误差理论与数据处理第六版课后习题答案大全
《误差理论与数据处理(第6版)》费业泰_习题及答案解读
《误差理论与数据处理》(第六版)习题及参考答案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o击精度高? 解:射手的相对误差为:多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
误差理论与数据处理版课后习题答案完整版
《误差理论与数据处理》(第六版)完整版第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。
21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
《误差理论与数据处理(第6版)》费业泰_答案(整合最全)(1)
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =121802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=oμm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理(第6版)》费业泰 较全答案
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =121802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=oμm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
误差理论与数据处理-第六版-习题答案(大学老师给的)
查 t 分布表得 t 2.10 ,因 t 1.48 t 2.10 ,故无根据怀疑两组间有系统误差。
2‐18 解Biblioteka (一)马利科夫准则:n 12 , K
12 2
6,
6
i
i 1
12
j
j7
0.52
因差值 显著不为零,故测量列中含有线性系统误差。
(二)不同公式计算标准差比较法:
按贝塞尔公式1
1‐8 解:真值: L1 50mm,L2 80mm ,测得值: L1' 50.004mm,L'2 80.006mm
则相对误差分别为: 50.004 50 0.0008% 50.004
80.006 80 0.0007% 80.006
因为:0.0008%>0.0007%,故第二种方法精度高。
??????????????212223242526278570055105514761536353639149104591045912425142771427715487178061780619264221032210321457246332463325209vxyzvxyzvxyzvxyzvxyzvxyzvxyzvx???????????????????????????????????2292898628986299843441734417yzvxyz????????????????????????得57047619149124251548719264214572520929984l?????????????????????????????22222222210551055115363536311045910459114277142771178061780612210322103124633246331289862898613441734417a?????????????????????????????xxyz???????????xyz的最佳估计值为
误差理论与数据处理第6版费业泰课后答案全
《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。
《误差理论与数据处理(第6版)》费业泰 较全答案
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么简述误差理论的主要内容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
! 系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: @相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o误差为 1μm ,试问该被测件的真实长度为多少解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =,测件的真实长度L0=L -△L =50-=(mm ) 1-7.用二等标准活塞压力计测量某压力得 ,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理(第6版)》费业泰-较全答案
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =121802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=oμm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理第6版》费业泰较全答案
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差解:绝对误差等于: 相对误差等于: 1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =121802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=oμm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
误差理论与数据处理第六版答案
第1章绪论1-1 研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据。
(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济的条件下,得到理想的结果。
误差理论的主要内容:(1)讨论形成误差的原因;(2)各类误差的特征及处理方法;(3)对测量结果进行评定。
1-2 试述测量误差的定义及分类,不同种类误差的特点是什么?答1:测量误差的定义:误差=测得值-真值。
测量误差的分类:随机误差、系统误差和粗大误差。
各类误差的特点:(1)随机误差:服从统计规律,具有对称性、单峰性、有界性和抵偿性;(2)系统误差:不服从统计规律,表现为固定大小和符号,或者按一定规律变化;(3)粗大误差:误差值较大,明显地歪曲测量结果。
答2:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3 试述误差的绝对值与绝对误差有何异同,并举例说明。
答1:相同点:都是测量值与真值之差。
不同点:误差的绝对值都是正值,而绝对误差有正、有负,反映了测得值与真值的差异。
例:某长度的绝对误差为-0.05mm,而该误差的绝对值为|-0.05|mm=0.05mm。
答2:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定。
误差理论与数据处理第六版答案
第1章绪论1-1 研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据。
(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济的条件下,得到理想的结果。
误差理论的主要内容:(1)讨论形成误差的原因;(2)各类误差的特征及处理方法;(3)对测量结果进行评定。
1-2 试述测量误差的定义及分类,不同种类误差的特点是什么?答1:测量误差的定义:误差=测得值-真值。
测量误差的分类:随机误差、系统误差和粗大误差。
各类误差的特点:(1)随机误差:服从统计规律,具有对称性、单峰性、有界性和抵偿性;(2)系统误差:不服从统计规律,表现为固定大小和符号,或者按一定规律变化;(3)粗大误差:误差值较大,明显地歪曲测量结果。
答2:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3 试述误差的绝对值与绝对误差有何异同,并举例说明。
答1:相同点:都是测量值与真值之差。
不同点:误差的绝对值都是正值,而绝对误差有正、有负,反映了测得值与真值的差异。
例:某长度的绝对误差为-0.05mm,而该误差的绝对值为|-0.05|mm=0.05mm。
答2:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定。
误差理论与数据处理(第6版)》费业泰 较全答案
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么简述误差理论的主要内容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =121802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=oμm =,测件的真实长度L0=L -△L =50-=(mm ) 1-7.用二等标准活塞压力计测量某压力得 ,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理(第6版)》费业泰 较全答案.
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =121802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=oμm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据管理组织(第6版)》费业泰-课后答案解析全
《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少?【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。
误差理论与数据处理第六版答案
第1章绪论1-1 研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据。
(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济的条件下,得到理想的结果。
误差理论的主要内容:(1)讨论形成误差的原因;(2)各类误差的特征及处理方法;(3)对测量结果进行评定。
1-2 试述测量误差的定义及分类,不同种类误差的特点是什么?答1:测量误差的定义:误差=测得值-真值。
测量误差的分类:随机误差、系统误差和粗大误差。
各类误差的特点:(1)随机误差:服从统计规律,具有对称性、单峰性、有界性和抵偿性;(2)系统误差:不服从统计规律,表现为固定大小和符号,或者按一定规律变化;(3)粗大误差:误差值较大,明显地歪曲测量结果。
答2:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3 试述误差的绝对值与绝对误差有何异同,并举例说明。
答1:相同点:都是测量值与真值之差。
不同点:误差的绝对值都是正值,而绝对误差有正、有负,反映了测得值与真值的差异。
例:某长度的绝对误差为-0.05mm,而该误差的绝对值为|-0.05|mm=0.05mm。
答2:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 误差的基本性质和处理
2-6 测量某电路电流共5次,测得数据(单位为mA)为,,,, 。
试求算术平均值及其标准差、或然误差和平均误差。
解:
)(49.1685
5
1
mA I
I i i
==
∑=
08.01
5)
(5
1
=--=
∑=i I Ii σ
05.008.03
2
1
5)
(3
25
1
=⨯=
--≈
∑=i I Ii ρ 06.008.05
4
1
5)
(5
45
1
=⨯=
--≈
∑=i I Ii θ 2—7 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,,,,。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
解: 求算术平均值
求单次测量的标准差
求算术平均值的标准差
确定测量的极限误差
因n =5 较小,算术平均值的极限误差应按t 分布处理。
现自由度为:ν=n -1=4; α=1-=, 查 t 分布表有:ta =
极限误差为
写出最后测量结果
2-10 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm ,若要求测量的允许极限误差为±0.0015mm ,而置信概率P 为时,应测量多少次 解:根据极限误差的意义,有
0015.0≤±=±n
t
t x σ
σ
根据题目给定得已知条件,有
5.1001
.00015
.0=≤
n
t
查教材附录表3有
若n =5,v =4,α=,有t =,
24.1236
.278
.25
78.2==
=
n
t 若n =4,v =3,α=,有t =,
59.12
18
.34
18.3==
=
n
t 即要达题意要求,必须至少测量5次。
mm
t x x 44lim 1024.51014.160.4--⨯=⨯⨯±=±=σδα()mm
x x L 4lim 1024.50015.20-⨯±=+=δ。