求得结果.【详解】 由121x y +=可得21x y xy+=,即2x y xy +=, 所以211111x y xy xy xy xy+==+++,由121x y =+≥ 得8xy ≥,当且仅当24x y ==时取等号, 所以有1108xy <≤,19118xy <+≤,18191xy≥+, 所以21811191x y xy xy xy xy+==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号, 故答案为:89. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题.19.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最 解析:4【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B +的最小值得解. 【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--.所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”.所以12A B+的最小值为4. 故答案为:4【点睛】 本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.20.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x +-的最值,进而即可得到结论.【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x x x x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4. 故答案为:4.【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.三、解答题21.铁盒底面的长与宽均为5cm 时,用料最省.【分析】法一:因为体积为350cm 高为2cm ,所以底面积是定值25,设长为xcm ,则宽为25x ,列出表面积结合基本不等式即可;法二:列出表面积后,利用求导函数的方法求最值.【详解】解法1:设铁盒底面的长为xcm ,宽为25x ,则.. 表面积251002544425S x x x x=++⨯=++..2565≥=.. 当且仅当25x x=,即5x =时,表面积有最小值65. 所以这个铁盒底面的长与宽均为5cm 时,用料最省. 答:这个铁盒底面的长与宽均为5cm 时,用料最省.解法2:设铁盒底面的长为xcm ,宽为25x,表面积为2ycm ,则. ()2510025444250y x x x x x=++⨯=++> 22210041004x y x x -'=-=.. 令2241000x y x -'==得,5x =. 当()0,5x ∈时,0y '<,函数224100x y x-'=为减函数; 当()5,+∈∞x 时,0y '>,函数224100x y x-'=为增函数; 所以当5x =时,y 有最小值65.答:这个铁盒底面的长与宽均为5cm 时,用料最省.22.(1)1,12a b ==-;(2)[)(]3,410,11.【分析】(1)由一元二次不等式的解集与一元二次方程的根的关系,应用韦达定理可求得,a b ; (2)易得方程()12f x b =+的解为2x =和5x a =-,由一元二次不等式的解与一元二次方程的根的关系可得5a -的范围,从而得结论.【详解】(1)因为函数2()(3)22,,f x x a x a b a b =+-+++∈R , ()0f x >的解集为{|4x x <-或2}x >,所以4-,2是方程2(3)220x x a a b +-+++=的两根. 由42(3)4222a a b -+=--⎧⎨-⨯=++⎩,解得112a b =⎧⎨=-⎩. (2)由()12f x b <+,得2(3)2100x a x a +-+-<.令2()(3)210h x x a x a =+-+-,则()()()[25h x x x a =---],所以()20h =.故()0h x <的解集中的3个整数只能是3,4,5或1-,0,1.若解集中的3个整数是3,4,5,则556a <-≤,得1011a <≤;若解集中的3个整数是1-,0,1,则251a -≤-<-,得34a ≤<.综上,实数a 的取值范围为[)(]3,410,11. 【点睛】本题考查解一元二次不等式,掌握一元二次不等式与一元二次方程、二次函数的关系是解题关键.23.(1)1000(20)(8),(0)S x x x =++>;(2)休闲区1111D C B A 的长和宽应分别为50米,20米.【分析】(1)先表示休闲区的宽,再表示矩形ABCD 长与宽,最后根据矩形面积公式得函数解析式,注意求函数定义域;(2)根据基本不等式求S 最小值,再根据等号取法确定休闲区1111D C B A 的长和宽.【详解】(1)因为休闲区的长为x 米,休闲区1111D C B A 的面积为1000平方米,所以休闲区的宽为1000x 米;从而矩形ABCD 长与宽分别为20x +米1000,8x+米, 因此矩形ABCD 所占面积1000(20)(8),(0)S x x x =++>,(2)100020000(20)(8)1160811601960S x x x x =++=++≥+= 当且仅当200008,50x x x ==时取等号,此时100020x= 因此要使公园所占面积最小,休闲区1111D C B A 的长和宽应分别为50米,20米.【点睛】本题考查函数应用、求函数解析式、利用基本不等式求最值,考查基本分析求解能力,属基础题.24.(1)47=m ;(2)160,7⎡⎤⎢⎥⎣⎦; 【分析】(1)直接利用基本不等式即可求得4149(1)x x +--的最小值; (2)不等式20ax ax m -+的解集为R ,分0a =与0a ≠进行分类讨论,再结合二次函数的图象与性质列不等式求解即可.【详解】解:(1)因为1x >,所以10x ->, 所以444411249(1)49(1)497x x x x +-=-+=--, 当且仅当4149(1)x x -=-,即217x -=,也即97x =时等号成立, 故47=m . (2)由(1)知4,7m =, 若不等式2407ax ax -+ 的解集为R ,则 当0a = 时,407恒成立,满足题意; 当0a ≠时,201607a a a >⎧⎪⎨∆=-⎪⎩, 解得1607a<, 综上,1607a , 所以a 的取值范围为160,7⎡⎤⎢⎥⎣⎦. 【点睛】 本题考查基本不等式的应用,二次函数的图象及其性质,主要考查学生逻辑推理能力和计算能力,属于中档题.25.(1)45;(2)证明见解析 【分析】(1)由所给等式得()215a b ++=,再利用基本不等式即可求得最小值;(2)利用()2222a b a b ++≥即可逐步证明.【详解】 (1)3a b +=,()215a b ++∴=,且200a b +>>,, ∴()1111112++2225252b a a b a b a b a b +⎛⎫⎛⎫=++=++ ⎪ ⎪+++⎝⎭⎝⎭14255⎛≥+= ⎝,当且仅当2=2b a a b ++即1522a b ==,时等号成立, ∴11+2+a b 的最小值为45. (2)因为a >0,b >0,所以要证92+a b b a ab ,需证2292a b +≥, 因为()222239222a b a b ++≥==, 所以92+a b b aab ,当且仅当32a b ==时等号成立. 【点睛】 本题考查条件等式求最值、基本不等式的应用,属于中档题. 26.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-.【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集. (2)利用判别式列不等式,解不等式求得a 的取值范围.【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->, ∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立, 24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档