2013年中考数学解密预测考试题3

合集下载

2013年历年河南初三数学中考考前重点中学联手预测卷及答案

2013年历年河南初三数学中考考前重点中学联手预测卷及答案

C ´D C BA CB 'DA ´A2013年河南中考考前重点中学联手预测卷数 学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟. 请用钢笔或圆珠笔直接答在试卷上. 2.答题前将密封线内的项目填写清楚.题 号 一 二 三总 分 16 17 18 19 20 21 22 23 得 分一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1.()22-的平方根是【 】(A )2± (B )2± (C )2 (D ) 1.414±2.为支援鹤壁洪水灾区,鹤壁电视台举办了《情系大树,爱无边》赈灾募捐舞会,晚会现场募得善款达2175000000元.2175000000用科学计数法表示正确的是【 】(A )6217510⨯ (B )821.7510⨯ (C )92.17510⨯ (D )102.17510⨯ 3.如图,将边长为2 cm 的正方形ABCD 沿其对角 线AC 剪开,再把△ABC 沿着AD 方向平移,得 到△C B A '''ˊ,若两个三角形重叠部分的面积是1cm 2,则它移动的距离A A 'ˊ等于 【 】A.0.5cmB.1cmC.1.5cmD.2cm 4. 下列说法正确的有 【 】(1)如图(a ),可以利用刻度尺和三角板测量圆形工件的直径; (2)如图(b ),可以利用直角曲尺检查工件是否为半圆形;(3)如图(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心; (4)如图(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.A .1个B .2个C .3个D .4个5.如图,已知直线b x y +=3与2-=ax y 的交点的横坐标为2-,根据图象有下列3个结论:①0>a ;②0>b ;③2->x 是不等式23->+ax b x 的解集.其中正确的个数是 【 】A .0B .1C .2D .3(a ) (b )(c )(d )AABC DP6.如图,已知A (4,0),点1A 、2A 、…、1n A -将线段OA n 等分,点1B 、2B 、…、1n B -、B 在直线0.5y x =上,且11A B ∥22A B ∥…∥11n n A B --∥AB ∥y 轴.记△11OA B 、△122A A B 、…、△211n n n A A B ---、△1n A AB -的面积分别为1S 、2S 、…1n S -、n S .当n 越来越大时,猜想1S +2S +…+n S 最近的常数是【 】(A )1 (B )2 (C )4 (D )8二、填空题(每小题3分,共27分)7.如图,已知等边ABC △,D 是边BC 的中点,过D 作DE ∥AB 于E ,连结BE 交于1D ;过1D 作D 1E 1∥AB 于1E ,连结1BE 交AD 于2D ;过2D 作D 2E 2∥AB 于2E ,…,如此继续,若记BDE S △为S 1,记11B D E S △为S 2,记22B D E S △为S 3…,若ABC S △面积为Scm 2,则Sn=_____ cm 2(用含n 与S 的代数式表示)8.如图,在平面直角坐标系中,一颗棋子从点P (0,2-)处开始依次关于点A (1-,1-),B (1,2),C (2,1)作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于点C 的对称点处,…,如此下去.则经过第2011次跳动之后,棋子落点的坐标为 ▲ .9.9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为200的微生物会出现在第 天.10.如图,直线m 上摆着三个正三角形:△ABC 、△HFG 、△DCE 。

12年中考数学解密预测考试题(共6份)扫描版含答案

12年中考数学解密预测考试题(共6份)扫描版含答案

2013年广陵区九年级中考一模考试数学试题 2012.04.25(满分:150分 考试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.-3的相反数是A .13B .-13C .3D .-32.下列运算正确的是A .236a a a ⋅= B .236()a a -= C .22139aa--=-D .22223a a a --=- 3.6名同学体能测试成绩如下:80,90,75,75,80,80.下列表述错误..的是 A .众数是80 B .中位数是75 C .平均数是80 D .极差是15 4.已知反比例函数2y x=-,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-25.右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是A .②⑤B .②④C .③⑤D .①⑤ 6.如图,□ABCD 的周长是28 cm ,△ABC 的周长是22 cm ,则AC 的长为 A .6 cm B .12 cm C .4 cm D .8 cm(第8题)图1图2(第6题)(第7题)7.如图,圆O 的半径为6,点A 、B 、C 在圆O 上,且∠ACB =45°,则弦AB 的长是 A. B .6 C. D .58.如图1所示,一只封闭的圆柱形水桶内盛了半桶..水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S 1、S 2,则S 1与S 2的大小关系是 A .S 1=S 2 B .S 1> S 2 C .S 1<S 2 D .S 1与S 2大小关系不确定二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题..卷相应...位置..上) 9.江苏省的面积约为102600 km 2,这个数据用科学记数法可表示为 ▲ km2. 10.函数12y x =+的自变量x 的取值范围是 ▲ . 11的结果是 ▲ . 12.因式分解228x -= ▲ .13.在一个袋子中装有除颜色外其它均相同的2个黑球、3个红球和5个白球,从中任意摸出一个球,则摸到红球的概率是 ▲ .14.若直线2y x b =+与x 轴交于点(-3,0),则关于x 的方程20x b +=的解是 ▲ . 15.如图,Rt △OAB 的直角边OA 在y 轴上,点B 在第一象限内,OA =2,AB =1,若将△OAB绕点O 按逆时针方向旋转90°,则点B 的对应点的坐标为 ▲ . 16.圆锥的底面直径为6cm ,母线长为5cm ,则圆锥的侧面积是 ▲ cm 2.17.如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF =5cm ,则梯形ABCD 的周长为 ▲ cm .18.如图,以点P (2,0)3M (a ,b ) 是⊙P 上的一点,则ba的最大值是 ▲ .三.解答题(本大题共有10小题,共96分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:0)5(2330cos 2---+; (2)化简:aa a a a -+-÷--2244)111(.(第18题)(第17题)(第15题)解不等式组⎪⎩⎪⎨⎧-≥+>+)2(.312)1(,24)1(3x x x x ,并写出不等式组的整数解.21.(本题满分8分)某旅游商店有单价分别为10元、30元和50元的三种绢扇出售,该商店统计了2013年3月份这三种绢扇的销售情况,并绘制统计图如下:请解决下列问题:(1)计算3月份销售了多少把单价为50元的绢扇,并在图②中补全条形统计图; (2)该商店所销售的这些绢扇的平均价格是多少呢?小亮计算这个平均价格为:1(103050)303⨯++= (元), 你认为小亮的计算方法正确吗?如不正确,请你计算出这个平均价格.22.(本题满分8分)写出下列命题的已知、求证,并完成证明过程.命题:如果平行四边形的一条对角线平分它的一个内角,那么这个平行四边形是菱形. 已知:如图, ▲ . 求证: ▲ . 证明:23.(本题满分10分)在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同. (1)搅匀后从中任意摸出2个球,请通过列表或树状图求摸出2个球都是白球的概率; (2)搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或树状图求2次摸出的球都是白球的概率;(3)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为 ▲ .图①图②ABCD某农科院实验田里种有甲、乙两种植物,甲种植物每天施A 种肥料,该种肥料的价格是3元/kg ,乙种植物每天施B 种肥料,该种肥料的价格是1.2元/kg .已知两种植物每天的施肥量y (kg )与时间x (天)之间都是一次函数关系.(1)根据表中提供的信息,分别求出甲、乙两种植物每天的施肥量y (kg )与施肥时间x (天)之间的函数关系式;(2)通过计算说明第几天使用的A 种肥料与B 种肥料的费用相等?25.(本题满分10分)某型号飞机的机翼形状如图所示,AB ∥CD ,∠DAE =37º,∠CBE =45º,CD =1.3m ,AB 、CD 之间的距离为5.1m .求AD 、AB 的长. (参考数据:5353cos 37sin ≈︒=︒,5453sin 37cos ≈︒=︒,4337tan ≈︒)26.(本小题满分10分)在直角三角形ABC 中,∠C =90°,点O 为AB 上的一点,以点O 为圆心,OA 为半径的圆弧与BC 相切于点D ,交AC 于点E ,连接AD . (1)求证:AD 平分∠BAC ;(B )CD 图1图2B 1 已知矩形纸片ABCD 中,AB =2,BC =3.操作:将矩形纸片沿EF 折叠,使点B 落在边CD 上. 探究:(1)如图1,若点B 与点D 重合,你认为△EDA 1和△FDC 全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B 与CD 的中点重合,请你判断△FCB 1、△B 1DG 和△EA 1G 之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比; (3)如图2,请你探索,当点B 落在CD 边上何处,即B 1C 的长度为多少时,△FCB 1与△B 1DG 全等.如图,已知直线34y x=,点A的坐标是(4,0),点D为x轴上位于点A右边的某一点,点B为直线34y x=上的一点,以点A、B、D为顶点作正方形.(1)若图①仅看作符合条件的一种情况,求出所有..符合条件的点D的坐标;(2)在图①中,若点P以每秒1个单位长度的速度沿直线34y x=从点O移动到点B,与此同时点Q以相同的速度从点A出发沿着折线A-B-C移动,当点P到达点B时两点停止运动.试探究:在移动过程中,△P AQ的面积最大值是多少?。

