初一上学期数学度末试卷重点练习(有解析)
人教版七年级上册数学《期末测试卷》含答案解析
七年级上学期数学期末测试卷一、选择题1.2019的相反数是().A. 2019B. -2019C.1 2019D.12019-2.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米,其中55000用科学记数法可表示为()A. 35.510⨯ B. 35510⨯ C. 45.510⨯ D. 4610⨯3.下列各组单项式中,不属于同类项的是()A. 3a2b与﹣ba2B. m3与43C. 312xy-与2xy3 D. 43与344.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数字知识是()A. 两点之间,直线最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短5.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个6.已知a=2b﹣1,下列式子:①a+2=2b+1;②12a+=b;③3a=6b﹣1;④a﹣2b﹣1=0,其中一定成立的有()A. ①②B. ①②③C. ①②④D. ①②③④7.如图,是一个正方体,它展开图是下列四个展开图中的()A. B.C. D.8.小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+12=12y ﹣.小明翻看了书后的答案,此方程的解是y=﹣53,则这个常数是( ) A. 1 B. 2 C. 3 D. 49.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A. 27B. 51C. 69D. 7210.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了( )A. 5折B. 5.5折C. 7折D. 7.5折 11.下列说法:①画一条长为6cm 的直线; ②若AC =BC ,则C 为线段AB 的中点;③线段AB 是点A 到点B 的距离;④OC ,OD 为∠AOB 的三等分线,则∠AOC =∠DOC .其中正确个数是( ) A. 0个 B. 1个C. 2个D. 3个12.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第10个图形中花盆的个数为( )A. 110B. 120C. 132D. 140二、填空题13.写出一个关于x 的一元一次方程,使它的解为x=5: . 14.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.15.点,,A B C 在同一条数轴上,且点A 表示的数为-1,点B 表示的数为5.若2BC AC =,则点C 表示的数为____________.16.一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.三、解答题17.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)﹣22+|5﹣8|+24÷(﹣3)×13. 18.解下列方程:(1) 23(25)7x x --=; (2)2523136x x -+=-. 19.先化简,再求值:()()22222322x xy y x yx y +--+-,其中1,2x y =-=.20.如图,大正方形的边长为a ,小正方形的边长为b.(1)用代数式表示阴影部分的面积;(2)当a=20,b=12时,求阴影部分的面积.21.某检修小组从A 地出发,在东西方向的线路上检修线路,如果规定向东方向行驶为正,向西方向行驶为负,一天行驶记录如下(单位:km ):﹣4,+7,﹣9,+8,+5,﹣3,+1,﹣5.(1)求收工时的位置;(2)若每km 耗油量为0.5升,则从出发到收工共耗油多少升?22.如图,点C 、D 是线段AB 上两点,点C 分线段AD 为1:3两部分,点D 是线段CB 的中点,8AD =.(1)求线段AC 的长;(2)求线段AB 的长.23.公园门票价格规定如下:某校七年级(1)(2)两个班共104人去游园,其中(1)班有40多人,且不足50人,经估算,如果两个班都以班为单位进行购票,则一共应付1240元,问:(1)两个班各有多少个学生?(2)如果两班联合起来,作为一个团体票能省多少钱?如果七(1)班单独组织去游园,作为组织者的你如何购票才最省钱?24.如图(1),O 为直线AB 上点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角尺(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图(1)中的三角尺绕点O 以每秒5︒的速度,沿顺时针方向旋转t 秒,当OM 恰好平分BOC ∠时,如图(2).①求t 值; ②试说明此时ON 平分AOC ∠;(2)将图(1)中的三角尺绕点O 顺时针旋转,设AON α∠=,COM β∠=, 当ON 在AOC ∠内部时,试求α与β的数量关系;(3)若将图(1)中的三角尺绕点O 以每秒5︒的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8︒的速度沿顺时针方向旋转,如图(3),那么经过多长时间,射线OC 第一次平分MON ∠?请说明理由.答案与解析一、选择题1.2019的相反数是( ).A. 2019B. -2019C. 12019D. 12019- 【答案】B【解析】【分析】根据相反数的定义,即可求解.【详解】2019的相反数是:-2019,故选B .【点睛】本题主要考查相反数的定义,掌握相反数的定义,是解题的关键.2.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米,其中55000用科学记数法可表示为( )A. 35.510⨯B. 35510⨯C. 45.510⨯D. 4610⨯ 【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 【详解】解:55000=5.5×104. 故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.3.下列各组单项式中,不属于同类项的是( )A. 3a 2b 与﹣ba 2B. m 3与43C. 312xy -与2xy 3D. 43与34【答案】B【解析】【分析】根据同类项定义对四个选项进行逐一分析即可.【详解】解:A 、3a 2b 与﹣b 2a 中所含字母相同,相同字母的指数相等,是同类项,不符合题意;B、m3与43中所含字母不同,不是同类项,符合题意;C、3m2n3与﹣n3m2中所含字母相同,相同字母的指数相等,是同类项,不符合题意;D、所有常数项都是同类项,不符合题意.故选:B.【点睛】本题主要考查同类项的概念,掌握同类项的概念是解题的关键.4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数字知识是()A. 两点之间,直线最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短【答案】D【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:剪之前的图形周长= ED+EF+FB+AD+AC+BC,因为两点之间线段最短.剪完之后的图形周长=ED+EF+FB+AD+AB,AC+BC>AB,∴剩下部分的周长比原正方形图片的周长要小,故选:D.【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.5.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【详解】根据负数的概念,当a≤0时,-a≥0,故①不正确;|-a|≥0,是非负数,故②不正确;根据乘积为1的两数互为倒数,可知倒数是本身的数为±1,故③正确;根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,负数的绝对值是其相反数,故④不正确;由平方的意义,1和0的平方均为她本身,故⑤不正确.故选A.【点睛】此题主要考查了有理数的相关概念,解题时要明确正负数,相反数,绝对值,倒数的意义及特点,然后从中判断即可.相反数:只有符号不同的两数互为相反数;绝对值:一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数;倒数:乘积为1的两数互为倒数.6.已知a=2b﹣1,下列式子:①a+2=2b+1;②12a+=b;③3a=6b﹣1;④a﹣2b﹣1=0,其中一定成立的有()A. ①②B. ①②③C. ①②④D. ①②③④【答案】A【解析】【分析】根据等式的基本性质对四个小题进行逐一分析即可.【详解】解:①∵a=2b﹣1,∴a+2=2b﹣1+2,即a+2=2b+1,故此小题正确;②∵a=2b﹣1,∴a+1=2b,∴12a+=b,故此小题正确;③∵a=2b﹣1,∴3a=6b﹣3,故此小题错误;④∵a=2b﹣1,∴a﹣2b+1=0,故此小题错误.所以①②成立.故选:A.【点睛】本题主要考查等式的基本性质,掌握等式的基本性质是解题的关键.7.如图,是一个正方体,它的展开图是下列四个展开图中的()A. B.C. D.【答案】A【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由原正方体的特征可知,含有4,6,8的数字的三个面一定相交于一点,而选项B、C、D中,经过折叠后与含有4,6,8的数字的三个面一定相交于一点不符.故选:A.【点睛】本题主要考查的是几何体的展开图,利用带有数的面的特点及位置解答是解题的关键8.小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+12=12y﹣.小明翻看了书后的答案,此方程的解是y=﹣53,则这个常数是()A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】设常数为a,代入得出2y+12=12y﹣a,把y=﹣53代入求出2y+12=﹣176,即可得出方程12×(﹣53)﹣a=﹣176,求出方程的解即可.【详解】解:设常数为a,则2y+12=12y﹣a,把y=﹣53代入得:2y+12=﹣176,12×(﹣53)﹣a=﹣176,解得:a=2,故选B.考点:一元一次方程的解.9.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A. 27B. 51C. 69D. 72【答案】D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了()A. 5折B. 5.5折C. 7折D. 7.5折【答案】D【解析】【分析】根据题意设第一件商品x元,买两件商品共打y折,利用价格列出方程即可求解.【详解】解:设第一件商品x 元,买两件商品共打了y 折,根据题意可得: x+0.5x=2x•10y ,解得:y=7.5 即相当于这两件商品共打了7.5折.故选D .【点睛】本题考查一元一次方程的应用,找到正确的等量关系是解题关键.11.下列说法:①画一条长为6cm 的直线;②若AC =BC ,则C 为线段AB 的中点;③线段AB 是点A 到点B 的距离;④OC ,OD 为∠AOB 的三等分线,则∠AOC =∠DOC .其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个【答案】A【解析】【分析】根据直线的定义与性质、线段的中点的定义、线段长度的定义和角三等分线的定义逐一判断即可得.【详解】解:①直线没有长度,所以画一条长为6cm 的直线错误;②若AC =BC 且C 在线段AB 上,则C 为线段AB 的中点,此结论错误;③线段AB 的长度是点A 到点B 的距离,此结论错误;④OC ,OD 为∠AOB 的三等分线,则∠AOC =2∠DOC 或∠AOC =∠DOC ,此结论错误;故选:A .【点睛】本题主要考查直线的性质,线段中点的定义,线段的长度,角三等分线等,掌握线段和角的基本知识和性质是解题的关键.12.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第10个图形中花盆的个数为( )A. 110B. 120C. 132D. 140 【答案】C【解析】【分析】设第n个图形一共有a n个花盆(n为正整数),观察图形,根据各图形中花盆数量的变化找出变化规律“a n=(n+2)2﹣(n+2)(n为正整数)(或者a n=(n+1)(n+2)亦可)”,依此规律即可得出结论.【详解】解:设第n个图形一共有a n个花盆(n为正整数),观察图形,可知:a1=6=32﹣3,a2=12=42﹣4,a3=20=52﹣5,…,∴a n=(n+2)2﹣(n+2)(n为正整数),∴a10=122﹣12=132.故选C.【点睛】考查了规律型:图形的变化类,根据各图形中花盆数量的变化找出变化规律“a n=(n+2)2﹣(n+2)(n为正整数)”是解题的关键.二、填空题13.写出一个关于x的一元一次方程,使它的解为x=5:.【答案】x+1=6.【解析】试题分析:由5+1=6,列出解为x=5的方程即可.解:根据题意得:x+1=6.故答案为x+1=6.考点:一元一次方程的解.∠的大小14.在灯塔O处观测到轮船A位于北偏西54︒的方向,同时轮船B在南偏东15︒的方向,那么AOB为______.【答案】141︒【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.15.点,,A B C 在同一条数轴上,且点A 表示的数为-1,点B 表示的数为5.若2BC AC =,则点C 表示的数为____________.【答案】-7或1.【解析】【分析】AB=6,分点C 在A 左边和点C 在线段AB 上两种情况来解答.【详解】AB=5-(-1)=6,C 在A 左边时,∵BC=2AC ,∴AB+AC=2AC ,∴AC=6,此时点C 表示的数为-1-6=-7;C 在线段AB 上时,∵BC=2AC ,∴AB-AC=2AC ,∴AC=2,此时点C 表示的数为-1+2=1,故答案为-7或1.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.【答案】﹣49. 【解析】【分析】利用新定义“相伴数对”列出方程,解方程即可求出x 的值.【详解】解:根据题意得:11235x x , 去分母得:15x+10=6x+6,移项合并得:9x =﹣4,解得:x =﹣49. 故答案为﹣49. 【点睛】本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.三、解答题17.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)﹣22+|5﹣8|+24÷(﹣3)×13. 【答案】(1)﹣29;(2)113-. 【解析】【分析】(1)按照有理数的加减混合运算计算即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)﹣22+|5﹣8|+24÷(﹣3)×13 =﹣4+3﹣8×13=﹣4+3﹣83 =﹣113. 【点睛】本题主要考查有理数的加减乘除混合运算,掌握有理数混合运算的顺序和法则是解题的关键. 18.解下列方程:(1) 23(25)7x x --=; (2) 2523136x x -+=-.【答案】(1)x=2;(2)x=136. 【解析】【分析】 (1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【详解】(1)2x-3(2x-5)=7,2x-6x+15=7,2x-6x=7-15,-4x=-8,x=2;(2)2x 52x 3136-+=-, 2(2x-5)=6-(2x+3),4x-10=6-2x-3,4x+2x=6-3+10,6x=13, x=136. 【点睛】此题考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.19.先化简,再求值:()()22222322x xy yx yx y +--+-,其中1,2x y =-=【答案】22x y -+; 3.【解析】【分析】先根据去括号、合并同类项化简,然后再把x 、y 的值代入求解.【详解】原式=222223224x xy y x xy y +---+=222222243x x xy xy y y -+-+-=22x y -+当1,2x y =-=时,原式=()2212143--+=-+=【点睛】本题考查了整式的化简求值.注意先化简,再进一步代入求得数值即可.20.如图,大正方形的边长为a ,小正方形的边长为b.(1)用代数式表示阴影部分的面积;(2)当a=20,b=12时,求阴影部分的面积.【答案】(1)S 阴影=12ab ;(2)S 阴影=120. 【解析】【分析】 (1)阴影部分分为两个三角形面积之和,表示出即可;(2)把a 与b 的值代入(1)中结果中计算即可.【详解】(1)根据题意得:S 阴12= b 212+b (a ﹣b )12=b 212+ab 12-b 212=ab ; (2)当a =20,b =12时,原式=120122⨯⨯=120. 【点睛】本题考查了代数式求值,以及列代数式,熟练掌握运算法则是解答本题的关键.21.某检修小组从A 地出发,在东西方向的线路上检修线路,如果规定向东方向行驶为正,向西方向行驶为负,一天行驶记录如下(单位:km ):﹣4,+7,﹣9,+8,+5,﹣3,+1,﹣5.(1)求收工时的位置;(2)若每km 耗油量为0.5升,则从出发到收工共耗油多少升?【答案】(1)收工时回到出发地A 地;(2)若从出发到收工共耗油21升.【解析】【分析】(1)利用正负数加法运算的法则,即可求出结论;(2)不管朝什么方向走,都要耗油,故耗油量只跟路程有关,即各数据绝对值之和.【详解】解:(1)﹣4+(+7)+(﹣9)+(+8)+(+5)+(﹣3)+(+1)+(﹣5)=﹣4+7﹣9+8+5﹣3+1﹣5=0km .答:收工时回到出发地A 地.(2)(|﹣4|+|+7|+|﹣9|+|+8|+|+5|+|﹣3|+|+1|+|﹣5|)×05=(4+7+9+8+5+3+1+5)×0.5=42×0.5=21(升).答:从出发到收工共耗油21升.【点睛】本题主要考查有理数加法运算的实际应用,掌握有理数的加法法则是解题的关键.AD .22.如图,点C、D是线段AB上两点,点C分线段AD为1:3两部分,点D是线段CB的中点,8(1)求线段AC的长;(2)求线段AB的长.【答案】(1)AC=2;(2)AB=14.【解析】【分析】(1)设AC长为x,可得CD=3x,BD=3x,则有x+3x=8;(2)AB=AC+CD+BD=x+3x+3x=7x=14.【详解】解:(1)设AC长为x,因为点C分线段AD为1:3,∴CD=3x,∵点D是线段CB的中点,∴BD=3x,∵AD=8,AC+CD=AD,即x+3x=8得x=2,∴AC=2;(2)AB=AC+CD+BD=x+3x+3x=7x=14,∴AB长为14.【点睛】本题考查线段两点间的距离;根据点的位置准确确定两点的距离是解题的关键.23.公园门票价格规定如下:某校七年级(1)(2)两个班共104人去游园,其中(1)班有40多人,且不足50人,经估算,如果两个班都以班为单位进行购票,则一共应付1240元,问:(1)两个班各有多少个学生?(2)如果两班联合起来,作为一个团体票能省多少钱?如果七(1)班单独组织去游园,作为组织者的你如何购票才最省钱?【答案】(1)七年级(1)班48人,(2)班56人;(2)如果两班联合起来,作为一个团体票能省304元;七(1)班单独组织去游园,直接购买51张票更省钱【解析】【分析】(1)根据题意设七年级(1)班x 人,可以列出相应的方程,从而可以解答本题;(2)根据题意和表格中的数据进行分析进而可以解答本题.【详解】解:(1)设七年级(1)班x 人,13x+11(104﹣x )=1240,解得,x=48,∴104﹣x=56,答:七年级(1)班48人,(2)班56人;(2)1240﹣104×9=1240﹣936=304(元),即如果两班联合起来,作为一个团体票能省304元;七(1)班单独组织去游园,如果按实际人数购票,需花费:48×13=624(元),若购买51张票,需花费:51×11=561(元),∵561<624,∴七(1)班单独组织去游园,直接购买51张票更省钱.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.24.如图(1),O 为直线AB 上点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角尺(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图(1)中的三角尺绕点O 以每秒5︒的速度,沿顺时针方向旋转t 秒,当OM 恰好平分BOC ∠时,如图(2).①求t 值; ②试说明此时ON 平分AOC ∠;(2)将图(1)中的三角尺绕点O 顺时针旋转,设AON α∠=,COM β∠=, 当ON 在AOC ∠内部时,试求α与β的数量关系;(3)若将图(1)中的三角尺绕点O 以每秒5︒的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8︒的速度沿顺时针方向旋转,如图(3),那么经过多长时间,射线OC 第一次平分MON ∠?请说明理由. 【答案】(1)①t=3s ;②证明见解析;(2)β=α+60°;(3)经过5秒OC 平分∠MON .【解析】【分析】(1)①根据角平分线的定义计算即可;②求出∠AON ,∠CON 的值即可判断;(2)根据题意列方程即可得到结论;(3)设∠AON=5t ,∠AOC=30°+8t ,根据∠AOC-∠AON=∠CON ,构建方程即可解决问题. 【详解】解:(1)①如图2中,∵∠AOC=30°,∴∠BOC=180°-∠AOC=150°,∵OM 平分∠BOC ,∴∠COM=∠BOM=12∠BOC=75°, ∠AON=180°-90°-75°=15°,∴t=155︒=3s , ②当t=3时,∠AON=3t=15°,∠CON=30°-3t=15°,∴∠AON=∠CON ,∴ON 平分∠AOC ;(2)∵∠CON=30°-α=90°-β, ∴β=α+60°;(3)∵OC 平分∠MON ,∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O 以每秒5°速度,射线OC 也绕O 点以每秒8°的速度沿顺时针方向旋转一周,∴设∠AON=5t,∠AOC=30°+8t,∵∠AOC-∠AON=∠CON,∴30°+8t-5t=45°,解得t=5,∴经过5秒OC平分∠MON.【点睛】本题考查角的计算、角平分线的定义、旋转变换等知识,解题的关键是理解题意.。
