2020-2021深圳武汉大学深圳外国语学校高中三年级数学下期中一模试卷(带答案)

合集下载

2020-2021高中三年级数学下期中第一次模拟试题带答案(2)

2020-2021高中三年级数学下期中第一次模拟试题带答案(2)

2020-2021高中三年级数学下期中第一次模拟试题带答案(2)一、选择题1.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-2.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( )A .63B .61C .62D .573.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .44.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .15.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞6.已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,S 6a S a =-=,则5a = A .4B .10C .16D .327.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形8.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或79.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .1610.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-311.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4B .4C .14± D .1412.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-二、填空题13.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .2C A π-=,1sin 3A =,3a =,则b =______.14.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______15.在等差数列{}n a 中,12a =,3510a a +=,则7a = . 16.观察下列的数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …… ……设2018是该数表第m 行第n 列的数,则m n ⋅=__________.17.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.18.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .19.已知,x y 满足条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若目标函数=+z -ax y 取得最大值的最优解不唯一,则实数a 的值为__________.20.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?三、解答题21.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。

2020-2021深圳武汉大学深圳外国语学校高中三年级数学下期末一模试卷(带答案)

2020-2021深圳武汉大学深圳外国语学校高中三年级数学下期末一模试卷(带答案)

2020-2021深圳武汉大学深圳外国语学校高中三年级数学下期末一模试卷(带答案)一、选择题1.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的2.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙3.()()31i 2i i --+=( )A .3i +B .3i --C .3i -+D .3i -4.设向量a r ,b r满足2a =r ,||||3b a b =+=r r r ,则2a b +=r r ( )A .6B .32C .10D .425.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .12,32⎡⎢⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦6.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .10 7.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 48.若角α的终边在第二象限,则下列三角函数值中大于零的是( ) A .sin(+)2πα B .s(+)2co πα C .sin()πα+ D .s()co πα+9.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确10.已知函数()3sin 2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]11.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .12.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .二、填空题13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.14.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.15.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .16.函数()23s 34f x in x cosx =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 17.已知0x >,0y >,0z >,且36x y z ++=,则323x y z ++的最小值为_________. 18.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.19.若45100a b ==,则122()a b+=_____________. 20.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C 是锐角,且27a =1cos 3A =,则ABC △的面积为______. 三、解答题21.已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.23.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000:步,(说明:“02000:”表示大于或等于0,小于2000,以下同理),B 、20005000:步,C 、50008000:步,D 、800010000:步,E 、1000012000:步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000:的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000:的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.24.在平面直角坐标系xOy 中,已知直线l 的参数方程为1231x t y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是2sin 4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点()0,1P -.若直l 与曲线C 相交于两点,A B ,求PA PB +的值. 25.如图:在ABC ∆中,10a =,4c =,5cos C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.26.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【解析】【分析】根据圆柱与圆锥的结构特征,即可判定,得到答案.【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D.【点睛】本题主要考查了空间几何体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2.A解析:A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.3.B解析:B【解析】【分析】先分别对分子和分母用乘法公式化简,再分子分母同时乘以分母的共轭复数,化简即得最后结果.【详解】由题意得,复数()()()31i2i13i i13i3ii i i i--+-+⋅-+===----⋅.故应选B【点睛】本小题主要考查复数的乘法和除法的运算,乘法的运算和实数的运算类似,只需要记住2i1=-.除法的运算记住的是分子分母同时乘以分母的共轭复数,这一个步骤称为分母实数化,分母实数化的主要目的是将分母变为实数,然后将复数的实部和虚部求出来.属于基础题.4.D解析:D【解析】【分析】由题意,根据向量的模的运算,可得222+3+23a b ⋅=r r,求得2a b ⋅=-r r ,再根据向量模的运算,即可求解. 【详解】∵向量a r ,b r 满足2a =r ,3b a b =+=r r r ,∴222323a b ++⋅=r r,解得2a b ⋅=-r r . 则()22222442434242a b a b a b +=++⋅=+⨯+⨯-=r r r r r r.故选D .【点睛】本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。

2020-2021高中三年级数学下期中一模试卷(含答案)(4)

2020-2021高中三年级数学下期中一模试卷(含答案)(4)

yx M OB ,联立{
,解得 B( 4m , 4m ) ,所以 OB 2 4m ,由
x m( y 4)
m 1 m 1
m 1
2 4m 2 ,解得 1 m 1 ,所以 1 m 0 ,综上所述,实数 m 的取值范围是
m 1
3
5
3
1 3
,
,故选
C.
考点:简单的线性规划. 【方法点晴】本题主要考查了二元一次不等式组所表示的平面区域、简单的线性规划求最
B.a<b
C.a=b
D.a 与 b 的大小关系不能确定
6.已知数列{an}满足 log3 an 1 log3 an1(n N ) 且 a2 a4 a6 9 ,则
log1 (a5 a7 a9 ) 的值是( ) 3
A.-5
B.- 1 5
C.5
D. 1 5
7.两个等差数列
an

bn
,其前
n
【点睛】
本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中
档题.
3.C
解析:C 【解析】
y4
试题分析:直线 x m y 4 恒过定点 (0, 4) ,当 m 0 时,约束条件{x y 0 对应 x m y 4
的可行域如图,则 OP OA R 的最小值为 M 0 ,满足 M 2 ,当 m 0 时,
(1)若 AC 5 ,求 ABC 的面积;
(2)若 sin CAD 2 5 , AD 4 ,求 CD 的长. 5
25.若 Sn 是公差不为 0 的等差数列 an 的前 n 项和,且 S1, S2 , S4 成等比数列, S2 4 .
(1)求数列 an 的通项公式;
3

2020-2021武汉市高中三年级数学下期中第一次模拟试卷(含答案)

2020-2021武汉市高中三年级数学下期中第一次模拟试卷(含答案)

2020-2021武汉市高中三年级数学下期中第一次模拟试卷(含答案)一、选择题1.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项和n T 满足( ) A .()1nn T n =-⨯ B .n T n = C .n T n =-D .,2,.n n n T n n ⎧=⎨-⎩为偶数,为奇数2.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .283.若0a b <<,则下列不等式恒成立的是 A.11a b> B .a b -> C .22a b > D .33a b <4.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5055.已知等比数列{}n a 的各项都是正数,且13213,,22a a a 成等差数列,则8967a a a a +=+ A .6 B .7C .8D .96.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定7.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102008.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或79.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.10.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos 22A b c c+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形11.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .8012.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( ) A .2BC.2D .4二、填空题13.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是 .14.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________15.已知递增等比数列{}n a 的前n 项和为n S ,且满足:11a =,45234a a a a +=+,则144S S a +=______. 16.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积6S =+形的外接圆半径是______ 17.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n nn a b ++=-- ,则数列{}n b 的前10项和10S =___________18.已知数列{}n a 满足11a =,132n n a a +=+,则数列{}n a 的通项公式为________. 19.若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围是____________ .20.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 三、解答题21.设函数()112f x x =++|x |(x ∈R)的最小值为a . (1)求a ;(2)已知两个正数m ,n 满足m 2+n 2=a ,求11m n+的最小值. 22.在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sinsin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答. 在ABC ∆中,角,,A B C 的对边分别为,,a bc ,6b c +=,a =, . 求ABC ∆的面积.23.ABC 的内角A 、B 、C 所对的边分别为a b c ,,,且sin sin sin sin a A b B c C B +=+()1求角C ;()2求cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值.24.已知数列{}n a 是等差数列,111038,160,37n n a a a a a a +>⋅=+=. (1)求数列{}n a 的通项公式;(2)若从数列{}n a 中依次取出第2项,第4项,第8项,L ,第2n 项,按原来的顺序组成一个新数列,求12n n S b b b =+++L .25.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式;(2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *) 26.设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ac ≤13; (Ⅱ)2221a b c b c a++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】先根据2n S n =,求出数列{}n a 的通项公式,然后利用错位相减法求出{}n b 的前n 项和n T .【详解】解:∵2n S n =,∴当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-, 又当1n =时,11a =符合上式,∴21n a n =-, ∴()()()1121nnn n b a n =-=--,∴()()()()()123113151121nn T n =⨯-+⨯-+⨯-+⋅⋅⋅+--①,∴()()()()()2341113151121n n T n +-=⨯-+⨯-+⨯-+⋅⋅⋅+--②,①-②,得()()()()()()23412121111211n n n T n +⎡⎤=-+⨯-+-+-+⋅⋅⋅+---⨯-⎣⎦()()()()()()211111122112111n n n n n -+⎡⎤---⎣⎦=-+⨯--⨯-=---,∴()1nn T n =-,∴数列{}n b 的前n 项和()1nn T n =-.故选:A . 【点睛】本题考查了根据数列的前n 项和求通项公式和错位相减法求数列的前n 项和,考查了计算能力,属中档题.2.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质3.D解析:D【解析】 ∵0a b << ∴设1,1a b =-= 代入可知,,A B C 均不正确对于D ,根据幂函数的性质即可判断正确 故选D4.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.5.D解析:D 【解析】 【分析】设各项都是正数的等比数列{a n }的公比为q ,(q >0),由题意可得关于q 的式子,解之可得q ,而所求的式子等于q 2,计算可得. 【详解】设各项都是正数的等比数列{a n }的公比为q ,(q >0)由题意可得31212322a a a ⨯=+, 即q 2-2q-3=0, 解得q=-1(舍去),或q=3,故()26728967679a a qa a q a a a a .++===++ 故选:D . 【点睛】本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.6.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.7.B解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.8.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.9.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 10.A解析:A 【解析】 【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2cos22A b c c+=,所以1cosA 22b cc ++=,() ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2π==,,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.11.B解析:B 【解析】 【分析】根据等差数列{}n a 性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,然后求出结果 【详解】由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦故选B 【点睛】本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。

2020-2021高中三年级数学下期中一模试题带答案(1)

2020-2021高中三年级数学下期中一模试题带答案(1)

2020-2021高中三年级数学下期中一模试题带答案(1)一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,a =7cos 8A =,则ABC ∆的面积为( ) AB .3CD3.已知点(),P x y 是平面区域()4{04y x y x m y ≤-≤≥-内的动点, 点()1,1,A O -为坐标原点, 设()OP OA R λλ-∈u u u r u u u r的最小值为M ,若M ≤恒成立, 则实数m 的取值范围是( )A .11,35⎡⎤-⎢⎥⎣⎦B .11,,35⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .1,2⎡⎫-+∞⎪⎢⎣⎭4.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033B .1034C .2057D .20585.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 6.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5057.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9008.下列函数中,y 的最小值为4的是( )A .4y x x=+B .222y x =+C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 9.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-10.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B .10C .2D .6211.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .912.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A += )2223S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒二、填空题13.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.14.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升;15.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________16.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.17.已知数列{}n a 、{}n b 均为等差数列,且前n 项和分别为n S 和n T ,若321n n S n T n +=+,则44a b =_____. 18.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.19.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.20.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 三、解答题21.在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2sin 3tan c B a A =.(1)求222b c a +的值;(2)若2a =,求ABC ∆面积的最大值.22.某企业生产A 、B 两种产品,生产每1t 产品所需的劳动力和煤、电消耗如下表:已知生产1t A 产品的利润是7万元,生产1t B 产品的利润是12万元.现因条件限制,企业仅有劳动力300个,煤360t ,并且供电局只能供电200kW h ⋅,则企业生产A 、B 两种产品各多少吨,才能获得最大利润?23.已知角A ,B ,C 为等腰ABC ∆的内角,设向量(2sin sin ,sin )m A C B =-r,(cos ,cos )n C B =r ,且//m n r r,BC =(1)求角B ;(2)在ABC ∆的外接圆的劣弧»AC 上取一点D ,使得1AD =,求sin DAC ∠及四边形ABCD 的面积.24.已知ABC ∆中,角,,A B C 的对边分别为,,,2cos (cos cos )0.a b c C a C c A b ++=, (1)求角C 的大小;(2)若2,23,b c ==,求ABC ∆的面积.25.已知向量113,sin cos 222x x a ⎛⎫+ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C ,若有33f A π⎛⎫-= ⎪⎝⎭,边217,sin 7BC B ==,求ABC ∆的面积. 26.已知等差数列{}n a 中,235220a a a ++=,且前10项和10100S =. (1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误;设原点到直线3x −4y +5=0的距离为d ,则1==d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.D解析:D 【解析】 【分析】三角形的面积公式为1sin 2ABC S bc A ∆=,故需要求出边b 与c ,由余弦定理可以解得b 与c . 【详解】解:在ABC ∆中,2227cos 28b c a A bc +-==将2b c =,a =22246748c c c +-=,解得:2c =由7cos 8A =得sin A ==所以,11sin 2422ABC S bc A ∆==⨯⨯=故选D. 【点睛】三角形的面积公式常见形式有两种:一是12(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.解析:C 【解析】试题分析:直线()4x m y =-恒过定点(0,4),当0m >时,约束条件()4{04y x y x m y ≤-≤≥-对应的可行域如图,则()OP OA R λλ-∈u u u r u u u r的最小值为0M=,满足2M ≤,当0m =时,直线()4x m y =-与y 轴重合,平面区域()4{04y x y x m y ≤-≤≥-为图中y 轴右侧的阴影区域,则()OP OA R λλ-∈u u u r u u u r的最小值为0M =,满足2M ≤,当0m <时,由约束条件()4{04y x y x m y ≤-≤≥-表示的可行域如图,点P 与点B 重合时,()OP OA R λλ-∈u u u r u u u r的最小值为M OB =u u u r ,联立{(4)y x x m y ==-,解得44(,)11m mB m m --,所以421m OB m =-u u u r ,由4221m m ≤-,解得1135m -≤≤,所以103m -≤≤,综上所述,实数m 的取值范围是1,3⎡⎫-+∞⎪⎢⎣⎭,故选C.考点:简单的线性规划.【方法点晴】本题主要考查了二元一次不等式组所表示的平面区域、简单的线性规划求最值问题,着重考查了数形结合思想方法及分类讨论的数学思想方法的应用,关键是正确的理解题意,作出二元一次不等式组所表示的平面区域,转化为利用线性规划求解目标函数的最值,试题有一定的难度,属于难题.4.A解析:A 【解析】 【分析】首先根据数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据a b1+a b2+…+a b10=1+2+23+25+…+29+10进行求和. 解:∵数列{a n }是以2为首项,1为公差的等差数列, ∴a n =2+(n-1)×1=n+1, ∵{b n }是以1为首项,2为公比的等比数列, ∴b n =1×2n-1, 依题意有:a b1+a b2+…+a b10=1+2+22+23+25+…+29+10=1033, 故选A .5.B解析:B 【解析】 【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=- 得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.6.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.7.B解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 8.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值;选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).9.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.10.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.11.D解析:D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++=L ,可得31212log 12a a a =L ,进而可得()6121212673a a a a a ==L ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.12.D解析:D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)2224S b a c =+-,得1sin 2cos 24ab C ab C =,整理得tan C =,又00090C <<,所以060C =,故030B =. 故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.二、填空题13.【解析】【分析】【详解】试题分析:由题意知满足条件的线性区域如图所示:点而目标函数仅在点处取得最大值所以考点:线性规划最值问题解析:1(,)3+∞【解析】 【分析】 【详解】试题分析:由题意知满足条件的线性区域如图所示:,点(22)A ,,而目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,所以1133AB k a a ->=-∴> 考点:线性规划、最值问题.14.【解析】试题分析:由题意可知解得所以考点:等差数列通项公式 解析:6766【解析】试题分析:由题意可知123417891463,3214a a a a a d a a a a d +++=+=++=+=,解得137,2266a d ==,所以5167466a a d =+=. 考点:等差数列通项公式. 15.1【解析】【分析】由已知数列递推式可得数列是以为首项以为公比的等比数列然后利用等比数列的通项公式求解【详解】由得则数列是以为首项以为公比的等比数列故答案为:1【点睛】本题考查数列的递推关系等比数列通解析:1 【解析】 【分析】由已知数列递推式可得数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,然后利用等比数列的通项公式求解. 【详解】由11()an n a a -=,得991991log log n n a a a -=,∴199991991l 9og log 9n n a a a -==,则数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列, ∴19999991001log (99)199a =⋅=. 故答案为:1. 【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.16.﹣33【解析】分析:由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案详解:由约束条件作出可行域如图:联立解得化目标函数为直线方程的斜截式解析:[﹣3,3] 【解析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 详解:由约束条件作出可行域如图:联立13x y x y -=-+=,解得12x y ==,()1,2B ,化目标函数2z x y =-为直线方程的斜截式22x zy =-. 由图可知,当直线22x zy =-过()1,2B ,直线在y 轴上的截距最大,z 最小,最小值为1223-⨯=-;当直线22x zy =-过()3,0A 时,直线在y 轴上的截距最小,z 最大,最大值为3203-⨯=. ∴2z x y =-的取值范围为[﹣3,3].故答案为:[﹣3,3].点睛:利用线性规划求最值,一般用图解法求解,其步骤是 (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值.17.【解析】【分析】根据等差数列中等差中项的性质将所求的再由等差数列的求和公式转化为从而得到答案【详解】因为数列均为等差数列所以【点睛】本题考查等差中项的性质等差数列的求和公式属于中档题 解析:238【解析】 【分析】根据等差数列中等差中项的性质,将所求的174417a a ab b b +=+,再由等差数列的求和公式,转化为77S T ,从而得到答案. 【详解】因为数列{}n a 、{}n b 均为等差数列 所以7474141422a a b b a a b b ==++ ()()1771777272a a S b b T +==+37223718⨯+==+ 【点睛】本题考查等差中项的性质,等差数列的求和公式,属于中档题.18.-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC 当直线经过点A(03)时直线的纵截距最大z 最小所以故填-6解析:-6 【解析】由题得不等式组对应的平面区域为如图所示的△ABC,当直线122zy x =-经过点A(0,3)时,直线的纵截距2z-最大,z 最小.所以min 023 6.z =-⨯=-故填-6. 19.-10【解析】作出可行域如图所示:由得平移直线由图象可知当直线经过点时直线的截距最大此时最小由得此时故答案为解析:-10 【解析】作出可行域如图所示:由3z x y =-得33x z y =-,平移直线33x zy =-,由图象可知当直线经过点A 时,直线33x zy =-的截距最大,此时z 最小由1{2x x y =-+=得(1,3)A -,此时13310z =--⨯=-故答案为10-20.【解析】【分析】由等差数列的性质和求和公式可得原式代值计算可得【详解】∵{an}{bn}为等差数列∴∵=∴故答案为【点睛】本题考查等差数列的性质和求和公式属基础题 解析:1941【解析】 【分析】由等差数列的性质和求和公式可得原式1111S T =,代值计算可得. 【详解】∵{a n },{b n }为等差数列,∴939393657846666222a a a a a a a b b b b b b b b ++=+==++ ∵61111111111622a S a a T b b b +==+=211319411341⨯-=⨯-,∴661941a b =, 故答案为1941. 【点睛】本题考查等差数列的性质和求和公式,属基础题.三、解答题21.(1)2224b c a +=(2【解析】 【分析】(I )由题意2sin 3tan c B a A =,利用正、余弦定理化简得2224b c a +=,即可得到答案. (II )因为2a =,由(I )知222416b c a +==,由余弦定理得6cos A bc=,进而利用基本不等式,得到6cos bc A =,且(0,)2A π∈,再利用三角形的面积公式和三角函数的性质,即可求解面积的最大值. 【详解】解:(I )∵2sin 3tan c B a A =, ∴2sin cos 3sin c B A a A =, 由正弦定理得22cos 3cb A a =,由余弦定理得22222?32b c a cb a bc+-=,化简得2224b c a +=,∴2224b c a +=.(II )因为2a =,由(I )知222416b c a +==,∴由余弦定理得2226cos 2b c a A bc bc+-==, 根据重要不等式有222b c bc +≥,即8bc ≥,当且仅当b c =时“=”成立, ∴63cos 84A ≥=. 由6cos A bc =,得6cos bc A =,且0,2A π⎛⎫∈ ⎪⎝⎭, ∴ABC ∆的面积116sin sin 3tan 22cos S bc A A A A==⨯⨯=. ∵2222222sin cos sin 11tan 1cos cos cos A A A A A A A++=+==,∴tan A =≤=∴3tan S A =≤∴ABC ∆的面积S. 【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.22.当生产A 种产品20t ,B 种产品24t 时,企业获得最大利润,且最大利润为428万元. 【解析】 【分析】设该企业生产A 种产品xt ,B 种产品yt ,获得的利润为z 万元,根据题意列出关于x 、y 的约束条件以及线性目标函数,利用平移直线法得出线性目标函数取得最大值的最优解,并将最优解代入线性目标函数即可得出该企业所获利润的最大值. 【详解】设该企业生产A 种产品xt ,B 种产品yt ,获得的利润为z 万元,目标函数为712z x y =+.则变量x 、y 所满足的约束条件为31030094360452000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩,作出可行域如下图所示:作出一组平行直线712z x y =+,当该直线经过点()20,24M 时,直线712z x y =+在x 轴上的截距最大,此时z 取最大值,即max 7201224428z =⨯+⨯=(万元).答:当生产A 种产品20t ,B 种产品24t 时,企业获得最大利润,且最大利润为428万元. 【点睛】本题考查线性规划的实际应用,考查利用数学知识解决实际问题,解题的关键就是列出变量所满足的约束条件,并利用数形结合思想求解,考查分析问题和解决问题的能力,属于中等题. 23.(1)3B π=(293【解析】 【分析】(1)利用向量共线的条件,结合诱导公式,求得角B 的余弦值,即可得答案; (2)求出CD ,23ADC ∠=π,由正弦定理可得sin DAC ∠,即可求出四边形ABCD 的面积. 【详解】(1)Q 向量(2sin sin ,sin )m A C B =-r ,(cos ,cos )n C B =r,且//m n r r,(2sin sin )cos sin cos A C B B C ∴-=,2sin cos sin()A B B C ∴=+,2sin cos sin A B A ∴=,1cos 2B ∴=,0B Q π<<,3B π∴=;(2)根据题意及(1)可得ABC ∆是等边三角形,23ADC ∠=π,ADC ∆中,由余弦定理可得22222cos3AC AD CD AD CD π=+-⋅⋅, 260CD CD ∴+-=,2CD ∴=,由正弦定理可得sin sin 7CD ADC DAC AC ∠∠==,∴四边形ABCD 的面积.111224S DAC ABC =⨯∠+∠=. 【点睛】本题考查向量共线条件的运用、诱导公式、余弦定理、正弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将四边形的面积分割成两个三角形的面积和.24.(1) 120.C =o(2【解析】试题分析:(1)由()2cos cos cos 0C a C c A b ++=根据正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式可得2cos sin sin 0C B B +=,可得1cos 2C =-,即可得解C 的值;(2)由已知及余弦定理得解得a 的值,进而利用三角形面积公式即可得结果.试题解析:(1)()2cos cos cos 0C a C c A b ++=Q ,由正弦定理可得()()2020,20cosC sinAcosC sinBcosA sinB cosCsin A C cosCsinB sinB ∴++=∴+=∴+=即又10180,sin 0,cos ,120.2B BC C <<∴≠∴=-=ooo 即(2)由余弦定理可得(2222222cos12024a a a a =+-⨯=++o又10,2,sin 2ABC a a S ab C ∆>=∴== ABC ∴∆25.(1) 2,T π=当2,6x k k Z ππ=+∈时,()max 2f x = (2) ABC S ∆=【解析】 【分析】 【详解】(1)因为a r 与b r 共线,所以11(sin )022y x x -+=则()2sin 3y f x x π⎛⎫==+⎪⎝⎭,所以()f x 的周期2T π=当26x k ππ=+,k Z ∈,max 2f =(2)∵3f A π⎛⎫-= ⎪⎝⎭∴2sin 33A ππ⎛⎫-+= ⎪⎝⎭∴sin A = ∵02A π<<∴3A π=由正弦定理得sin sin BC ACA B=又sin 7B = ∴sin 2sin BC B AC A ==,且sin 14C =∴1sin 22ABC S AC BC C ∆==26.(1)a n =2n -1(2)T n =21nn + 【解析】 【分析】(1)本题首先可以对235220a a a ++=化简得到14820a d +=,再对10100S =化简得到11045100a d +=,最后两式联立,解出1d a 、的值,得出结果;(2)可通过裂项相消法化简求出结果. 【详解】(1)由已知得235111248201091010451002a a a a d a d a d ++=+=⎧⎪⎨⨯+=+=⎪⎩, 解得11d 2a ==,,所以{}n a 的通项公式为()12121n a n n =+-=-, (2)()()1111212122121n b n n n n ⎛⎫==- ⎪-⋅+-+⎝⎭,所以数列{}n b 的前n 项和11111112335212121n nT n n n ⎛⎫=-+-++-= ⎪-++⎝⎭L .【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.。