2013中考数学模拟测试卷

2013中考数学模拟测试卷

2013中考数学模拟测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在题.前括号内.....【】1. -2的绝对值是A.2 B.-2 C.12- D.2±【】2. 下列计算正确的是A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7【】3. 某同学在“百度”搜索引擎中输入“魅力南通”,能搜索到与之相关的结果个数约为3930000,这个数用科学记数法表示为A.0.393×107 B.393×104C.39.3×105 D.3.93×106【】4. 若一个多边形的内角和是900°,则这个多边形的边数是A.5 B.6 C.7 D.8【】5. 如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为A.12B.5C.10D.25【】6. 如图,点A、C、B、D分别是⊙O上四点,OA⊥BC,∠AOB=50°则∠ADC的度数为A.20° B.25° C.40° D.50°【】7. 如图所示的工件的主视图是【】8. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A.24.5,24.5 B.24.5,25 C.25,24.5 D.25,25尺码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 1A.B.C.D.(第5题)【 】9. 下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形【 】10. 如图,已知在Rt△ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为A .21()32n ⋅B .221()2n ⋅C .121()32n -⋅ D . 1221()2n -⋅二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11. 计算:327-= .12. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=53°,则∠2= °. 13. 已知分式21x x -+的值为0,那么x 的值为 . 14. 一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是 . 15. 如图,函数2y x =和5y ax =+的图象相交于A (m ,3),则不等式25x ax <+的解集 为 .16. 设m ,n 是方程220120x x --=的两个实数根,则2m n +的值为 . 17. 如图,已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,AE 平分∠BAC 交 BD 于点E , 则BE 的长为 . 18. 如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B , 以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .A BCD EFGH I K J PQ (第10题)(第6题)OD C B12(第12题)三、解答题:本大题共10小题,共计96分.解答时应写出文字说明、证明过程或演算步骤.19.(本题满分10分) (1)计算:0(3)-+12cos30°-11()5- (2)解方程组:38 53 4 x y x y +=⎧⎨-=⎩①②20.(本题满分8分)化简分式222421444a aa a a -÷--++,并选取一个你认为合适的整数a 代入求值.y AOx(第15题)xBAC(第18题)O y(第17题)OE小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分8分)如图,AB 与⊙O 相切于点C ,OA =OB .(1)如图①,若⊙O 的直径为8cm ,AB =10cm ,求OA 的长(结果保留根号); (2)如图②,OA 、OB 与⊙O 分别交于点D 、E ,连接CD 、CE ,若四边形ODCE 为菱形,求ODOA的值.OA B C 图 ①ADCBOE图 ②本市若干天空气质量情况扇形统计图优良 64%轻微污染轻度污染 中度污染 重度污染轻微 污染 轻度 污染 天数(天)20 15105832311中度 污染 重度污染空气质如图,在边长为1的正方形组成的网格中,△ABC的顶点和O点均在格点上.(1)以点O为位似中心,在网格中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.24.(本题满分8分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.DF甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线2上的概率.y x26.(本题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式▲;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.如图,二次函数212y x mx n =-++的图象与y 轴交于点N ,其顶点M 在直线32y x =-上运动,O 为坐标原点. (1)当m =-2时,求点N 的坐标;(2)当△MON 为直角三角形时,求m 、n 的值;(3)已知△ABC 的三个顶点的坐标分别为A (-4,2),B (-4,-3),C (-2,2),当抛物线212y x mx n =-++在对称轴左侧的部分与△ABC 的三边有公共点时,求m的取值范围.(第2问图)。

2013年中考数学真题试题(解析版)

2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年中考数学模拟试卷(含答案)

2013年中考数学模拟试卷(含答案)