【压轴题】七年级数学上期末试卷带答案
【压轴题】七年级数学上期末试卷带答案一、选择题1.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯2.已知长方形的周长是45cm ,一边长是acm ,则这个长方形的面积是( ) A .(45)2a a -cm 2B .a (452a -)cm 2 C .452a cm 2D .(452a -)cm 2 3.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A .91.210⨯个 B .91210⨯个C .101.210⨯个D .111.210⨯个4.8×(1+40%)x ﹣x =15 故选:B . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握利润、进价、售价之间的关系.5.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( ) A .350元B .400元C .450元D .500元6.下列结论正确的是( )A .c>a>bB .1b >1c C .|a|<|b|D .abc>07.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是( )A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米8.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( ) A .2 B .3 C .4 D .59.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯10.已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .7cmB .3cmC .7cm 或3cmD .5cm11.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b12.a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a +b >0B .ab <0C .|a |>|b |D .a +b >a ﹣b二、填空题13.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.14.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖______块; (2)第n 个图案有白色地面砖______块.15.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.16.某商品的价格标签已丢失,售货员只知道“它的进价为90元,打七折出售后,仍可获利5%,你认为售货员应标在标签上的价格为________元.17.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2020的值为___.18.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).19.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).20.已知一个角的补角是它余角的3倍,则这个角的度数为_____.三、解答题21.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣12,b=13.22.已知在数轴上A,B两点对应数分别为-3,20.(1)若P点为线段AB的中点,求P点对应的数.(2)若点A以每秒3个单位,点B以每秒2个单位的速度同时出发向右运动多长时间后A,B两点相距2个单位长度?(3)若点A,B同时分别以2个单位长度秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.①经过t秒后A与M之间的距离AM(用含t的式子表示)②几秒后点M到点A、点B的距离相等?求此时M对应的数.23.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AB上,且EA=2cm,求BE的长.24.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.25.先化简再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3),其中x=﹣3,y=﹣2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B解析:B【解析】【分析】【详解】解:设长边形的另一边长度为x cm,根据周长是45cm,可得:2(a+x)=45,解得:x=452﹣a ,所以长方形的面积为:ax=a (452a -)cm 2. 故选B .考点:列代数式.3.C解析:C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.无 5.B解析:B 【解析】 【分析】设该服装标价为x 元,根据售价﹣进价=利润列出方程,解出即可. 【详解】设该服装标价为x 元,由题意,得0.6x ﹣200=200×20%, 解得:x=400. 故选B . 【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.6.B解析:B 【解析】 【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答【详解】解:由图可知1,01,1a b c <-<<> ∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确; 1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B . 【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.7.B解析:B 【解析】 【分析】设小长方形的宽为a 厘米,则其长为(m-2a )厘米,根据长方形的周长公式列式计算即可. 【详解】设小长方形的宽为a 厘米,则其长为(m-2a )厘米, 所以图2中两块阴影部分周长和为:2222224m a n a n m a an (厘米)故选:B 【点睛】本题考查的是列代数式及整式的化简,能根据图形列出代数式是关键.8.C解析:C 【解析】 【分析】根据合并同类项法则得出n=3,2m=2,求出即可. 【详解】∵单项式2x 3y 2m 与-3x n y 2的差仍是单项式, ∴n=3,2m=2, 解得:m=1, ∴m+n=1+3=4, 故选C . 【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.解析:B 【解析】解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.D解析:D 【解析】 【分析】先根据题意画出图形,再利用线段的中点定义求解即可. 【详解】解:根据题意画图如下:∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =+=+==;∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =-=-==. 故选:D . 【点睛】本题考查的知识点是与线段中点有关的计算,根据题意画出正确的图形是解此题的关键.11.A解析:A 【解析】 【分析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和. 【详解】∵线段AB 长度为a , ∴AB=AC+CD+DB=a , 又∵CD 长度为b , ∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b ,【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.12.B解析:B【解析】【分析】根据数轴上的两数位置得到a>0、b<0,b距离远点距离比a远,所以|b|>|a|,再挨个选项判断即可求出答案.【详解】A. a+b<0 故此项错误;B. ab<0 故此项正确;C. |a|<|b| 故此项错误;D. a+b<0, a﹣b>0,所以a+b<a﹣b, 故此项错误.故选B.【点睛】本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.二、填空题13.【解析】【分析】设小长方形卡片的长为2m则宽为m观察图2可得出关于m的一元一次方程解之即可求出m的值设盒子底部长方形的另一边长为x根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6即可得出关解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.18块(4n+2)块【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:61014所以可以发现每一个图形都比它前一个图形多4个白色地砖所以可以得到第n个图案有白色地面砖(4n+2)解析:18块(4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,所以第4个图应该有4×4+2=18块,第n个图应该有(4n+2)块.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.15.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案【详解】解:如图所示:x的值为2故答案为:2【点睛】此题主要考查了有理数的加法正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.16.元【解析】【分析】依据题意建立方程求解即可【详解】解:设售货员应标在标签上的价格为x元依据题意70x=90×(1+5)可求得:x=135故价格应为135元考点:一元一次方程的应用解析:元 【解析】 【分析】依据题意建立方程求解即可. 【详解】解:设售货员应标在标签上的价格为x 元, 依据题意70%x=90×(1+5%) 可求得:x=135, 故价格应为135元. 考点:一元一次方程的应用.17.﹣1010【解析】【分析】先求出前6个值从而得出据此可得答案【详解】当a1=0时a2=﹣|a1+1|=﹣1a3=﹣|a2+2|=﹣1a4=﹣|a3+3|=﹣2a5=﹣|a4+4|=﹣2a6=﹣|a5解析:﹣1010. 【解析】 【分析】先求出前6个值,从而得出221||2n n a a n n -=-+=-,据此可得答案. 【详解】 当a 1=0时, a 2=﹣|a 1+1|=﹣1, a 3=﹣|a 2+2|=﹣1, a 4=﹣|a 3+3|=﹣2, a 5=﹣|a 4+4|=﹣2, a 6=﹣|a 5+5|=﹣3, …∴a 2n =﹣|a 2n ﹣1+2n |=﹣n , 则a 2020的值为﹣1010, 故答案为:﹣1010. 【点睛】本题主要考查数字的变化规律,解题的关键是计算出前几个数值,从而得出221||2n n a a n n -=-+=-的规律.18.3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形第一个图案有4个基本图形则第n 个图案的基础图形有4+3(n-1)=3n+1个考点:规律型解析:3n+1 【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n 个图案的基础图形有4+3(n-1)=3n+1个考点:规律型19.【解析】【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n 解析:()31-n【解析】【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键.20.45°【解析】【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.三、解答题21.原式=12a 2b ﹣6ab 2=43. 【解析】试题分析:去括号,合并同类项,把字母的值代入运算即可.试题解析:原式2222155535,a b ab ab a b =----+22126.a b ab =- 当1123a b =-=,时,原式1111141261.432933⎛⎫=⨯⨯-⨯-⨯=+= ⎪⎝⎭ 22.(1)8.5;(2)25秒;(3)①2t+3;②172或23. 【解析】【分析】(1)求出AB 中点表示的数即可; (2)设运动x 秒后A ,B 两点相距2个单位长度,根据题意列出方程,求出方程的解即可得到结果;(3)①表示出AM 即可;②根据AM=BM 求出t 的值即可.【详解】(1)根据题意得:3202-+=8.5, 则点P 对应的数为8.5; (2)设运动x 秒后A ,B 两点相距2个单位长度,根据题意得:|(-3+3x )-(20+2x )|=2,整理得:|x-23|=2,即x-23=2或x-23=-2,解得:x=25或x=-21(舍去),则运动25秒后A ,B 两点相距2个单位长度;(3)①根据题意得:AM=4t-(-3+2t )=2t+3;故答案为:2t+3;②根据题意得:BM=AM ,即|(20-2t )-4t|=2t+3,整理得:20-6t=2t+3或20-6t=-2t-3,解得:t=178或t=234, 此时M 对应的数为172或23. 【点睛】 此题考查了一元一次方程的应用,数轴,以及列代数式,弄清题意是解本题的关键.23.(1)5(2)12cm (3)16cm 或20cm【解析】【分析】(1)线段的个数为n n-12(),n 为点的个数. (2)由题意易推出CD 的长度,再算出AC =4CD 即可.(3)E 点可在A 点的两边讨论即可.【详解】(1)图中有四个点,线段有=6.故答案为6;(2)由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=18,解得CD=3,AC=4CD=4×3=12cm;(3)①当点E在线段AB上时,由线段的和差,得BE=AB﹣AE=18﹣2=16cm,②当点E在线段BA的延长线上,由线段的和差,得BE=AB+AE=18+2=20cm.综上所述:BE的长为16cm或20cm.【点睛】本题考查的知识点是射线、直线、线段,解题的关键是熟练的掌握射线、直线、线段. 24.(1) 钢笔的单价为21元,毛笔的单价为25元;(2)①见解析;②签字笔的单价可能为2元或6元.【解析】【分析】(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.根据买钢笔30支,毛笔45支,共用了1755元建立方程,求出其解即可;(2)①根据第一问的结论设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105−y)支,求出方程的解不是整数则说明算错了;②设单价为21元的钢笔为z支,单价为25元的毛笔则为(105−y)支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.【详解】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755,解得:x=21,∴毛笔的单价为:x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)①设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解之得:y=44.5 (不符合题意).∴陈老师肯定搞错了.②设单价为21元的钢笔为z支,签字笔的单价为a元,则根据题意,得21z+25(105﹣z)=2447﹣a.∴4z=178+a,∵a、z都是整数,∴178+a应被4整除,∴a为偶数,又因为a为小于10元的整数,∴a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以签字笔的单价可能2元或6元.故答案为2元或6元.【点睛】本题考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用及二元一次不定方程的运用,在解答时根据题意等量关系建立方程是关键.25.﹣y2﹣2x+2y,-2【解析】试题分析:先去括号,然后合并同类项,最后代入数值进行计算即可.试题解析:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+2y﹣x+3y2﹣2x3=﹣y2﹣2x+2y,当x=﹣3,y=﹣2时,原式=﹣(﹣2)2﹣2×(﹣3)+2×(﹣2)=﹣4+6﹣4=﹣2.。
七年级上册期末数学试卷3套(含答案详细解析)
19.计算:
(1)
(2)
20.对于有理数a,b,c,d,我们规定 =ad﹣bc,如 =1×4﹣2×3=﹣2.若 =﹣2,求x的值.
21.完成下面的证明
如图,端点为P的两条射线分别交两直线l1、l2于A、C、B、D四点,已知∠PBA=∠PDC,∠l=∠PCD,求证:∠2+∠3=180°.
证明:∵∠PBA=∠PDC()
七年级上册期末数学试卷解析
一、选择题
1.若一个数的相反数是3,则这个数是( )
A.﹣ B. C.﹣3D.3
【答案】C
【解析】
【分析】
两数互为相反数,它们的和为0.
【详解】设3的相反数为x,
则x+3=0,x=﹣3.
故选:C.
【点睛】本题考查的是相反数的概念,两数互为相反数,它们的和为0.
2.下列图形中线段PQ的长度表示点P到直线a的距离的是( )
A. B. C. D.
5. 的平方根是( )
A.±2B.2C.±4D.4
6.下列图形中,不能折叠成一个正方体的是()
A. B. C. D.
7.下列各数中,3.14159,﹣ ,0.131131113…,﹣π, ,无理数的个数是( )
A.1个B.2个C.3个D.4个
8.多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是( )
A.1682×108B.16.82×109C.1.682×1011D.0.1682×1012
11.估算 的运算结果应在( )
A.3到4之间B.4到5之间C.5到6之间D.6到7之间
12.请通过计算推测32018的个位数是( )
A 1B.3C.7D.9
七年级数学上册期末试卷测试卷(含答案解析)
度为 1 厘米/秒,设运动时间为 x 秒,当 x=_____秒时,PQ=4cm; (4)有两条射线 OC、OD 均从射线 OA 同时绕点 O 顺时针方向旋转,OC 旋转的速度为 6 度/秒,OD 旋转的速度为 2 度/秒.当 OC 与 OD 第一次重合时,OC、OD 同时停止旋转,设 旋转时间为 t 秒,当 t 为何值时,射线 OC⊥OD 29.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在 认真思考后,根据题意分别列出了以下两个不同的方程:
A.2
B.
C.0
D.