2020-2021高中三年级数学下期中第一次模拟试卷(及答案)(6)

2020-2021高中三年级数学下期中第一次模拟试卷(及答案)(6)

A. 243
B. 242
C. 162
D. 243
5.设数列an是以 2 为首项,1 为公差的等差数列,bn是以 1 为首项,2 为公比的等
比数列,则 ab1 ab2 ab10 ( )
A.1033
B.1034
C.2057
D.2058
6.在 ABC 中,内角 A, B,C 所对的边分别为 a,b, c ,且 a cos B 4c bcos A,则
3.B
解析:B 【解析】 【分析】
数列{an}满足 an1 an (1)n n ,可得 a2k﹣1+a2k=﹣(2k﹣1).即可得出.
【详解】
∵数列{an}满足 an1 an (1)n n ,∴a2k﹣1+a2k=﹣(2k﹣1).
则数列{an}的前 20 项的和=﹣(1+3+……+19) 10 119 100.
Sn
Sn1
1
3 2 an
1
3 2 an1
3 2 an
3 2
an1
,即
1 2 an
3 2
an1
,即
an an1
3n
2 ,数列an是首项 a1
2
,公比 q
3 的等比数列,
S5
a1
1 q5 1 q
2 1 35
13
242 ,故选 B.
5.A
解析:A 【解析】
【分析】
【详解】
首先根据数列{an}是以 2 为首项,1 为公差的等差数列,{bn}是以 1 为首项,2 为公比的等 比数列,求出等差数列和等比数列的通项公式,然后根据 ab1+ab2+…+ab10=1+2+23+25+…+29+10 进行求和. 解:∵数列{an}是以 2 为首项,1 为公差的等差数列, ∴an=2+(n-1)×1=n+1, ∵{bn}是以 1 为首项,2 为公比的等比数列, ∴bn=1×2n-1, 依题意有:ab1+ab2+…+ab10=1+2+22+23+25+…+29+10=1033, 故选 A.

2020-2021高中三年级数学下期中一模试题(带答案)(8)

2020-2021高中三年级数学下期中一模试题(带答案)(8)

2020-2021高中三年级数学下期中一模试题(带答案)(8)一、选择题1.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .12.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,a =7cos 8A =,则ABC ∆的面积为( ) AB .3CD3.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞4.已知集合2A {t |t 40}=-≤,对于满足集合A 的所有实数t ,使不等式2x tx t 2x 1+->-恒成立的x 的取值范围为( )A .()(),13,∞∞-⋃+B .()(),13,∞∞--⋃+C .(),1∞--D .()3,∞+5.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40366.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭7.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形8.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12 B .10C.D.9.若ln 2ln 3ln 5,,235a b c ===,则A .a b c <<B .c a b <<C .c b a <<D .b a c <<10.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .13711.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .2812.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .24二、填空题13.在等差数列{}n a 中,首项13a =,公差2d =,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 . 14.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=L __________.15.已知x y 、满足约束条件1{1,22x y x y x y +≥-≥--≤若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为_______. 16.设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 17.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知274sincos 222A B C +-=,且5,7a b c +==,则ab 为 .18.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 19.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.20.已知实数x ,y 满足约束条件20x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩,若2z x y =+的最小值为3,则实数b =____ 三、解答题21.解关于x 的不等式()222ax x ax a R -≥-∈.22.在等差数列{}n a 中,36a =,且前7项和756T =. (1)求数列{}n a 的通项公式;(2)令3nn n b a =⋅,求数列{}n b 的前n 项和n S .23.在ABC V 中内角,,A B C 所对的边分别为,,a b c .已知2,a b ==,面积2S accosB =. (1)求sin A 的值;(2)若点D 在BC 上(不含端点),求sin BDBAD∠的最小值.24.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .25.若数列{}n a 是递增的等差数列,它的前n 项和为n T ,其中39T =,且1a ,2a ,5a 成等比数列.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若对任意*n N ∈,24n S a a ≤-恒成立,求a 的取值范围.26.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.2.D解析:D 【解析】【分析】三角形的面积公式为1sin 2ABC S bc A ∆=,故需要求出边b 与c ,由余弦定理可以解得b 与c . 【详解】解:在ABC ∆中,2227cos 28b c a A bc +-==将2b c =,a =22246748c c c +-=, 解得:2c =由7cos 8A =得sin A ==所以,11sin 242282ABC S bc A ∆==⨯⨯⨯=故选D. 【点睛】三角形的面积公式常见形式有两种:一是12(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.3.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤,则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.4.B解析:B 【解析】 【分析】由条件求出t 的范围,不等式221x tx t x +->-变形为2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,再由不等式的左边两个因式同为正或同为负处理. 【详解】由240t -≤得,22t -≤≤,113t ∴-≤-≤不等式221x tx t x +->-恒成立,即不等式2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,∴只需{1010x t x +->->或{1010x t x +-<-<恒成立, ∴只需{11x tx >->或{11x tx <-<恒成立,113t -≤-≤Q只需3x >或1x <-即可. 故选:B . 【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.5.D解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.6.D解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .7.B解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<<所以3A π=故选B【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.8.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.9.B解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.10.B解析:B 【解析】 【分析】由题意得出1514n a n =-,求出15142019n a n =-≤,即可得出数列的项数. 【详解】因为能被3除余1且被5除余1的数就是能被15整除余1的数,故1514n a n =-.由15142019n a n =-≤得135n ≤,故此数列的项数为135,故答案为B.【点睛】本题主要考查阅读能力及建模能力、转化与化归思想及等差数列的通项公式及数学的转化与化归思想.属于中等题.11.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质12.C解析:C 【解析】 【分析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。

2020-2021高中三年级数学下期中一模试卷(带答案)(11)

2020-2021高中三年级数学下期中一模试卷(带答案)(11)

2020-2021高中三年级数学下期中一模试卷(带答案)(11)一、选择题1.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( )A .63B .61C .62D .572.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2013.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .2 4.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定6.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形7.下列函数中,y 的最小值为4的是( )A .4y x x=+B .222(3)2x y x +=+C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 8.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4B .5C .6D .4或59.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .8010.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310 C .12D .71011.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <12.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为nT,则2017T =( ) A .2016B .2017C .2018D .2019二、填空题13.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,且22cos C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.14.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若acosB =5bcosA ,asinA ﹣bsinB =2sinC ,则边c 的值为_______.15.在钝角ABC V 中,已知7,1AB AC ==,若ABC V 的面积为62,则BC 的长为______. 16.已知是数列的前项和,若,则_____.17.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______. 18.正项等比数列{}n a 满足2418-=a a ,6290-=a a ,则{}n a 前5项和为________. 19.点D 在ABC V 的边AC 上,且3CD AD =,2BD =,3sin23ABC ∠=,则3AB BC +的最大值为______.20.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______.三、解答题21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)m 万件与年促销费用x 万元,满足31km x =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y (万元)表示为年促销费用x (万元)的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?22.在()f x 中,角,,A B C 的对边分别为,,a b c ,满足(2)cos cos b c A a C -=. (1)求角A 的大小(2)若3a =,求ABC △的周长最大值. 23.解关于x 的不等式()222ax x ax a R -≥-∈.24.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++(Ⅰ)求A 的大小; (Ⅱ)求sin sin B C +的最大值.25.设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,已知cos (2)cos a B c b A =-.(Ⅰ)求角A 的大小;(Ⅱ)若4a =,BC 边上的中线AM =ABC ∆的面积. 26.已知等比数列{}n a 的各项均为正数,234848a a a =+=,.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设4log .n n b a =证明:{}n b 为等差数列,并求{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.2.A解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.3.C解析:C 【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .4.A解析:A 【解析】 【分析】画出满足条件的平面区域,求出角点的坐标,结合2yz x =-的几何意义求出其范围,即可得到答案. 【详解】由题意,画出满足条件的平面区域,如图所示:由358y x x y =⎧⎨+=⎩,解得11A (,),由1x y x=-⎧⎨=⎩,解得(11)B --,, 而2yz x =-的几何意义表示过平面区域内的点与0(2)C ,的直线斜率, 结合图象,可得1AC k =-,13BC k =, 所以2y z x =-的取值范围为113⎡⎤-⎢⎥⎣⎦,, 故选:A.【点睛】本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合图象确定出目标函数的最优解是解答的关键,着重考查了数形结合思想,以及计算能力,属于基础题.5.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.6.B解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.7.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值; 选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).8.B解析:B【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-, 由19a =,所以211n a n =-+, 令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .9.B解析:B 【解析】 【分析】根据等差数列{}n a 性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,然后求出结果 【详解】由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦故选B 【点睛】本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。

2020-2021高中三年级数学下期中一模试卷(含答案)(7)

2020-2021高中三年级数学下期中一模试卷(含答案)(7)