数学试题 第1页(共4页)2013年初中毕业生学业水平调研测试数 学本试卷共4页,22小题,满分120分,考试时间100分钟. 注意事项:⒈ 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.⒉ 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.⒊ 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋ 考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.31的相反数是A .31 B .31-C .3D .3-2.下列算式正确的是A .632a a a =+B .532a a a =+C .632a a a =⋅D .532a a a =⋅ 3.如图1是一个底面水平放置的圆柱,它的左视图是A .B .C .D .4.菱形ABCD 的对角线长为分别32=AC ,2=BD ,则菱形的内角=∠BAD A .o30 B .o60 C .o120 D .o1505.袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是 A .61 B .32 C .31 D .21二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.据统计,某市2011年有初中毕业生约53600人.试用科学计数法表示=53600 .数学试题 第2页(共4页)7.在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是 . 8.若点)213, 12(-+m m P 在第四象限,则常数m 的取值范围是 .9.如图2,⊙O 的半径5=R ,13=PO ,过P 作⊙O 的切线,切点为A ,则=PA . 10.观察下列连等式:⑴21)1(1)1)(1(x x x x x x -=-+-=+-⑵222)1(1])1)[(1()1)(1(x x x x x x x x -+-=++-=++-⑶43332321)1(1])1)[(1()1)(1(x x x x x x x x x x x x -=-+-=+++-=+++- 依此下去,第四个连等式为: . 三、解答题㈠(本大题5小题,每小题6分,共30分) 11.计算:o145cos 2)21( |22|)13( +---+--.12.先化简,再求值:xx x xx 1121222+++÷+,其中3=x .13.如图3,E 、F 分别是平行四边形ABCD 的边AD 、BC 的中点.⑴求证:DF BE =;⑵直接写出直线BE 与DF 的位置关系(不需要证明.....).14.如图4,在边长为 1 个单位长度的正方形方格纸中建立直角坐标系,坐标轴都在格线上.已知ABC ∆各顶点的坐标为)0 , 1(-A 、)3 , 4(-B 、)1 , 5(-C . ⑴画出ABC ∆关于y 轴对称的///C B A ∆;⑵写出点/B 的坐标,并直接写出//A ABB 是怎样的特殊四边形(不需要证明.....).AB CDEF15.如图5,反比例函数xky=的部分图象与直线xy-=1交点A的横坐标为2-.⑴试确定k的值;⑵当31<≤x时,求反比例函数y的取值范围.四、解答题㈡(本大题4小题,每小题7分,共28分)16.去冬今春,我国西南地区遭遇历史上罕见的旱灾,武警某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?17.开展阳光体育运动后,体育老师为了解九年级360名男生的身体素质状况,在九年级随机抽取50位男生进行100米跑测试,以测试数据为样本,绘制出如下的频数分布表和频数分布直方图(均未完成):请根据图表数据解答下列问题:⑴求频数分布表中a的值,并把频数分布直方图补充完整;⑵这个样本数据的中位数落在第组(直接填写结果,不必写出求解过程);⑶若九年级男生100米跑的时间小于3.14秒为优秀,根据以上图表,估计九年级全级大约有多少名男生达到优秀?18.如图6,已知ABD∆和ACE∆都是等边三角形,CD、BE相交于点F.⑴求证:ABE∆≌ADC∆;⑵ABE∆可由ADC∆经过怎样的旋转变换得到?数学试题第3页(共4页)数学试题 第4页(共4页)19.为美化环境,建设绿色校园,学校计划铺设一块面积为230m 的等腰三角形绿地,已知等腰三角形一边长为m 10,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.五、解答题㈢(本大题3小题,每小题9分,共27分)20.如图7,B 是线段AD 上一点,ABC ∆和BDE ∆都是等边三角形,⊙O 是ABC ∆的外接圆.CE 与⊙O 相交于G ,CE 的延长线与AD 的延长线相交于F . ⑴求证:BCF ∆∽DEF ∆; ⑵求证:BE 是⊙O 的切线; ⑶若21=BCDE ,求CGEG .21.某商场销售一批进价为16元的日用品,为了获得更多利润,商场需要确定适当的销售价格.调查发现:若按每件20元销售,每月能卖出360件;若按每件25元销售,每月能卖出210件.假定每月销售量y (件)是销售价格x (元/件)的一次函数. ⑴试求y 与x 之间的函数关系式;⑵销售价格定为多少时,商场每月获得的利润最大?每月的最大利润是多少?22.如图8,在平面直角坐标系xOy 中,二次函数542++-=x x y 的图象交x 轴于点A 、B ,交y 轴于点C ,顶点为P ,点M 是x 轴上的动点. ⑴求MB MA +的最小值; ⑵求MC MP -的最大值;⑶当M 在x 轴的正半轴(不包含坐标原点)上运动时, 以CP 、CM 为邻边作平行四边形PCMD .PCMD 能否 为矩形?若能,求M 点的坐标;若不能,简要说明理由.(参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44, 2(2ab ac ab --)数学试题 第5页(共4页)评分参考一、选择题 BDABC二、填空题 6.41036.5⨯ 7.18 8.3121<<-m 9.1210.5444324321)1(1])1)[(1()1)(1(x x x x x x x x x x x x x x -=-+-=++++-=++++-三、解答题㈠ 11.原式222)2( )22(1⨯+---+=……4分(每项1分) 5=……6分12.原式xx x x 1)1()1(22++⨯+=……2分, xx xxx 321)1(2+=++=……4分,3=x 时,原式332+=……5分, 32+=……6分.13.⑴(方法一)ABCD 是平行四边形,所以BC AD //,且BC AD =……2分,因为E 、F 分别的边AD 、BC 的中点.所以BF ED =……3分,所以DEBF 是平行四边形……4分,所以DF BE =……5分.(方法二)ABCD 是平行四边形,所以CD AB =,BC AD =且C A ∠=∠……2分,因为E 、F 分别的边AD 、BC 的中点.所以CF AE =……3分,所以CDF ABE ∆≅∆……4分,所以DF BE =……5分.⑵DF BE //……6分.14.⑴正确画图……3分,正确写出顶点/A 、/B 、/C ……4分⑵)3 , 4(/B ……5分;//A ABB 是等腰梯形……6分.15.⑴2-=x 时,31=-=x y ……1分,所以632-=⨯-=k ……2分.⑵1=x 时,反比例函数的值616-=-==x k y ……3分;3=x 时,236-=-==x k y……4分.所以,31<≤x 时,反比例函数的取值范围为26-<≤-y ……6分.数学试题 第6页(共4页)ABCADB CD四、解答题㈡16.设原计划每天打x 口井……1分,由题意得:533030=+-x x ……3分去分母,整理得01832=-+x x ……4分, 解得31=x ,62-=x …… 5分,经检验,31=x ,62-=x 都是原方程的根,但62-=x 不合题意,舍去……6分 答(略)……7分.17.⑴503122043=+++++a ……1分,所以8=a ……2分,画图……3分⑵4……5分⑶估计九年级达到优秀的男生大约有36050843⨯++……6分,108=(名)……7分.18.⑴因为A B D ∆和ACE ∆都是等边三角形,所以AE AC =,AB AD =……2分,60=∠=∠CAE BAD ……3分,BAC BAE DAC ∠+=∠=∠060……4分,所以ABE ∆≌ADC ∆……5分.⑵ABE ∆可由ADC ∆逆时针旋转060得到……7分.19.如图,等腰三角形ABC ∆,AC AB =,面积为230m若底边长m BC 10=(如左图),作BC AD ⊥,垂足为D ,由3021=⨯⨯=BC AD S 得6=AD ……1分,因为ABC ∆是等腰三角形,所以521=⨯=BC BD ……2分,所以61==AC AB ……3分若腰长m AC AB 10==(如右图),作AC BD ⊥,垂足为D ,由3021=⨯⨯=BD AC S 得6=BD ……4分,所以822=-=BDABAD ……5分,所以2=CD ,10222=+=BDCDBC ……6分所以,这块等腰三角形绿地另外两边的长为m 61、m 61或m 10、m 102……7分.数学试题 第7页(共4页)五、解答题㈢20.⑴ABC ∆和BDE ∆都是等边三角形,所以060=∠=∠BDE ABC ,所以DE BC //……1分,所以DEF BCF ∠=∠,又因为F F ∠=∠,所以BCF ∆∽DEF ∆……2分 ⑵连接OB ,依题意得,OB 是ABC ∠的平分线,03021=∠=∠ABC ABO ……3分,90)(180=∠+∠-=∠DBE ABO EBO ……4分,所以BE OB ⊥,BE 是⊙O 的切线……5分⑶由⑴DE BC //得21==BCDE BFDF ,所以DE DB DF ==,所以030=∠=∠=∠BCE DEF F ……6分,连接OC 、OG ,与⑵同理得030=∠OCB ,所以060=∠OCG ,从而060=∠COG ,3021=∠=∠COG CBG ……7分,在EBC ∆中,030=∠BCE ,060=∠CBE ,090=∠CEB ,所以BE CE 3=,同理在EBG ∆中,000303060=-=∠EBG ,090=∠GEB ,所以BE EG 33=……8分,所以EG CE 3=,从而21=CGEG ……9分.21.⑴依题意,设b kx y +=……1分,则⎩⎨⎧=+=+2102536020b k b k ……2分,解得⎩⎨⎧=-=96030b k (3)分,所以96030+-=x y ,3216≤≤x (不写x 的取值范围不扣分)……4分.⑵商场每月获利)16)(96030(-+-=x x w ……6分,153601440302-+-=x x ……7分,1920)24(302+--=x ……8分,所以,当24=x 时w 有最大值,最大值是1920元。

2013年历年湖北省初三数学中考模拟试题及答案

2013年历年湖北省初三数学中考模拟试题及答案

数学试卷一、选择题(每小题3分,共30分) 1、 -2的倒数的是( )A. 2B.21 C. -21D. -0.2 2、在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为A .9.63×10-5B .96.3×10-6C .0.963×10-5D .963×10-43、某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分) 89 92 95 96 97 评委(位)12211A .92分B .93分C .94分D .95分 4、下列平面图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C.5、如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2).若反比例函数ky x=(0x >)的图像经过点A ,则k 的值为(A) -6. (B) -3. (C) 3. (D) 6.6、右图是一个台阶形的零件,两个台阶的高度和宽度都相等,则它的三视图是A. B. C. D.7、如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C 则在旋转过程中这个三角板扫过的图形的面积是( )A .πB .3C .2343+π D .431211+π 8、已知关于x,y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中﹣3≤a ≤1.给出下列结论:①⎩⎨⎧-==15y x ,是方程组的解; ②当a=﹣2时,x,y 的值是互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a 的解; ④若x ≤1,则1≤y ≤4. 其中正确的是( )A. ①②B. ②③C. ②③④D. ①③④9、如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数1(0)k y x x=>和2(0)k y x x=>的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( ) A .∠POQ 不可能等于90°B .12k PM QM k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是()2121k k + 10、如图,在Rt △ABC 中,∠ACB=90º,∠A=60º,AC=2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上的一点,且∠CDE=30º.设AD=x ,BE=y,则下列图象中,能表示y 与x 的函数关系的图象大致是二、 填空题(3×6=18)11、分解因式:=-339ab b a ______ ________。

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.