3.下列各式中与 a b c 的值不相等的是( )
A. a (b c)
B. a (b c)
C. (a b) (c) D. (c) (b a)
4.一些相同的房间需要粉刷墙面.一天 3 名一级技工去粉刷 8 个房间,结果其中有 50m2
墙面未来得及粉刷;同样时间内 5 名二级技工粉刷了 10 个房间之外,还多粉刷了另外的
① 5x 9 4x 15;② y 9 y 15
5
4
(1)①中的 x 表示 ;
②中的 y 表示 .
(2)请选择其中一种方法,写出完整的解答过程.
30.已知高铁的速度比动车的速度快 50 km/h,小路同学从苏州去北京游玩,本打算乘坐
动车,需要 6h 才能到达;由于得知开通了高铁,决定乘坐高铁,她发现乘坐高铁比乘坐动
七年级数学上册期末试卷测试卷(含答案解析)
一、选择题 1.将一张正方形纸片 ABCD 按如图所示的方式折叠,AE、AF 为折痕,点 B、D 折叠后的对 应点分别为 B′、D′,若∠B′A D′=16°,则∠EAF 的度数为( ).
初中七年级数学上册期末考试卷及答案【完整版】
初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
初一上学期数学期末考核试卷与解析
初一上学期数学期末考核试卷与解析一、选择题(每题4分,共计40分)1. 下列数中是无理数的是:A. √2B. 3/2C. πD. 0二、填空题(每题4分,共计40分)1. 若平行四边形ABCD的对角线交于点E,则点E是平行四边形ABCD的______。
三、解答题(每题10分,共计60分)1. 解方程:2x - 5 = 32. 已知直角三角形ABC,∠C为直角,AB为斜边,若AC = 3, BC = 4,求斜边AB的长度。
四、应用题(每题15分,共计30分)1. 小明的身高为1.6米,小华的身高为1.5米,请问小明比小华高多少百分比?2. 甲、乙两地相距100公里,小明从甲地骑自行车前往乙地,速度为每小时15公里。
请问小明到达乙地需要多少时间?---答案与解析一、选择题(每题4分,共计40分)1. C. π(解析:π是一个无理数,不能表示为两个整数的比例。
)二、填空题(每题4分,共计40分)1. 对角线的交点(解析:根据平行四边形的性质,对角线交于一点,这一点称为对角线的交点。
)三、解答题(每题10分,共计60分)1. x = 4(解析:将方程2x - 5 = 3移项得2x = 8,再除以2得x = 4。
)2. AB = 5(解析:根据勾股定理,AB² = AC² + BC²,代入AC= 3, BC = 4得AB² = 9 + 16 = 25,所以AB = 5。
)四、应用题(每题15分,共计30分)1. 小明比小华高13.3%(解析:小明比小华高的身高为1.6 -1.5 = 0.1米,所以比例为0.1 / 1.5 ≈ 0.0667,即6.67%,约为13.3%)2. 小明到达乙地需要6.67小时(解析:小明每小时行驶15公里,总共需要行驶100公里,所以时间为100 / 15 ≈ 6.67小时。
)。
人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
部编数学七年级上册期末真题必刷压轴60题(17个考点专练)(解析版)含答案
期末真题必刷压轴60题(17个考点专练)一.正数和负数(共2小题)1.(2023春•南岗区期末)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):星期一星期二星期三星期四星期五星期六星期日合计﹣27.8﹣70.3200138.1﹣8188458表中星期六的盈亏被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?【分析】设星期六为x元,根据题意可得等量关系:七天的盈亏数之和=458,根据等量关系列出方程,再解方程即可.【解答】解一:458﹣(﹣27.8﹣70.3+200+138.1﹣8+188),=458+27.8+70.3﹣200﹣138.1+8﹣188,=38,因为38为正数,故星期六是盈利,盈利38元,答:星期六是盈利38元.解二:设星期六为x元,则:﹣27.8﹣70.3+200+138.1﹣8+x+188=458,x=458+27.8+70.3﹣200﹣138.1+8﹣188,x=38,因为38为正数,故星期六是盈利,盈利38元,答:星期六是盈利38元.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.正确理解正负数的意义.2.(2022秋•长寿区期末)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负,单位:辆)星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)产量最多的一天比产量最少的一天多生产多少辆;(2)该厂实行计件工资制,一周结算一次,每辆车60元,超额完成任务每辆再奖15元,少生产一辆倒扣15元,那么该厂工人这一周的工资总额是多少元?【分析】(1)根据表格及题意求出七天的生产情况,即可求出产量最多的一天比产量最少的一天多生产的;(2)求出七天共生产的辆数,与1400比较,判断是超额还是没有完成任务,即可得到结果.【解答】解:(1)根据题意得:星期一到星期日生产的辆数分别为:205;198;196;213;190;216;191,则产量最多的一天比产量最少的一天多生产216﹣190=26(辆);(2)根据题意得:一周总产量为205+198+196+213+190+216+191=1409(辆),∵1409>1400,∴超额完成9辆,则该厂工人这一周的工资总额是1409×60+9×15=84540+135=84675(元).【点评】此题考查了正数与负数,属于应用题,弄清题意是解本题的关键.二.数轴(共5小题)3.(2022秋•鼓楼区期末)数轴上某一个点表示的数为a,比a小2的数用b表示,那么|a|+|b|的最小值为( )A.0B.1C.2D.3【分析】理解绝对值的定义,如|a﹣2|表示数轴上点a到2的距离;|a|=|a﹣0|表示a到原点的距离;【解答】解:∵比a小2的数用b表示,∴b=a﹣2,∴|a|+|b|=|a﹣0|+|a﹣2|,那么|a|+|b|的最小值就是在数轴上找一点a到原点和到2的距离最小,显然这个点就是在0与2之间,当a在区间0与2之间时,|a﹣0|+|a﹣2|=|2﹣0|=2为最小值,∴|a|+|b|的最小值为2,故选:C.【点评】本题考查绝对值的定义,难点在于|a﹣0|+|a﹣2|对这个式子的理解并用绝对值意义来解答.4.(2022秋•黄埔区校级期末)已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c ﹣a|= 2b+2c﹣2a .【分析】去绝对值符号的关键是判断绝对值符号里面的数的符号,根据题意确定了符号,容易去绝对值符号.【解答】解:根据图形,a﹣b<0,b+c>0,c﹣a>0,所以|a﹣b|+|b+c|+|c﹣a|=b﹣a+b+c+c ﹣a=2b+2c﹣2a.故答案为:2b+2c﹣2a.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.5.(2021秋•佳木斯期末)已知,A,B在数轴上对应的数分别用a,b表示,且(ab+100)2+|a﹣20|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合.【分析】(1)先根据非负数的性质求出a,b的值,在数轴上表示出A、B的位置,再根据数轴上两点间的距离公式,求出A、B之间的距离即可;(2)设P点对应的数为x,当P点满足PB=2PC时,分三种情况讨论,根据PB=2PC 求出x的值即可;(3)根据第一次点P表示﹣1,第二次点P表示2,点P表示的数依次为﹣3,4,﹣5,6…,找出规律即可得出结论.【解答】解:(1)∵(ab+100)2+|a﹣20|=0,∴ab+100=0,a﹣20=0,∴a=20,b=﹣10,∴AB=20﹣(﹣10)=30,数轴上标出A、B的位置,如图:(2)∵|BC|=6且C在线段OB上,∴x C﹣(﹣10)=6,∴x C=﹣4,∵PB=2PC,当P在点B左侧时PB<PC,此种情况不成立,当P在线段BC上时,x P﹣x B=2(x c﹣x p),∴x p+10=2(﹣4﹣x p),解得:x p=﹣6,当P在点C右侧时,x p﹣x B=2(x p﹣x c),x p+10=2x p+8,x p=2,综上所述P点对应的数为﹣6或2.(3)第一次点P表示﹣1,第二次点P表示2,依次﹣3,4,﹣5,6…则第n次为(﹣1)n•n,点A表示20,则第20次P与A重合;点B表示﹣10,点P与点B不重合.【点评】本题考查的是数轴,非负数的性质以及同一数轴上两点之间的距离公式的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.6.(2022秋•碑林区校级期末)将一条数轴在原点O和点B处各折一下,得到如图所示的“折线数轴”,图中点A表示﹣10,点B表示10,点C表示18.我们称点A和点C在数轴上的“友好距离”为28个单位长度.动点P从点A出发,以2单位长度/秒的速度沿着“折线数轴”向其正方向运动.当运动到点O与点B之间时速度变为原来的一半.经过点B后立刻恢复原速;同时,动点Q从点C出发,以1单位长度/秒的速度沿着“折线数轴”向其负方向运动,当运动到点B与点O之间时速度变为原来的两倍,经过O后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至点C需要 19 秒,动点Q从点C运动至点A需要 23 秒;(2)P,Q两点相遇时,求出相遇点M在“折线数轴”上所对应的数;(3)是否存在t值,使得点P和点Q在“折线数轴”上的“友好距离”等于点A和点B 在“折线数轴”上的“友好距离”?若存在,求出t的值;若不存在,请说明理由.【分析】(1)根据题意可得,动点P从点A运动至点C需要的时间是:10÷2+10÷1+8÷2=19(s),动点Q从点C运动至点A需要的时间是:8÷1+10÷2+10÷1=23(s);(2)根据题意可知,P、Q两点在OB上相遇,P点运动到OB上时表示的数是t﹣5,Q 点运动到OB上时表示的数是10﹣2(t﹣8),则t﹣5=10﹣2(t﹣8),求出t的值,再求M点表示的数即可;(3)分7种情况讨论:①当0≤t≤5时,P点在OA上,Q点在BC上,此时P点表示的数是﹣10+2t,Q点表示的数是18﹣t,由题意可得,28﹣3t=20,解得t=;②当5<t≤8时,P点在OB上,Q点在BC上,此时P点表示的数是t﹣5,Q点表示的数是18﹣t,由题意可得,23﹣2t=20,解得t=(舍);③8<t≤13时,点P、Q都在BO上,此时PQ<10,此情况不符合题意;④13<t≤15时,P点在OB上,Q点在OA上,此时P点表示的数是t﹣5,Q点表示的数是13﹣t,由题意可得,2t﹣18=20,解得t=19(舍);⑤15<t≤19时,P点在BC上,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,由题意可得,3t﹣33=20,解得t=;⑥19<t≤23时,P点在C 的右侧,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,由题意可得,3t﹣33=20,解得t=(舍);⑦t>23时,P点在C点右侧,Q点在A点左侧,PQ>20,不符合题意.【解答】解:(1)∵点A表示﹣10,点B表示10,点C表示18,∴OA=10,BO=10,BC=8,∴动点P从点A运动至点C需要的时间是:10÷2+10÷1+8÷2=19(s),动点Q从点C运动至点A需要的时间是:8÷1+10÷210÷1=23(s),故答案为:19,23;(2)根据题意可知,P、Q两点在OB上相遇,P点运动到OB上时表示的数是t﹣5,Q点运动到OB上时表示的数是10﹣2(t﹣8),∴t﹣5=10﹣2(t﹣8),解得t=,∴M点表示的数是﹣5=;(3)存在t值,使得点P和点Q在“折线数轴”上的“友好距离”等于点A和点B在“折线数轴”上的“友好距离”,理由如下:∵点A表示﹣10,点B表示10,∴点A和点B在“折线数轴”上的“友好距离”是20,①当0≤t≤5时,P点在OA上,Q点在BC上,此时P点表示的数是﹣10+2t,Q点表示的数是18﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为18﹣t+10﹣2t=28﹣3t,由题意可得,28﹣3t=20,解得t=;②当5<t≤8时,P点在OB上,Q点在BC上,此时P点表示的数是t﹣5,Q点表示的数是18﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为18﹣t﹣t+5=23﹣2t,由题意可得,23﹣2t=20,解得t=(舍);③8<t≤13时,点P、Q都在BO上,此时PQ<10,∴此情况不符合题意;④13<t≤15时,P点在OB上,Q点在OA上,此时P点表示的数是t﹣5,Q点表示的数是13﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为t﹣5+13﹣t=8(舍);⑤15<t≤19时,P点在BC上,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为13﹣t+2t﹣20=t﹣7,由题意可得,t﹣7=20,解得t=27;⑥19<t≤23时,P点在C的右侧,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为13﹣t+2t﹣20=t﹣7,由题意可得,t﹣7=20,解得t=27;⑦t>23时,P点在C点右侧,Q点在A点左侧,PQ>20,不符合题意;综上所述:t的值为27或.【点评】本题考查实数与数轴,熟练掌握实数上点与数轴的对应关系,弄清“友好函数”的定义是解题的关键.7.(2022秋•石门县期末)附加题:已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?【分析】(1)若点P对应的数与﹣1、3差的绝对值相等,则点P到点A,点B的距离相等.(2)根据当P在A的左侧以及当P在B的右侧分别求出即可;(3)设经过a分钟点A与点B重合,根据点A比点B运动的距离多4,列出方程,求出a的值,即为点P运动的时间,再乘以点P运动的速度,可得点P经过的总路程.【解答】解:(1)∵1﹣(﹣1)=2,2的绝对值是2,1﹣3=﹣2,﹣2的绝对值是2,∴点P对应的数是1.(2)当P在AB之间,PA+PB=4(不可能有)当P在A的左侧,PA+PB=﹣1﹣x+3﹣x=6,得x=﹣2当P在B的右侧,PA+PB=x﹣(﹣1)+x﹣3=6,得x=4故点P对应的数为﹣2或4;(3)解:设经过a分钟点A与点B重合,根据题意得:2a=4+a,解得a=4.则6a=24.答:点P所经过的总路程是24个单位长度.【点评】本题考查了绝对值、路程问题、一元一次方程等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.三.有理数的乘方(共1小题)8.(2021秋•头屯河区期末)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2019,则m的值是( )A.46B.45C.44D.43【分析】根据有理数的乘方和数字的变化寻找规律即可求解.【解答】解:23=3+5,第一项为22﹣2+1,最后一项为3+2×133=7+9+11,第一项为32﹣3+1,最后一项为7+2×243=13+15+17+19,第一项为42﹣4+1,最后一项为13+2×3…453的第一项为452﹣45+1=1981,最后一项为1981+2×44=2069,1981到2069之间有奇数2019,∴m的值为45.故选:B.【点评】本题考查了有理数的乘方,解决本题的关键是根据数字的变化情况寻找规律.四.有理数的混合运算(共3小题)9.(2022秋•江海区期末)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(﹣2)2﹣|﹣7|+3﹣2×(﹣)=4﹣7+3+1=1.【点评】考查了有理数的混合运算,有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.10.(2022秋•孝南区期末)对于有理数a、b,定义一种新运算“⊕”,规定:a⊕b=|a+b|﹣|a﹣b|(1)计算2⊕(﹣3)的值;(2)若a⊕a=8,则a= ±4 .【分析】(1)根据新定义规定的运算公式列式计算可得;(2)根据新定义规定的计算公式可得a⊕a=|a+a|﹣|a﹣a|=|2a|=2|a|,即2|a|=8,解之可得.【解答】解:(1)2⊕(﹣3)=|2﹣3|﹣|2+3|=﹣4;(2)a⊕a=|a+a|﹣|a﹣a|=|2a|=2|a|,由条件得2|a|=8,∴a=±4,故答案为:±4.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握新定义规定的运算公式和有理数的混合运算顺序及运算法则.11.(2022秋•安顺期末)若a,b是有理数,定义一种新运算⊕:a⊕b=2ab+1.计算:例如:(﹣3)⊕4=2×(﹣3)×4+1=﹣23.试计算:(1)3⊕(﹣5).(2)[3⊕(﹣5)]⊕(﹣6).【分析】直接套用公式列出算式,根据实数的混合运算即可得出结果.【解答】解:(1)根据题意可得:原式=2×3×(﹣5)+1=﹣30+1=﹣29;(2)根据题意可得:2×(﹣29)×(﹣6)+1=348+1=349.【点评】本题主要考查有理数的混合运算,根据新规定的运算法则列出算式是解题的关键.五.列代数式(共2小题)12.(2022秋•闽侯县校级期末)某农户承包果树若干亩,今年投资24400元,收获水果总产量为20000千克.此水果在市场上每千克售a元,在果园直接销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需2人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天200元.(1)分别用含a,b的代数式表示两种方式出售水果的收入.(2)若a=4.5元,b=4元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.(3)该农户加强果园管理,力争到明年纯收入达到72000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入﹣总支出)?【分析】(1)市场出售收入=水果的总收入﹣额外支出.而水果直接在果园的出售收入为:20000b元.(2)根据(1)中得到的代数式,将a=4.5,b=4,代入代数式计算即可.(3)根据(2)的数据,首先确定今年的最高收入,然后计算增长率即可.【解答】解:(1)将这批水果拉到市场上出售收入为:20000a﹣×2×100﹣×200=20000a﹣4000﹣4000=(20000a﹣8000)(元)在果园直接出售收入为20000b(元);(2)当a=4.5时,市场收入为20000a﹣8000=20000×4.5﹣8000=82000(元).当b=4时,果园收入为20000b=20000×4=80000(元).因为82000>80000,所以应选择在市场出售;(3)因为今年的纯收入为82000﹣24400=57600,×100%=25%,所以增长率为25%.【点评】本题考查了根据实际问题列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达.13.(2022秋•沁县期末)某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m3时,按2元/m3计算;月用水量超过20m3时,其中的20m3仍按2元/m3计算,超过部分按2.6元/m3计算.设某户家庭月用水量xm3.