2020-2021高中三年级数学下期中一模试卷(含答案)(7)一、选择题1.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .12.在△ABC 中,若1tan 15013A C BC ︒===,,,则△ABC 的面积S 是( ) ABC.38+ D3.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .34.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .135.已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,S 6a S a =-=,则5a = A .4B .10C .16D .326.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .327.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .20178.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 49.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B.1C.1+D .410.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .14011.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n+C .2324n n+D .2n n +12.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞B.()-+∞C .[)3,-+∞D.)⎡-+∞⎣二、填空题13.若实数,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最小值等于_____.14.已知数列{}{}n n a b 、满足ln n n b a =,*n ∈N ,其中{}n b 是等差数列,且431007e a a ⋅=,则121009b b b +++=L ________.15.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积6S =+形的外接圆半径是______ 16.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式n a =_______.17.设0,0,25x y x y >>+=______.18.不等式211x x --<的解集是 .19.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.20.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________.三、解答题21.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC V 的外接圆半径为R ,且23sin sin cos 0R A B b A --=.(1)求A ∠;(2)若tan 2tan A B =,求sin 2sin 2sin b Ca b B c C+-的值.22.在ABC ∆中,角A ,B 、C 的对边分别为a ,b ,c ,且3cos sin a bA B=. (1)求A ;(2)若2a =,且()cos 2sin sin cos B C B C C -=-,求ABC ∆的面积. 23.在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,已知2223,3A b c a π=+=. (1)求a 的值;(2)若1b =,求ABC ∆的面积.24.设等差数列{}n a 的前n 项和为n S ,225+=-a S ,515=-S . (1)求数列{}n a 的通项公式; (2)求12231111+++⋯+n n a a a a a a . 25.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .26.已知在公比为q 的等比数列{}n a 中,416a =,()34222a a a +=+. (1)若1q >,求数列{}n a 的通项公式;(2)当1q <时,若等差数列{}n b 满足31b a =,512b a a =+,123n n S b b b b =+++⋅⋅⋅+,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项的和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.2.A解析:A 【解析】 【分析】由正弦定理求出c , 【详解】A 是三角形内角,1tan 3A =,∴sin 10A =, 由正弦定理sin sin a c A C=得sin sin a C c A ===, 又2222cos c a b ab C =+-,即22512cos15012b b b =+-︒=+,2302b +-=,32b =(32b =舍去),∴1133sin 12238ABC S ab C ∆--==⨯⨯︒=. 故选:A . 【点睛】本题考查正弦定理、余弦定理、三角形面积公式,考查同角间的三角函数关系.解三角形中公式较多,解题时需根据已知条件确定先选用哪个公式,再选用哪个公式.要有统筹安排,不致于凌乱.3.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示, 由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.4.C解析:C 【解析】 【分析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果. 【详解】由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯=故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.5.C解析:C 【解析】由64S S -=6546a a a +=得,()22460,60q q a q q +-=+-=,解得2q =,从而3522=28=16a a =⋅⨯,故选C.6.B解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.7.C解析:C 【解析】依题意知100810091008100920170,20180a a a a +=>=-<,Q 数列的首项为正数,()()1201610081009100810092016201620160,0,022a a a a a a S +⨯+⨯∴>∴==,()12017201710092017201702a a S a+⨯==⨯<,∴使0n S >成立的正整数n 的最大值是2016,故选C.8.D解析:D 【解析】∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0,设a 4-1=m ,a 2 013-1=n , 则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·(m 2+n 2-mn +2 016)=0, ∵2222132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝⎭+-+,∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2,∴()()1201642013201620162016201622a a a a S ++===.很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013, 本题选择D 选项.9.A解析:A 【解析】 【分析】将函数()y f x =的解析式配凑为()()1222f x x x =-++-,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的x 值,可得出a 的值.【详解】当2x >时,20x ->,则()()1122222f x x x x x =+=-++≥-- 4=, 当且仅当()1222x x x -=>-时,即当3x =时,等号成立,因此,3a =,故选A. 【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.10.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x =所以n a =1na =1121n S n nn n =+-+--++-L 11n =+-,由1110n S n =+-=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.11.A解析:A 【解析】 【分析】 【详解】 设公差为d 则解得,故选A.12.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q 当2x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值22,22m -∴≥-,m 的取值范围是)22,⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).二、填空题13.【解析】【分析】先画出可行域改写目标函数然后求出最小值【详解】依题意可行域为如图所示的阴影部分的三角形区域目标函数化为:则的最小值即为动直线在轴上的截距的最大值通过平移可知在点处动直线在轴上的截距最 解析:72-【解析】【分析】先画出可行域,改写目标函数,然后求出最小值 【详解】依题意,可行域为如图所示的阴影部分的三角形区域,目标函数化为:3y x z =-,则z 的最小值即为动直线在y 轴上的截距的最大值.通过平移可知在A 点处动直线在y 轴上的截距最大.因为20:220x y A x y +=⎧⎨-+=⎩解得11,2A ⎛⎫- ⎪⎝⎭,所以3z x y =-的最小值()min 173122z =⋅--=-. 【点睛】本题考查了线性规划的简单应用,一般步骤:画出可行域,改写目标函数,求出最值14.2018【解析】【分析】数列{an}{bn}满足bn =lnann∈N*其中{bn}是等差数列可得bn+1﹣bn =lnan+1﹣lnan =ln 常数t 常数et =q >0因此数列{an}为等比数列由可得a1解析:2018 【解析】 【分析】数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列,可得b n +1﹣b n =lna n +1﹣lna n =ln 1n n a a +=常数t .1n na a +=常数e t =q >0,因此数列{a n }为等比数列.由431007e a a ⋅=, 可得a 1a 1009=a 2a 1008431007a a e =⋅==L .再利用对数运算性质即可得出.【详解】解:数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列,∴b n +1﹣b n =lna n +1﹣lna n =ln 1n n a a +=常数t . ∴1n na a +=常数e t =q >0, 因此数列{a n }为等比数列.且431007e a a ⋅=,∴a 1a 1009=a 2a 1008431007a a e =⋅==L .则b 1+b 2+…+b 1009=ln (a 1a 2…a 1009)==lne 2018=2018. 故答案为:2018. 【点睛】本题考查了等比数列的通项公式与性质、对数运算性质,考查了推理能力与计算能力,属于中档题.15.【解析】【分析】设三角形外接圆半径R 由三角形面积公式解方程即可得解【详解】由题:设三角形外接圆半径为R ()根据正弦定理和三角形面积公式:即解得:故答案为:【点睛】此题考查三角形面积公式和正弦定理的应解析:【解析】 【分析】设三角形外接圆半径R ,由三角形面积公式21sin 2sin sin sin 2S ab C R A B C ==解方程即可得解. 【详解】由题:1sin sin 75sin(4530)222B =︒=︒+︒=+=设三角形外接圆半径为R (0R >),根据正弦定理和三角形面积公式:211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅=即2622R ⨯+=,解得:R =故答案为:【点睛】此题考查三角形面积公式和正弦定理的应用,利用正弦定理对面积公式进行转化求出相关量,需要对相关公式十分熟练.16.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项 解析:2221n n -- 【解析】 【分析】构造数列11n nb a =-,得到数列n b 是首项为1公差为2的等差数列21n b n =-,得到2221n n a n -=-. 【详解】 设11n n b a =-,则12n n b b +-=,11111b a ==- 数列n b 是首项为1公差为2的等差数列1222121121n n n b n n a n n a -=⇒=--⇒--= 故答案为2221n n -- 【点睛】本题考查了数列的通项公式的求法,构造数列11n nb a =-是解题的关键,意在考查学生对于数列通项公式的记忆,理解和应用.17.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立解析:【解析】 【分析】把分子展开化为26xy +,再利用基本不等式求最值. 【详解】=Q0,0,25,0,x y x y xy >>+=>∴Q≥= 当且仅当3xy =,即3,1x y ==时成立,故所求的最小值为 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.18.【解析】【分析】【详解】由条件可得 解析:{}|02x x <<【解析】【分析】 【详解】 由条件可得19.【解析】【分析】在中由余弦定理求得再由正弦定理求得最后利用两角和的余弦公式即可求解的值【详解】在中海里海里由余弦定理可得所以海里由正弦定理可得因为可知为锐角所以所以【点睛】本题主要考查了解三角形实际 解析:2114【解析】 【分析】在ABC ∆中,由余弦定理,求得BC ,再由正弦定理,求得sin ,sin ACB BAC ∠∠,最后利用两角和的余弦公式,即可求解cos θ的值. 【详解】在ABC ∆中,40AB =海里,20AC =海里,120BAC ∠=o , 由余弦定理可得2222cos1202800BC AB AC AB AC =+-⋅=o , 所以207BC =, 由正弦定理可得21sin sin 7AB ACB BAC BC ∠=⋅∠=, 因为120BAC ∠=o ,可知ACB ∠为锐角,所以7cos 7ACB ∠=所以21cos cos(30)cos cos30sin sin 3014ACB ACB ACB θ=∠+=∠-∠=o o o . 【点睛】本题主要考查了解三角形实际问题,解答中需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,合理使用正、余弦定理是解答的关键,其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:列方程,求结果.20.【解析】【分析】【详解】当时代入题中不等式显然不成立当时令 都过定点考查函数令则与轴的交点为时均有也过点解得或(舍去)故解析:32a =【解析】 【分析】 【详解】 当时,代入题中不等式显然不成立 当时,令,,都过定点考查函数,令,则与轴的交点为时,均有也过点解得或(舍去),故三、解答题21.(1)6π;(2)3310-. 【解析】 【分析】(1)由正弦定理化简已知三角等式,根据sin 0B ≠可得3tan 3A =,即可求出角A ; (2)由(1)可得3tan B =,利用2sin 1A =及正弦定理将分式化简,再利用余弦定理化简分式得()1tan 2A B -+,最后利用正切和角公式代入tan A ,tan B ,可求出结果. 【详解】(1)∵23sin sin cos 0R A B b A -=,由正弦定理得:23sin sin 2sin cos 0R A B R B A -=, 即()sin 3cos 0BA A -=,∵()0,B π∈,∴sin 0B ≠,cos A A =,tan 3A =, ∵()0,A π∈,∴6A π∠=.(2)由(1)知:tan A =,tan B =,1sin 2A =,∴2sin 1A =, ∴sin 2sin sin 2sin 2sin 2sin 2sin 2sin b C Ab Ca b B c C Aa b B c C =+-+-222sin ab C a b c=+- 由余弦定理得:()sin sin 11tan tan 2sin 2sin 2cos 22b C C C A B a b Bc C C ===-++-1tan tan 21tan tan 10A B A B +=-⨯=--. 【点睛】本题考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查学生数形结合、转化与化归以及运算求解能力,解决此类问题的关键是灵活运用正、余弦定理进行边角的互化,属于中等题.22.(1) 6A π=【解析】 【分析】(1)根据正弦定理得到tan A =,计算得到答案. (2)化简得到()cos cos B C C +=-,即A C =,再计算得到2a c ==,代入面积公式得到答案. 【详解】(1)∵cos sin sin b a A B A ==,∴tan 3A =.∵()0,A π∈,∴6A π=. (2)∵()cos 2sin sin cosBC B C C -=- ∴cos cos sin sin 2sin sin cos B C B C B C C +=-, ∴()cos cos B C C +=-,即cos cos A C =,即A C =. ∵6A π=,∴23B π=.∵2a =,∴2a c ==.∴11sin 22222ABC S ac B ∆==⨯⨯⨯= 【点睛】本题考查了正弦定理,面积公式,意在考查学生的计算能力.23.(12 【解析】 【分析】(1)由2223b c abc a +-=,利用余弦定理可得2cos 3bc A abc=,结合3A π=可得结果;(2)由正弦定理1sin 2B =,π6B =, 利用三角形内角和定理可得π2C =,由三角形面积公式可得结果. 【详解】(1)由题意,得222b c a +-=. ∵2222cos b c a bc A +-=.∴2cos bc A =,∵π3A =,∴a A ==(2)∵a =由正弦定理sin sin a b A B =,可得1sin 2B =. ∵a>b ,∴π6B =, ∴ππ2C A B =--=.∴1sin 22ABC S ab C ∆==【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.24.(1)n a n =-;(2)1n n +. 【解析】 【分析】(1)利用方程的思想,求出首项、公差即可得出通项公式;(2)根据数列{}n a 的通项公式表示出11n n a a +,利用裂项相消法即可求解.【详解】(1)设等差数列{}n a 的公差为d ,由221325+=+=-a S a d ,5151015=+=-S a d ,即123+=-a d ,解得11a =-,1d =-, 所以()11=---=-n a n n . (2)由n a n =-,所以11111(1)1+==-++n n a a n n n n , 所以122311111111112231+⎛⎫⎛⎫⎛⎫++⋯+=-+-+⋯+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭n n a a a a a a n n 1111nn n =-=++. 【点睛】 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.25.(Ⅰ)21,n a n =+;(Ⅱ)8(41)3n n T -=. 【解析】 【分析】(Ⅰ)由题意可得1, 2.p q ==则22n S n n =+,利用通项公式与前n 项和的关系可得21,n a n =+(Ⅱ) 由(1)可知212n n b +=,结合等比数列前n 项和公式计算可得数列{}n b 的前n 项和()8413n n T -=.【详解】(Ⅰ)由14316424S p q S p q =+=⎧⎨=+=⎩ 得21, 2.2.n p q S n n ===+所以当1n =时,1 3.a =当2n ≥时,()()21121,n S n n -=-+-所以()()()221212121,n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦检验1 3.a =符合21,n a n =+ (Ⅱ) 由(1)可知21,n a n =+ 所以2122na n nb +==.设数列{}n b 的前n 项和为n T ,则:()()()1211212424242424444414214841.?3n nn n nnn T --=⨯+⨯++⨯+⨯=++++-=⨯--=L L所以数列{}n b 的前n 项和为()8413n n T -=.【点睛】本题主要考查数列通项公式与前n 项和公式的关系,等比数列前n 项和公式及其应用等知识,意在考查学生的转化能力和计算求解能力.26.(1)2nn a =;(2)99nn +. 【解析】 【分析】(1)根据题意列出关于首项与公比的方程,求解,即可得出数列{}n a 的通项公式. (2)由q <1,可得数列{}n a 的通项公式,进而求得n b 及n S ,最后利用裂项相消法求1n S ⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】(1)据题意,得()31231111622a q a q a q a q⎧=⎪⎨+=+⎪⎩, 解得23q =或2q =, 又∵1q >∴2q = ∴131622a ==∴2nn a =;(2)据(1)求解知1q <时,23q =, ∴42163n n a -⎛⎫=⨯ ⎪⎝⎭,∴154a =,236a =,∴3154b a ==,51290b a a =+=, ∴等差数列{}n b 的公差5390541822b b d --===, ∴1325421818b b d =-=-⨯=, ∴()211818992n n n S n n n -=⨯+⨯=+ ∴2111119991n S n n n n ⎛⎫==- ⎪++⎝⎭, ∴数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和111111111111929239199n n n n S S S n n n ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 【点睛】本题主要考查等差、等比数列的通项公式以及利用裂项相消法求数列的和,考查学生的运算能力.。

2020-2021高中三年级数学下期中一模试卷(带答案)(8)

2020-2021高中三年级数学下期中一模试卷(带答案)(8)