2013年中考数学预测试卷(一)及答案201378

2013年中考数学预测试卷(一)及答案201378

2013年中考数学预测试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1.9的平方根是()A.3 B.-3 C.±3 D.62.某种微粒子,测得它的质量为0.000 067 46克,这个质量用科学记数法表示(保留三个有效数字)应为()A.6.75×10-5克B.6.74×10-5克C.6.74×10-6克D.6.75×10-6克3.下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个B.2个C.3个D.4个4.某市5月上旬前五天的最高气温如下(单位:°C):28,29,31,29,33,对这组数据,下列说法错误的是()A.平均数是30 B.众数是29 C.中位数是31 D.极差是5 5.如图,二次函数2y ax bx c=++的图象经过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于0(2,-1)(-1,1)yxO水平面主视方向第5题图第6题图6.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是()A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆7.如图,已知直线y 1=x +m 与y 2=kx -1相交于点P (-1,1),则关于x 的不等式 x +m >kx -1的解集在数轴上表示正确的是( )-100-10-10-1A . B . C . D .8.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,若点P 是⊙O 上的一个动点,则∠OAP 的最大值是( )A .30°B .45°C .60°D .90°y 2y 1PO y xOBPAFE D CBA第7题图 第8题图 第10题图 二、填空题(每小题3分,共21分) 9.化简:128=2-_________. 10.如图,在△ABC 中,∠B =50°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =_________.11.圆锥的底面圆直径和母线长均为80cm ,则它的侧面展开图的圆心角是_________.12.某市初中毕业男生体育测试项目有四项,其中“立定跳远”、“1000米跑”、“掷实心球”为必测项目,另一项从“篮球运动”或“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”或“一分钟跳绳”中选择同一个测试项目的概率是__________.13.如图,在△OAB 中,C 是AB 的中点,反比例函数y =kx(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为______.AOxyCB14.将矩形纸片ABCD 按如图所示的方式折叠,点A 、点C 恰好落在对角线BD上,得到菱形BEDF .若BC =6,则AB 的长为_________.15.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =12,BD =16,E 为AD 中点,点P 在x 轴上移动.小明同学写出了两个使△POE 为等腰三角形的P 点坐标,即( 5 0 ) -,和( 5 0 ),.请你写出其余所有符合这个条件的P 点坐标__________________.ACBDEFDBCAAO xyBED C第14题图 第15题图 三、解答题(本大题共8小题,满分75分) 16.(8分)先化简2111122x x x x ⎛⎫-÷⎪-+-⎝⎭,然后从-2≤x ≤2的范围内选择一个合适的整数作为x 的值代入求值.17.(9分)为了更好地宣传吸烟的危害,某中学九年级一班数学兴趣小组设计了如下调查问卷,调查了部分吸烟人群,并将调查结果绘制成统计图.42%调查结果的扇形统计图调查结果的条形统计图人数选项307812612120100806040200AC B DEE DBCA根据以上信息,解答下列问题:(1)本次接受调查的总人数是 人,并把条形统计图补充完整. (2)在扇形统计图中,C 选项的人数百分比是 ,E 选项所在扇形的圆心角的度数是 .(3)若某地区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?吸烟有害——你打算怎样减少吸烟的危害?(单选) A .无所谓B .少吸烟,以减轻对身体的危害C .不在公众场所吸烟,减少他人被动吸烟的危害D .决定戒烟,远离烟草的危害E .希望相关部门进一步加大控烟力度18.(9分)已知:如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于E 点,交DF 于M 点,F 是BC 延长线上一点,且CE =CF . (1)求证:BM ⊥DF ;(2)若正方形ABCD 的边长为2,求ME ·MB 的值.M AC DEFB19.(9分)甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y (km )与时间x (h )之间的函数关系,折线BC -CD -DE 表示轿车离甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题: (1)线段CD 表示轿车在途中停留了_____h ; (2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.3008054.52.521Ox /hy /km AED B C20.(9分)如图所示,当小华站立在镜子EF 前的A 处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3 1.73 )45°30°A 1B 1FE DB CA21.(10分)某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A ,B 两种纪念品每件各需多少元.(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7 500元,但不超过7 650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.(10分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC上(不与点B 重合),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G .(1)当点P 与点C 重合时(如图1),求证:△BOG ≌△POE ;(2)通过观察、测量,猜想:BF PE= ,并结合图2证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BFPE的值.(用含α的式子表示) C (P )E AG OF DBAOBD F P GEC BD F G CEPOA图1 图2 图323.(11分)如图,在平面直角坐标系中,点A 的坐标为(1,3),△AOB 的面积为3.(1)求过点A ,O ,B 的抛物线解析式.(2)在(1)中抛物线的对称轴上是否存在点M ,使△AOM 的周长最小?若存在,求出点M 的坐标;若不存在,请说明理由.(3)在x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴的垂线,交直线AB 于点E ,线段OE 把△AOB 分成两个三角形,使其中一个三角形的面积与四边形BPOE 的面积之比为2:3?若存在,求出点P 的坐标;若不存在,请说明理由.yxO B A参考答案一、选择题1 2 3 4 5 6 7 8 CABCBDBA二、填空题9.2- 10.65° 11.180° 12.1413.4 14.2315.25(80)(0)8,或, 三、解答题 16.原式=4x,当2x =时,原式=2.(或当2x =-时,原式=2-.) 17.(1)300;(2)26%,36°;(3)5600人. 18.(1)证明略;(2)422-.19.(1)0.5;(2)110195y x =-;(3)2.9. 20.1.4 m .21.(1)A :100元,B :50元;(2)4;(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元.22.(1)证明略;(2)12,证明略;(3)1tan 2α. 23.(1)232333y x x =+;(2)存在,3(1)3M -,;(3)存在,13()24--,.。

2013 年中考数学模拟试卷参考答案

2013 年中考数学模拟试卷参考答案

1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)

2013年中考数学模拟试题和答案

2013年中考数学模拟试题和答案

数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 . 12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.CA20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH2013年中考数学模拟试题和答案- 11 - / 11 ∴FC =FB .............................4分【知识应用】过点C 作CM ⊥x轴于点M ,过点A 作AN ⊥x轴于点N ,过点B 作BP ⊥x轴于点P则点P 的坐标为(x2,0),点N 的坐标为(x1,0)由探究的结论可知,MN =MP∴点M 的坐标为(221x x +,0) ∴点C 的横坐标为221x x + 同理可求点C 的纵坐标为221y y + ∴点C 的坐标为(221x x +,221y y +).............................8分 【知识拓展】 当AB 是平行四边形一条边,且点C 在x轴的正半轴时,AD 与BC 互相平分,设点C 的坐标为(a,0),点D 的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C 的坐标为(10,0),点D 的坐标为(0,-6)同理,当AB 是平行四边形一条边,且点C 在x轴的负半轴时求得点C 的坐标为(-10,0),点D 的坐标为(0,6)当AB 是对角线时点C 的坐标为(-2,0),点D 的坐标为(0,4).............................14分。

2013中考数学预测试题(有答案)

2013中考数学预测试题(有答案)