月份4月5月6月用水量151721(1)用含x的式子表示:当0≤x≤20时,水费为 2x 元;当x>20时,水费为 2.6x﹣12 元.(2)小花家第二季度用水情况如上表,小花家这个季度共缴纳水费多少元?【分析】(1)分类讨论:当x≤20时,水费为2x元;当x>20时,水费为[20×2+2.6(x ﹣20)]元;(2)由(1)得到四月份和五月份的用水量按2元/立方米计费、六月份的用水量按方式二计费,然后把三个月的水费相加即可.【解答】解:(1)当0≤x≤20时,水费为2x元;当x>20时,水费为20×2+2.6(x﹣20)=2.6x﹣12元.故答案为:2x、2.6x﹣12;(2)15×2+17×2+2.6×21﹣12=30+34+54.6﹣12=106.6,答:小花家这个季度共缴纳水费106.6元.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是水费要分段付费.六.代数式求值(共3小题)14.(2022秋•罗湖区校级期末)若a<b<c,x<y<z,则下面四个代数式的值最大的是( )A.ax+by+cz B.ax+cy+bz C.bx+ay+cz D.bx+cy+az【分析】要比较两个多项式的大小,只需采用作差法,将它们的差因式分解就可解决问题.【解答】解:∵b<c,y<z,∴b﹣c<0,y﹣z<0,∴(ax+by+cz)﹣(ax+bz+cy)=by+cz﹣bz﹣cy=b(y﹣z)﹣c(y﹣z)=(y﹣z)(b﹣c)>0,∴ax+by+cz>ax+bz+cy,即A>B.同理:A>C,B>D,∴A式最大.故选:A.【点评】本题主要考查了整式的加减、因式分解、不等式的性质、不等式的传递性等知识,比较大小常用作差法或作商法,应熟练掌握.15.(2022秋•衡南县期末)盱眙县防疫部门配送新冠疫情物资,甲、乙两仓库分别有防疫物资30箱和50箱,A、B两地分别需要防疫物资20箱和60箱.已知从甲、乙仓库到A、B两地的运价如表:到A地到B地甲仓库每箱15元每箱12元乙仓库每箱10元每箱9元(1)若从甲仓库运到A地的防疫物资为x箱,则用含x的代数式表示从甲仓库运到B地的防疫物资为 (30﹣x) 箱,从乙仓库将防疫物资运到B地的运输费用为 (270+9x) 元;(2)求把全部防疫物资从甲、乙两仓库运到A、B两地的总运输费(用含x的代数式表示并化简);(3)如果从甲仓库运到A地的防疫物资为10箱时,那么总运输费为多少元?【分析】(1)根据题意,从甲仓库运到A地的防疫物资为x箱,则用含x的代数式表示从甲仓库运到B地的防疫物资为(30﹣x)箱,从乙仓库运到B地的防疫物资为(30+x)箱,从乙仓库将防疫物资运到B地的运输费用为(270+9x)元;(2)根据总运输费=从甲、乙两仓库运到A、B两地的费用之和列出代数式;(3)把x=10代入(2)中代数式即可.【解答】解:(1)∵甲仓库有防疫物资30箱,从甲仓库运到A地的防疫物资为x箱,∴从甲仓库运到B地的防疫物资为(30﹣x)箱;∵B地需要防疫物资60箱,从甲仓库运到B地的防疫物资为(30﹣x)箱;∴从乙仓库运到B地的防疫物资为:60﹣30+x=(30+x)箱,∴从乙仓库将防疫物资运到B地的运输费用为:9×(30+x)=(270+9x)元,故答案为:(30﹣x),(270+9x);(2)总运费:15x+12(30﹣x)+10(20﹣x)+9(30+x)=(2x+830)元,∴全部防疫物资从甲、乙两仓库运到A、B两地的总运输费(2x+830)元;(3)当x=10时,2x+830=2×10+830=850,∴总运输费为850元.【点评】本题考查列代数式和代数式求值,关键是根据题意列出代数式.16.(2022秋•阜平县期末)若“ω”是新规定的某种运算符号,设aωb=3a﹣2b.(1)计算:(x2+y)ω(x2﹣y);(2)若x=﹣2,y=2,求出(x2+y)ω(x2﹣y)的值.【分析】(1)先依据定理列出代数式,然后依据整式的运算法则进行计算即可;(2)将x=﹣2,y=2代入(1)的化简结果进行计算即可.【解答】解:(x2+y)ω(x2﹣y)=3(x2+y)﹣2(x2﹣y)=3x2+3y﹣2x2+2y=x2+5y;(2)将x=﹣2,y=2代入得:原式=(﹣2)2+5×2=2+20=14.【点评】本题主要考查的是整式的加减和求代数式的值,掌握整式的加减法则是解题的关键.七.整式的加减(共2小题)17.(2022秋•深圳校级期末)数轴上点A对应的数为a,点B对应的数为b,且多项式x3y﹣2xy+5的二次项系数为a,常数项为b.(1)直接写出:a= ﹣2 ,b= 5 .(2)数轴上点A、B之间有一动点P,若点P对应的数为x,试化简|2x+4|+2|x﹣5|﹣|6﹣x|;(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,沿数轴以每秒2个单位长度的速度向左移动,到达A点后立即返回并向右继续移动,请直接写出经过 2或或6或8 秒后,M、N两点相距1个单位长度,并选择一种情况计算说明.【分析】(1)根据多项式中二次项系数与常数项的定义即可求解;(2)由题意可得﹣2<x<5,根据绝对值的意义去掉绝对值符号,再化简即可;(3)设经过t秒M,N两点相距一个单位长度.分四种情况进行讨论:①点M、点N 没有相遇之前;②点M、点N相遇后,但是点N没有到达A点;③点N到达A点后返回,但是没有追上点M;④点N到达A点后返回,追上了点M.【解答】解:(1)∵多项式x3y﹣2xy+5的二次项系数为a,常数项为b,∴a=﹣2,b=5.故答案为﹣2,5;(2)依题意,得﹣2<x<5,则|2x+4|+2|x﹣5|﹣|6﹣x|=2x+4+2(5﹣x)﹣(6﹣x)=2x+4+10﹣2x﹣6+x=x+8;(3)设经过t秒M,N两点相距一个单位长度.①M,N第一次相距一个单位长度时,t+1+2t=7,解得t=2;②M,N第二次相距一个单位长度时,t+2t=7+1,解得t=;③当M,N第三次相距一个单位长度时,t﹣2(t﹣3.5)=1,解得t=6;④当M,N第四次相距一个单位长度时,2(t﹣3.5)﹣t=1,解得t=8.故答案为2或或6或8.【点评】本题考查了一元一次方程的应用,整式的加减以及数轴,解题关键是要读懂题目的意思,根据题目给出的条件,分类讨论并且找出合适的等量关系列出方程,再求解.18.(2022秋•阜平县期末)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.【分析】(1)先根据题意列出关于A的式子,再去括号,合并同类项即可;(2)先根据题意列出关于A﹣B的式子,再去括号,合并同类项即可.【解答】解:(1)∵A+B=9x2﹣2x+7,B=x2+3x﹣2∴A=9x2﹣2x+7﹣(x2+3x﹣2)=9x2﹣2x+7﹣x2﹣3x+2=8x2﹣5x+9;(2)A﹣B=8x2﹣5x+9﹣(x2+3x﹣2)=8x2﹣5x+9﹣x2﹣3x+2=7x2﹣8x+11.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.八.整式的加减—化简求值(共5小题)19.(2022秋•宁明县期末)先化简再求值:求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).【分析】先去括号,然后合并同类项,最后代入x、y的值即可.【解答】解:原式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,原式=4.【点评】此题考查了数轴,整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(2022秋•岳普湖县校级期末)先化简,再求值2x3+4x﹣﹣(x+3x2﹣2x3),其中x=﹣3.【分析】先去括号、合并同类项化简,再代入计算即可;【解答】解:原式=2x3+4x﹣﹣x﹣3x2+2x3,=4x3+3x﹣x2,当x=﹣3时,原式=﹣108﹣9﹣30=﹣147.【点评】本题考查的加减混合运算,代数式求值,解题的关键是掌握去括号法则、合并同类项法在等知识,属于中考常考题型.21.(2022秋•仓山区期末)先化简,再求值:5(3x2y﹣xy2)﹣4(﹣x2y+3xy3),其中x=﹣2,y=3.【分析】根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可.【解答】解:原式=15x2y﹣5xy2+4x2y﹣12xy3=19x2y﹣5xy2﹣12xy3,当x=﹣2、y=3时,原式=19×(﹣2)2×3﹣5×(﹣2)×32﹣12×(﹣2)×33=228+90+648=966.【点评】本题考查了对整式的加减,合并同类项,单项式乘多项式等知识点的理解和掌握,注意展开时不要漏乘,同时要注意结果的符号,代入﹣2时应用括号.22.(2022秋•淮滨县期末)先化简,再求值:(3x2+5x﹣2)﹣2(2x2+2x﹣1)+2x2﹣5,其中x2+x﹣3=0.【分析】原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=3x2+5x﹣2﹣4x2﹣4x+2+2x2﹣5=x2+x﹣5,由x2+x﹣3=0,得到x2+x=3,则原式=3﹣5=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(2022秋•新都区期末)先化简,再求值:(5a2﹣3b2)+(a2+b2)﹣(5a2+3b2),其中a=﹣1,b=1.【分析】先去括号、合并同类项化简原式,再将a、b的值代入计算即可得.【解答】解:原式=5a2﹣3b2+a2+b2﹣5a2﹣3b2=a2﹣5b2,当a=﹣1、b=1时,原式=(﹣1)2﹣5×12=1﹣5=﹣4【点评】本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和法则.九.解一元一次方程(共1小题)24.(2022秋•六盘水期末)解下列方程:(1)4﹣x=7x+6(2)﹣=4.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:﹣x﹣7x=6﹣4,合并得:﹣8x=2,解得:x=﹣;(2)去分母得:4(2x﹣1)﹣3(x+1)=48,去括号得:8x﹣4﹣3x﹣3=48,移项合并得:5x=55,解得:x=11.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.一十.一元一次方程的应用(共24小题)25.(2022秋•广阳区期末)为响应习总书记“绿水青山,就是金山银山”的号召,某校今年3月争取到一批植树任务,领到一批树苗,按下列方法依次由各班领取:第一班领取全部的,第二班领取100棵和余下的,第三班领取200棵和余下的,第四班领取300棵和余下的…,最后树苗全部被领完,且各班领取的树苗相等,则树苗总棵数为( )A .6400B .8100C .9000D .4900【分析】设树苗总数为x 棵,根据各班的树苗数都相等,可得出第一班和第二班领取的树苗数相等,由此可得出方程.【解答】解:设树苗总数x 棵,根据题意得:x =100+(x ﹣x ﹣100),解得:x =9000,答:树苗总数是9000棵.故选:C .【点评】本题考查了一元一次方程的应用,解答本题的关键是得出各班的树苗数都相等,这个等量关系,因为第一班,第二班领取数量好表示,所以我们就选取这两班建立等量关系.26.(2022秋•南开区校级期末)某超市推出如下优惠方案:(1)购物款不超过200元不享受优惠;(2)购物款超过200元但不超过600元一律享受九折优惠;(3)购物款超过600元一律享受八折优惠.小明的妈妈两次购物分别付款168元、423元.如果小明的妈妈在超市一次性购买与上两次价值相同的商品,则小明的妈妈应付款( )元.A .522.80B .560.40C .510.40D .472.80【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过200,即是168元.第二次就有两种情况,一种是超过200元但不超过600元一律9折;一种是购物超过600元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.【解答】解:(1)第一次购物显然没有超过200元,即在第二次消费168元的情况下,他的实质购物价值只能是168元.(2)第二次购物消费423元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过200元但不足600元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=423,解得:x=470.①第二种情况:他消费超过600元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=423,解得:x=528.75(舍去)即在第二次消费423元的情况下,他的实际购物价值可能是470元.综上所述,他两次购物的实质价值为168+470=638(元),超过了600元.因此一次性购买可以按照8折付款:638×0.8=510.4(元)综上所述,她应付款510.4元.故选:C.【点评】本题考查了一元一次方程的应用.解题关键是第二次购物的432元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.27.(2022秋•岳麓区校级期末)随着夏天的到来,西瓜越来越受大家欢迎,6月某水果店购进一批西瓜,第一周销售麒麟瓜的利润率是30%,销售爆炸瓜的利润率是40%,麒麟瓜销量是爆炸瓜销量的2倍,结果第一周这两种西瓜的总利润率是35%,受本地西瓜的冲击,第四周销售麒麟瓜的利润率比第一周下降了,销售爆炸瓜的利润率比第一周下降了,结果第四周这两种西瓜的总利润率达到27%,则第四周麒麟瓜、爆炸瓜的销量之比是 6:7 .(利润率=×100%)【分析】设麒麟瓜与爆炸瓜每千克的成本分别为m,n,第一周爆炸瓜销量为x,则麒麟瓜销量为2x,根据第一周这两种西瓜的总利润率是35%,可以得到m=2n,设第四周麒麟瓜、爆炸瓜销量分别为a,b,根据第四周这两种西瓜的总利润率达到27%,列出方程可求四周麒麟瓜、爆炸瓜的销售之比.【解答】解:设麒麟瓜与爆炸瓜每千克的成本分别为m,n,第一周爆炸瓜销量为x,则麒麟瓜销量为2x,依题意有:(1+30%)m×2x+(1+40%)×nx=(1+35%)(m×2x+nx),整理得:n=2m,设第四周麒麟瓜、爆炸瓜销量分别为a,b,依题意有:。
新人教版七年级(上)期末数学常考试题100题-(解析与答案)
新人教版七年级(上)期末数学常考试题100题参考答案与试题解析一、选择题(共30小题)1.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.2.在﹣2,+3.5,0,,﹣0.7,11中,负分数有()A.l个B.2个C.3个D.4个考点:有理数.专题:推理填空题.分析:根据负数的定义先选出负数,再选出分数即可.解答:解:负分数是﹣,﹣0.7,共2个.故选:B.点评:本题考查了对有理数的理解和运用,能理解分数的定义是解此题的关键.3.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元考点:一元一次方程的应用.专题:销售问题.分析:要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.解答:解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=135解得:x=108比较可知,第一件赚了27元第二件可列方程:(1﹣25%)x=135解得:x=180,比较可知亏了45元,两件相比则一共亏了18元.故选:C.点评:此题的关键是先算出两件衣服的原价,才能知道赔赚.不可凭想象答题.4.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.专题:压轴题;动点型.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p 点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.点评:本题考核立意相对较新,考核了学生的空间想象能力.5.代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7B.18 C.12 D.9考点:代数式求值.专题:整体思想.分析:观察题中的两个代数式3x2﹣4x+6和x2﹣+6,可以发现3x2﹣4x=3(x2﹣),因此,可以由“代数式3x2﹣4x+6的值为9”求得x2﹣=1,所以x2﹣+6=7.解答:解:∵3x2﹣4x+6=9,∴方程两边除以3,得x2﹣+2=3x2﹣=1,所以x2﹣+6=7.故选:A.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣的值,然后利用“整体代入法”求代数式的值.6.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2B.﹣2 C.D.﹣考点:一元一次方程的解.专题:计算题.分析:此题用m替换x,解关于m的一元一次方程即可.解答:解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.点评:本题考查代入消元法解一次方程组,可将4x﹣3m=2和x=m组成方程组求解.7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能考点:数轴;有理数的加法.专题:数形结合.分析:首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.解答:解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.点评:本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.8.若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1C.D.0考点:一元一次方程的解.专题:计算题.分析:方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.已知x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.解答:解:把x=﹣1代入方程得:﹣=1,解得:k=1故选:B.点评:本题主要考查了方程解的定义,是一个基础的题目,注意细心运算即可.9.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是()A.2B.3C.4D.6考点:同类项.分析:本题考查同类项的定义(所含字母相同,相同字母的指数相同),由同类项的定义可得:2m=4,3﹣n=1,求得m和n的值,从而求出它们的和.解答:解:由同类项的定义可知n=2,m=2,则m+n=4.故选:C.点评:注意同类项定义中的两个“相同”,所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.10.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg考点:正数和负数.分析:根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.解答:解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.11.运用等式性质进行的变形,不正确的是()A.如果a=b,那么a﹣c=b﹣c B.如果a=b,那么a+c=b+cC.如果a=b,那么D.如果a=b,那么ac=bc考点:等式的性质.分析:根据等式的基本性质可判断出选项正确与否.解答:解:A、根据等式性质1,a=b两边都减c,即可得到a﹣c=b﹣c,故本选项正确;B、根据等式性质1,a=b两边都加c,即可得到a+c=b+c,故本选项正确;C、根据等式性质2,当c≠0时原式成立,故本选项错误;D、根据等式性质2,a=b两边都乘以c,即可得到ac=bc,故本选项正确;故选:C.