2020-2021 高中三年级数学下期中一模试卷 ( 带答案 )(8)一、选择题x y 1 01. 若 x, y 知足x y 1 0 ,则 z x2y 的最大值为 ( )x 3 y3 0A .8B . 7C . 2D . 12. 已知等比数列a n 的公比为正数,且 a 3 a 9 2a 5 2 , a 2 1 ,则 a 1( )1B . 2C .22A .D .223. 已知实数x, y知足 { x y则 2y x 的最大值是 ()x y 2A . -2B . -1C . 1D . 2x,1zy4. 若变量 x , y 知足拘束条件yx,则的取值范围是( ),23x5y 8xA .1B . 1,11 C .11 13 11, 1515 , D .,335 35.设数列 a n 是以 2 为首项, 1 为公差的等差数列,b n 是以 1 为首项, 2 为公比的等比数列,则 a b 1 ab 2ab 10 ( )A .1033B . 1034C . 2057D . 20586. 已知等比数列 { a n } 中, a 1 1 , a 3 a 5 6 ,则 a 5a 7 ( )A . 12B . 10C .12 2D .6 27. 已知等比数列 { a n } 中, a 3a 11 4a 7 ,数列 { b n } 是等差数列,且 b 7 a 7 ,则 b 5 b 9( )A . 2B . 4C . 16D . 88. 在ABC 中,角 A, B,C 的对边分别是 a, b, c , cos 2Ab c ,则 ABC 的形状为22cA .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形9. 已知等比数列 a n 的各项均为正数,若 log 3 a 1 log 3 a 2log 3 a 12 12 ,则 a 6 a 7=( )A . 1B . 3C . 6D . 910. 若 aln 2 , b ln 3 , cln 5 ,则235A . a b cB . c a bC . c b aD . b ac11. 已知正项数列 { a n } 中,a 1a 2 La nn(n1)(n N * ) ,则数列 { a n } 的通2项公式为( )A . a n nB . a nn 2C . a nn D . a nn 22212. 如图,为了丈量山坡上灯塔 CD 的高度,某人从高为 h=40 的楼 AB 的底部 A 处和楼顶 B 处罚别测得仰角为=60o,=30o ,若山坡高为 a=35 ,则灯塔高度是()A . 15B . 25C . 40D .60二、填空题13. 在 ABC 中,角 A, B, C 所对的边为 a,b, c ,若 c2b a 3ab sin C ,则当取最大值a b时, cosC = __________ ;14. 在平面直角坐标系中,设点O 0,0 ,A 3,3 ,点 P x, y 的坐标知足3x y 0uuuv uuuvx 3 y2 0 ,则 OA 在 OP 上的投影的取值范围是__________y 015. 设 a0 ,若对于随意知足 m n8 的正数 m , n ,都有1≤14 ,则 a 的取amn 1值范围是 ______.16. 若无量等比数列 { a n } 的各项和为2,则首项 a 1 的取值范围为 ______.17. 已知数列a n 的前 n 项和为 S n , a 1 1, a 22,且对于随意 n 1 , nN * ,知足S n 1 S n 12( S n 1) ,则 S 10 的值为 __________x y 2,z 2x y18x , y 知足x y 2, 则 的最大值是 ____..已知实数0 y 3,19. 设 a R ,若 x > 0 时均有 [(a - 1)x - 1]( x 2ax - 1) ≥0 a __________- ,则 = . 20. 已知数列a n 知足 a 1 33,a n 1 a n 2n, 则a n的最小值为 __________.n三、解答题21.某厂家拟在2020 年举行促销活动,经检查测算,某产品的年销售量(即该厂的年产量) m 万件与年促销花费x 万元,知足 m3kk 为常数),假如不搞促销活动,x(1则该产品的年销售量只好是 1 万件,已知2020 年生产该产品的固定投入为8 万元,每生产1 万件,该产品需要再投入16万元,厂家将每件产品的销售价钱定为每件产品年均匀成本的 1.5 倍(产品成本包含固定投入和再投入两部分资本).(1)将2020 年该产品的收益y (万元)表示为年促销花费x (万元)的函数;(2)该厂家2020 年的促销花费投入多少万元时,厂家的收益最大?22.△ABC的内角 A, B,C 的对边分别为 a,b, c ,且a( 3 sin B cosC )(c b) cos A .(1)求 A;(2)若b3,点 D在BC边上,CD2, ADC3,求△ABC 的面积.23.已知角A,B,C为等腰r(2sin A sin C ,sin B) ,ABC 的内角,设向量mr r r7 n(cosC,cos B) ,且 m // n ,BC (1)求角B;(2)在ABC 的外接圆的劣弧? 上取一点D,使得AD1,求sin DAC及四边形ACABCD 的面积.24.已知数列a n的首项 a12,且当 n 2 时,知足 a1a2a3Lan 113a n.32(1)求数列a n的通项公式;(2)若b n na n,T n为数列b n的前 n 项和,求Tn.225.在等比数列b n中,公比为 q 0q 1 ,b1, b3,b51,1,1,1,1.50322082(1)求数列b n的通项公式;(2)设c n 31b n,求数列c n的前n项和n . n T26.围建一个面积为360m2的矩形场所,要求矩形场所的一面利用旧墙(利用旧墙需维修),其余三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的出入口,以下图,已知旧墙的维修花费为45 元 /m ,新墙的造价为180 元/m ,设利用的旧墙的长度为x(单位:元).(Ⅰ)将y 表示为 x 的函数;(Ⅱ)试确立x,使修筑此矩形场所围墙的总花费最小,并求出最小总花费.【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.B分析: B【分析】试题剖析:作出题设拘束条件可行域,如图ABC 内部(含界限),作直线l : x 2 y 0 ,把直线l向上平移,z 增添,当l过点B(3, 2)时,z 3 2 27 为最大值.应选B.考点:简单的线性规划问题.2.D分析: D【分析】设公比为 q,由已知得a1q2a1q8 2 a1q 4 2,即 q2 2 ,又由于等比数列a n的公比为正数,所以 q 2 ,故a1a212q2,应选 D.2 3.C分析: C【分析】作出可行域,如图BAC内部(含两边),作直线l : 2 y x 0 ,向上平移直线l ,z 2 y x 增添,当l 过点A(1,1) 时,z 2 1 1 1 是最大值.应选C.4.A分析: A【分析】【剖析】y画出知足条件的平面地区,求出角点的坐标,联合z的几何意义求出其范围,即可x 2获得答案 .【详解】由题意,画出知足条件的平面地区,以下图:y x,解得 A(11,) ,由x1由5y y ,解得 B( 1, 1) ,3x8x而 z y的几何意义表示过平面地区内的点与 C (2,0) 的直线斜率,x2联合图象,可得k AC 1,k BC1,3所以 zy的取值范围为1x21,,3应选: A.【点睛】本主要考了的性划,此中解答中作出束条件所表示的平面地区,合象确立出目函数的最解是解答的关,侧重考了数形合思想,以及算能力,属于基 .5.A分析: A【分析】【剖析】【解】第一依据数列 {a n} 是以 2 首, 1 公差的等差数列,{b n} 是以 1 首, 2 公比的等比数列,求出等差数列和等比数列的通公式,而后依据b1b2b10=1+2+2359+10 行乞降.a +a +⋯ +a+2 +⋯ +2解:∵数列 {a n} 是以 2 首, 1 公差的等差数列,∴a n=2+ ( n-1)×1=n+1,∵{b n} 是以 1 首, 2 公比的等比数列,∴b n=1×2n-1,依意有: a b1+a b2+⋯ +a b10=1+2+2 2+2 3+25+⋯ +29+10=1033 ,故 A.6.A分析: A【分析】由已知 a3 a5q2q 4 6 ,∴ q2 2 ,∴ a5 a7q2 (a3 a5 ) 2 6 12 ,故 A. 7.D分析: D【分析】【剖析】利用等比数列性求出a7,而后利用等差数列的性求解即可.【解】等比数列 { a n} 中, a3a11= 4a7,可得 a 72= 4a 7,解得 a 7 =4,且 b 7= a 7, ∴ b 7= 4,数列 { b n } 是等差数列,则 b 5+b 9= 2b 7= 8.应选 D .【点睛】此题考察等差数列以及等比数列的通项公式以及简单性质的应用,考察计算能力.8.A分析: A【分析】【剖析】先依据二倍角公式化简,再依据正弦定理化角,最后依据角的关系判断选择 .【详解】由于 cos 2Ab c,所以22c1 cosAbc ccosA b,sinCcosA sinB sin A C ,sinAcosC0 ,所以2, 2ccosC 0, C2,选 A.【点睛】此题考察二倍角公式以及正弦定理,考察基本剖析转变能力,属基础题.9.D分析: D【分析】【剖析】第一依据对数运算法例,可知log 3 a 1a 2...a 12 12 ,再依据等比数列的性质可知a 1a 2 .....a 12a 6a 7 6,最后计算 a 6 a 7 的值 .【详解】由 log 3 a 1 log 3 a 2 L log 3 a 12 12 ,可得 log 3 a 1a 2 L a 1212 ,从而可得 a 1a 2 L a 12 a 6 a 76312 ,a 6 a 7 9 .【点睛】此题考察了对数运算法例和等比数列性质,属于中档题型,意在考察转变与化归和计算能 力.10.B分析: B【分析】试题剖析:由于ln 2 ln 3 ln8 ln 9ln 2ln 3 2 36 0,,23ln 2 ln 5 ln 32 ln 25 ln 2ln 5 25100,,应选 B.25考点:比较大小.11.B分析: B【分析】【剖析】先求出a nn n 1n n 1a 1 的值,对 a 1 的值考证能否知足a n 的表2,并求出2达式,可得出数列 a n 的通项公式 .【详解】由题意得 a nn( n 1)n(n 1)n,( n 2) ,又a 1 1 ,所以22a n n,( n 1),a nn 2 ,选 B.【点睛】给出 S n 与 a n 的递推关系求 a n ,常用思路是:一是利用 a n S n S n 1, n 2 转变为 a n 的递推关系,再求其通项公式;二是转变为 S n 的递推关系,先求出 S n 与 n 之间的关系,再求 a n . 应用关系式 a n{S 1 , n 1 时,必定要注意分n 1,n 2 两种状况,在求出S n S n 1, n2结果后,看看这两种状况可否整合在一同.12.B分析: B【分析】【剖析】过点 B 作BEDC 于点 E ,过点 A 作 AFDC 于点F ,在 ABD 中由正弦定理求得AD ,在 Rt ADF 中求得 DF ,从而求得灯塔CD 的高度.【详解】过点 B 作BE DC 于点 E ,过点 A 作 AFDC 于点F ,以下图,在ABD 中,由正弦定理得,AB AD ,sin ABDsin ADB即hAD,(90)]sin(90sin[90 )ADh cos,在 Rt ADF 中, DF AD sin h cos sin ,sin(sin())又山高为 a ,则灯塔 CD 的高度是h cos sin40332235 60 35 25.CD DF EF a1sin()2应选 B.【点睛】此题考察认识三角形的应用和正弦定理,考察了转变思想,属中档题.二、填空题13.【分析】【剖析】由余弦定理得联合条件将式子通分化简得再由协助角公式得出当时获得最大值从而求出结果【详解】在中由余弦定理可得所以此中当获得最大值时∴故答案为:【点睛】此题考察解三角形及三角函数协助角公分析:213 13【分析】【剖析】由余弦定理得c2a2b22abcosC ,联合条件c23absinC ,将式子b a通分化简a b得 3sinC2cosC ,再由协助角公式得出b a时,a13sin C,当Cb2b a a 获得最大值,从而求出结果 .b【详解】在ABC 中由余弦定理可得c2a2b22abcosC ,所以ba a 2b 2c 2 2abcosC 3absinC 2abcosC 3sinC2cosCabab ab ab13sin C,此中 sin2 13 , cos313 ,1313当ba获得最大值13时, C,∴ cosC cossin2 13. a b2213故答案为:2 13.13【点睛】此题考察解三角形及三角函数协助角公式,考察逻辑思想能力和运算能力,属于常考题.14.【分析】【剖析】依据不等式组画出可行域可知;依据向量投影公式可知所求投影为利用的范围可求得的范围代入求得所求的结果【详解】由不等式组可得可行域以下列图暗影部分所示:由题意可知:在上的投影为:此题正确结分析:3,3【分析】【剖析】依据不等式组画出可行域,可知AOP ,5;依据向量投影公式可知所求投影为uuuv6 6AOP 的范围可求得 cos AOP 的范围,代入求得所求的结果 .OA cos AOP ,利用【详解】由不等式组可得可行域以下列图暗影部分所示:由题意可知:AOB,5AOC66uuuvuuuvuuuv9 3 cosAOP 2 3cos AOPOA 在 OP 上的投影为:OA cos AOP Q AOBAOPAOCAOP56 ,6cos AOP3 , 3uuuvAOP3,3OA cos2 2此题正确结果:3,3【点睛】此题考察线性规划中的求解取值范围类问题,波及到平面向量投影公式的应用;重点是能 够依据可行域确立向量夹角的取值范围,从而利用三角函数知识来求解.15.【分析】【剖析】由题意联合均值不等式第一求得的最小值而后联合恒成立的条件获得对于 a 的不等式求解不等式即可确立实数 a 的取值范围【详解】由可得故:当且仅立即时等号建立故只要又则即则的取值范围是【点睛】在分析: 1,【分析】【剖析】由题意联合均值不等式第一求得1 4的最小值,而后联合恒建立的条件获得对于 a 的m n 1不等式,求解不等式即可确立实数 a 的取值范围 .【详解】由 mn 8 可得 m n 1 9,故:141m n14 1n 1 4m m n 1 9 11 4m n 19 m n 1≥11 42 n 1 4m1 ,9m n 1n 1 2m当且仅当n 1 4m ,即 m3 , n 5 时等号建立,mn 1故只要11 ,又 a 0 ,则 a 1 .a即则 a 的取值范围是1,.【点睛】在应用基本不等式求最值时,要掌握不等式建立的三个条件,就是 “一正 —— 各项均为正;二定 —— 积或和为定值;三相等 —— 等号可否获得 ”,若忽视了某个条件,就会出现错误.16.【分析】【剖析】第一依据无量等比数列的各项和为 2 能够确立其公比知足利用等比数列各项和的公式获得获得分和两种状况求得的取值范围获得结果【详解】由于无量等比数列的各项和为 2 所以其公比知足且所以当时当时所分析: (0,2) U (2,4) .【分析】【剖析】第一依据无量等比数列 { a n } 的各项和为 2,能够确立其公比知足0 q 1 ,利用等比数列a 12,获得 a 12 2q ,分 0 q 1 和 1 q0两种状况求得 a 1各项和的公式获得1 q的取值范围,获得结果.【详解】由于无量等比数列 { a n} 的各项和为2,所以其公比 q知足0q 1,且a1 2 ,1q所以 a1 2 2q ,当 0q1时, a1(0, 2) ,当 1q0 时, a1(2, 4) ,所以首项 a1的取值范围为(0,2) U (2,4) ,故答案是: (0,2) U (2,4) .【点睛】该题考察的是相关等比数列各项和的问题,波及到的知识点有等比数列存在各项和的条件,各项和的公式,注意分类议论,属于简单题目.17.91【分析】【剖析】由Sn+1+Sn﹣ 1=2(Sn+1)可得 Sn+1﹣ Sn=Sn﹣Sn ﹣1+2 可得 an+1﹣an=2 利用等差数列的通项公式与乞降公式即可得出【详解】∵对于随意 n> 1n∈N* 知足 Sn+分析: 91【分析】【剖析】由 S n+1+S n﹣1= 2( S n+1),可得 S n+1﹣ S n= S n﹣S n﹣1+2,可得 a n+1﹣ a n= 2.利用等差数列的通项公式与乞降公式即可得出.【详解】*∵对于随意n> 1,n∈N,知足 S n+1+S n﹣1= 2( S n+1),∴n≥2时, S n+1﹣ S n= S n﹣ S n﹣1+2,∴a n+1﹣a n=2.∴数列 {a n} 在 n≥2时是等差数列,公差为2.98则 S10=1+9×2 2 91.2故答案为91【点睛】此题考察了数列递推关系、等差数列的通项公式与乞降公式,考察了推理能力与计算能力,属于中档题.18.7【分析】试题剖析:依据拘束条件画出可行域获得△ABC及其内部此中 A ( 53)B(﹣ 13)C(20)而后利用直线平移法可适当x=5y=3 时 z=2x﹣ y 有最大值而且能够获得这个最大值详解:依据拘束条件画分析: 7【分析】试题剖析:依据拘束条件画出可行域,获得△ABC 及其内部,此中 A (5, 3), B (﹣ 1,3), C(2, 0).而后利用直线平移法,可适当x=5 ,y=3 时, z=2x﹣ y 有最大值,而且可以获得这个最大值.详解:x y2,依据拘束条件x y 2,画出可行域如图,0 y3,获得△ABC 及其内部,此中 A ( 5, 3), B (﹣ 1, 3), C( 2, 0)平移直线l: z=2x﹣ y,适当 l 经过点 A( 5, 3)时,∴Z最大为 2×5﹣ 3=7.故答案为 7.点睛:在解决线性规划的小题时,我们常用“”角点法,其步骤为:①由拘束条件画出可行域? ②求出可行域各个角点的坐标? ③将坐标逐个代入目标函数? ④考证,求出最优解.19.【分析】【剖析】【详解】当时代入题中不等式明显不建立当季节都过定点考察函数令则与轴的交点为时均有也过点解得或(舍去)故分析: a 3 2【分析】【剖析】【详解】当时,代入题中不等式明显不建立当时,令,,都过定点考察函数,令,则与轴的交点为时,均有也过点解得或 (舍去),故20.【分析】【剖析】先利用累加法求出 an =33+n2﹣n 所以设 f ( n )由此能导出 n =5 或 6 时 f (n )有最小值借此能获得的最小值【详解】解:∵ an+1﹣an =2n ∴当 n ≥2时 an =( an ﹣an ﹣1)+(a分析:212【分析】 【剖析】先利用累加法求出a n = 33+n 2n ,所以a n33 n 1 , f ( n ) 33 n 1,由此能nnn出 n = 5 或 6 f ( n )有最小 .借此能获得a n 的最小 .n【 解】解:∵ a n+1a n = 2n ,∴当 n ≥2 , a n =( a na n ﹣1) +(a n ﹣1a n ﹣2) +⋯ +(a 2a 1) +a 1=2[1+2+ ⋯ +( n1) ]+33 =n 2n+33且 n = 1 也合适,所以a n = n 2 n+33.从而an33 n 1 nnf (n )33 n 1,令 f ′( n ) 33 1>0 ,n n 2f (n )在33,上是 增,在 0, 33 上是 减的, 因 n ∈N +,所以当 n = 5 或 6 f (n )有最小 .又因a 5 53 a 6 63 215 5,6,62所以 a n 的最小a 621n6221故答案【点睛】本 考 了利用 推公式求数列的通 公式,考 了累加法. 考 函数的思想,结构函数利用 数判断函数 性.三、解答题21. ( 1) y16x 28( x 0) ;( 2)厂家 2020 年的促销花费投入3万元时,厂家x 1的收益最大 , 为 21 万元 .【分析】【剖析】(1)由不搞促销活动,则该产品的年销售量只好是 1 万件,可求 k 的值,再求出每件产品销售价钱的代数式,则收益 y (万元)表示为年促销花费 x (万元)的函数可求 .(2)由( 1)得 y16x28 ,再依据均值不等式可解. . x 1 注意取等号【详解】(1)由题意知 , 当 x 0 时 , m 1,所以 1 3 k, k 2, m32x ,1每件产品的销售价钱为1.5 8 16m 元 .m所以 2020 年的收益 y1.5 8 16 m m 8 16m x 16 x 28(x0) ;mx 1 (2) 由 (1) 知,16 x 28 16( x 1) 29 21 ,y1 xx 116 x 3 时取等号 ,当且仅当(x 1) , 即x1该厂家 2020 年的促销花费投入 3 万元时 , 厂家的收益最大 , 为 21 万元 .【点睛】考察均值不等式的应用以及给定值求函数的参数及分析式.题目较易,考察的均值不等式,要注意取等号 .222. (1) A ;3(2) S V ABC =33 .4【分析】【剖析】(1)由正弦定理、三角函数恒等变换化简已知可得:sin A1,联合范围62A0, ,可得 A, 7,从而可求 A 的值.66 6( 2)在△ ADC 中,由正弦定理可得 sin CAD 1,可得 CAD = ,利用三角形内角和2定理可求C , B ,即可求得 AB AC3 ,再利用三角形的面积公式即可计算得解.【详解】(1)∵ a3sinB cosCc b cosA ,∴由正弦定理可得: 3sinAsinB sinAcosC = sinCcosA sinBcosA ,∴可得:3sinAsinB sinBcosA =sin CcosA sinAcosC ,可得:sinB3sin A cosA sinB ,∵ sinB 0 ,∴ 3sincos2sinA1 ,可得:sin A1 ,266∵ A0,,∴ A,7,66 6∴ A52,可得: A.663(2)∵ b3 ,点 D 在 BC 边上, CD = 2, ADC =,3∴在 VADC 中,由正弦定理ACCD3 2,可得:3 sin CAD,可得:sin ADCsin CAD2sin CAD =1,∴CAD =2 ,可得: CCADADC,6∴B =A C =,6∴AB AC3 ,∴S V ABC =1AB AC sinA1 3 33 3 3 .222 4【点睛】此题主要考察了正弦定理、三角函数恒等变换的应用,三角形内角和定理及三角形的面积公式在解三角形中的应用,考察了计算能力和转变能力,属于中档题.1( 2 ) 9 3 .23.( ) B4 3【分析】 【剖析】(1)利用向量共线的条件,联合引诱公式,求得角 B 的余弦值,即可得答案;(2)求出 CD ,ADC2,由正弦定理可得 sinDAC ,即可求出四边形 ABCD 的3面积.【详解】rr r r(2sin A(1) Q 向量 msin C ,sin B) , n(cosC,cos B) ,且 m // n ,(2sin A sin C)cos B sin B cosC ,2sin A cosBsin( B C ) ,2sin AcosB sin A ,cosB 1,2Q 0 B B3,;(2)依据题意及(1)可得ABC 是等边三角形,ADC2 ,3ADC 中,由余弦定理可得AC 2AD 2 CD 2 2AD CD cos2,3CD 2 CD 60,CD2,由正弦定理可得 sinDACCD sin ADC21 ,AC7四边形 ABCD 的面积. S 11 7 sin DAC1 77 sin ABC9 3 .224【点睛】此题考察 向量共线条件的运用、引诱公式、余弦定理、正弦定理的应用 ,考察函数与方程思想、转变与化归思想,考察逻辑推理能力、运算求解能力,求解时注意将四边形的面积切割成两个三角形的面积和.24. ( 1) a n2 3 2n 3 13 n ( 2) T n44 3 n【分析】【剖析】(1)由题可得 a 1 a 2 a 3La n 1 3 a n 1 ,与已知作差可得 a n 3a n3a n 1 ,整2 22an 11,从而利用等比数列的通项公式求解即可;理可得3a nn n( 2)由( 1)可得 b n 2 a n 3n ,利用错位相减法乞降即可 .【详解】解: (1 )当 n2 时 , 由 a 1 a 2a 3 L a n 131a n ,2则 a 1 a 2 a 3 L a n1 3a n 1 ,2两式相减得 a n3 a n 3 a n 1 ,2 2即1a n3 a n 1 , 2 2 ∴an11 ,a n3当 n2 时 , 由 a 113a 2 , 得 a 2 2 ,29a 21∴3 ,a 1综上 , 对随意n , a n11 ,1a n3∴ a n 是以2为首项,1为公比的等比数列 ,33∴ a n 2 n .3(2)由( 1) b nn na nn ,2 3 ∴ T n 11 1 L n 13223 3 3 n ,3 31 12 1 L (n 1) 11 T n1 23 3 n n3n 1 ,33 3∴2111 L1n13Tn3 32333x3n 11 1 1n ,23n 3n 1则 T n 3 2n 3 14 4 3n【点睛】此题考察了依据数列的递推公式求解数列通项 , 考察等比数列通项公式的应用 , 考察利用错位相消求解数列前 n 项和 .n n11 ( 2) T n 1 25. ( ) b n2 5 3n 52【分析】【剖析】(1)由公比 0q 1联合等比数列的性质得出b 11, b 31 1, b 5,再确立公比,2832即可得出数列b n 的通项公式;(2)利用错位相减法求解即可 .【详解】(1)由于公比为 q 0q 1 的等比数列 b n 中, b 1, b 3 ,b 51,1,1,1,150 32 20 8 2所以由 b 1 ,b 3 , b 5 成等比数列得出,当且仅当b 11 11, b 3, b 5 时建立 .2832此时公比 q2 b3 1 1b 1 , q 241 n所以b n.2n ( 2)由于 c n3n 112所以 T nc 1 c 2 c 3... c n121 3n2 151 8... 3n 112222∴123nn 1T n 21 51... 3n 41 3n11 2 22221 T123nn 1∴ 2131 1...1 3n112n22 222n 1n 11 3 1 11 3n 112 2 251 n3n 5222n故数列c n 的前n项和 T n5 3n51 2【点睛】此题主要考察了求等比数列的通项公式以及利用错位相减法求数列的和,属于中档题.3602 26. (Ⅰ) y=225x+360( xn0)x(Ⅱ)当 x=24m 时,修筑围墙的总花费最小,最小总花费是 10440 元.【分析】试题剖析:( 1)设矩形的另一边长为 am ,则依据围建的矩形场所的面积为360m 2,易得360a,此时再依据旧墙的维修花费为45 元 /m ,新墙的造价为180 元 /m ,我们即可得x到修筑围墙的总花费y 表示成 x 的函数的分析式;(2)依据( 1)中所得函数的分析式,利用基本不等式,我们易求出修筑此矩形场所围墙的总花费最小值,及相应的x 值试题分析:( 1)如图,设矩形的另一边长为 a m则45x+180( x-2) +180·2a=225x+360a-360由已知 xa=360,得 a=,所以y=225x+(2).当且仅当225x=时,等号建立.即当 x=24m 时,修筑围墙的总花费最小,最小总花费是10440元.考点:函数模型的选择与应用。