2013中考数学预测试题(有答案)郑州市2013年九年级第一次质量预测数学注意:本试卷分试题卷和答题卡两部分.考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.一、选择题(每小题3分,共24分)1.下面的数中,与−3的和为0的是()A.3B.−3C.D.2.如图是由七个相同的小正方体摆成的几何体,则这个几何体的俯视图是()3.下列图形中,既是轴对称图形又是中心对称图形的是()A.三角形B.平行四边形C.梯形D.圆4.下面的计算正确的是()A.6a−5a=1B.−(a−b)=−a+bC.a+2a2=3a3D.2(a+b)=2a+b5.已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ECF=55°,则∠ABD的度数为()A.55°B.100°C.110°D.125°第5题图第6题图6.某校九年级参加了“维护小区周边环境”、“维护繁华街道卫生”、“义务指路”等志愿者活动,如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图,则关于这六个数据中,下列说法正确的是()A.极差是40B.众数是58C.中位数是51.5D.平均数是607.如图,△ABC内接于⊙O,连接OA,OB,∠OBA=40°,则∠C的度数是()A.60°B.50°C.45°D.40°第7题图第8题图8.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC 上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a−2,b)B.(a+2,b)C.(−a−2,−b)D.(a+2,−b)二、填空题(每小题3分,共21分)9.计算____________.10.2012年11月,国务院批复《中原经济区规划》,建设中原经济区上升为国家战略.经济区范围包括河南全部及周边四省(部分)共30个地市,总面积28.9万平方公里、总人口1.7亿人,均居全国第一位.1.7亿人用科学记数法可表示为____________人.11.已知关于x的一元二次方程的一根为,则的值是_________.12.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,则第二次抽取的数字大于第一次抽取的数字的概率是________.13.我们可以用钢珠来测量零件上小圆孔的宽口.假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为________mm.第13题图第14题图第15题图14.在Rt△ABC中,∠C=30°,DE垂直平分斜边BC,交AC于点D,E点是垂足,连接BD,若BC=8,则AD的长是_________.15.如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD交于点M,OM=,则点C的坐标为___________.三、解答题(本大题共8个小题,共75分)16.(本题8分)阅读某同学解分式方程的具体过程,回答后面问题.解方程.解:原方程可化为:检验:当时,各分母均不为0,∴是原方程的解.⑤请回答:(1)第①步变形的依据是____________________;(2)从第____步开始出现了错误,这一步错误的原因是__________________________;(3)原方程的解为____________________________.17.(本题9分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从图中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之多少?(3)请将两个统计图补充完整.18.(本题9分)如图,函数y=kx与y=的图象在第一象限内交于点A,在求点A坐标时,小明由于看错了k,解得A(1,3);小华由于看错了m,解得A(1,).(1)求这两个函数的关系式及点A的坐标;(2)根据(1)的结果及函数图象,若,请直接写出x的取值范围.19.(本题9分)如图,在菱形ABCD中,∠BAD=60°,把菱形ABCD绕点A按逆时针方向旋转α°,得到菱形.(1)当α的度数为______时,射线经过点C(此时射线AD也经过点);(2)在(1)的条件下,求证:四边形是等腰梯形.20.(本题9分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为12海里(即MC=12海里).在A点测得岛屿的西端点M在点A的东北方向;航行4海里后到达B点,测得岛屿的东端点N在点B的北偏东60°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.21.(本题10分)某商场经营某种品牌的童装,购进时的单价是40元.根据市场调查,在一段时间内,销售单价是60元时,销售量是100件,而销售单价每降低1元,就可多售出10件.(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;(2)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于56元,且商场要完成不少于110件的销售任务,则商场销售该品牌童装获得的最大利润是多少元?22.(本题10分)(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC 于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是______________________(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=_____CE(用含n的代数式表示).23.(本题11分)如图,抛物线与直线AB交于点,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;w(3)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.2013年九年级第一次质量预测数学参考答案一、选择题(每小题3分,共24分)题号12345678答案ACDBCBBC二、填空题(每小题3分,共21分)题号9101112131415答案418(6,4)三、解答题(共75分)16.(1)等式的基本性质......2分(2)③;移项未变号......6分(3) (8)分17.解:(1)由两个统计图可知该校报名总人数是(人).…………3分(2)选羽毛球的人数是(人).因为选排球的人数是100人,所以,因为选篮球的人数是40人,所以,即选排球、篮球的人数占报名的总人数分别是25%和10%.……7分(3)补图.………………9分18.解:(1)把x=1,y=3代入,m=1×3=3,∴.…………………………2分把x=1,y=代入,k=;∴.…………………4分由,解得:x=±3,∵点A在第一象限,∴x=3.当x=3时,,∴点A的坐标(3,1).……7分(2)-33.…………9分19.解:(1)30°;…………3分(2)由题意知:菱形的边AD=AB′,∴∠ADB′=∠AB′D,∵∠CAC′=30°,∴∠ADB′=∠AB′D=75°.由于菱形的对角线AC=AC′,∴DC′=B′C.在△ACC′中,可得∠ACC′=∠AC′C=75°.∴∠ADB′=∠AC′C=75°,∴B′D∥CC′.……7分由于直线DC′、CB′交于点A,所以DC′与CB′不平行.所以四边形B′CC′D 是梯形.…8分∵DC′=B′C,∴四边形B′CC′D是等腰梯形.……………………9分20.解:在Rt△ACM中,tan∠CAM=tan45°==1,∴AC=CM=12, (2)分∴BC=AC-AB=12-4=8,在Rt△BCN中,tan∠CBN=tan60°==.∴CN=BC=.……………………6分∴MN=-12.……………8分答:钓鱼岛东西两端点MN之间的距离为(-12)海里.…………9分21.解:(1)由题意,得:.答:与之间的函数关系式是.……………………2分(2)由题意,得:.答:与之间的函数关系式是.……………………5分(3)由题意,得:解得.…………7分对称轴为,又,在对称轴右侧,随增大而减小.∴当时,.答:这段时间商场最多获利2240元.…………………10分22.(1)BD=2CE;...............2分(2)结论BD=2CE仍然成立. (3)分证明:延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4.又∵∠CEB=∠GEB=90°,BE=BE.∴△CBE≌△GBE.∴CE=GE,∴CG=2CE.…………5分∵∠D+∠DCG=∠G+∠DCG=90°.∴∠D=∠G,∴sin∠D=sin∠G.∴.∵AB=AC,∴BD=CG=2CE.…………8分(说明:也可以证明△DAB∽△GAC).(3)2n.……10分23.解:(1)由题意得解得:∴……3分(2)设直线AB为:,则有解得∴则:D(m,),C(m,),CD=()-()=.∴=×CD=×()=.………………5分∵∴当时,S有最大值.当时,.∴点C().………………………………7分(3)满足条件的点Q有四个位置,其坐标分别为(-2,),(1,1),(3,2),(5,3).…………11分。