点评:主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.12.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值是()A.10或B.10或﹣C.﹣10或D.﹣10或﹣考点:含绝对值符号的一元一次方程.专题:计算题.分析:解此题分两步:(1)求出|x﹣|﹣1=0的解;(2)把求出的解代入方程mx+2=2(m﹣x),把未知数转化成已知数,方程也同时转化为关于未知系数的方程,解方程即可.解答:解:先由|x ﹣|﹣1=0,得出x=或﹣;再将x=和x=﹣分别代入mx+2=2(m﹣x),求出m=10或故选:A.点评:解答本题时要格外注意,|x ﹣|﹣1=0的解有两个.解出x的值后,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.13.对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A.B.C.D.考点:直线、射线、线段.分析:根据直线能向两方无限延伸,射线能向一方无限延伸,线段不能延伸,据此进行选择.解答:解:B中这条直线与这条射线能相交;A、C、D中直线和射线不能相交.故选B.点评:本题考查了直线、射线和线段的性质.14.下列两个数互为相反数的是()A.﹣和0.2 B.﹣和0.333 C.﹣2.25和2D.5和﹣(﹣5)考点:相反数.分析:此题依据相反数的概念作答.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.解答:解:A、﹣的相反数是,错误;B、﹣的相反数的是,错误;C、﹣2.25和2互为相反数,正确;D、5的相反数是﹣5,5=﹣(﹣5),错误.故选:C.点评:此题关键是看两个数是否“只有符号不同”,并注意分数与小数的转化.15.下列代数式中符合书写要求的是()A.a b2×4 B.C.D.6xy2÷3考点:代数式.分析:本题较为简单,对各选项进行分析,看是否符合代数式正确的书写要求,即可求出答案.解答:解:A:ab2×4,正确的写法应为:4ab2,故本项错误.B:xy为正确的写法,故本项正确.C:2a2b,正确写法应为a2b,故本项错误.D:6xy2÷3,应化为最简形式,为2xy2,故本项错误.故选:B.点评:本题考查代数式的书写规则,根据书写规则对各项进行判定即可.16.下列各式中,正确的是()A.3a+b=3ab B.23x+4=27x C.﹣2(x﹣4)=﹣2x+4 D.2﹣3x=﹣(3x﹣2)考点:整式的加减.分析:A和B选项,不是同类项,不能合并;C中,去括号的时候,数字漏乘了,应是﹣2x+8;D中,根据添括号的法则,正确.解答:解:A、3a+b表示3a与b的和,3ab表示3a与b的积,一般不等,故A错误;B、不是同类项,不能合并,故B错误;C、漏乘了后面一项,故C错误;D、2﹣3x=﹣(3x﹣2),故D正确.故选:D.点评:理解同类项的概念:所含字母相同,相同字母的指数相同.注意去括号的时候,符号的变化和数字不要出现漏乘现象.17.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.﹣8 C.﹣10 D.8考点:同解方程.专题:计算题.分析:在题中,可分别求出x的值,当然两个x都是含有m的代数式,由于两个x相等,可列方程,从而进行解答.解答:解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2由题意知=m﹣2解之得:m=﹣8.故选:B.点评:根据题目给出的条件,列出方程组,便可求出未知数.18.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定考点:代数式.分析:由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.解答:解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.点评:本题考查了代数式的换算,比较简单,容易掌握.19.下列说法中,(1)﹣a一定是负数;(2)|﹣a|一定是正数;(3)倒数等于它本身的数是±1;(4)绝对值等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个考点:有理数;相反数;绝对值;倒数.分析:本题须根据负数、正数、倒数、绝对值的有关定义以及表示方法逐个分析每个说法,得出正确的个数.解答:解:∵如果α为负数时,则﹣α为正数,∴﹣α一定是负数是错的.∵当a=0时,|﹣a|=0,∴|﹣a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴(3)题对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.所以正确的说法共有1个.故选:A.点评:本题考查了负数、正数、倒数、绝对值的有关定义以及表示方法.20.下列式子:中,整式的个数是()A.6B.5C.4D.3考点:整式.专题:应用题.分析:根据整式的定义分析判断各个式子,从而得到正确选项.解答:解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.点评:本题主要考查了整式的定义:单项式和多项式统称为整式.注意整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式是数字或字母的积,其中单独的一个数或字母也是单项式;多项式是几个单项式的和,多项式含有加减运算.21.下列各式:,,﹣25,中单项式的个数有()A.4个B.3个C.2个D.1个考点:单项式.分析:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.解答:解:根据单项式的定义知,单项式有:﹣25,a2b2.故选:C.点评:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,这是判断单项式的关键.22.下列说法中正确的个数是()(1)a和0都是单项式;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3;(3)单项式的系数为﹣2;(4)x2+2xy﹣y2可读作x2,2xy,﹣y2的和.A.1个B.2个C.3个D.4个考点:多项式;单项式.专题:应用题.分析:根据单项式、多项式的次数、单项式的系数、多项式的定义分别对4种说法进行判断,从而得到正确结果.解答:解:(1)根据单项式的定义,可知a和0都是单项式,故说法正确;(2)根据多项式的次数的定义,可知多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故说法错误;(3)根据单项式的系数的定义,可知单项式的系数为﹣,故说法错误;(4)根据多项式的定义,可知x2+2xy﹣y2可读作x2,2xy,﹣y2的和,故说法正确.故说法正确的共有2个.故选:B.点评:本题考查了单项式、单项式的系数,多项式、多项式的次数的定义.属于基础题型,比较简单.用到的知识点有:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.单项式中的数字因数叫做单项式的系数.几个单项式的和叫做多项式,其中每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数.23.若2y﹣7x=0(xy≠0),则x:y等于()A.7:2 B.4:7 C.2:7 D.7:4考点:等式的性质.专题:计算题.分析:本题需利用等式的性质对等式进行变形,从而解决问题.解答:解:根据等式性质1,等式两边同加上7x得:2y=7x,∵7y≠0,∴根据等式性质2,两边同除以7y得,=.故选:C.点评:本题考查的是等式的性质:等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.24.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0 B.x=3 C.x=﹣3 D.x=2考点:一元一次方程的定义.专题:计算题.分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.解答:解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.25.下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=5考点:解一元一次方程;整式的加减.分析:根据解一元一次方程的步骤计算,并判断.解答:解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.点评:此题主要考查一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“﹣”号的,括号里各项都要变号.26.如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,(如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点),其中正确的分法有()A.1种B.2种C.3种D.4种考点:作图—应用与设计作图.分析:根据D、E、F分别是AB、BC、AC的中点,G、H分别是线段BD和AD的中点,利用三角形中位线定理,求证△ADF,△BDE,△DEF,△EFC是同底同高,然后即可证明其面积相等,其他3种情况,同理可得.解答:解:∵D、E、F分别是AB、BC、AC的中点,∴在图①中,DE=AC,EF=AB,DF=BC,∴△ADF,△BDE,△DEF,△EFC是同底同高,∴根据三角形面积公式可得△ADF,△BDE,△DEF,△EFC面积相等.同理可得图②,∵D、E、F分别是AB、BC、AC的中点,G、H分别是线段BD和AD的中点.同理可得图③,图④中4个三角形面积相等,所以四种分法都正确.故选:D.点评:此题主要考查三角形中位线定理和三角形面积的计算,难度不是很大,只是步骤繁琐,属于中档题.27.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为矩形D.球体的三种视图均为同样大小的图形考点:认识立体图形.分析:根据立体图形的概念和定义进行分析即解.解答:解:棱柱由上下两个底面以及侧面组成;上下两个底面可以是全等的多边形,所以可能出现三角形;侧面是四边形.A、长方体、正方体符合棱柱的结构特征,是棱柱,故正确;B、三棱柱的底面是三角形,侧面是四边形,故错误;C、直六棱柱底面是正六边形,有六个侧面,侧面为矩形,故正确;D、球体的三种视图均为同样大小的图形,都为圆形,故正确.故选:B.点评:本题主要考查棱柱的特征:上下底面可以是任意多边形,但侧面一定是四边形.28.下列判断中正确的是()A.3a2bc与bca2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式考点:整式;同类项.分析:根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.解答:解:A、3a2bc与bca2是同类项,故错误;B、是整式,故错;C、单项式﹣x3y2的系数是﹣1,正确;D、3x2﹣y+5xy2是3次3项式,故错误.故选:C.点评:主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.29.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=考点:一元一次方程的定义.分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解答:解:A、x2﹣4x=3的未知数的最高次数是2次,不是一元一次方程,故A错误;B、x=0符合一元一次方程的定义,故B正确;C、x+2y=1是二元一次方程,故C错误;D、x﹣1=,分母中含有未知数,是分式方程,故D错误.故选:B.点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的最高次数是1,一次项系数不是0,这是这类题目考查的重点.30.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义.与支出2万元不具有相反意义,故错误.故选:B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.二、填空题(共30小题)31.已知+=0,则的值为﹣1 .考点:绝对值.专题:压轴题.分析:先判断出a、b异号,再根据绝对值的性质解答即可.解答:解:∵+=0,∴a、b异号,∴ab<0,∴==﹣1.故答案为:﹣1.点评:本题考查了绝对值的性质,主要利用了负数的绝对值是它的相反数,判断出a、b异号是解题的关键.32.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= 5或11 cm.考点:两点间的距离.专题:分类讨论.分析:点C可能在线段AB上,也可能在AB的延长线上.因此分类讨论计算.解答:解:根据题意,点C可能在线段AB上,也可能在AB的延长线上.若点C在线段AB上,则AC=AB﹣BC=8﹣3=5(cm);若点C在AB的延长线上,则AC=AB+BC=8+3=11(cm).故答案为:5或11.点评:此题考查求两点间的距离,运用了分类讨论的思想,容易掉解.33.有八个球编号是①至⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,两个轻球的编号是④⑤.考点:等式的性质.分析:由①+②比③+④重可知③与④中至少有一个轻球,由⑤+⑥比⑦+⑧轻可知⑤与⑥至少有一个轻球,①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤.解答:解:∵①+②比③+④重,∴③与④中至少有一个轻球,∵⑤+⑥比⑦+⑧轻,∴⑤与⑥至少有一个轻球,∵①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤.故答案为:④⑤.点评:本题考查的是等式的性质:等式性质1,等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2,等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.34.请写出一个方程的解是2的一元一次方程:x﹣2=0 .考点:一元一次方程的定义.专题:开放型.分析:可设未知数为x,由于x=2,那么x﹣2=0.解答:解:答案不唯一,例如x﹣2=0.故答案为:x﹣2=0.点评:解决本题的关键是把未知数看成2得到相应等式.35.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为体育委员买了3个足球,2个篮球,剩余的经费.考点:代数式.专题:应用题.分析:本题需先根据买一个足球a元,一个篮球b元的条件,表示出3a和2b的意义,最后得出正确答案即可.解答:解:∵买一个足球a元,一个篮球b元.∴3a表示委员买了3个足球2b表示买了2个篮球∴代数式500﹣3a﹣2b:表示委员买了3个足球、2个篮球,剩余的经费.故答案为:体育委员买了3个足球、2个篮球,剩余的经费点评:本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.36.(2010•宿迁)已知5是关于x的方程3x﹣2a=7的解,则a的值为 4 .考点:一元一次方程的解.专题:计算题.分析:根据方程的解的定义,把x=5代入方程3x﹣2a=7,即可求出a的值.解答:解:∵x=5是关于x的方程3x﹣2a=7的解,∴3×5﹣2a=7,解得:a=4.故答案为:4.点评:本题的关键是理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.37.观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第7个单项式为64x7;第n个单项式为(﹣2)n﹣1x n.考点:单项式.专题:压轴题;规律型.分析:要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为正,数字变化规律是2n﹣1,字母变化规律是x n.解答:解:由题意可知第n个单项式是(﹣1)n﹣12n﹣1x n,即(﹣2)n﹣1x n,第7个单项式为(﹣1)7﹣127﹣1x7,即64x7.故答案为:64x7;(﹣2)n﹣1x n.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.38.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是 2 .考点:一元一次方程的解.专题:计算题.分析:方程的解就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=m代入原方程即可求得m的值.解答:解:把x=m代入方程4x﹣3m=2,得:4m﹣3m=2,解得:m=2.故答案为:2.点评:本题考查的是方程的解的定义,要熟练掌握定义的内容.39.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是150×80%﹣x=20 .考点:由实际问题抽象出一元一次方程.专题:应用题.分析:首先理解题意找出题中存在的等量关系:售价﹣成本=利润,根据等量关系列方程即可.解答:解:设这种服装的成本价为每件x元,则实际售价为150×80%元,根据实际售价﹣成本=利润,那么可得到方程:150×80%﹣x=20.故答案为:150×80%﹣x=20.点评:本题以经济中的打折问题为背景,主要考查根据已知条件构建方程的能力,其中把握等量关系“售价﹣成本=利润”是关键.40.若单项式2x2y m与x n y3是同类项,则m+n的值是 5 .考点:同类项.专题:计算题.分析:本题考查同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.解答:解:由同类项的定义可知n=2,m=3,则m+n=5.故答案为:5.点评:同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.41.若,则= .考点:等式的性质.专题:计算题.分析:根据等式的性质1,等式两边都加上1,等式仍然成立可得出答案.解答:解:根据等式的性质:两边都加1,,则=,故答案为:.点评:本题主要考查等式的性质,观察要求的式子和已知的式子之间的关系,从而利用等式的性质进行计算.42.如图,在边长为1的小正三角形组成的图形中,正六边形的个数共有8个.考点:认识平面图形.专题:压轴题.分析:解这类题要仔细观察图形,逐个找出来而且要注意外面这个最大的.解答:解:小的正六边形将有6个小正三角形组成,图中可当作正六边形的中心的有7个,加上最大的这个正六边形,一共有8个.故答案为:8.点评:解决本题的关键应理解正六边形的构造特点.43.观察下列图形的排列规律(其中△是三角形,□是正方形,○是圆),○△□□○△□○△□□○△□┅┅若第一个图形是圆,则第2008个图形是三角形(填图形名称).考点:认识平面图形.专题:规律型.分析:解此类题首先要仔细观察图形找出其中的规律进行解答.解答:解:观察图形的排列规律知,7个图形循环一次,2008÷7=286…6,又由第一个图形是圆形,则第20个图形是三角形.故答案为:三角形.。
数学七年级上册 期末试卷章末练习卷(Word版 含解析)
数学七年级上册期末试卷章末练习卷(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.2.如图,两个形状、大小完全相同的含有30。