2020-2021高中三年级数学下期中一模试题带答案

2020-2021高中三年级数学下期中一模试题带答案

2020-2021高中三年级数学下期中一模试题带答案一、选择题1.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]-D .(,3][1,)-∞-⋃+∞2.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-3.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4.已知数列{}n a的首项110,1n n a a a +==+,则20a =( ) A .99B .101C .399D .4015.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 6.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( ) A .20B .24C .28D .327.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭8.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) ABCD.9.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .110.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-311.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .512.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13B .38C .37D .1二、填空题13.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 14.已知0,0a b >>,且20a b +=,则lg lg a b +的最大值为_____.15.已知x ,y 满足3010510x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.16.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 17.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.18.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 19.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________.20.设0x >,0y >,4x y +=,则14x y+的最小值为______. 三、解答题21.已知数列{}n a 的前n 项和n S 满足231n n S a =-,其中n *∈N . (1)求数列{}n a 的通项公式;(2)设23nn n a b n n=+,求数列{}n b 的前n 项和为n T .22.ABC V 的内角,,A B C 所对的边分别为,,a b c .已知ABC V 的面积21tan 6S b A = (1)证明: 3 b ccos A =;(2)若1,3c a ==,求S .23.已知()f x a b =⋅v v ,其中()2cos ,3sin 2a x x =-v,()cos ,1b x =v ,x ∈R .(1)求()f x 的单调递增区间;(2)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,()1f A =-,7a =,且向量()3,sin m B =v 与()2,sin n C =v共线,求边长b 和c 的值. 24.设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.25.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .26.在ΔABC 中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin sin sin A C B A C +=-.(1)求B 的大小;(2)设BAC ∠的平分线AD 交BC 于,23,1D AD BD ==,求sin BAC ∠的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B 【解析】【分析】【详解】先作可行域,而46yx++表示两点P(x,y)与A(-6,-4)连线的斜率,所以46yx++的取值范围是[,][3,1]AD ACk k=-,选B.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.2.A解析:A【解析】【分析】【详解】作出不等式50{03x y x y x -+≥+≥≤所表示可行域如图所示,作直线:24l z x y =+,则z 为直线l 在y 轴上截距的4倍, 联立3{x x y =+=,解得3{3x y ==-,结合图象知,当直线l 经过可行域上的点()3,3A -时,直线l 在y 轴上的截距最小, 此时z 取最小值,即()min 23436z =⨯+⨯-=-,故选A. 考点:线性规划3.C解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.4.C解析:C 【解析】 【分析】 【详解】由11n n a a +=+,可得)21111n a ++==,是以1为公差,以1为首项的等差数列.2,1n n a n ==-,即220201399a =-=.故选C.5.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.6.A解析:A 【解析】分析:由已知条件构造基本不等式模型()()224x y x y +=+++-即可得出.详解:,x y Q 均为正实数,且111226x y +=++,则116122x y ⎛⎫+= ⎪++⎝⎭(2)(2)4x y x y ∴+=+++-116()[(2)(2)]422x y x y =++++-++226(2)46(242022y x x y ++=++-≥+-=++ 当且仅当10x y ==时取等号.x y ∴+的最小值为20. 故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.7.D解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .8.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a ),即4a +13a ≤故1212a x x x x ++的最大值为3-. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=,2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,22(2)5592x x -++≥=-Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.10.D解析:D 【解析】作出不等式对应的平面区域, 由z=x+y,得y=−x+z,平移直线y=−x+z ,由图象可知当直线y=−x+z 经过点A 时,直线y=−x+z 的截距最大, 此时z 最大为6.即x+y=6.经过点B 时,直线y=−x+z 的截距最小,此时z 最小. 由6{x y x y +=-=得A(3,3),∵直线y=k 过A , ∴k=3. 由3{20y k x y ==+=,解得B(−6,3).此时z 的最小值为z=−6+3=−3, 本题选择D 选项.点睛:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:b zy x a b =-+,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得.11.A解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。

2020-2021高中三年级数学下期中第一次模拟试卷附答案(2)

2020-2021高中三年级数学下期中第一次模拟试卷附答案(2)

(1)求 A ;
(2)若 tan A 2tan B ,求
b sin C
的值.
a 2b sin B 2c sin C
23.设数列an的前 n 项和为 Sn .已知 2Sn 3n 3 .
(Ⅰ)求 an 的通项公式;
(Ⅱ)若数列bn 满足 anbn log3 an ,求bn 的前 n 项和Tn .
(1)若不等式 f
x
1 2
2m
1(m
0)
的解集为
, 2 2,
,求实数 m 的值;
(2)若不等式
f
x
2y
a 2y
2x 3
对任意的实数
x,
yR
恒成立,求正实数 a
的最
小值.
22. ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 ABC 的外接圆半径为
R ,且 2 3R sin A sin B b cos A 0 .
能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求
解.
5.A
解析:A
【解析】
sin(A C) 2sin BcosC 2sin AcosC cos Asin C
所以 2sin BcosC sin AcosC 2sin B sin A 2b a ,选 A.
【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用
11.A
解析:A 【解析】 【分析】
设三角形的三边分别为 n, n 1, n 2(n N*) ,根据余弦定理求出最小角的余弦值,然后 再由正弦定理求得最小角的余弦值,进而得到 n 的值,于是可得最小角的余弦值.
【详解】

2020-2021高中三年级数学下期中第一次模拟试卷(及答案)(10)

2020-2021高中三年级数学下期中第一次模拟试卷(及答案)(10)

2020-2021高中三年级数学下期中第一次模拟试卷(及答案)(10)一、选择题1.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-2.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆的面积为2,则a 的值为( )A .2BC D .13.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033B .1034C .2057D .20585.在ABC ∆中,,,a b c 是角,,A B C 的对边,2a b =,3cos 5A =,则sinB =( ) A .25B .35C .45 D .856.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形7.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S8.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数:①()3f x x =;②()xf x e =;③()f x x =;④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④9.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-10.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25C .41D .5211.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 kmB .3 kmC .105 kmD .107 km12.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .60二、填空题13.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1yx +的最大值为_______.14.(广东深圳市2017届高三第二次(4月)调研考试数学理试题)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积术”,即ABC △的面积222222142a c b S a c ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,其中a b c 、、分别为ABC △内角、、A B C 的对边.若2b =,且3sin tan 13cos BC B=-,则ABC △的面积S 的最大值为__________.15.设正项数列{}n a 的前n 项和是n S ,若{}n a 和{}nS 都是等差数列,且公差相等,则1a =_______.16.设()32()lg 1f x x x x =+++,则对任意实数,a b ,“0a b +≥”是“()()0f a f b +≥”的_________条件.(填“充分不必要”.“必要不充分”.“充要”.“既不充分又不必要”之一) 17.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.18.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______19.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.20.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?三、解答题21.设{}n a 是等比数列,公比不为1.已知113a =,且1a ,22a ,33a 成等差数列. (1)求{}n a 的通项公式; (2)设数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 22.在公差不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,又数列{}n b 满足*2,21,()2,2,n a n n k b k N n n k ⎧=-=∈⎨=⎩. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .23.在等比数列{}n a 中,125a a +=,且2320a a +=. (1)求{}n a 的通项公式;(2)求数列{}3n n a a +的前n 项和n S .24.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+L (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S . 25.设数列的前项和为,且.(1)求数列的通项公式; (2)设,求数列的前项和.26.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44yx +≥,从而得到关于a 的不等式,解不等式求得结果. 【详解】 由题意知:1442444y y x yx x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04yx> 442244x y x yy x y x∴+≥⋅=(当且仅当44x y y x =,即4x y =时取等号) 44yx ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B 【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.2.B解析:B试题分析:由已知条件及三角形面积计算公式得131sin ,2,232c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.3.C解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.4.A解析:A 【解析】 【分析】 【详解】首先根据数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据a b1+a b2+…+a b10=1+2+23+25+…+29+10进行求和. 解:∵数列{a n }是以2为首项,1为公差的等差数列, ∴a n =2+(n-1)×1=n+1, ∵{b n }是以1为首项,2为公比的等比数列, ∴b n =1×2n-1, 依题意有:a b1+a b2+…+a b10=1+2+22+23+25+…+29+10=1033, 故选A .5.A解析:A 【解析】试题分析:由3cos 5A =得,又2a b =,由正弦定理可得sin B =.考点:同角关系式、正弦定理.6.D解析:D【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.7.D解析:D 【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.8.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.9.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.10.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===.11.D解析:D 【解析】 【分析】直接利用余弦定理求出A ,C 两地的距离即可. 【详解】因为A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°, 则A ,C 两地的距离为:AC 2=AB 2+CB 2﹣2AB •BC cos ∠ABC =102+202﹣2110202⎛⎫⨯⨯⨯-= ⎪⎝⎭700. 所以AC =km . 故选D . 【点睛】本题考查余弦定理的实际应用,考查计算能力.12.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度.【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是40cos sin 22356035251sin()2h CD DF EF a αββα=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.二、填空题13.2【解析】【分析】作出不等式组表示的平面区域根据目标函数的几何意义结合图象即可求解得到答案【详解】由题意作出不等式组表示的平面区域如图所示又由即表示平面区域内任一点与点之间连线的斜率显然直线的斜率最解析:2 【解析】 【分析】作出不等式组表示的平面区域,根据目标函数的几何意义,结合图象,即可求解,得到答案. 【详解】由题意,作出不等式组表示的平面区域,如图所示,又由()011y y x x -=+--,即1y x +表示平面区域内任一点(),x y 与点()1,0D -之间连线的斜率,显然直线AD 的斜率最大, 又由2202x y y +-=⎧⎨=⎩,解得()0,2A ,则02210AD k -==--, 所以1yx +的最大值为2.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14.【解析】由题设可知即由正弦定理可得所以当时故填【解析】由题设可知)sin sin sin cos cos sincos C C B C B C C =⇒=+,即sin C A =,由正弦定理可得c =,所以S ==242a a =⇒=时,max S == 15.【解析】分析:设公差为d 首项利用等差中项的性质通过两次平方运算即可求得答案详解:设公差为d 首项和都是等差数列且公差相等即两边同时平方得:两边再平方得:又两数列公差相等即解得:或为正项数列故答案为:点 解析:14【解析】分析:设公差为d ,首项1a ,利用等差中项的性质,通过两次平方运算即可求得答案. 详解:设公差为d ,首项1a ,Q {}n a 和都是等差数列,且公差相等,∴=,即=,两边同时平方得:()1114233a d a a d +=+++14a d +=两边再平方得:()221111168433a a d d a a d ++=+,∴2211440a a d d -+=,12d a =,又两数列公差相等,2112a a d a =-==,12a =, 解得:114a =或10a =, Q {}n a 为正项数列,∴114a =.故答案为:14. 点睛:本题考查等差数列的性质,考查等差中项的性质,考查化归与方程思想.16.充要【解析】所以为奇函数又为单调递增函数所以即是的充要条件点睛:充分必要条件的三种判断方法1定义法:直接判断若则若则的真假并注意和图示相结合例如⇒为真则是的充分条件2等价法:利用⇒与非⇒非⇒与非⇒非解析:充要 【解析】3232()()lg(1)()lg(1)lg10f x f x x x x x x x +-=++++-+-++== ,所以()f x 为奇函数,又()f x 为单调递增函数,所以0()()()()()()0a b a b f a f b f a f b f a f b +≥⇔≥-⇔≥-⇔≥-⇔+≥ ,即“0a b +≥”是“()()0f a f b +≥”的充要条件点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.17.121)【解析】试题分析:由题意对任意实数xy∈R 都有f(x)f(y)=f(x+y)则令x=ny=1可得f(n)f(1)=f(n+1)即f(n+1)an+1an=f(n+1)f(n)=12即数列{a 解析:【解析】试题分析:由题意,对任意实数,都有,则令可得 ,即,即数列是以为首项,以为公比的等比数列,故考点:抽象函数及其应用,等比数列的通项及其性质18.-2+)【解析】【分析】根据题意分x=0与x≠0两种情况讨论①x=0时易得原不等式恒成立②x≠0时原式可变形为a≥-(|x|+)由基本不等式的性质易得a 的范围综合两种情况可得答案【详解】根据题意分两解析:[-2,+∞) 【解析】 【分析】根据题意,分x=0与x≠0两种情况讨论,①x=0时,易得原不等式恒成立,②x≠0时,原式可变形为a≥-(|x|+ 1x),由基本不等式的性质,易得a 的范围,综合两种情况可得答案. 【详解】根据题意,分两种情况讨论;①x=0时,原式为1≥0,恒成立,则a∈R;②x≠0时,原式可化为a|x|≥-(x 2+1),即a≥-(|x|+ 1x),又由|x|+1x ≥2,则-(|x|+1x)≤-2;要使不等式x 2+a|x|+1≥0恒成立,需有a≥-2即可; 综上可得,a 的取值范围是[-2,+∞); 故答案为[-2,+∞). 【点睛】本题考查不等式恒成立问题的解法,运用分类讨论和参数分离、基本不等式求最值是解题的关键,属于中档题.19.-4【解析】【分析】根据已知可得即可求解【详解】且故答案为:-4【点睛】本题考查数列的递推关系以及周期数列考查计算求解能力属于中档题解析:-4 【解析】 【分析】根据已知可得6n n b b +=,即可求解. 【详解】121,5b b ==且*21()n n n b b b n N ++=-∈, 321211n n n n n n n n b b b b b b b b ++++++=-==-=--, 63,20166336n n n b b b ++=-==⨯, 201663214b b b b b ∴==-=-+=-.故答案为:-4 【点睛】本题考查数列的递推关系以及周期数列,考查计算求解能力,属于中档题.20.9【解析】解:由题意可知:良马与驽马第天跑的路程都是等差数列设路程为由题意有:故:满足题意时数列的前n 项和为由等差数列前n 项和公式可得:解得:即二马相逢需9日相逢点睛:本题考查数列的实际应用题(1)解析:9【解析】解:由题意可知:良马与驽马第n 天跑的路程都是等差数列,设路程为{}{},n n a b , 由题意有:()()1111031131390,97197222n n a n n b n n ⎛⎫=+-⨯=+=+-⨯-=-+ ⎪⎝⎭, 故:111871222n n n c a b n =+=+ , 满足题意时,数列{}n c 的前n 项和为112522250n S =⨯= ,由等差数列前n 项和公式可得:11111871218712222222502n n ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⨯= , 解得:9n = .即二马相逢,需9日相逢 点睛:本题考查数列的实际应用题. (1)解决数列应用题的基本步骤是:①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知; ②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型; ③求出数学模型,根据求解结果对实际问题作出结论. (2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.三、解答题21.(1)13nn a ⎛⎫= ⎪⎝⎭; (2)13(21)34n n n T ++-⋅=【解析】 【分析】(1)由等差中项可得21343a a a =+,设数列{}n a 的公比为()1q q ≠,则211143a q a a q ⋅=+⋅,可解得q ,即可求得通项公式;(2)由(1)可得3n nnn a =⋅,再利用错位相减法求解即可. 【详解】解:(1)设数列{}n a 的公比为()1q q ≠,且1a ,22a ,33a 成等差数列,所以21343a a a =+,即211143a q a a q ⋅=+⋅,解得13q =, 因为113a =,所以13nn a ⎛⎫= ⎪⎝⎭(2)由(1)知,13nn a ⎛⎫= ⎪⎝⎭,所以3n nn n a =⋅, 所以1231323333nn T n =⨯+⨯+⨯++⋅L ,则234131323333n n T n +=⨯+⨯+⨯++⋅L ,作差可得,1231233333n n n T n +-=++++-⋅L则()+13312331n n nT n --=-⋅-,即1132322n n T n +⎛⎫-=-⋅- ⎪⎝⎭,所以()132134n n n T ++-⋅=【点睛】本题考查等差中项的应用,考查等比数列的通项公式,考查错位相减法求数列的和.22.(1)n a n =;(2)22(41)2(1)3n n T n n -=++ 【解析】 【分析】(1)根据条件列方程组解得公差与首项,即得数列{}n a 的通项公式;(2)根据分组求和法得结果. 【详解】(1)公差d 不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,可得2319a a a =,313a a a =,可得2111(2)(8)a d a a d +=+,11a =,化简可得11a d ==,即有n a n =;(2)由(1)可得2,212,2n n n k b n n k ⎧=-=⎨=⎩,*k N ∈;前2n 项和212(28322)(48124)n n T n -=+++⋯+++++⋯+2(14)12(41)(44)2(1)1423n n n n n n --=++=++-. 【点睛】本题考查等差数列通项公式以及分组求和法求和,考查基本分析求解能力,属中档题. 23.(1)14n n a -=;(2)n S 4121n n =-+-.【解析】 【分析】(1)由数列{}n a 是等比数列,及125a a +=,且2320a a +=,两式相除得到公比q ,再代入125a a +=可求1a ,则通项公式可求.(2)利用分组求和求出数列{3n a 的前n 项和n S . 【详解】解:(1)因为等比数列{}n a 中,125a a +=,且2320a a +=. 所以公比23124a a q a a +==+, 所以12155a a a +==, 即11a =, 故14n n a -=.(2)因为14n n a -=所以113342n n n a --=⋅+,所以141231412n nn S --=⨯+-- 4121n n =-+- 422n n =+-. 【点睛】本题考查等比数列的通项公式的计算与等比数列前n 项和公式的应用,属于基础题. 24.(1)21n a n =-;(2)12362n n -+-. 【解析】 【分析】 【详解】(Ⅰ)设等差数列{}n a 的公差为d ,由已知得()()1212234,{12,a a a a a a +=+++=即12234,{8,a a a a +=+=所以()()()11114,{28,a a d a d a d ++=+++=解得11,{2,a d == 所以21n a n =-. (Ⅱ)由(Ⅰ)得112122n n n a n ---=,所以122135232112222n n n n n S ----=+++⋯++,① 23111352321222222n n n n n S ---=+++⋯⋯++,② -①②得:2211112123113222222n n n nn n S --+=++++⋯+-=-所以4662n nn S +=-. 点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn ”与“qSn ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn -qSn ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 25.(1);(2).【解析】 试题分析:(1)由题意结合通项公式与前n 项和的关系可得;(2)结合(1)中求得的通项公式和所给数列通项公式的特点错位相减可得数列的前项和.(3) 试题解析:(Ⅰ)由2S n =3a n -1 ① 2S n -1=3a n -1-1 ② ②-①得2a n =3a n -3a n -1,∴=3,()又当n =1时,2S 1=3a 1-1,即a 1=1,(符合题意) ∴{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. (Ⅱ)由(Ⅰ)得:b n =∴T n =+++…+,…………………③ T n =++…++,………④ ③-④得:T n =+++…+-=-=-∴T n =-.26.(Ⅰ)21,n a n =+;(Ⅱ)8(41)3n n T -=. 【解析】 【分析】(Ⅰ)由题意可得1, 2.p q ==则22n S n n =+,利用通项公式与前n 项和的关系可得21,n a n =+(Ⅱ) 由(1)可知212n n b +=,结合等比数列前n 项和公式计算可得数列{}n b 的前n 项和()8413n n T -=.【详解】(Ⅰ)由14316424S p q S p q =+=⎧⎨=+=⎩ 得21, 2.2.n p q S n n ===+ 所以当1n =时,1 3.a =当2n ≥时,()()21121,n S n n -=-+-所以()()()221212121,n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦检验1 3.a =符合21,n a n =+ (Ⅱ) 由(1)可知21,n a n =+ 所以2122na n nb +==.设数列{}n b 的前n 项和为n T ,则:()()()1211212424242424444414214841.?3n nn n nnn T --=⨯+⨯++⨯+⨯=++++-=⨯--=L L所以数列{}n b 的前n 项和为()8413n n T -=.【点睛】本题主要考查数列通项公式与前n 项和公式的关系,等比数列前n 项和公式及其应用等知识,意在考查学生的转化能力和计算求解能力.。