重庆2013中考模拟数学

重庆2013中考模拟数学

重庆市2013年初中毕业暨高中招生模拟考试数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(—a b 2,a b ac 442 ),对称轴公式为x =—ab2.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号内. 1.在—5,—2,0,3这四个数中,最大的数是( ) A .—5B .—2C .0D .32.计算(—x 3y )2的结果是( ) A .—x 6y 2B .x 5y 2C .x 6y 2D .—x 5y 23.如图,AB ∥CD ,AC =AB ,∠A =100°,则∠BCD 的度数等于( ) A .40° B .50°C .45°D .30°4.下列调查中,适宜采用全面调查(普查)方式的是( ) A .对“天宫一号”飞船的零部件进行检查 B .对我市中小学生视力情况进行调查 C .对一天内离开我市的人流量进行调查 D .对我市市民塑料制品使用情况进行调查5.若等腰三角形的两边长分别为2和4,则这个等腰三角形的周长为( ) A .10B .8C .10或8D .无法确定 6.若x =1是一元二次方程x 2—3x +m =3的一个根,则m 的值为( ) A .5 B .—1C .1D .—57.如图,△ABC 内接于⊙O ,若∠ACB =60°,则∠OAB 的度数等于( ) A .20°B .25° ABCD3题图C .30°D .35°8.观察139713……,268426……等数字,它们都是由如下方式得到的:将第1位数字乘以3,若积为一位数,则将其写在第2位上;若积为两位数,则将其个位数字写在第2位上,对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.若第1位数字是3,仍按上述操作得到一个多位数,则这个多位数第2012位数字是( ) A .3B .9C .7D .19.小明同学为响应我市“阳光体育运动”的号召,与同学一起登山.他们在早上8:00出发,在9:00到达半山腰,休息30分钟后加快速度继续登山,在10:00到达山顶.下面能反映他们距山顶的距离y (米)与时间x (分钟)的函数关系的大致图象是( )10.如图,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a ≠0) 的图象与x 轴相交于点A (—2,0)和点B ,与y 轴相交于点C (0,4),且S △ABC =12,则该抛物线的对称轴是直线( )A .x =21B .x =1C .x =23D .x =2二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上. 11.地球的表面积约为5.1亿平方千米,其中海洋约占70%,则海洋的面积用科学记数法可表示为 平方千米. 12.如图,直线AB 、CD 相交于点O ,AC ∥BD .若BO =2AO ,AC =5,则BD 的长度为 .13.分解因式:x 2+2xy +y 2—4= .14.如图,点A 、B 在⊙O 上,且AB =BO .∠ABO 的平分线与AO 相交于点C ,若AC =3,则⊙O 的周长为 .(结果保留π) 15.有六张正面分别标有数字—2,—1,0,1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,A .B .C .D .ACDB O12题图14题图 10题图将该卡片上的数字加1记为b ,则函数y =ax 2+bx +2的图象过点(2,3)的概率为 . 16.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,且纯净水、果汁、蔬菜汁的成本价格比为1:2:2.由于市场原因,果汁、蔬菜汁的成本价格上涨15%,而纯净水的成本价格下降20%,但该饮料的总成本仍与从前一样,那么该饮料中果汁和蔬菜汁的总质量与纯净水的质量之比为 . 三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.计算:9+(—1)2012—(31)-1+(π—4)0+tan45°.18.解不等式组:⎪⎩⎪⎨⎧->-<-183347215x x x19.如图,△ADE 的顶点D 在△ABC 的BC 边上,且∠ABD =∠ADB ,∠BAD =∠CAE ,AC =AE .求证:BC =DE .20.如图,AD 是△ABC 中BC 边上的高,且∠B =30°,∠C =45°,CD =2.求BC 的长.ABCDE19题图ABCD 20题图①②四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:(14++-x x x )1442++-÷x x x ,其中x =—1.22.如图,在平面直角坐标系xOy 中,一次函数y =kx +b(k ≠0)的图象与反比例函数y =xm(m ≠0)的图象 相交于第一、三象限内的A 、B 两点,与x 轴相交于 点C ,连结AO ,过点A 作AD ⊥x 轴于点D ,且OA=OC =5,cos ∠AOD =53.(1)求该反比例函数和一次函数的解析式; (2)若点E 在x 轴上(异于点O ),且S △BCO =S △BCE求点E 的坐标.22题图23.香港的“公屋制度”解决了30%以上,约200万人口的居住问题.内地对公租房建设也多有讨论,但 尚未有一个城市真正大规模尝试.重庆市建设公共租赁住房,意在重点解决“夹心层”的住房问题,力争城市保障性住房的“全覆盖”.某班对学生以“公租房知识知多少”为主题进行了调查,该班的数学兴趣小组将本组的调查情况绘制成如下两幅不完整的统计图:(其中“A ”表示“非常了解”,“B ”表示“了解”,“C ”表示“比较了解”,“D ”表示“不了解”)(1)根据上图,计算出该组的总人数,并将该条形统计图补充完整; (2)若该班共有50人,试估计该班对公租房非常了解的人数;(3)该数学兴趣小组决定从本组“非常了解”的同学中人选两名代表本班参加学校的公租房知识抢答竞赛.若该组“非常了解”的同学中有1名女生,请用画树状图的方法,求出所选两名同学恰好是一男一女的概率.人数“公租房知识知多少”调查结果扇形统计图“公租房知识知多少”调查结果条形统计图23题图24.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连结CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.(1)若OF=4,求FG的长;(2)求证:BF=OG+CF.D 24题图五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.“相约红色重庆,共享绿色园博”,位于重庆市北部新区的国际园林博览会是一个集自然景观和人文景观为一体的大型城市生态公园.自2011年11月19日开园以来,某商家在园博园内出售纪念品“山娃”玩偶.十周以来,该纪念品深受游人喜爱,其销售量不断增加,销售量y(件)与周数x(1≤x≤10,且x取整数)之间所满足的函数关系如下表所示:为回馈顾客,该商家将此纪念品的价格不断下调,其销售单价z(元)与周数x(1≤x≤10,且x取整数)之间成一次函数关系,且第一周的销售单价为68元,第二周的销售单价为66元.另外,已知该纪念品每件的成本为30元.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x 之间的函数关系式;根据题意,直接写出z与x之间满足的一次函数关系式;(2)求前十周哪一周的销售利润最大,并求出此最大利润;(3)从十一周开始,其他商家陆续入驻园博园,因此该商店的销售情况不如从前.该纪念品的销售量比十周下降a%(0<a<10),于是该商家将此纪念品的销售单价在十周的基础上提高1.4a%.另外,随着园博园管理措施的逐步完善,该商家需每周交纳200元的各种费用.这样,十一周的销售利润恰好与十周持平.请参考以下数据,估算出a的整数值.(参考数据:222=484,232=529,242=576,252=625)4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度26.如图,在Rt△ABC中,AB=AC=2匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连结AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN 的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.C26题图26题备用图。

广东省2013年中考预测数学考试及答案(三)

广东省2013年中考预测数学考试及答案(三)

32013年广东省初中毕业生学业考试数学预测卷(三)说明:1全卷共4页,考试用时100分钟,满分为120分.2•答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓 名、试室号、座位号,用 2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后, 用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4 •非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区 域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用 铅 笔和涂改液•不按以上要求作答的答案无效.5 •考生务必保持答题卡的整洁•考试结束时,将试卷和答题卡一并交回.一、选择题(本大题 10小题,每小题3分,共30分) 1 •如果a 与-2互为倒数,那么a 是( )11A • -2B•——C• -D• 2222.据统计,2012 “中国好声音”短信投票的总票数约 327 000 000张,将这个数写成科学记数法是( )机密★启用前A • 3.27 106B • 3.27 107 3.27 10893.27 1093.不等式组<&一4>0,的解集为(3 —x4 •若反比例函数B. x V 31=-'的图象经过点xX >2或 xm ),则m 的值是(A •-5 • 一个袋中装有 摸出1个球,摸出的是白球的概率是( A • 161个红球, 2个白球, 3个黄球, _ 1 2它们除颜色外完全相同•6•已知a 为等边三角形的一个内角,则2cos a 等于(2V x V 32小明从袋中任意7 •下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()•3A . 1个B . 2个C . 3个D . 4个&教练组对运动员正式比赛前的5次训练成绩进行分析,判断谁的成绩更加稳定,一般需要考察这5次成绩的()A •平均数或中位数B •众数或频率C .方差或极差D .频数或众数9•如图所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是()10•某学习小组在讨论“变化的鱼”时,知道右图中的大鱼与小鱼是位似图形,若小鱼上的点P (a , b )对应大鱼上的点Q,则点Q的坐标为()A.(-2 a , -2 b ) B . (- a , -2 b)C.(-2 b , -2 a) D . (-2 a , - b)二、填空题(本大题6小题,每小题4分,共24分)<5-1 111. 比较大小:_ —11(选填“〉”、“v”或“=”).2 212. ___________________________________________ 用字母表示图中阴影部分的面积为.13 .某商店销售一批服装,每件售价150元,打8折后,仍可获利20%设这种服装的成本价为X元,则X满足的方程是 __________________ .14. 用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形是__________ .(只填序号)15. 某班有49位学生,其中有21位女生.在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀•如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是16•计算| -3| •- (1 --tan45 的结果是_____________________ .三、解答题(一)(本大题3小题,每小题5分,共15分)217•先化简,再求值:x_22x• 1 . 3,其中X =2 .X—X X18•如图,请你画出方格纸中的图形关于点0的中心对称图形,并写出整个图形的对称轴的条数.19•近年来,某市开展改造农村泥砖房以文明为主要特色的新农村建设活动取得了明显成效.下面是领导和市民的一段对话,请你根据对话内容,替领导回答市民提出的问题(结果精确到0.1%).领导市民四、解答题(二)(本大题3小题,每小题8分,共24分)20•如图,点E, F, G, H分别为四边形ABCD的边AB, BC, CD, DA的中点,试判断四边形EFGH的形状,并证明你的结论.21 •小刘同学为了测量学校教学楼的高度,如图,她先在A处测得塔顶C的仰角为30°,再向楼的方向直行50米到达B处,又测得楼顶C的仰角为60,请你帮助小刘计算出学校教学楼的高度(小刘的身高忽略不计)•22•为了让学生了解安全知识,增强安全意识,某市某中学举行了一次“安全知识竞赛” •为了了解这次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)为样本,绘制成绩统计图,如图所示,请结合统计图回答下列问题:(1 )本次测试的样本容量是多少?(2)分数在80.5〜90.5这一组的频率是多少?(3)若这次测试成绩80分以上(含80分)为优秀,则优秀人数不少于多少人?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A, B两种产品50件,已知生产一件A产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元.(1 )请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润是多少?24.如图,AB是O O的直径,AE平分Z BAF,交O O于点E ,过点E作直线ED _ AF , 交AF的延长线于点D ,交AB的延长线于点C.(1)求证:CD是O O的切线;(2)若CB =2 , CE =4,求AE 的长.225•已知抛物线y二ax bx 2与x轴相交于点A(x“0), B(X2,O)(为:::x?),且x b x?是方程x2 -2x -3 =0的两个实数根,点C为抛物线与y轴的交点.(1 )求a, b的值;(2)分别求出直线AC和BC的解析式;(3)若动直线y二m (0 : m ::: 2)与线段AC, BC分别相交于D, E两点,则在x轴上是否存在点P,使得△ DEP为等腰直角三角形(只求一种DE为腰或为底时)?若存在,求出点P的坐标;若不存在,说明理由.19.解:设平均每年生态文明村增长率是 x ,根据题意,得 2315(1 • x )2 =13233 24.4% 解得:捲〜0.181, X 2〜-2.181 (不合题意,舍去) 答:平均每年生态文明村增长率约是18.1%.20. 解:四边形EFGH 是平行四边形 证明:如图,连结AC . E , F 分别是AB, BC 的中点,1 .EF 是厶 ABC 的中位线,.EF // AC ,且 EF = 1AC .21 同理:GH // AC ,且 GH =丄 AC ,二 EF X GH . 2.四边形EFGH 是平行四边形.OCOC 21. 解:在 Rt △ AOC 中,OA.在 Rt △ BOC 中,OB =ta n60°tan 60数学预测卷(三)参考答案21 211. > 12. a■原a 13.150 X 80沧 x = 20%x 14.①4解答题(一)(本大题3小题,每小题5分,共15分)15.316. 5717.2解:原式=-(X 一1). 3x (x-1) X当x = J2时,原式=^2— 2 = 1十J218.解:如图,共有4条对称轴.、选择题(本大题 10小题,每小题3分,30 分) 填空题(本大题 6小题,每小题4分,共24分)T AB=OA — OB , . -°C°C 50 , . OC5025 3tan 30。