角的直角三角板如图1放置,PA、PB与直线MN重合,且三角板PAC和三角板PBD均可以绕点P逆时针旋转.(1)如图1.则∠DPC为多少度?(2)如图2,若三角板PAC的边PA从PN处开始绕点P逆时针旋转的角度为α,PF平分∠APD,PE平分∠CPD,求∠EPF的度数;(3)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3。
/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2。
/秒,在两个三角板旋转过程中,当PC转到与PM重合时,两个三角板都停止转动.设两个三角板旋转时间为t秒,请问是定值吗?若是定值,请求出这个定值;若不是定值,请说明理由。
七年级上册数学 期末试卷章末训练(Word版 含解析)
七年级上册数学期末试卷章末训练(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
(2)① 利用绝对值等于7的数是±7,就可得出a-3=±7,解方程即可;② 由已知数轴上表示数a的点位于﹣4与3之间,可得出a+4>0,a-3<0,先去掉绝对值,再合并同类项即可;③ 根据线段上的点到线段两端的距离的和最短,可得出答案。
七年级上册数学 期末试卷章末训练(Word版 含解析)
七年级上册数学期末试卷章末训练(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA 绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP=________度.【答案】(1)解:由题意可得:∠AOB=60°,∠AOP=∠A′OP,∵OB平分∠A′OP,∴∠A′OP=2∠POB,∴∠AOP=∠A′OP=2∠POB,∴∠AOB=∠AOP+∠POB=3∠POB=60°,∴∠POB=20°,∴∠AOP=2∠POB=40°(2)解:①当点O运动到使点A在射线OP的左侧,且射线OB在在∠A′OP的内部时,如图1,设∠A′OB=x,则∠AOM=3∠A′OB=3x,∠AOA′= ,∵OP⊥MN,∴∠AON=180°-3,∠AOP=90°-3x,∴,∵∠AOP=∠A′OP,∴∠AOP=∠A′OP=∴,解得:,∴;②当点O运动到使A在射线OP的左侧,但是射线OB在∠A′ON内部时,如图2,设∠A′OB=x,则∠AOM=3x,∠AON= ,∠AOA′= ,∵∠AOP=∠A′OP,∴∠AOP=∠A′OP= ,∵OP⊥MN,∴∠AOP=90-∠AOM=90-3x,∴,解得:,∴;(3)解:①如图3,当∠A′OB=150°时,由图可得:∠A′OA=∠A′OB-∠AOB=150°-60°=90°,又∵∠AOP=∠A′OP,∴∠AOP=45°,∴∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,由图可得∠A′OA=360°-150°-60°=150°,又∵∠AOP=∠A′OP,∴∠AOP=75°,∴∠BOP=60°+75°=135°;综上所述:∠BOP的度数为105°或135°.【解析】【分析】(1)由角平分线的性质和∠ AOP=∠A′OP可得∠POB= ∠AOB,∠AOP=∠AOB,则∠POA的度数可求解;(2)由题意可分两种情况:①当点O运动到使点A在射线OP的左侧,且射线OB在在∠A′OP的内部时,由角的构成易得∠AOP= -∠AOM= -3∠A′OB,∠AOA′=+∠A′OB,由角平分线的性质可得∠AOP=∠A′OP,于是可得关于∠A′OB的方程,解方程可求得∠A′OB的度数,则可求解;②当点O运动到使A在射线OP的左侧,但是射线OB在∠A′ON内部时,同理可求解;(3)由题意可分两种情况讨论求解:①当∠A′OB沿顺时针成150°时,结合已知条件易求解;②当∠A′OB沿时针方向成 150°时,结合题意易求解。
人教版数学七年级上册 期末试卷章末练习卷(Word版 含解析)
人教版数学七年级上册期末试卷章末练习卷(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.【答案】(1)解:a=-3,b=9(2)解:设3秒后,点C对应的数为x则CA=|x+3|,CB=|x-9|∵CA=3CB∴|x+3|=3|x-9|=|3x-27|当x+3=3x-27,解得x=15,此时点C的速度为当x+3+3x-27=0,解得x=6,此时点C的速度为(3)解:设运动的时间为t点D对应的数为:t点P对应的数为:-3-5t点Q对应的数为:9+20t点M对应的数为:-1.5-2t点N对应的数为:4.5+10t则PQ=25t+12,OD=t,MN=12t+6∴为定值.【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。
(2)根据点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,可表示出CA=|x+3|,CB=|x-9|,再由CA=3CB,建立关于x的方程,求出方程的解,然后求出点C的速度即可。
(3)根据点的运动速度和方向,分别用含t的代数式表示出点D、P、Q、M、N对应的数,再分别求出PQ、OD、MN的长,然后求出的值时常量,即可得出结论。
2.如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD= ∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD= ∠AOC,∠DOE= (n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).【答案】(1)解:∵∠BOC=40°,OD平分∠AOC,∴∠AOD=∠DOC=70°,∵∠DOE=90°,则∠AOE=90°﹣70°=20°(2)解:设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解得:x= ,∴∠AOE=60﹣x=60﹣ =(3)解:设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解得:x= ,∴∠AOE= ﹣ =【解析】【分析】(1)首先根据平角的定义,由∠AOC=∠AOB-∠BOC算出∠AOC的度数,再根据角平分线的定义由∠AOD=∠DOC =∠AOC算出∠AOD的度数,最后根据∠AOE=∠DOE-∠AOD即可算出答案;(2)可以用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE;(3)用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE。
初一第一学期数学度末考试试卷(有解析)
初一第一学期数学度末考试试卷(有解析)经过这段时间的复习,大家觉得自己有提高吗?我们就来通过做这篇初一第一学期数学期末考试试卷(有【答案】)检测一下自己的劳动成果吧!【一】选择题(此题共30分,每题3分)下面各题均有四个选项,其中只有一个是符合题意的.1. 的绝对值等于( ).A. B. C. D.2.根据北京市公安交通××局网站的数据显示,截止到2019年2月16日,北京市机动车保有量比十年前增加了辆,将用科学记数法表示应为( ).A. B. C. D.3.以下关于多项式的说法中,正确的选项是( ).A.它是三次三项式B.它是四次两项式C.它的最高次项是D.它的常数项是14.关于x的方程的解是,那么k的值为( ).A. B. C. 1 D.5. 以下说法中,正确的选项是( ).A.任何数都不等于它的相反数B.互为相反数的两个数的立方相等C.如果a大于b,那么a的倒数一定大于b的倒数D.a与b两数和的平方一定是非负数6.将一副直角三角尺按如下图的不同方式摆放,那么图中锐角与相等的是( ).7.以下关于几何画图的语句正确的选项是A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转,终边OB与始边OA的夹角为一个平角D. 线段a,b满足,在同一直线上作线段,,那么线段8.将以下图形画在硬纸片上,剪下并折叠后能围成三棱柱的是A B C D9.a,b是有理数,假设a在数轴上的对应点的位置如下图,,有以下结论:① ;② ;③ ;④ .那么所有正确的结论是( ).A.①,④B. ①,③C. ②,③D. ②,④10.右图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体应是【二】填空题(此题共20分,11~14题每题2分,15~18题每题3分)11.用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是 .12.计算: = .13.一件童装每件的进价为a元( ),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.14.将长方形纸片ABCD折叠并压平,如下图,点C,点D的对应点分别为点,点,折痕分别交AD,BC边于点E,点F.假设,那么 =.16.如图,数轴上A,B两点表示的数分别为和6,数轴上的点C满足,点D在线段AC的延长线上,假设,那么BD= ,点D表示的数为 .17.右边球体上画出了三个圆,在图中的六个□里分别填入1,2,3,4,5,6,使得每个圆周上四个数相加的和都相等.(1)这个相等的和等于(2)在图中将所有的□填完整.18.如图,正方形ABCD和正方形DEFG的边长都是3 cm,点P从点D出发,先到点A,然后沿箭头所指方向运动(经过点D时不拐弯),那么从出发开始连续运动2019cm时,它离点最近,此时它距该点 cm.【三】计算题(此题共12分,每题4分)19. .解:解:21. .解:【四】先化简,再求值(此题5分)22. ,其中, .解:【五】解以下方程(组)(此题共10分,每题5分)23. .解:24.解:六、解答题(此题4分)25. 问题:如图,线段AC上依次有D,B,E三点,其中点B为线段AC的中点,,假设,求线段AC的长.请补全以下解答过程.解:∵ D,B,E三点依次在线段AC上,七、列方程(或方程组)解应用题(此题共6分)26. 有甲、乙两班学生,乙班比甲班少4人,如果从乙班调17人到甲班,那么甲班人数比乙班人数的3倍还多2人,求甲、乙两班原来各有多少人.八、解答题(此题共13分,第27题6分,第27题7分)27.当时,代数式的值为17.(1)假设关于的方程的解为,求的值;(2)假设规定表示不超过的最大整数,例如,请在此规定下求的值.解:28.如图,,OD平分AOC,,OE平分BOC.(1)用直尺、量角器画出射线OA,OB,OC的准确位置;(2)求BOC的度数,要求写出计算过程;(3)当,时(其中, ),用,的代数式表示BOC的度数.(直接写出结果即可)解:这篇初一第一学期数学期末考试试卷(有【答案】)就为大家整理到这里了,希望对您的考试有所帮助!。
初一上册数学度末考试卷(附解析)
初一上册数学度末考试卷(附解析)以下是查字典数学网为您举荐的七年级上册数学期末考试卷(附答案),期望本篇文章对您学习有所关心。
七年级上册数学期末考试卷(附答案)一、填空题:(每小题2分,共28分)1. 的立方与的平方的差用代数式表示为:_______________________ ______。
2.将多项式按字母降幂排列:_______________________。
3.已知,则=__________________。
4.已知是单项式,且,则=______________________。
5.运算:=_________________________。
6.分解因式:=________________________________。
7.分解因式:=___________________。
8.当=___________时,分式的值为零。
9.化简:=____________________。
10.用科学计数法表示:= _____________________。
11.设,则代数式的值是__________________。
12.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第幅图中共有个。
13.如图右,三个大小一样的正方形,正方形绕点旋转后能与正方形重合,那么旋转角为______________度。
14、将长方形纸片按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与原BC边交于点E;(2)以过点E的直线为折痕折叠纸片,使点A恰好落在原BC边上,折痕与原AD边交于点F;则的度数为_______.二、选择题:(每小题3分,共12分)[每题只有一个正确答案]15.已知:,则等于( )(A) ; (B) ; (C) ; (D) 。
16.关于的方程有增根,则的值为( )(A)2; (B) ; (C)0; (D)1.17.在俄罗斯方块游戏中,所有显现的方格体自由下落,假如一行中九个方格齐全,那么这一行会自动消逝。
初一上册数学度末试卷(带解析)
初一上册数学度末试卷(带解析)以下是查字典数学网为您举荐的2021年七年级上册数学期末试卷(带答案),期望本篇文章对您学习有所关心。
2021年七年级上册数学期末试卷(带答案)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中)题号1 2 3 4 5 6 7 8 9 10 11 12答案1. 等于( )A.-2B.C.2D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚3.下列方程为一元一次方程的是( )A.y+3= 0B.x+2y=3C.x2=2xD.4.下列各组数中,互为相反数的是( )A. 与1B.(-1)2与1C. 与1D.-12与15.下列各组单项式中,为同类项的是( )A.a 与aB. a 与2aC.2xy与2xD.-3与a6.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是A.a+b0B.ab 0C.D.7.下列各图中,能够是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则ABC等于( )A.70B.90C.105D.1209.在灯塔O处观测到轮船A位于北偏西54的方向,同时轮船B在南偏东15的方向,那么AOB的大小为( )A.69B.111C.141D.15910.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,依照题意,可得到的方程是( )A.(1+50%)x80%=x-28B.(1+50%)x80%=x+28C.(1+50%x)80%=x-28D.(1+50%x)80%=x+2811.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A 港和B港相距x千米.依照题意,可列出的方程是( )A. B. C. D.12.填在下面各正方形中的四个数之间都有相同的规律,依照这种规律,m的值应是( )A.110B.158C.168D.178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式xy2的系数是_________.15.若x=2是方程8-2x=ax的解,则a=_________.16.运算:1537+4251=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.18.已知,a-b=2,那么2a-2b+5=_________.19.已知y1=x+3,y2=2-x,当x=_________时,y1比y2大5.20.依照图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)运算:(-1)3- [2-(-3) ] .22.(本小题满分6分)一个角的余角比那个角的少30,请你运算出那个角的大小.23.(本小题满分7分)先化简,再求值:(-4x2+2x-8)-( x-1),其中x= .24.(本小题满分7分) 解方程:- =1.25.(本小题满分7分)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位(1)写出第一次移动后那个点在数轴上表示的数为;(2)写出第二次移动结果那个点在数轴上表示的数为;(3)写出第五次移动后那个点在数轴上表示的数为;(4)写出第n次移动结果那个点在数轴上表示的数为;(5)假如第m次移动后那个点在数轴上表示的数为56,求m的值.26.(本小题满分8分)如图,AOB=COD=90,OC平分AOB,BOD=3DOE.求:COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD 的中点E、F之间距离是10cm,求AB、CD的长.28.(本小题满分11分)某中学为了表彰在书法竞赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:我这次买这两种笔需支领2447元.王老师罢了一下,说:假如你用这些钱只买这两种笔,那么帐确信算错了.请你用学过的方程知识说明王老师什么缘故说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.假如签字笔的单价为小于10元的整数,请通过运算,直截了当写出签字笔的单价可能为元.2021~2021学年度第一学期七年级期末考试数学试题参考答案及评分说明说明:1.各校在阅卷过程中,如还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当学生的解答在某一步显现错误,阻碍了后继部分时,假如该步以后的解答未改变这一题的内容和难度,可视阻碍的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;假如这一步后面的解答有较严峻的错误,就不给分.一、选择题(每小题3分,共36分)1.C ;2.B ;3.A;4.D;5.B;6. D;7.C;8.D;9.C;10. B;11.A;12.B.二、填空题(每题3分,共24分)13. ;14. ;15.2;16.582817.2.518.9;19.2;20.8.三、解答题(共60分)21.解:原式= -1- (2-9) 3分=-1+ 5分= 6分22.解:设那个角的度数为x. 1分由题意得:3分解得:x=80 5分答:那个角的度数是80 6分23.解:原式= 3分= 4分把x= 代入原式:原式= = 5分= 7分24.解:. 2分. 4分8x=3. 6分. 7分25.解:(1)第一次移动后那个点在数轴上表示的数是3; 1分(2)第二次移动后那个点在数轴上表示的数是4; 2分(3)第五次移动后那个点在数轴上表示的数是7; 3分(4)第n次移动后那个点在数轴上表示的数是n+2; 5分(5)54. 7分26.解:∵AOB=90,OC平分AOBBOC= AOB=45,2分∵BOD=COD-BOC=90-45=45,4分BOD=3DOEDOE=15,7分COE=COD-DOE=90-15=75 8分27.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm. 1分∵点E、点F分别为AB、CD的中点,AE= AB=1.5xcm,CF= CD=2xcm. 3分EF=AC-AE-CF=2.5xcm. 4分∵EF=10cm,2.5x=10,解得:x=4. 6分AB=12cm,CD=16cm. 8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. 1分由题意得:30x+45(x+4)=1755 3分解得:x=21则x+4=25. 4分答:钢笔的单价为21元,毛笔的单价为25元. 5分(2)设单价为21元的钢笔为y支,因此单价为25元的毛笔则为(105-y)支. 6分依照题意,得21y+25(105-y)=2447.7分解之得:y=44.5 (不符合题意) . 8分因此王老师确信搞错了. 9分(3)2或6. 11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则依照题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z差不多上整数,且178+a应被4整除,因此a为偶数,又因为a为小于10元的整数,因此a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.因此笔记本的单价可能2元或6元.唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