2020-2021高中三年级数学下期中第一次模拟试卷(及答案)(3)

2020-2021高中三年级数学下期中第一次模拟试卷(及答案)(3)

2020-2021高中三年级数学下期中第一次模拟试卷(及答案)(3)一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2 CD.23.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .564.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .35.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S6.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102007.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .38.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+9.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2-B .(][),42,-∞-+∞UC .()2,4-D .(][),24,-∞-⋃+∞10.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .511.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .612.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为nT,则2017T =( ) A .2016B .2017C .2018D .2019二、填空题13.数列{}n a 满足11,a =前n 项和为n S ,且*2(2,)n n S a n n N =≥∈,则{}n a 的通项公式n a =____;14.已知0a >,0b >,当()214a b ab++取得最小值时,b =__________. 15.已知x y ,满足20030x y y x y -≥⎧⎪≥⎨⎪+-≤⎩,,,,则222x y y ++的取值范围是__________.16.已知等比数列{}n a 的公比为2,前n 项和为n S ,则42S a =______. 17.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .18.在△ABC 中,2a =,4c =,且3sin 2sin A B =,则cos C =____. 19.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.20.设a >0,b >0. 若关于x,y 的方程组1,{1ax y x by +=+=无解,则+a b 的取值范围是 . 三、解答题21.等差数列{}n a 中,71994,2a a a ==. (1)求{}n a 的通项公式;(2)设1n nb na =,求数列{}n b 的前n 项和n S . 22.在数列{}n a 中, 已知11a =,且数列{}n a 的前n 项和n S 满足1434n n S S +-=, n *∈N . (1)证明数列{}n a 是等比数列;(2)设数列{}n na 的前n 项和为n T ,若不等式3()1604nn aT n+⋅-<对任意的n *∈N 恒成立, 求实数a 的取值范围.23.ABC V 的内角,,A B C 所对的边分别为,,a b c .已知ABC V 的面积21tan 6S b A = (1)证明: 3 b ccos A =; (2)若1,3c a ==,求S .24.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++(Ⅰ)求A 的大小; (Ⅱ)求sin sin B C +的最大值. 25.设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.26.如图,A ,B 是海面上位于东西方向相距()533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以q 212a a q ===,故选D. 3.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 4.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示, 由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1,即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.5.C解析:C 【解析】 【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0 ∵87a a -<1<0 ∴a 7<0,a 8>0 数列的前7项为负, 故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.6.B解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.7.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B . 当定点()0,1和B 点连接时,斜率最大,此时413202k -==-,则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.8.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。

2020-2021高中三年级数学下期中第一次模拟试题含答案(10)

2020-2021高中三年级数学下期中第一次模拟试题含答案(10)

2020-2021高中三年级数学下期中第一次模拟试题含答案(10)一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D .若a b <,则a b <2.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .13.在ABC V 中,A ,B ,C 的对边分别为a ,b ,c ,2cos 22C a b a+=,则ABC V 的形状一定是( ) A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形4.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .785.已知正项等比数列{}n a 的公比为3,若229m n a a a =,则212m n+的最小值等于( ) A .1B .12C .34 D .326.已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,S 6a S a =-=,则5a = A .4B .10C .16D .327.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) A .6 B .23C .43D .43-8.()()()3663a a a -+-≤≤的最大值为( )A .9B .92C .3D .3229.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5 B .25 C .41D .52 10.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .3611.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .1312.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞B .()22,-+∞C .[)3,-+∞D .)22,⎡-+∞⎣二、填空题13.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______14.设0a >,若对于任意满足8m n +=的正数m ,n ,都有1141a m n ++≤,则a 的取值范围是______.15.已知()()0f x kx k =>,若正数a 、b 满足()()()()f a f b f a f b +=,且4a b f f k k ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的最小值为1,则实数k 的值为______. 16.已知0,0a b >>,且20a b +=,则lg lg a b +的最大值为_____. 17.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n n n a b ++=-- ,则数列{}n b 的前10项和10S =___________18.在无穷等比数列{}n a 中,123,1a a ==,则()1321lim n n a a a -→∞++⋯+=______. 19.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 20.在ABC ∆中,,,a bc 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________. 三、解答题21.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .22.在数列{}n a 中, 已知11a =,且数列{}n a 的前n 项和n S 满足1434n n S S +-=, n *∈N . (1)证明数列{}n a 是等比数列;(2)设数列{}n na 的前n 项和为n T ,若不等式3()1604nn aT n+⋅-<对任意的n *∈N 恒成立, 求实数a 的取值范围.23.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量=(2sinB,2-cos2B),=(2sin 2(),-1),.(1)求角B 的大小; (2)若a =,b =1,求c 的值.24.在ABC ∆中,内角、、A B C 的对边分别为a b c ,,,()2cos cos 0C a B b A c ++=.(Ⅰ)求角C 的大小; (Ⅱ)若22a b ==,,求()sin 2B C -的值.25.已知数列{n a }的前n 项和1*1()2()2n n n S a n N -=--+∈,数列{n b }满足n b =2n n a .(I)求证数列{n b }是等差数列,并求数列{n a }的通项公式; (Ⅱ)设2log n n n c a =,数列{22n n c c +}的前n 项和为T n ,求满足*25()21n T n N <∈的n 的最大值.26.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式; (2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0a ≤<b ,由不等式的平方法则,()()22ab <,即a b <.选D.2.C解析:C 【解析】 【分析】 【详解】解:∵234,,1a a a +成等比数列, ∴,∵数列{}n a 为递增的等差数列,设公差为d , ∴,即,又数列{}n a 前三项的和,∴,即,即d =2或d =−2(舍去), 则公差d =2. 故选:C .3.A解析:A 【解析】 【分析】利用平方化倍角公式和边化角公式化简2cos22C a b a+=得到sin cos sin A C B =,结合三角形内角和定理化简得到cos sin 0A C =,即可确定ABC V 的形状.22cos 2a b aC +=Q 1cos sin sin 22sin C A BA ++\=化简得sin cos sin A C B = ()B A C p =-+Qsin cos sin()A C A C \=+即cos sin 0A C =sin 0C ≠Qcos 0A ∴=即0A = 90ABC ∴V 是直角三角形 故选A 【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简2cos22C a b a+=时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.4.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.5.C解析:C 【解析】∵正项等比数列{}n a 的公比为3,且229m n a a a =∴2224222223339m n m n a a a a --+-⋅⋅⋅=⋅=∴6m n +=∴121121153()()(2)(2)62622624m n m n m n n m ⨯++=⨯+++≥⨯+=,当且仅当24m n ==时取等号. 故选C.点睛:利用基本不等式解题的注意点:(1)首先要判断是否具备了应用基本不等式的条件,即“一正、二正、三相等”,且这三个条件必须同时成立.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等. (3)多次使用基本不等式求最值时,要注意只有同时满足等号成立的条件才能取得等号.解析:C 【解析】由64S S -=6546a a a +=得,()22460,60q q a q q +-=+-=,解得2q =,从而3522=28=16a a =⋅⨯,故选C.7.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a ),即4a +13a ≤故1212a x x x x ++的最大值为3-. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.8.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:36922a a -++≤= 当且仅当36a a -=+,即32a =-时,等号成立, 故选B. 【点睛】本题主要考查了均值不等式,属于中档题.9.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得42c =. 由余弦定理可得:()222222142214252b ac accosB =+-=+-⨯⨯⨯=. 10.C解析:C 【解析】∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以故选C11.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.12.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q 当2x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值22,22m -∴≥-,m 的取值范围是)22,⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).二、填空题13.【解析】【分析】根据题意化简得利用式相加得到进而得到即可求解结果【详解】因为所以所以将以上各式相加得又所以解得或【点睛】本题主要考查了数列的递推关系式应用其中解答中利用数列的递推关系式得到关于数列首解析:34,- 【解析】 【分析】根据题意,化简得22111n n n a a a ++-=-,利用式相加,得到2213113112S a a a --=-,进而得到211120a a --=,即可求解结果.【详解】因为22111n n n a a a ++-=-,所以22111n n n a a a ++-=-, 所以2222222213321313121,1,,1a a a a a a a a a -=--=--=-L ,将以上各式相加,得2213113112S a a a --=-,又21313S a =,所以211120a a --=,解得13a =-或14a =.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.14.【解析】【分析】由题意结合均值不等式首先求得的最小值然后结合恒成立的条件得到关于a 的不等式求解不等式即可确定实数a 的取值范围【详解】由可得故:当且仅当即时等号成立故只需又则即则的取值范围是【点睛】在 解析:[)1,+∞【解析】 【分析】由题意结合均值不等式首先求得141m n ++的最小值,然后结合恒成立的条件得到关于a 的不等式,求解不等式即可确定实数a 的取值范围. 【详解】由8m n +=可得19m n ++=,故:()1411411411419191n m m n m n m n m n +⎛⎫⎛⎫+=+++=+++ ⎪ ⎪+++⎝⎭⎝⎭11419⎛⨯++= ⎝≥, 当且仅当12141n mn m mn +=⎧⎪+⎨=⎪+⎩,即3m =,5n =时等号成立,故只需11a≤,又0a >,则1a ≥. 即则a 的取值范围是[)1,+∞. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15.9【解析】【分析】由求出满足的关系然后利用基本不等式求出的最小值再由最小值为1可得【详解】∵∴即∴当且仅当时等号成立∴故答案为:9【点睛】本题考查基本不等式求最值解题时需用凑配法凑出基本不等式所需的解析:9 【解析】 【分析】由()()()()f a f b f a f b +=求出,a b 满足的关系,然后利用基本不等式求出4()()a bf f k k +的最小值,再由最小值为1可得k . 【详解】∵()()()()f a f b f a f b +=,()f x kx =,∴ka kb ka kb +=⋅,即11k a b+=, ∴4()()a b f f k k +111144()(4)(5)a b a b a b k a b k b a =+=++=++19(5k k≥+=,当且仅当4a b b a=时等号成立. ∴91k=,9k =. 故答案为:9. 【点睛】本题考查基本不等式求最值.解题时需用凑配法凑出基本不等式所需的定值,然后才可用基本不等式求最值,同时还要注意等号成立的条件,等号成立的条件取不到,这个最值也取不到.16.【解析】【分析】由为定值运用均值不等式求的最大值即可【详解】当且仅当时等号成立即而当且仅当时等号成立故的最大值为2故答案为:2【点睛】本题主要考查了基本不等值求积的最大值对数的运算属于中档题解析:2【解析】 【分析】由0,0a b >>,20a b +=为定值,运用均值不等式求ab 的最大值即可. 【详解】0,0a b ∴>>,20a b +=,20a b ∴=+≥当且仅当10a b ==时,等号成立,即100ab ≤,而lg lg lg lg1002a b ab +=≤=,当且仅当10a b ==时,等号成立, 故lg lg a b +的最大值为2, 故答案为:2 【点睛】本题主要考查了基本不等值求积的最大值,对数的运算,属于中档题.17.【解析】【分析】对于当n=1代入得-4依次得发现规律利用求出【详解】由当n=1代入得-4依次得发现规律利用得b=-求出故答案为【点睛】本题考查的是在数列中给了递推公式不好求通项公式时可以列举几项再发 解析:20462047-【解析】 【分析】 对于()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得345a =10a =-22a =46...,,发现规律, 利用()()112121n n n n a b ++=--,求出10S .【详解】 由()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得2345634567a =32-2a =-32+2a =32-2a =-32+2a =32-2...⨯⨯⨯⨯⨯,,,,发现规律, 利用()()112121n n nn a b ++=--,得b 1=-43,234510224694b =b =-b =b =-...3771515313163⨯⨯⨯⨯,,, ,求出1020462047S =-.故答案为20462047- 【点睛】本题考查的是在数列中,给了递推公式不好求通项公式时,可以列举几项再发现规律,求出题中要求的前10项和,属于中档题.18.【解析】【分析】利用无穷等比数列的求和公式即可得出【详解】解:根据等比数列的性质数列是首项为公比为的等比数列又因为公比所以故答案为:【点睛】本题考查了无穷等比数列的求和公式考查了推理能力与计算能力属解析:2【解析】 【分析】利用无穷等比数列的求和公式即可得出. 【详解】解:根据等比数列的性质,数列1321,,,n a a a -⋯是首项为1a ,公比为2q 的等比数列。

2020-2021高中三年级数学下期中一模试题(含答案)(10)

2020-2021高中三年级数学下期中一模试题(含答案)(10)