2013年历年初三数学中考模拟试卷及答案

2013年历年初三数学中考模拟试卷及答案

2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。

2013年数学中考模拟试题(含答案)共两套

2013年数学中考模拟试题(含答案)共两套

2013年数学中考模拟试题一、选择题:(本大题共10题,每小题3分,共30分;每小题只有一个正确答案,请 把正确答案的字母代号填在下面的表内,否则不给分) 1. 下列各数(-2)0 , - (-2), (-2)2, (-2)3中, 负数的个数为 ( ) A.1 B. 2 C. 3 D. 42.下列图形既是轴对称图形, 又是中心对称图形的是:( )3. 资料显示, 2005年“十 一”黄金周全国实现旅游收入 约463亿元,用科学记数法表示463亿这个数是:( )A. 463×108B. 4.63×108C. 4.63×1010D. 0.463×10114.“圆柱与球的组合体”如左图所示,则它的三视图是( )A .B .C. D5. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是()A .284+x B .542010+x C .158410+x D .1542010+x 6. 二次函数y = ax 2+ bx +c 的图象如图所示, 则下列结论正确的是: ( )A. a >0,b <0,c >0B. a <0,b <0,c >0C. a <0,b >0,c <0D. a <0,b >0,c >07.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图是( ) A .61 B .31 C .21 D .326题图 7题图题图8中∠C=108°BE 平分∠ABC ,则∠AEB 等于 ( ) A . 180° B .36° C . 72° D . 108°9.如图,在△ABC 中,∠C =90°,AC >BC ,若以AC 为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC 为高的圆锥的侧面积为S 2 , 则( ) A .S 1 =S 2 B .S 1 >S 2 C .S 1 <S 2 D .S 1 ,S 2的大小大小不能确定10.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交(本大题共5题,每小题3分,共15分;请把答案填在下表内相应的题号下,否则不给分)11.为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计湖里有鱼 ________条.12. 如图,D 在AB 上,E 在使△ABE ≌△12题图13.如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则圆环的面积为 。