初一上学期数学度末试卷(附解析)
初一上学期数学度末试卷(附解析)以下是查字典数学网为您举荐的2021-2021学年初一上学期数学期末试卷(附答案),期望本篇文章对您学习有所关心。
2021-2021学年初一上学期数学期末试卷(附答案)考生须知1.本试卷共4页,共七道大题,满分120分。
考试时刻120分钟。
2.在答题卡上认真填写学校、班级、姓名和考试编号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.考试终止,请将本试卷和答题卡上并交回。
一、选择题(共8个小题,每小题4分,共32分)1. 的相反数是A. B. C.2 D.2.下列各式中结果为负数的是A. B. C. D.3.在中国共产党第十八次全国代表大会期间,新民网发起了有关发生的调查,截至2021年11月15日13时30分,共吸引了约262900人次参与.数据显示,社会民生问题位列网友最关怀的问题首位.请将262900用科学记数法表示为A. 0.2629106B. 2.629106C. 2.629105D. 26.291044. 某市4月某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是A. -8℃B. 8℃C. -2℃D. 2℃5.一个角的度数比它的余角的度数大20,则那个角的度数是A. 20B. 35C. 45D. 556.若,则的值为A. -1B. 1C. 4D. 77.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的是A.a +b0B.a -b0C.a0D. 08.右图是一个三棱柱纸盒的示意图,那个纸盒的展开图是二、填空题(共4个小题,每小题4分,共16分)9.比较大小:-23 -7.10.若关于的一元一次方程的解是,则= .11.若,y的倒数为,则x+y= .12.古希腊闻名的毕达哥拉斯学派把1,3,6,10,如此的数称为三角数把1,4,9,16,如此的数称为正方形数.从图中能够发觉,任何一个大于1的正方形数都能够写成两个相邻的三角形数之和,正方形数36能够写成两个相邻的三角形数与之和;正方形数能够写成两个相邻的三角形数与之和,其中n为大于1的正整数.三、解答题(共7个小题,每小题5分,共35分)13.运算:23-17-(-7)+(-16).14.运算:.15.运算:.16.解方程:.17.解方程:.18.求的值,其中.19.已知,求的值.四、画图题(共5分)20.如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.五、补全下面解题过程(共6分)21.如图所示,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.解:∵AB = 2cm,BC = 2AB,BC = 4cm.AC = AB+ = cm.∵D是AC的中点,AD = = cm.BD = AD - = cm.六、列方程解应用题(共2个小题,每小题5分,共10分)22.如图所示,长方形的长是宽的2倍多1厘米,周长为14厘米,求该长方形的宽和长各是多少厘米?23.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家动身先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?七、解答题(共2个小题,共16分,其中,第24小题7分,第25小题9分)24.【现场学习】现有一个只能直截了当画31角的模板,小英同学用那个模板画出了25的角,他的画法是如此的:(1)如图1,用模板画出AOB=31(2)如图2,再连续画出BOC=31(3)如图3,再连续依次画出3个31(4)如图4,画出射线OA的反向延长线OG,则FOG确实是所画的25的角.【尝试实践】请你也用那个模板画出6的角,并标明相关角度,指明结果.【实践探究】利用那个模板能够画出12的角吗?假如不能够,说出结论即可;假如能够,请你画出那个角,并说明理由.25. 如图,OM是AOC的平分线,ON是BOC的平分线.(1)如图1,当AOB是直角,BOC=60时,MON的度数是多少?(2)如图2,当AOB= ,BOC= 60时,猜想MON与的数量关系;(3)如图3,当AOB= ,BOC= 时,猜想MON与、有数量关系吗?假如有,指出结论并说明理由.昌平区2021-2021学年第一学期初一年级期末质量抽测数学试卷参考答案及评分标准2021.1一、选择题(共8个小题,每小题4分,共32分)1 2 3 4 5 6 7 8A D CB D AC C二、填空题(共4个小题,每小题4分,共16分)题号9 10 11 12答案-1 -1,5 15,21;三、解答题(共7个小题,每小题5分,共35分)13.解:原式=6+7-16 3分=13-16 4分=-3 5分14.解:原式= ( ) 3分=1 5分15.解:原式= 3分=- 5分16.解:移项,得3x-4 x =-5-4. 2分合并同类项,得- x =-9. 4分系数化为1,得x = 9. 5分17.解:去分母,得3(3x-7)-2(1+x)=6. 2分去括号,得9x-21-2-2x=6. 3分移项、合并同类项,得7x=29. 4分系数化为1,得x= . 5分18.解:原式= 2分= . 3分当时,原式= (-6)=12. 5分19.解:由,得. 1分因此原式=4(x+y)-3 2分=42-3 4分=5. 5分四、画图题(共5分)20.如图. 5分五、补全下面解题过程(共6分)21. 解:BC,6,AC,3,AB,1. 6分六、列方程解应用题(共2个小题,每小题5分,共10分)22.解:设长方形的宽为x厘米,则长为(2x+1)厘米. 1分依照题意,得x+(2x+1)=7. 3分解那个方程,得x=2. 4分现在2x+1=5.答:长方形的宽和长分别为2厘米和5厘米. 5分23.解:设步行的平均速度为每小时x千米,则公交车的平均速度为每小时7x千米. 1分依照题意,得x+ 7x=35. 3分解那个方程,得x=7. 4分现在7x=49.答:公交车的平均速度为每小时49千米. 5分七、解答题(共2个小题,共16分,其中,第24小题7分,第25小题9分)24.解:【尝试实践】如图. 3分【实践探究】如图. 5分理由:从AOB=31开始,顺次画BOC=31, , MON=31,共12个31角,合计372.而372-360=12,因此AON=12. 7分25. 解:(1)如图1,MON=45. 2分(2)如图2,MON= . 3分(3)如图3,MON= ,与的大小无关. 4分理由:∵AOB= ,BOC= ,AOC= + . 5分∵OM是AOC的平分线,ON是BOC的平分线,AOM= AOC= ( + ). 6分NOC= BOC = . 7分AON=AOC -NOC = + - = + . 8分要练说,得练看。
完整版人教版七年级上册数学期末测试卷及含答案(基础+提升)
人教版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、正多面体的面数.棱数.顶点数之间存在着一个奇妙的关系,若用F ,E , V分别表示正多面体的面数.棱数.顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.202、下列各式正确的是()A. B. C.D.3、的绝对值是()A.±5B.C.5D.4、下列计算正确是()A.6 a﹣3 a=3B.5 y3•3 y5=15 y8C.(a4b)3=a7b3 D.(a﹣5)2=a2﹣255、﹣的相反数是()A.3B.-3C.D.-6、把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( )A.(45,77)B.(45,39)C.(32,46)D.(32,23)7、下列各式中与a﹣b﹣c的值不相等的是()A. a﹣(b+ c)B. a+(﹣b﹣c)C. a﹣(b﹣c)D.(﹣c)+(a﹣b)8、已知∠α=32°,则∠α的余角为()A.58°B.68°C.148°D.168°9、近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×10 8B.6.5×10 7C.6.5×10 8D.65×10 610、-的倒数是()A.-7B.C.7D.-11、元旦期间,泰州金鹰商场推出全场打九折的优惠活动,持贵宾卡可在九折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了()折优惠。
人教版七年级数学上学期期末复习检测试卷(一)含解析
人教版七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001B.0C.﹣0.000001D.﹣1000002.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣b3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0B.﹣2C.1D.24.(3分)三棱锥有()个面.A.3B.4C.5D.65.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=36.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90D.180°﹣2α7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A.B.C.D.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C.+10D.+1010.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:∠如果∠AOC=∠BOD,则图中有两对互补的角;∠如果作OE平分∠BOC,则∠AOC=2∠DOE;∠如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;∠如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC=cm.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a=.14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了小时.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD=cm.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)18.(6分)解方程:﹣1=.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣220.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):院系篮球赛成绩公告比赛场次胜场负场积分2212103422148362202222盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积分,胜一场积分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP=度.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP=(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.参考答案一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001B.0C.﹣0.000001D.﹣100000【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【解答】解:|0.000001|=0.000001,|0|=0,|﹣0.000001|=0.000001,|﹣100000|=100000,所以绝对值最小的数是0.故选:B.【点评】考查了有理数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.2.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣b【分析】根据同类项的定义对四个选项进行逐一分析即可.【解答】解:A、2xy2和﹣y2x符合同类项的定义,故本选项正确;B、﹣m2np和﹣mn2所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;C、﹣m2和﹣2m所含相同字母的次数不同,不是同类项,故本选项错误;D、0.5a和﹣b所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;故选:A.【点评】本题考查的是同类项的定义,解答此题时要注意同类项必需满足以下条件:∠一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;∠同类项与系数的大小无关;∠同类项与它们所含的字母顺序无关;∠所有常数项都是同类项.3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0B.﹣2C.1D.2【分析】把x=2代入方程计算求出a的值,即可解答.【解答】解:把x=2代入ax﹣2=0得:2a﹣2=0解得:a=1,故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(3分)三棱锥有()个面.A.3B.4C.5D.6【分析】三棱锥的侧面由三个三角形围成,底面也是一个三角形,结合三棱锥的组成特征,可确定它棱的条数和面数.【解答】解:三棱锥有6条棱,有4个面.故选:B.【点评】本题考查了认识立体图形,几何体中,面与面相交成线,线与线相交成点.熟记常见立体图形的特征是解决此类问题的关键.5.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=3【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、两边都加2,正确;B、两边都减1,正确;C、两边都乘以3,正确;D、如果x2=3x,那么x=3或0,错误;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.6.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90D.180°﹣2α【分析】分别表示出α的补角和α的余角,然后可得出答案.【解答】解:α的补角=180°﹣α,α的余角=90°﹣α,故α的补角比α的余角大:180°﹣α﹣(90°﹣α)=90°.故∠1的补角比∠1的余角大90°,故选:C.【点评】本题考查了余角和补角的知识,关键是掌握互余两角之和为90°,互补两角之和为180°.7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°【分析】根据位置的相对性可知,小凡和小华的观测方向相反,角度相等,据此解答.【解答】解:小华在小凡的南偏东30°方位,那么小凡在小华的北偏西30°.故选:B.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以某个图形为参照物是本题的关键.8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、出现“U”字的,不能组成正方体,A错;B、以横行上的方格从上往下看:B选项组成正方体;C、由两个面重合,不能组成正方体,错误;D、四个方格形成的“田”字的,不能组成正方体,D错.故选:B.【点评】考查了展开图折叠成几何体,如没有空间观念,动手操作可很快得到答案.需记住正方体的展开图形式:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C.+10D.+10【分析】设每个房间需要粉刷的墙面面积为xm2,根据“每名一级技工比二级技工一天多粉刷10m2墙面”,列方程即可.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:∠如果∠AOC=∠BOD,则图中有两对互补的角;∠如果作OE平分∠BOC,则∠AOC=2∠DOE;∠如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;∠如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1B.2C.3D.4【分析】先求出∠AOC=∠BOD=30°,再根据互补的角的定义即可判断∠正确;设∠AOC=x,根据角平分线定义以及角的和差定义求出∠DOE=x,即可判断∠正确;设∠AOC=x,当ON在OM的右边时,可得∠DON=∠BON,ON平分∠BOD;当ON在OM的左边时,ON不是∠BOD的平分线,即可判断∠错误;设∠AOC=x,根据角的和差定义可得∠AOP=90°﹣x,∠BOQ=30°+x,即可判断∠正确.【解答】解:∠∠AOB=120°,∠COD=60°,∠∠AOC+∠BOD=∠AOB﹣∠COD=60°.∠∠∠AOC=∠BOD,∠AOC+∠BOD=60°,∠∠AOC=∠BOD=30°,∠∠AOD=∠COB=90°,∠∠AOD+∠COB=180°,又∠∠AOB+∠COD=180°,∠图中有两对互补的角,故∠正确;∠设∠AOC=x,则∠BOD=60°﹣x,∠∠BOC=∠BOD+∠COD=60°﹣x+60°=120°﹣x.∠OE平分∠BOC,∠∠BOE=∠BOC=60°﹣x,∠∠DOE=∠BOE﹣∠BOD=(60°﹣x)﹣(60°﹣x)=x,∠∠AOC=2∠DOE,故∠正确;∠设∠AOC=x,则∠BOD=60°﹣x,∠OM平分∠AOC,∠∠COM=∠AOC=x.如果ON在OM的右边,那么∠DON=∠MON﹣∠COD﹣∠COM=90°﹣60°﹣x=30°﹣x,∠∠BON=∠BOD﹣∠DON=60°﹣x﹣(30°﹣x)=30°﹣x,∠∠DON=∠BON,∠ON平分∠BOD;如果ON在OM的左边,显然ON的反向延长线平分∠BOD,即ON不是∠BOD的平分线,故∠错误;∠设∠AOC=x,则∠BOD=60°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(60°﹣x)=30°+x,∠∠AOP+∠BOQ=90°﹣x+30°+x=120°,∠∠COD=60°,∠=2,故∠正确.故选:C.【点评】本题考查了余角和补角,角平分线定义以及角的计算,设∠AOC=x,用含x的代数式表示相关角度是解题的关键.二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:41°31′.【分析】根据余角的定义得出算式,求出即可.【解答】解:余角为90°﹣48°29′=41°31′,故答案为:41°31′.【点评】本题考查了余角和度、分秒之间的换算,能知道∠A的余角是90°﹣∠A是解此题的关键.