2020-2021高中三年级数学下期中一模试题(含答案)(10)一、选择题1.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-2.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆的面积为32,则a 的值为( ) A .2B .3C .3 D .13.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033B .1034C .2057D .20585.在ABC ∆中,,,a b c 是角,,A B C 的对边,2a b =,3cos 5A =,则sinB =( ) A .25B .35C .45 D .856.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .607.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形 8.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S9.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④10.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-11.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.12.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 kmBkmC.D.二、填空题13.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1yx +的最大值为_______.14.(广东深圳市2017届高三第二次(4月)调研考试数学理试题)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积术”,即ABC △的面积S =,其中a b c 、、分别为ABC△内角、、A B C 的对边.若2b =,且tan C =,则ABC △的面积S 的最大值为__________.15.设正项数列{}n a 的前n 项和是n S ,若{}n a 和{}nS 都是等差数列,且公差相等,则1a =_______.16.设()32()lg 1f x x x x =+++,则对任意实数,a b ,“0a b +≥”是“()()0f a f b +≥”的_________条件.(填“充分不必要”.“必要不充分”.“充要”.“既不充分又不必要”之一) 17.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.18.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______19.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.20.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?三、解答题21.设{}n a 是等比数列,公比不为1.已知113a =,且1a ,22a ,33a 成等差数列. (1)求{}n a 的通项公式; (2)设数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 22.在公差不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,又数列{}n b 满足*2,21,()2,2,n a n n k b k N n n k ⎧=-=∈⎨=⎩. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .23.在等比数列{}n a 中,125a a +=,且2320a a +=. (1)求{}n a 的通项公式;(2)求数列{}3n n a a +的前n 项和n S .24.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+L (*n N ∈). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S . 25.设数列的前项和为,且.(1)求数列的通项公式; (2)设,求数列的前项和.26.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44yx +≥,从而得到关于a 的不等式,解不等式求得结果. 【详解】 由题意知:1442444y y x yx x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04yx> 442244x y x yy x y x∴+≥⋅=(当且仅当44x y y x =,即4x y =时取等号) 44yx ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B 【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.2.B解析:B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin 2,232c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.3.C解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.4.A解析:A 【解析】 【分析】 【详解】首先根据数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据a b1+a b2+…+a b10=1+2+23+25+…+29+10进行求和. 解:∵数列{a n }是以2为首项,1为公差的等差数列, ∴a n =2+(n-1)×1=n+1, ∵{b n }是以1为首项,2为公比的等比数列, ∴b n =1×2n-1, 依题意有:a b1+a b2+…+a b10=1+2+22+23+25+…+29+10=1033, 故选A .5.A解析:A 【解析】试题分析:由3cos 5A =得,又2a b =,由正弦定理可得sin B =.考点:同角关系式、正弦定理.6.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度. 【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.7.D解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.8.D解析:D【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.9.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.10.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.11.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 12.D解析:D 【解析】 【分析】直接利用余弦定理求出A ,C 两地的距离即可. 【详解】因为A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°, 则A ,C 两地的距离为:AC 2=AB 2+CB 2﹣2AB •BC cos ∠ABC =102+202﹣2110202⎛⎫⨯⨯⨯-= ⎪⎝⎭700. 所以AC =km . 故选D . 【点睛】本题考查余弦定理的实际应用,考查计算能力.二、填空题13.2【解析】【分析】作出不等式组表示的平面区域根据目标函数的几何意义结合图象即可求解得到答案【详解】由题意作出不等式组表示的平面区域如图所示又由即表示平面区域内任一点与点之间连线的斜率显然直线的斜率最解析:2 【解析】 【分析】作出不等式组表示的平面区域,根据目标函数的几何意义,结合图象,即可求解,得到答案. 【详解】由题意,作出不等式组表示的平面区域,如图所示,又由()011y y x x -=+--,即1y x +表示平面区域内任一点(),x y 与点()1,0D -之间连线的斜率,显然直线AD 的斜率最大,又由2202x y y +-=⎧⎨=⎩,解得()0,2A ,则02210AD k -==--, 所以1y x +的最大值为2.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14.【解析】由题设可知即由正弦定理可得所以当时故填 3【解析】 由题设可知)sin 3sin sin 3sin cos cos sin cos 13cos C C B C B C C B=⇒=+-,即sin 3sin C A =,由正弦定理可得3c a =,所以S ==242a a =⇒=时,max S == 15.【解析】分析:设公差为d 首项利用等差中项的性质通过两次平方运算即可求得答案详解:设公差为d 首项和都是等差数列且公差相等即两边同时平方得:两边再平方得:又两数列公差相等即解得:或为正项数列故答案为:点解析:14【解析】分析:设公差为d ,首项1a ,利用等差中项的性质,通过两次平方运算即可求得答案. 详解:设公差为d ,首项1a ,Q {}n a 和都是等差数列,且公差相等,∴=,即=,两边同时平方得:()1114233a d a a d +=+++14a d +=两边再平方得:()221111168433a a d d a a d ++=+,∴2211440a a d d -+=,12d a =,又两数列公差相等,2112a a d a =-==,12a =, 解得:114a =或10a =, Q {}n a 为正项数列,∴114a =.故答案为:14. 点睛:本题考查等差数列的性质,考查等差中项的性质,考查化归与方程思想.16.充要【解析】所以为奇函数又为单调递增函数所以即是的充要条件点睛:充分必要条件的三种判断方法1定义法:直接判断若则若则的真假并注意和图示相结合例如⇒为真则是的充分条件2等价法:利用⇒与非⇒非⇒与非⇒非解析:充要 【解析】3232()()lg(1)()lg(1)lg10f x f x x x x x x x +-=++++-+-++== ,所以()f x 为奇函数,又()f x 为单调递增函数,所以0()()()()()()0a b a b f a f b f a f b f a f b +≥⇔≥-⇔≥-⇔≥-⇔+≥ ,即“0a b +≥”是“()()0f a f b +≥”的充要条件点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.17.121)【解析】试题分析:由题意对任意实数xy∈R 都有f(x)f(y)=f(x+y)则令x=ny=1可得f(n)f(1)=f(n+1)即f(n+1)an+1an=f(n+1)f(n)=12即数列{a 解析:【解析】试题分析:由题意,对任意实数,都有,则令可得 ,即,即数列是以为首项,以为公比的等比数列,故考点:抽象函数及其应用,等比数列的通项及其性质18.-2+)【解析】【分析】根据题意分x=0与x≠0两种情况讨论①x=0时易得原不等式恒成立②x≠0时原式可变形为a≥-(|x|+)由基本不等式的性质易得a 的范围综合两种情况可得答案【详解】根据题意分两 解析:[-2,+∞)【解析】 【分析】根据题意,分x=0与x≠0两种情况讨论,①x=0时,易得原不等式恒成立,②x≠0时,原式可变形为a≥-(|x|+ 1x),由基本不等式的性质,易得a 的范围,综合两种情况可得答案. 【详解】根据题意,分两种情况讨论;①x=0时,原式为1≥0,恒成立,则a∈R;②x≠0时,原式可化为a|x|≥-(x 2+1),即a≥-(|x|+ 1x),又由|x|+1x ≥2,则-(|x|+1x)≤-2;要使不等式x 2+a|x|+1≥0恒成立,需有a≥-2即可; 综上可得,a 的取值范围是[-2,+∞); 故答案为[-2,+∞). 【点睛】本题考查不等式恒成立问题的解法,运用分类讨论和参数分离、基本不等式求最值是解题的关键,属于中档题.19.-4【解析】【分析】根据已知可得即可求解【详解】且故答案为:-4【点睛】本题考查数列的递推关系以及周期数列考查计算求解能力属于中档题解析:-4 【解析】 【分析】根据已知可得6n n b b +=,即可求解. 【详解】121,5b b ==且*21()n n n b b b n N ++=-∈, 321211n n n n n n n n b b b b b b b b ++++++=-==-=--, 63,20166336n n n b b b ++=-==⨯, 201663214b b b b b ∴==-=-+=-.故答案为:-4 【点睛】本题考查数列的递推关系以及周期数列,考查计算求解能力,属于中档题.20.9【解析】解:由题意可知:良马与驽马第天跑的路程都是等差数列设路程为由题意有:故:满足题意时数列的前n 项和为由等差数列前n 项和公式可得:解得:即二马相逢需9日相逢点睛:本题考查数列的实际应用题(1)解析:9 【解析】解:由题意可知:良马与驽马第n 天跑的路程都是等差数列,设路程为{}{},n n a b , 由题意有:()()1111031131390,97197222n n a n n b n n ⎛⎫=+-⨯=+=+-⨯-=-+ ⎪⎝⎭, 故:111871222n n n c a b n =+=+ , 满足题意时,数列{}n c 的前n 项和为112522250n S =⨯= ,由等差数列前n 项和公式可得:11111871218712222222502n n ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⨯= ,解得:9n = .即二马相逢,需9日相逢 点睛:本题考查数列的实际应用题. (1)解决数列应用题的基本步骤是:①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知; ②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型; ③求出数学模型,根据求解结果对实际问题作出结论. (2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.三、解答题21.(1)13nn a ⎛⎫= ⎪⎝⎭; (2)13(21)34n n n T ++-⋅=【解析】 【分析】(1)由等差中项可得21343a a a =+,设数列{}n a 的公比为()1q q ≠,则211143a q a a q ⋅=+⋅,可解得q ,即可求得通项公式;(2)由(1)可得3n nnn a =⋅,再利用错位相减法求解即可. 【详解】解:(1)设数列{}n a 的公比为()1q q ≠,且1a ,22a ,33a 成等差数列,所以21343a a a =+,即211143a q a a q ⋅=+⋅,解得13q =, 因为113a =,所以13nn a ⎛⎫= ⎪⎝⎭(2)由(1)知,13nn a ⎛⎫= ⎪⎝⎭,所以3n nn n a =⋅, 所以1231323333nn T n =⨯+⨯+⨯++⋅L ,则234131323333n n T n +=⨯+⨯+⨯++⋅L ,作差可得,1231233333n n n T n +-=++++-⋅L则()+13312331n n nT n --=-⋅-,即1132322n n T n +⎛⎫-=-⋅- ⎪⎝⎭,所以()132134n n n T ++-⋅=【点睛】本题考查等差中项的应用,考查等比数列的通项公式,考查错位相减法求数列的和.22.(1)n a n =;(2)22(41)2(1)3n n T n n -=++ 【解析】 【分析】(1)根据条件列方程组解得公差与首项,即得数列{}n a 的通项公式;(2)根据分组求和法得结果. 【详解】(1)公差d 不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,可得2319a a a =,313a a a =,可得2111(2)(8)a d a a d +=+,11a =,化简可得11a d ==,即有n a n =;(2)由(1)可得2,212,2n n n k b n n k ⎧=-=⎨=⎩,*k N ∈;前2n 项和212(28322)(48124)n n T n -=+++⋯+++++⋯+2(14)12(41)(44)2(1)1423n n n n n n --=++=++-. 【点睛】本题考查等差数列通项公式以及分组求和法求和,考查基本分析求解能力,属中档题. 23.(1)14n n a -=;(2)n S 4121n n =-+-.【解析】 【分析】(1)由数列{}n a 是等比数列,及125a a +=,且2320a a +=,两式相除得到公比q ,再代入125a a +=可求1a ,则通项公式可求.(2)利用分组求和求出数列{3n a 的前n 项和n S . 【详解】解:(1)因为等比数列{}n a 中,125a a +=,且2320a a +=. 所以公比23124a a q a a +==+,所以12155a a a +==, 即11a =, 故14n n a -=.(2)因为14n n a -=所以113342n n n n a a --+=⋅+,所以141231412n nn S --=⨯+-- 4121n n =-+- 422n n =+-. 【点睛】本题考查等比数列的通项公式的计算与等比数列前n 项和公式的应用,属于基础题. 24.(1)21n a n =-;(2)12362n n -+-. 【解析】 【分析】 【详解】(Ⅰ)设等差数列{}n a 的公差为d ,由已知得()()1212234,{12,a a a a a a +=+++=即12234,{8,a a a a +=+=所以()()()11114,{28,a a d a d a d ++=+++=解得11,{2,a d == 所以21n a n =-. (Ⅱ)由(Ⅰ)得112122n n n a n ---=,所以122135232112222n n n n n S ----=+++⋯++,① 23111352321222222n n n n n S ---=+++⋯⋯++,② -①②得:2211112123113222222n n n n n n S --+=++++⋯+-=- 所以4662n nn S +=-. 点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn ”与“qSn ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn -qSn ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 25.(1);(2).【解析】 试题分析:(1)由题意结合通项公式与前n 项和的关系可得;(2)结合(1)中求得的通项公式和所给数列通项公式的特点错位相减可得数列的前项和.(3) 试题解析:(Ⅰ)由2S n =3a n -1 ① 2S n -1=3a n -1-1 ② ②-①得2a n =3a n -3a n -1,∴=3,()又当n =1时,2S 1=3a 1-1,即a 1=1,(符合题意) ∴{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. (Ⅱ)由(Ⅰ)得:b n =∴T n =+++…+,…………………③ T n =++…++,………④ ③-④得:T n =+++…+-=-=-∴T n =-.26.(Ⅰ)21,n a n =+;(Ⅱ)8(41)3n n T -=. 【解析】 【分析】(Ⅰ)由题意可得1, 2.p q ==则22n S n n =+,利用通项公式与前n 项和的关系可得21,n a n =+(Ⅱ) 由(1)可知212n n b +=,结合等比数列前n 项和公式计算可得数列{}n b 的前n 项和()8413n n T -=.【详解】(Ⅰ)由14316424S p q S p q =+=⎧⎨=+=⎩ 得21, 2.2.n p q S n n ===+ 所以当1n =时,1 3.a =当2n ≥时,()()21121,n S n n -=-+-所以()()()221212121,n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦检验1 3.a =符合21,n a n =+ (Ⅱ) 由(1)可知21,n a n =+ 所以2122na n nb +==.设数列{}n b 的前n 项和为n T ,则:()()()1211212424242424444414214841.?3n nn n nnn T --=⨯+⨯++⨯+⨯=++++-=⨯--=L L所以数列{}n b 的前n 项和为()8413n n T -=.【点睛】本题主要考查数列通项公式与前n 项和公式的关系,等比数列前n 项和公式及其应用等知识,意在考查学生的转化能力和计算求解能力.。

2020-2021高中三年级数学下期中一模试卷(含答案)(14)

2020-2021高中三年级数学下期中一模试卷(含答案)(14)

2020-2021高中三年级数学下期中一模试卷(含答案)(14)一、选择题1.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .2.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-3.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .784.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为 ( )A .15B .25C .35D .455.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .66.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( ) A .20B .24C .28D .327.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1008.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 9.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .71010.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .12524312.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .5二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.若log 41,a b =-则+a b 的最小值为_________. 15.如图,在ABC V 中,,43C BC π==时,点D 在边AC 上, AD DB =,DE AB ⊥,E 为垂足若22DE =,则cos A =__________16.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若acosB =5bcosA ,asinA ﹣bsinB =2sinC ,则边c 的值为_______. 17.设数列{}()1,n a n n N*≥∈满足122,6aa ==,且()()2112n n n n a a a a +++---=,若[]x 表示不超过x 的最大整数,则122019201920192019[]a a a +++=L ____________. 18.在平面内,已知直线12l l P ,点A 是12,l l 之间的定点,点A 到12,l l 的距离分别为和,点是2l 上的一个动点,若AC AB ⊥,且AC 与1l 交于点C ,则ABC ∆面积的最小值为____.19.设0x >,则231x x x +++的最小值为______.20.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.三、解答题21.在ABC △中,,,A B C 对应的边为,,a b c .已知1cos 2a C cb +=. (Ⅰ)求A ;(Ⅱ)若4,6b c ==,求cos B 和()cos 2A B +的值.22.记等差数列{}n a 的前n 项和为n S ,已知2446,10a a S +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n n b a =⋅*()n N ∈,求数列{}n b 的前n 项和n T .23.已知()f x a b =⋅v v ,其中()2cos ,32a x x =-v,()cos ,1b x =v ,x ∈R .(1)求()f x 的单调递增区间;(2)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,()1f A =-,7a =且向量()3,sin m B =v 与()2,sin n C =v共线,求边长b 和c 的值. 24.在ABC V 中,3B π∠=,7b =,________________,求BC 边上的高.从①21sin A =, ②sin 3sin A C =, ③2a c -=这三个条件中任选一个,补充在上面问题中并作答.25.已知数列{}n a 的首项123a =,且当2n ≥时,满足1231312n n a a a a a -++++=-L . (1)求数列{}n a 的通项公式; (2)若2n n nb a =,n T 为数列{}n b 的前n 项和,求n T .26.数列{}n a 中,11a = ,当2n ≥时,其前n 项和n S 满足21()2n n n S a S =⋅-.(1)求n S 的表达式; (2)设n b =21nS n +,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果. 【详解】由余弦定理得:,即解得:或为最小角本题正确选项: 【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.2.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t q f t q t t t++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减. 可得t=12处,此时q=2f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.3.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.4.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q , 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.5.A解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.6.A解析:A 【解析】分析:由已知条件构造基本不等式模型()()224x y x y +=+++-即可得出. 详解:,x y Q 均为正实数,且111226x y +=++,则116122x y ⎛⎫+= ⎪++⎝⎭(2)(2)4x y x y ∴+=+++-116()[(2)(2)]422x y x y =++++-++226(2)46(242022y x x y ++=++-≥+-=++ 当且仅当10x y ==时取等号.x y ∴+的最小值为20. 故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.7.A解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.8.B解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅=所以222sin sin sin sin cos sin cos 333A A A A A πππ⎛⎫⎛⎫⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭231311113sin 2sin sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.9.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45AB =o 103AB ∴=那么在Rt ADB ∆中,60ABD o ∠=,3sin 6010315AD AB ∴===o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.10.A解析:A 【解析】【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.A解析:A 【解析】解法一 a n +1-a n =(n +1)n +1-nn=·n,当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.解法二 ==,令>1,解得n <2;令=1,解得n =2;令<1,解得n >2.又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.12.B解析:B 【解析】 【分析】由1x y +=得(1)2x y ++=,再将代数式(1)x y ++与141x y++相乘,利用基本不等式可求出141x y++的最小值. 【详解】1x y +=Q ,所以,(1)2x y ++=,则141441412()[(1)]()52591111x y x yx y x y x y y x y x+++=+++=++=++++g …,所以,14912x y ++…, 当且仅当4111x y y x x y +⎧=⎪+⎨⎪+=⎩,即当2313x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,因此,141x y ++的最小值为92, 故选B . 【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.二、填空题13.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅解析:4 【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当2224a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈,a b +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.14.1【解析】试题分析:由得所以(当且仅当即时等号成立)所以答案应填1考点:1对数的运算性质;2基本不等式解析:1 【解析】试题分析:由log 41,a b =-得104a b=>,所以114a b b b +=+≥=(当且仅当14b b =即12b =时,等号成立) 所以答案应填1.考点:1、对数的运算性质;2、基本不等式.15.【解析】在△ABC 中∵DE ⊥ABDE=∴AD=∴BD=AD=∵AD=BD ∴A=∠ABD ∴∠BDC=∠A+∠ABD=2∠A 在△BCD 中由正弦定理得即整理得cosA=解析:4【解析】在△ABC 中,∵DE ⊥AB ,DE=,∴AD, ∴BD =AD=sin A. ∵AD =BD ,∴A =∠ABD , ∴∠BDC =∠A +∠ABD =2∠A , 在△BCD 中,由正弦定理得sin sin BD BCC BDC=∠ ,4sin 2A = ,整理得cosA16.3【解析】【分析】由acosB =5bcosA 得由asinA ﹣bsinB =2sinC 得解方程得解【详解】由acosB =5bcosA 得由asinA ﹣bsinB =2sinC 得所以故答案:3【点睛】本题主要解析:3 【解析】 【分析】由acosB =5bcosA 得22223a b c -=,由asinA ﹣bsinB =2sinC 得222a b c -=,解方程得解. 【详解】由acosB =5bcosA 得22222222225,223a cb bc a a b a b c ac bc +-+-⋅=⋅∴-=.由asinA ﹣bsinB =2sinC 得222a b c -=,所以222,33c c c =∴=. 故答案:3 【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.2018【解析】【分析】数列{an}满足a1=2a2=6且(an+2﹣an+1)﹣(an+1﹣an )=2利用等差数列的通项公式可得:an+1﹣an =2n+2再利用累加求和方法可得an =n (n+1)利解析:2018 【解析】 【分析】数列{a n }满足a 1=2,a 2=6,且(a n +2﹣a n +1)﹣(a n +1﹣a n )=2,利用等差数列的通项公式可得:a n +1﹣a n =2n +2.再利用累加求和方法可得a n =n (n +1).利用裂项求和方法即可得出. 【详解】∵()()2112n n n n a a a a +++---=,∴数列{a n +1﹣a n }为等差数列,首项为4,公差为2. ∴a n +1﹣a n =4+2(n ﹣1)=2n +2.∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1 =2n +2(n ﹣1)+…+2×2+2()122n n +=⨯=n (n +1).∴12201911111111111223201920202020a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L . ∴][][122019201920192019201912019201820202020a a a ⎡⎤+++=-=+⎢⎥⎣⎦L =2018. 故答案为:2018. 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法与裂项相消求和方法,考查了推理能力与计算能力,属于中档题.18.6【解析】【分析】【详解】如图所示设由题意知与相似所以所以所以当且仅当即时等号成立所以面积的最小值为6解析:6 【解析】 【分析】 【详解】 如图所示,设BF x =,由题意知3,2AE AF ==ABF ∆与CAE ∆相似,所以AB BF CA AE =,所以3AC AB x=,所以211322ABC S AB AC AB x∆==⨯ 21363(4)622x x x x =⨯⨯+=+≥,当且仅当632xx =,即2x =时,等号成立,所以CAE ∆面积的最小值为6.19.【解析】【分析】利用换元法令将所给的代数式进行变形然后利用均值不等式即可求得最小值【详解】由可得可令即则当且仅当时等号成立故答案为:【点睛】本题主要考查基本不等式求最值的方法换元法及其应用等知识意在 解析:31【解析】 【分析】利用换元法,令1t x =+将所给的代数式进行变形,然后利用均值不等式即可求得最小值. 【详解】由0x >,可得11x +>.可令()11t x t =+>,即1x t =-,则()()221133331212311t t x x t t x t t t-+-+++==+-⋅=+≥, 当且仅当3t =31x =时,等号成立.故答案为:31. 【点睛】本题主要考查基本不等式求最值的方法,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.20.【解析】设等差数列的公差为d ∵且成等差数列∴解得 ∴ 解析:21n -【解析】设等差数列{}n a 的公差为d , ∵35a =,且1S ,5S ,7S 成等差数列,∴111125,7211020a d a a d a d +=⎧⎨++=+⎩解得11,2a d =⎧⎨=⎩ ∴21n a n =- 三、解答题21.(Ⅰ)π3A =(Ⅱ)1114- 【解析】 【分析】(Ⅰ)先根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(Ⅱ)根据余弦定理求a,代入条件求得sin B =,解得cos B =,最后根据两角和余弦定理得结果.【详解】(Ⅰ)解:由条件1cos 2a C c b +=,得1sin sin sin sin 2A C CB +=,又由()sin sin B AC =+,得1sin cos sin sin cos cos sin 2A C C A C A C +=+.由sin 0C ≠,得1cos 2A =,故π3A =.(Ⅱ)解:在ABC V 中,由余弦定理及π4,6,3b c A ===,有2222cos a b c bc A =+-,故a = 由sin sin b A a B =得sin B =,因为b a <,故cos B =.因此sin22sin cos 7B B B ==,21cos22cos 17B B =-=.所以()11cos 2cos cos2sin sin214A B A B A B +=-=-. 【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.22.(1)n a n =(2)1(1)22n n T n +=-⋅+【解析】试题分析:(Ⅰ)因为数列是等差数列,所以根据等差数列的通项公式建立关于首项和公差的方程组11246{434102a d a d +=⨯+=,即可解得11{1a d ==,从而写出通项公式n a n =; (Ⅱ)由题意22n n n n b a n =⋅=⋅,因为是等差数列与等比数列相乘的形式,所以采取错位相减的方法,注意错位相减后利用等比数列前n 项和公式,化简要准确得1(1)22n n T n +=-⋅+.试题解析:(Ⅰ)设等差数列{}n a 的公差为d,由2446,10a a S +==,可得11246{434102a d a d +=⨯+=, 即1123{235a d a d +=+=, 解得11{1a d ==, ∴()111(1)n a a n d n n =+-=+-=, 故所求等差数列{}n a 的通项公式为n a n =(Ⅱ)依题意,22n nn n b a n =⋅=⋅,∴12n n T b b b =+++L231122232(1)22n n n n -=⨯+⨯+⨯++-⋅+⋅L ,又2n T =2341122232(1)22n n n n +⨯+⨯+⨯++-⋅+⋅L ,两式相减得2311(22222)2n n n n T n -+-=+++++-⋅L()1212212n n n +-=-⋅-1(1)22n n +=-⋅-,∴1(1)22n n T n +=-⋅+考点:1、等差数列通项公式;2、等差数列的前n 项和;3、等比数列的前n 项和;4、错位相减法. 23.(1),()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)3,2b c ==.【解析】试题分析:(1)化简()f x 得()12cos 23f x x π⎛⎫=++⎪⎝⎭,代入[]()2,2k k k Z πππ-∈,求得增区间为()2,36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦;(2)由()1f A =-求得3A π=,余弦定理得()22222cos 3a b c bc A b c bc =+-=+-.因为向量()3,sin m B =r 与()2,sin n C r=共线,所以2sin 3sin B C =,由正弦定理得23b c =,解得3,12b c ==.试题解析:(1)由题意知,()22cos 21cos 2212cos 23f x x x x x x π⎛⎫==+-=++⎪⎝⎭, cos y x =Q 在[]()2,2k k k Z πππ-∈上单调递增,∴令2223k x k ππππ-≤+≤,得236k x k ππππ-≤≤-,()f x ∴的单调递增区间()2,36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦. (2)()12cos 21,cos 2133f A A A ππ⎛⎫⎛⎫=++=-∴+=- ⎪ ⎪⎝⎭⎝⎭Q ,又72,23333A A πππππ<+<∴+=, 即3A π=.a =Q ,由余弦定理得()22222cos 3a b c bc A b c bc =+-=+-.因为向量()3,sin m B =r 与()2,sin n C r=共线,所以2sin 3sin B C =,由正弦定理得323,,12b c b c =∴==.考点:三角函数恒等变形、解三角形. 24.选择①,2h =;选择②,2h =;选择③,2h = 【解析】 【分析】 (1)选择①sin 7A =,可由sin sin a b A B =解得2a =,再由2222cos b a c ac B =+-解得3c =,最后由sin h c B =可得解;(2)选择②sin 3sin A C =,由sin sin()3sin A B C C =+=得5sin C C =,结合22sin cos 1C C +=得sin 14C =,最后由sin h b C =可得解. (3)选择③2a c -=,由2222cos b a c ac B =+-可得:227a c ac +-=,结合2a c -=解得1c =,最后由sin h c B =可得解. 【详解】(1)选择①sin 7A =,解答如下: 在ABC V ,由正弦定理得:sin sin a b A B=,=2a =, 由余弦定理得2222cos b a c ac B =+-,2212222c c =+-⨯⨯,解得1c =-(舍去)或3c =,则BC边上的高sin h c B = (2)选择②sin 3sin A C =,解答如下:在ABC V 中,[]sin sin ()sin()A B C B C π=-+=+, 由sin 3sin A C =可得:sin()3sin 3C C π+=,整理得5sin C C =┄①, 又22sin cos 1C C +=┄②,由①②得sin 14C =, 则BC边上的高sin h b C ===. (3)选择③2a c -=,解答如下:在ABC V 中,由余弦定理得:2222cos b a c ac B =+-,3B π∠=Q,b =227a c ac ∴+-=┄①,又2a c -=┄②, 由①②解得1c =, 则BC边上的高sin h c B =. 【点睛】本题考查了正余弦定理解三角形,考查了计算能力,属于中档题. 25.(1)23n n a =(2)3231443nn n T +=-⋅ 【解析】 【分析】(1)由题可得1231312n n a a a a a +++++=-L ,与已知作差可得13322n n n a a a +-=-+,整理可得113n n a a +=,进而利用等比数列的通项公式求解即可; (2)由(1)可得23n n n n nb a =⋅=,利用错位相减法求和即可. 【详解】解:(1)当2n ≥时,由1231312n n a a a a a -++++=-L ,则1231312n n a a a a a +++++=-L , 两式相减得13322n n n a a a +-=-+, 即11322n n a a +=, ∴113n n a a +=, 当2n =时,由12312a a =-,得229a =, ∴2113a a =, 综上,对任意1n ≥,113n n a a +=, ∴{}n a 是以23为首项,13为公比的等比数列, ∴23n na =. (2)由(1)23n n n n n b a =⋅=, ∴231111233333n n T n =+⋅+⋅++⋅L , 2311111112(1)33333n n n T n n +=⋅+⋅++-⋅+⋅L , ∴231211111333333n n x T n +=++++-⋅L 1111233nn n +⎛⎫=--⎪⎝⎭, 则3231443n n n T +=-⋅ 【点睛】本题考查了根据数列的递推公式求解数列通项,考查等比数列通项公式的应用,考查利用错位相消求解数列前n 项和. 26.(1)1()21n S n N n =∈-;(2)21n n +。