2013年苏科版中考数学预测卷及答案

2013年苏科版中考数学预测卷及答案

温馨提示:1. 本试卷分试题卷和答题卷两部分。

满分120分, 考试时间120分钟.2.答题时, 应该在答题卷密封区内写明校名, 姓名和学号。

3.考试时不能使用计算器,所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应.4.考试结束后, 上交答题卷.一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0 C.2210x x ++= D.220x x -++=A .430.610⨯辆????B .33.0610⨯辆????C .43.0610⨯辆????D .53.0610⨯辆??、给出下列命题:是菱形.??、下列各函数中,y 随x 增大而增大的是( )????????①1y x =-+. ②3y x =-(x????) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③ ??、在△ABC 中,90C ∠=,若4BC =,2sin 3A =,则AC 的长是( ) A.6 B.25C.35 D.2137、若点A (-2,y1)、B (-1,y2)、C (1,y3)在反比例函数xy 1-=的图像上,则( ) A. y1>y2 >y3 B.y3> y2 >y1 C.y2 >y1>y3 D. y1 >y3> y28、如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =,则E ,F 两点到直线MN 距离的和等于( )A.12cm B.6cmC.8cm D.3cm9、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( )A.抛物线的开口向上 B.抛物线的对称轴是直线1x =C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0)、反比例函数k y x =221y kx k x =-- ??????、方程2(34)34x x -=-的根是??????. ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14、在Rt △ABC 中,90C ∠=,D 为BC 上一点,30DAC ∠=,2BD =,23AB =,则AC 的长是 .三、(第15题每小题6分,第16题6分,共18分)15、解答下列各题:(1)计算:323+—02)(-+2cos30°—23—(2)解方程:2430x x +-=. 16、求不等式组的整数解:3(21)4213212x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩,①. ②≤四、(每小题8分,共16分)17、把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南中招考试说明解密预测试卷数学(六)注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.2.请用钢笔功圆珠笔直接答在试卷上.A.20°B.40°E (第2C.50°D.60°3.函数y=的自变量x的取值范围在数轴上可表示为()7,7是B′)222 22222开创了中原崛起河南振兴的新局面.目前,该区域国土(第7题)总面积97444平方千米,总人口5601. 6万人,其中5601. 6万人用科学记数法表示为.(结果保留三个有效数字)9.已知关于x 的不等式组⎩⎨⎧+<-≥-122,b a x b a x 的解集为53<≤x ,则-b a的值是 .10.写出一个y 随x 的增大而减小,且函数的图象与x 轴的交点在原点右侧的一次函数的解析式 ..13.有四种边长都相等的正三角形、正方形、正五边形、正六边形瓷砖,如果任意用其中两种瓷砖组合密铺地面,在不切割的情况下,能镶嵌成平面图案的概率是 . 14.如图,扇形AOB 的圆心角为45°,半径长为2,BC ⊥OA 于点C ,则图中阴影部分的面积为 .(结果保留π)15.若【x 】表示不超过x 的最大整数(如【343】=3,【-π】=-4等),根据定义计算下面算式: +【32-31⨯】+…+【20122011-20121⨯】= .32,17.(9分)已知:如图,四边形ABCD 是平行四边形,延长BC 到E ,使AE =AB ,连接AC 、DE .(第14(1)写出图中三对你认为全等的三角形(不再添加其他字母和辅助线);(2)选择你在(1)中写出的任意一对全等三角形进行证明. )的图象经过点A (3,2)和B(a ,b ),过点A 作y 轴的垂线,垂足为C . (1)求m 的值;19.(9分)有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小明随机地抛掷一次,把着地一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字-2,-1, 1的卡片,小辉将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y ;然后他们计算出yx z +=的值.(1)用树状图或列表法表示出z 的所有可能情况; (2)分别求出z =0和z <2的概率.OA (3,Cx20.(9分)“郑汴融城”是河南省委、省政府发展中原经济区的重大举措.如图所示,正在建设中的郑开城际铁路施工现场,勘测专家发现在A村周围650m的范围内有一自然景区需要保护,并在B处测得A村在北偏东60°的方向上.沿铁路线向东走了800m到C处后,接到紧急通知,需将甲种救灾物资2230吨,乙种救灾物资1450吨运往灾区.火车客运站现组织了一列挂有A、B两种不同规格的货车厢70节运送这批救灾物资.已知一节A型货车厢可装35吨甲种救灾物资和15吨乙种救灾物资,运费为0.6万元;一节B型货车厢可装25吨甲种救灾物资和35吨乙种救灾物资,运费为0. 9万元.设运送这批物资的总运费为ω万元,用A 型货车厢的节数为x 节. (1)用含x 的代数式表示ω; (2)有几种运输方案;(3)采用哪种方案总运费最少,总运费最少是多少万元?22.(10分)如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =10,P 是AB 边上的一个动点(异于A 、B 两点),过点P 作PQ ⊥AC 于Q ,以PQ 为边向下作等边三角形PQR .设AP =x ,△PQR 与△ABC 重叠部分的面积为y ,连接RB .(1)当x =2时,求y 的值;(2)当x 取何值时,四边形AQRB 是等腰梯形;当x 取何值时,四边形AQRB 是平行四边形.23.(11分)已知抛物线c+=2的顶点为(1,0),且经过axy+bx点(0,1).(1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移)0m个单位,设得到的抛物线的顶点(>m为A,与x轴的两个交点为B、C,若△ABC为等边三角形.①求m的值;②设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,满分18分)1.D【相关知识点】相反数的概念【解题思路】根据相反数的定义:a的相反数是-a即可得出正确4.B【相关知识点】平均数的概念;中位数的概念【解题思路】可先根据平均数的公式求出x=4,再将这组数按从小到大的顺序排列,最后求出中位数是6(这组数据的个数为奇数个,故最中间的数字就是中位数)5.B【相关知识点】直角三角形的旋转与性质;平面直角坐标系;特殊角的三角函数值【解题思路】本题属于一个综合题目,主要是根据直角三角形的旋转与性质等内容去求解.由已知易求得OB=3,由∠AOB=30°,得点B B AE ∴S 梯形ABCD =S △ABF =42521=∙∙BE AF .二、填空题(每小题3分,满分27分 ) 7.-2、-3(不唯一)【相关知识点】整数及负数的概念;集合的概念【解题思路】此题答案不惟一,因为整数含有正整数、零、负整数;负数含负整数和负分数,故两者的交集应该是负整数,所以A处只需填上一个负整数即可,如-2,-3等.8.5.60×710【相关知识点】科学计数法;近似数与有效数字的概念属7;为a【相关知识点】一次函数的图象与性质【解题思路】本题是一道开放题,答案不惟一,因y随x的增大而减小,故k<0,又由于函数的图象与x轴的交点在原点右侧,故b>0.因此,只要写出的函数解析式满足k<0,b>0即可,如y=-2x+3等.11.16π【相关知识点】垂径定理,勾股定理【解题思路】连接OB ,过点O 作OC ⊥AB 于C ,利用垂径定理可知OC=6,在Rt △OBC 中,利用勾股定理求得CB=8,由垂径定理可知,14.142π-【相关知识点】计算扇形的面积,计算直角三角形的面积,锐角三角函数【解题思路】本题是属于基础性的题目的一个组合,只要记住公式即可正确解出.从图中可以看出阴影部分的面积是扇形的面积减去直角三角形OBC 的面积,扇形的面积为43602ππ=r n ,直角三角形的面积为21,所以阴影部分的面积为214-π.15.2011因以由23x=23,可解得x=±8分【相关知识点】分式的化简;因式分解;一元二次方程的解法 【解题思路】本题属于分式的化简运算题目,要注意运算的顺序及符号,还要结合因式分解的知识进行解答,化简完成后再结合题意可得出一个一元二次方程,求出其解即可.17.(1)①△ABC ≌△CDA ;②△ACE ≌△DEC ;③△CAD ≌△EDA ; ④△ABC ≌△EAD . (3)分 (2)证明:△ABC ≌△CDA . ………………………………………………………4分∵四边形ABCD 是平行四边形, ∴AD =BC ,∠DAC =∠BCA .…………………………………………………………6分又∵AC =CA , ∴△ABC ≌△CDA(SAS ).…………………………………………………………9分【相关知识点】平行四边形的性质;全等三角形的判定 【解题思路】本题属于证明全等三角形的基础题目.(1)应注意做到不重不漏,(2)应结合图形善于运用分析法按照位置关系找出证明全等三角形的三个条件,并注意隐含条件(如本题中的AC=CA ). 18.解:(1)∵函数m y x=的图象过A(3,2),∴23m =,m =6.……………2分(2)由题意可知AC =3,AC 边上的高为2b -.∴S △ABC 133222b =⨯∙-=.∴2b -=1.则123,1b b ==.∴6,221==a a .则点B 的坐标为(2,3)或(6,1).…………………………………………………5分设过点A (3,2)和B (2,3)的直线解析式为b kx y +=,代入可求得5,1=-=b k ,即解析式为y 为y 或y 1)代入函数的解析式,即可求出m 的值.第(2)问应注意运用三角形的面积,求出点的坐标进而运用待定系数法即可求出一次函数的解析式.19.解:(1)由题意,可列表如下:-2-11zy1 -1 0 22 0 1 33 1 2 44 2 3 5…2景解:理由如下:过点A作AD⊥BC交BC的延长线于点D,设AD=x,………………………………3分3.在Rt△ACD中,∠CAD=30°,∴CD=x3在Rt △ABD 中,∠ABD =30°,∴BD =x3.…………………………………………5分∵BC =800, ∴x3-x 33=800.解得x 景3(2)根据题意,可得3525(70)2230,1535(70)1450.x x x x +⨯-≥+⨯-≥⎧⎨⎩解得48≤x≤50. …………………………………………………………………5分 ∵x 为正整数,∴x 取48,49,50.∴有三种运输方案.………………………………………………………………6分(3)x取48、49、50时,ω= 63-0. 3x,且k= -0. 3<0.∴ω随x的增大而减少,故当x=50时ω最少.∴当A型货车厢为50节,B型货车厢为20节时,所需总运万△PQR=4.…………………………………………3分(2)∵四边形AQRB是等腰梯形,∴BR=AQ,∠PBR=∠A=30°.∵∠APQ=∠RPQ=60°,∴∠BPR=60°.又∵PR=PQ,∴△BPR≌△APQ.∴BP=AP=12A B.∴AP=12A B=5.∴当x=5时,四边形AQRB是等腰梯形.…………………………………………6分要使四边形PQRB是平行四边形,则R应在BC上.边1)去找x的取值,用到了等腰梯形的性质,三角形全等的判定与性质,平行四边形的性质以及方程等知识.23.解:(1)由题意可得,0,1,21.a b cbac++=-==⎧⎪⎪⎨⎪⎪⎩解得1,2,1.abc==-=⎧⎪⎨⎪⎩∴抛物线对应的函数的解析式为2=-+.………………………………3分21y x x(2)①将221=-+向下平移m个单位得:y x x2=-+-m=221y x x--,可知A(1,-m),B0),C(1)x m0),BC6分得点P,点P分【解题思路】二次函数的图象与性质是中考的重点与难点,因而应高度重视,本题属于综合性较强的题目,应理清思路,对每一个知识点都应熟练掌握并能灵活运用,本题求出二次函数的解析式是解此题的关键,应熟练掌握三点式和顶点式求抛物线解析式的方法;二次函数的平移通常指的是图象的平移,应注意总结平移的规律.。

相关文档
最新文档