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC=6cm.【分析】根据线段AB=2cm,BC=2AB,可求BC,再根据线段的和差关系可求AC的长.【解答】解:∠AB=2cm,BC=2AB,∠BC=4cm,∠AC=AB+BC=6cm.故答案为:6.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a=2.【分析】利用一元一次方程的定义判断即可确定出a的值.【解答】解:∠关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,∠a2﹣4=0,且a+2≠0,解得:a=2,故答案为:2【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了10小时.【分析】设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度﹣水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.【解答】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为:=10(小时)故答案是:10.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为﹣30.【分析】依据等式的性质得到2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,然后将两式相加即可.【解答】解:∠x2﹣xy=﹣3,2xy﹣y2=﹣8,∠2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,∠2x2+4xy﹣3y2=﹣6+(﹣24)=﹣30.故答案为:﹣30.【点评】本题主要考查的是求代数式的值,依据等式的性质求得2x2﹣2xy=﹣6,6xy﹣3y2=﹣24是解题的关键.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD=16或4cm.【分析】分两种情况讨论,当点M在点N左侧,当点M在点N右侧,即可解答.【解答】解:如图,把直线l放到数轴上,让点A和原点重合,则点A对应的数为0,点B对应的数为10,点C对应的数为x,点D对应的数为y,∠线段AD的中点为M、线段BC的中点为N,∠点M对应的数为,点N对应的数为,(1)如图1,当点M在点N左侧时,MN==3,化简得:x﹣y=﹣4,由点C在点D左边可得:CD=y﹣x=4.(2)如图1,当点M在点N右侧时,MN==3=3,化简得:y﹣x=16,由点C在点D左边可得:CD=y﹣x=16.故答案为:16或4【点评】本题考查了两点间的距离,解决本题的关键是分类讨论.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣××6=﹣1;(2)原式=1﹣3+4=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:﹣1=.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母:3(x﹣2)﹣6=2(x+1),去括号:3x﹣6﹣6=2x+2,移项:3x﹣2x=2+6+6,合并同类项:x=14.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣2【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=6a2b﹣2ab2﹣6a2b+3ab2﹣3ab=(6a2b﹣6a2b)+(﹣2ab2+3ab2)﹣3ab=ab2﹣3ab,当,b=﹣2时原式=ab2﹣3ab==2+3=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):院系篮球赛成绩公告比赛场次胜场负场积分2212103422148362202222盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积1分,胜一场积2分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.【分析】(1)仔细观察表格中的数据发现规律并设出未知数列出一元一次方程求解即可;(2)根据题意列出一元一次方程求解即可得到答案.【解答】解(1)由题意可得,负一场积分为:22÷22=1(分),胜一场的积分为:(34﹣10×1)÷12=2(分),故答案为:1,2;(2)设胜x场,负22﹣x场,由题知2x=2(22﹣x),解得x=11.答:胜场数为11场时,胜场的积分等于负场的2倍.【点评】本题考查了一元一次方程的应用,解题的关键是根据题目中的重点语句找到等量关系并列出方程求解.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.【分析】(1)求出AC长,根据线段中点求出AM长,即可求出答案;(2)先求出AM和CM长,分为两种情况:当D在线段BC上时和当D在l上且在点C的右侧时,求出MD即可.【解答】解:(1)当m=4时,又∠AB=6,∠AC=4+6=10,又M为AC中点,∠AM=MC=5,∠BM=AB﹣AM,=6﹣5=1;(2)∠AB=6,BC=m,∠AC=6+m,∠M为AC中点,∠,∠当D在线段BC上时,CD=n,MD=MC﹣CD==;∠当D在l上且在点C的右侧时,CD=n,∠=.【点评】本题考查了线段的中点和求两点之间的距离,能用x表示出各个线段的长度是解此题的关键,注意(2)要进行分类讨论.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.【分析】(1)设甲队有x人,则乙队有x+10人,由题意列方程得x+10+5=3(x﹣5),解答即可;(2)方式一:根据题意可列方程:40×20x+80=800x+80,方式二:根据题意可列方程:(20×0.9+1)×40•x+40×5=760x+200,当x=3时,选方式一,方式二均可,当0<x<3选方式一,当x>3时,选方式二;【解答】解:(1)设甲队有x人,则乙队有x+10人由题知x+10+5=3(x﹣5)解得x=15∠甲队有15人,乙队有25人15+25=40(人)故七(1)班共有40人(2)方式一:40×20x+80=800x+80方式二:(20×0.9+1)×40•x+40×5=760x+200800x+80=760x=200,可得x=3∠若x=3时,选方式一,方式二均可若0<x<3选方式一若x>3时,选方式二【点评】本题主要考查了一元一次方程的运用,读懂题意是解题的关键.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP=105或135度.【分析】(1)设∠A′OB=∠POB=x,表示∠AOP=2x,∠BOP=x,由∠AOB=60°列方程为:x+2x=60,可得x的值,从而求出结论;(2)分两种情况讨论,∠当点O运动到使点A在射线OP的左侧,∠当点O运动到使A在射线OP 的左侧,但是射线OB在∠POA′外部时,分别求的值即可;(3))∠如图3,当∠A′OB=150°时,可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°,因为∠AOP=∠A'OP,所以∠AOP=45°,∠BOP=60°+45°=105°;∠如图4,当∠A′OB=150°时,可得:∠A'OA=360°﹣150°﹣60°=150°,因为∠AOP=∠A'OP,所以∠AOP=75,∠BOP=60°+75°=135°;【解答】(本题10分)解:(1)∠OB平分∠A′OP,∠设∠A′OB=∠POB=x,∠∠AOP=∠A′OP,∠∠AOP=2x,∠∠AOB=60°,∠x+2x=60,∠x=20°,∠∠AOP=2x=40°;(2)∠当点O运动到使点A在射线OP的左侧∠∠AOM=3∠A′OB∠设∠A′OB=x,∠AOM=3x∠OP∠M∠∠AON=180°﹣3x∠AOP=90°﹣3x∠∠∠AOP=∠A′OP∠∠AOP=∠A′OP=∠OP∠MN∠∠∠∠当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时∠∠AOM=3∠A′OB设∠A′OB=x,∠AOM=3x∠∠AOP=∠A′OP=∠OP∠MN∠3x+=90∠x=24°∠(3)∠如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°∠∠AOP=∠A'OP∠∠AOP=45°∠∠BOP=60°+45°=105°∠如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°∠∠AOP=∠A'OP∠∠AOP=75°∠∠BOP=60°+75°=135°故答案为:105°或135°【点评】本题主要考查了角的运算,学会灵活处理问题,注意分类讨论不同的情况.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP=11(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.【分析】(1)先根据线段的和差关系求出AC,进一步得到AA′,再根据翻折的定义即可求解;(2)分∠当A′在线段BC上,∠当A′在l上且在C的右侧,进行讨论即可求解;(3)分∠当8<x<12,此时,A′在C的左侧,∠当x>12 此时,A′在C的右侧,∠当x>24时,点C落在C’,进行讨论即可求解.【解答】解:(1)AC=AB+BC=8+16=24,AA′=AC﹣A′C=24﹣2=22,AP=22÷2=11.故答案为:11;(2)∠当A′在线段BC上,由题知PA=PA′,∠M为AC中点,∠MA′=MC,∠PM=PA′+A′M====12;∠当A′在l上且在C的右侧,∠M为A′C中点,∠MA′=MC,∠PM=PA′﹣A′M====12,综上:PM=12;(3)∠当8<x<12,此时,A′在C的左侧,PB’=PB=x﹣8,∠N为BP中点,∠,∠A′C=24﹣2x,∠M为A′C中点,∠,∠=;∠当x>12,此时,A′在C的右侧,PB′=PB=x﹣8,,A′C=2x﹣24∠M为A′C中点,∠,∠=;∠当x>24时,点C落在C’,不予考虑(考虑了则M为A′C’中点,得),∠.【点评】本题考查了两点之间的距离的应用,分类讨论的思想是解此题的关键.。
七年级数学上册期末试卷章末训练(Word版 含解析)
七年级数学上册期末试卷章末训练(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.已知:线段AB=30cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,经过几秒,点P、Q两点能相遇?(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发3秒后,点Q沿线段BA自B点向A点以4厘米/秒运动,问再经过几秒后点P、Q两点相距6cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若P、Q两点能相遇,直接写出点Q运动的速度.【答案】(1)解:30÷(2+4)=5(秒),答:经过5秒,点P、Q两点能相遇.(2)解:设再经过x秒后点P、Q两点相距6cm.当点P在点Q左边时,2(x+3)+4x+6=30解得x=3;当点P在点Q右边时,2(x+3)+4x-6=30解得x=5,所以再经过3或5秒后点P、Q两点相距6cm;(3)解:设点Q运动的速度为每秒xcm.当P、Q两点在点O左边相遇时,120÷60x=30-2,解得x=14;当P、Q两点在点O右边相遇时,240÷60x=30-6,解得x=6,所以若P、Q两点能相遇点Q运动的速度为每秒14cm或6cm.【解析】【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分情况讨论,P、Q在点O左右两边相遇来解答.3.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.【答案】(1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30°∴∠MOB=∠AOB=45°∠NOD=∠BOC=15°∴∠MON=∠MOB+∠NOD=45°+15°=60°.(2)解:设∠BOD=γ,∵∠MOD= = ,∠NOB= =∴∠MON=∠MOD+∠NOB-∠DOB= + -γ=(3)解:① 为定值,设运动时间为t秒,则∠DOB=3t-t=2t,∠DOE= ∠DOB=t,∴∠COE=β+t,∠AOD=α+2t,又∵α=2β,∴∠AOD=2β+2t=2(β+t).∴【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上学期数学度末试卷重点练习(有解析)
很多人都觉得考试靠的是平时的积累,考前突袭只是安慰自己罢了。
其实不然,考前的临阵磨枪也是相当重要的!为此,小编针对大多数人的情况整理了这篇初一上学期数学期末试卷模拟练习(有【答案】),一起来看看吧!
【一】选择题(每题3分,共30分):
1.以下变形正确的选项是( )
A.假设x2=y2,那么x=y
B.假设,那么x=y
C.假设x(x-2)=5(2-x),那么x= -5
D.假设(m+n)x=(m+n)y,那么x=y
2.截止到2019年5月19日,已有21600名中外记者成为上海世博会的注册记者,将21600用科学计数法表示为( )
A.0.216105
B.21.6103
C.2.16103
D.2.16104
3.以下计算正确的选项是( )
A.3a-2a=1
B.x2y-2xy2= -xy2
C.3a2+5a2=8a4
D.3ax-2xa=ax
4.有理数a、b在数轴上表示如图3所示,以下结论错误的选项是( )
A.b
C. D.
5.关于x的方程4x-3m=2的解是x=m,那么m的值是( )
A.2
B.-2
C.2或7
D.-2或7
6.以下说法正确的选项是( )
A. 的系数是-2
B.32ab3的次数是6次
C. 是多项式
D.x2+x-1的常数项为1
7.用四舍五入把0.06097精确到千分位的近似值的有效数字是( )
A.0,6,0
B.0,6,1,0
C.6,0,9
D.6,1
8.某车间计划生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,这所列方程为( )
A.13x=12(x+10)+60
B.12(x+10)=13x+60
C. D.
9.如图,点C、O、B在同一条直线上,AOB=90,
AOE=DOB,那么以下结论:①EOD=90②COE=③COE=④COE+BOD=90. 其中正确的个数是( )
A.1
B.2
C.3
D.4
10.如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且MFB= MFE. 那么MFB=( )
A.30
B.36
C.45
D.72
【二】填空题(每题3分,共18分):
11.x的2倍与3的差可表示为 .
12.如果代数式x+2y的值是3,那么代数式2x+4y+5的值是 .
13.买一支钢笔需要a元,买一本笔记本需要b元,那么买m支钢笔和n本笔记本需要元.
14.如果5a2bm与2anb是同类项,那么m+n= .
15.900-46027/= ,1800-42035/29= .
16.如果一个角与它的余角之比为1∶2,那么这个角是度,这个角与它的补角之比是 .
【三】解答题(共8小题,72分):
17.(共10分)计算:
(1)-0.52+ ;
(2) .
18.(共10分)解方程:
(1)3(20-y)=6y-4(y-11);
(2) .
19.(6分)如图,求以下图阴影部分的面积.
20.(7分), A=3x2+3y2-5xy,B=2xy-3y2+4x2,求:
(1)2A-B;(2)当x=3,y= 时,2A-B的值.
21.(7分)如图,BOC=2AOB,OD平分AOC,BOD=
14,求AOB的度数.
22.(10分)如以下图是用棋子摆成的T字图案.
从图案中可以看出,第1个T字型图案需要5枚棋子,第2个T 字型图案需要8枚棋子,第3个T字型图案需要11枚棋子.
(1)照此规律,摆成第8个图案需要几枚棋子?
(2)摆成第n个图案需要几枚棋子?
(3)摆成第2019个图案需要几枚棋子?
23.(10分)我市某中学每天中午总是在规定时间打开学校大门,七年级同学小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?
根据下面思路,请完成此题的解答过程:
解:设星期三中午小明从家骑自行车准时到达学校门口所用时间t小时,那么星期一中午小明从家骑自行车到学校门口所用时间为小时,星期二中午小明从家骑自行车到学校门口所用时间为小时,由题意列方程得:
24.(12分)如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如下图),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.
(1)当PA=2PB时,点Q运动到的
位置恰好是线段AB的三等分
点,求点Q的运动速度;
(2)假设点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?
(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.
参考【答案】:
【一】选择题:BDDCA,CDBCB.
【二】填空题:
11.2x-3; 12.11 13.am+bn
14.3 15.43033/,137024/31 16.300.
【三】解答题:
17.(1)-6.5; (2) .
18.(1)y=3.2; (2)x=-1.
19. .
20.(1)2x2+9y2-12xy; (2)31.
21.280.
22.(1)26枚;
(2)因为第[1]个图案有5枚棋子,第[2]个图案有(5+31)枚棋子,第[3]个图案有(5+32)枚棋子,一次规律可得第[n]个图案有
[5+3(n-1)=3n+2]枚棋子;
(3)32019+2=6032(枚).
23. ; ;由题意列方程得:,解得:t=0.4,
所以小明从家骑自行车到学校的路程为:15(0.4-0.1)=4.5(km),即:星期三中午小明从家骑自行车准时到达学校门口的速度为:4.50.4=11.25(km/h).
24.(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得:
PA=40,OP=60,故点P运动时间为60秒.
假设AQ= 时,BQ=40,CQ=50,点Q的运动速度为:
5060= (cm/s);
假设BQ= 时,BQ=20,CQ=30,点Q的运动速度为:
3060= (cm/s).
②当P在线段延长线上时,由PA=2PB及AB=60,可求得:
PA=120,OP=140,故点P运动时间为140秒.
假设AQ= 时,BQ=40,CQ=50,点Q的运动速度为:
50140= (cm/s);
假设BQ= 时,BQ=20,CQ=30,点Q的运动速度为:
30140= (cm/s).
(2)设运动时间为t秒,那么:
①在P、Q相遇前有:90-(t+3t)=70,解得t=5秒;
②在P、Q相遇后:当点Q运动到O点是停止运动时,点Q最多运动了30秒,而点P继续40秒时,P、Q相距70cm,所以t=70秒,经过5秒或70秒时,P、Q相距70cm .
(3)设OP=xcm,点P在线段AB上,20≦x≦80,
OB-AP=80-(x-20)=100-x,EF=OF-OE=(OA+ )-OE=(20+30)- ,(OB-AP).
上面的内容大家都会了吗?希望大家可以通过这篇初一上学期数学期末试卷模拟练习(有【答案】)对熟悉的知识加以巩固,对陌生的知识加以了解。