2020-2021高中三年级数学下期中一模试题(带答案)(9)

2020-2021高中三年级数学下期中一模试题(带答案)(9)

2020-2021高中三年级数学下期中一模试题(带答案)(9)一、选择题1.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2 CD2.设x y ,满足约束条件70310,350x y x y x y +-⎧⎪-+⎨⎪--⎩,,………则2z x y =-的最大值为( ).A .10B .8C .3D .23.数列{}n a 为等比数列,若11a =,748a a =,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则5(S = )A .3116B .158C .7D .314.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( ) A.1 B.1 C .+2D .25.已知01x <<,01y <<,则)AB .CD .6.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B.10C .D .7.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1408.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .219.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( )A .±4B .4C .14±D .1410.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<11.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .512.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( ) A .20B .24C .28D .32二、填空题13.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()3cos cos ,60a C c A b B -==︒,则A 的大小为__________.14.设n S 是等差数列{}n a 的前n 项和,若510S =,105S =-,则公差d =(___). 15.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 16.在数列{}n a 中,11a =,且{}n a 是公比为13的等比数列.设13521T n n a a a a L -=++++,则lim n n T →∞=__________.(*n ∈N ) 17.在中,若,则__________.18.已知数列{}n a 满足11a =,111n na a +=-+,*n N ∈,则2019a =__________. 19.已知数列是各项均不为的等差数列,为其前项和,且满足()221n n a S n *-=∈N.若不等式()()11181nn n n a nλ++-+⋅-≤对任意的n *∈N 恒成立,则实数的取值范围是 .20.在△ABC 中,2BC =,7AC =3B π=,则AB =______;△ABC 的面积是______.三、解答题21.已知数列{}n a 的前n 项和n S 满足231n n S a =-,其中n *∈N . (1)求数列{}n a 的通项公式;(2)设23nn n a b n n=+,求数列{}n b 的前n 项和为n T .22.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22222230a c b ac +-+=. (1)求cos B 的值;(2)求sin 24B π⎛⎫+ ⎪⎝⎭的值. 23.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .24.已知向量()1sin 2A =,m 与()3sin 3cos A A =+,n 共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC=2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状. 25.如图,Rt ABC V 中,,1,32B AB BC π===.点,M N 分别在边AB 和AC 上,将AMN V 沿MN 翻折,使AMN V 变为A MN '△,且顶点'A 落在边BC 上,设AMN θ∠=(1)用θ表示线段AM 的长度,并写出θ的取值范围; (2)求线段CN 长度的最大值以及此时A MN '△的面积, 26.已知函数()2sin(2)(||)2f x x πϕϕ=+<部分图象如图所示.(1)求ϕ值及图中0x 的值;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知7,()2,c f C ==-sin B =2sin A ,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以2q =,故21222a a q ===,故选D. 2.B解析:B 【解析】 【分析】作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解. 【详解】 作出可行域如图:化目标函数为2y x z =-,联立70310x y x y +-=⎧⎨-+=⎩,解得5,2A(). 由图象可知,当直线过点A 时,直线在y 轴上截距最小,z 有最大值25-28⨯=. 【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.3.A解析:A 【解析】 【分析】先求等比数列通项公式,再根据等比数列求和公式求结果. 【详解】Q 数列{}n a 为等比数列,11a =,748a a =,638q q ∴=,解得2q =, 1112n n n a a q --∴==, Q 数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S , 55111111131211248161612S ⎛⎫⨯- ⎪⎝⎭∴=++++==-.故选A . 【点睛】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.4.D解析:D 【解析】由a (a +b +c )+bc =4-, 得(a +c )·(a +b )=4-∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c=1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误5.B解析:B 【解析】 【分析】2+≥x y,边分别相加求解。

2020-2021深圳外国语学校高中三年级数学下期中试题带答案

2020-2021深圳外国语学校高中三年级数学下期中试题带答案

2020-2021深圳外国语学校高中三年级数学下期中试题带答案一、选择题1.已知函数223log ,0(){1,0x x f x x x x +>=--≤,则不等式()5f x ≤的解集为 ( )A .[]1,1-B .[]2,4-C .(](),20,4-∞-⋃D .(][],20,4-∞-⋃ 2.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 3.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 4.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .565.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .326.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .847.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9008.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1409.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( ) A .2BC.2D .410.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .511.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6612.已知数列{}n a 中,3=2a ,7=1a .若数列1{}na 为等差数列,则9=a ( ) A .12B .54C .45D .45-二、填空题13.若log 41,a b =-则+a b 的最小值为_________.14.已知数列{}n a 满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅()*n ∈N ,记数列{}n a 的前n项和为n S ,若对所有满足条件的{}n a ,10S 的最大值为M 、最小值为m ,则M m +=______.15.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.16.已知x ,y 满足3010510x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.17.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.18.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______ 19.已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________.20.设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值. 三、解答题21.若0,0a b >>,且11a b+=(1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.22.设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos cos cos c C a B b A =+.(1)求角C .(2)若ABC V 的面积为S ,且224()S b a c =--,2a =,求S . 23.ABC V 的内角,,A B C 所对的边分别为,,a b c .已知ABC V 的面积21tan 6S b A = (1)证明: 3 b ccos A =; (2)若1,3c a ==,求S .24.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =,求ABC ∆的面积;(2)若25sin CAD ∠=,4=AD ,求CD 的长. 25.在ABC ∆ 中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=(1) 求sin sin CA的值 (2) 若1cos ,24B b == ,求ABC ∆的面积. 26.如图,在平面四边形ABCD 中,42AB =,22BC =,4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】分析:根据分段函数,分别解不等式,再求出并集即可.详解:由于()223log ,01,0x x f x x x x +>⎧=⎨--≤⎩,当x >0时,3+log 2x≤5,即log 2x≤2=log 24,解得0<x≤4, 当x≤0时,x 2﹣x ﹣1≤5,即(x ﹣3)(x+2)≤0,解得﹣2≤x≤0, ∴不等式f (x )≤5的解集为[﹣2,4], 故选B .点睛:本题考查了分段函数以及不等式的解法和集合的运算,分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.2.B解析:B 【解析】 【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=- 得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.3.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.4.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 5.D解析:D 【解析】 【分析】由约束条件确定可行域,由1y x+的几何意义,即可行域内的动点与定点P (0,-1)连线的斜率求得答案. 【详解】由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率, 由图可知,113212PAk +==最大.故答案为32. 【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.6.C解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.7.B解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 8.B解析:B 【解析】【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x =所以n a =1na =1n S =L 1=,由110n S ==解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.9.A解析:A 【解析】 【分析】由正弦定理,化简求得sin 0B B =,解得3B π=,再由余弦定理,求得()224b a c =+,即可求解,得到答案.【详解】在ABC ∆中,因为sin cos 0b A B -=,且2b ac =,由正弦定理得sin sin cos 0B A A B =, 因为(0,)A π∈,则sin 0A >,所以sin 0B B =,即tan B =3B π=,由余弦定理得222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()224b a c =+,解得2a cb+=,故选A . 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.10.B解析:B 【解析】 【分析】由1x y +=得(1)2x y ++=,再将代数式(1)x y ++与141x y++相乘,利用基本不等式可求出141x y++的最小值. 【详解】1x y +=Q ,所以,(1)2x y ++=,则1414412()[(1)]()559111x y x y x y x y y x ++=+++=++=+++…, 所以,14912x y ++…, 当且仅当4111x y y x x y +⎧=⎪+⎨⎪+=⎩,即当2313x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,因此,141x y ++的最小值为92, 故选B . 【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.11.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.12.C解析:C 【解析】 【分析】由已知条件计算出等差数列的公差,然后再求出结果 【详解】依题意得:732,1a a ==,因为数列1{}na 为等差数列,所以7311111273738--===--a a d ,所以()9711159784a a =+-⨯=,所以945=a ,故选C .【点睛】本题考查了求等差数列基本量,只需结合题意先求出公差,然后再求出结果,较为基础二、填空题13.1【解析】试题分析:由得所以(当且仅当即时等号成立)所以答案应填1考点:1对数的运算性质;2基本不等式解析:1 【解析】试题分析:由log 41,a b =-得104a b=>,所以114a b b b +=+≥=(当且仅当14b b =即12b =时,等号成立) 所以答案应填1.考点:1、对数的运算性质;2、基本不等式.14.1078【解析】【分析】根据数列的递推关系求出数列的前四项的最大最小值得出何时和最大何时和最小进而求得结论【详解】解:因为数列{an}满足:即解得;或或;或所以最小为4最大为8;所以数列的最大值为时解析:1078 【解析】 【分析】根据数列的递推关系,求出数列的前四项的最大,最小值,得出何时和最大,何时和最小,进而求得结论. 【详解】解:因为数列{a n }满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅()*n ∈N ,{}211a a a ∴-∈即211a a a -=解得22a =; {}3212,a a a a ∴-∈321a a ∴-=或322a a -= 33a ∴=或34a =;{}43123,,a a a a a ∴-∈431a a ∴-=或432a a -=,433a a -=,434a a -=所以4a 最小为4,4a 最大为8;所以,数列10S 的最大值为M 时,是首项为1,公比为2的等比数列的前10项和:()10112102312M ⨯-==-;10S 取最小值m 时,是首项为1,公差为1的等差数列的前10项和:()101011011552m ⨯-=⨯+⨯=; ∴1078M m +=. 故答案为:1078. 【点睛】本题考查了数列的递推关系式,等比数列以及等差数列的通项公式与前n 项和公式,考查了推理能力与计算能力,属于中档题.本题的关键在于观察出数列的规律.15.【解析】【分析】根据指数运算出再利用等差中项的性质得出并得出然后再利用等差数列的性质和指数对数的运算法则求出的值【详解】依题意有且则而因此故答案为【点睛】本题考查等差数列基本性质的计算同时也考查了等 解析:6-【解析】 【分析】根据指数运算出2468102a a a a a ++++=,再利用等差中项的性质得出625a =,并得出56825a a =-=-,然后再利用等差数列的性质和指数、对数的运算法则求出()()()()212310log f a f a f a f a ⋅⋅⋅⋅⎡⎤⎣⎦L 的值.【详解】依题意有246810625a a a a a a ++++==,625a ∴=,且56282255a a =-=-=-. 则()()()110123101105610825556255a a a a a a a a a a +⎛⎫++++==+=+=⨯-+=- ⎪⎝⎭L , 而()()()()1231061231022a a a a f a f a f a f a ++++-⋅⋅⋅⋅==L L ,因此,()()()()62123102log log 26f a f a f a f a -⋅⋅⋅⋅==-⎡⎤⎣⎦L .故答案为6-. 【点睛】本题考查等差数列基本性质的计算,同时也考查了等差数列的定义以及指数、对数的运算,解题时充分利用等差中项的性质,可简化计算,考查计算能力,属于中等题.16.5【解析】【分析】画出不等式表示的可行域利用目标函数的几何意义当截距最小时取z 取得最大值求解即可【详解】画出不等式组表示的平面区域(如图阴影所示)化直线为当直线平移过点A 时z 取得最大值联立直线得A (解析:5 【解析】 【分析】画出不等式表示的可行域,利用目标函数的几何意义当截距最小时取z 取得最大值求解即可 【详解】画出不等式组表示的平面区域(如图阴影所示),化直线2z x y =+为122z y x =-+ 当直线平移过点A 时,z 取得最大值,联立直线3010x y x y +-=⎧⎨-+=⎩得A (1,2),故max 145z =+=故答案为:5【点睛】本题考查画不等式组表示的平面区域、考查数形结合求函数的最值,是基础题17.(﹣∞【解析】【分析】由正实数xy 满足可求得x+y≥5由x2+2xy+y2﹣ax ﹣ay+1≥0恒成立可求得a≤x+y+恒成立利用对勾函数的性质即可求得实数a 的取值范围【详解】因为正实数xy 满足而4x解析:(﹣∞,265] 【解析】 【分析】由正实数x ,y 满足4454x y xy ++=,可求得x +y≥5,由x 2+2xy+y 2﹣ax ﹣ay+1≥0恒成立可求得a ≤x+y+1x y+恒成立,利用对勾函数的性质即可求得实数a 的取值范围.因为正实数x ,y 满足4454x y xy ++=,而4xy ≤(x+y )2,代入原式得(x +y )2﹣4(x+y )﹣5≥0,解得x +y≥5或x +y≤﹣1(舍去), 由x 2+2xy+y 2﹣ax ﹣ay+1≥0可得a (x +y )≤(x+y )2+1, 即a ≤x+y+1x y+,令t=x +y ∈[5,+∞), 则问题转化为a ≤t+1t,因为函数y=t +1t在[5,+∞)递增, 所以y min =5+15=265, 所以a ≤265, 故答案为(﹣∞,265] 【点睛】本题考查基本不等式,考查对勾函数的单调性质,求得x +y≥5是关键,考查综合分析与运算的能力,属于中档题.18.-2+)【解析】【分析】根据题意分x=0与x≠0两种情况讨论①x=0时易得原不等式恒成立②x≠0时原式可变形为a≥-(|x|+)由基本不等式的性质易得a 的范围综合两种情况可得答案【详解】根据题意分两 解析:[-2,+∞)【解析】 【分析】根据题意,分x=0与x≠0两种情况讨论,①x=0时,易得原不等式恒成立,②x≠0时,原式可变形为a≥-(|x|+ 1x),由基本不等式的性质,易得a 的范围,综合两种情况可得答案. 【详解】根据题意,分两种情况讨论;①x=0时,原式为1≥0,恒成立,则a∈R;②x≠0时,原式可化为a|x|≥-(x 2+1),即a≥-(|x|+ 1x),又由|x|+1x ≥2,则-(|x|+1x)≤-2;要使不等式x 2+a|x|+1≥0恒成立,需有a≥-2即可; 综上可得,a 的取值范围是[-2,+∞); 故答案为[-2,+∞).本题考查不等式恒成立问题的解法,运用分类讨论和参数分离、基本不等式求最值是解题的关键,属于中档题.19.【解析】试题分析:因为二次函数在区间内至少存在一个实数使的否定是:函数在区间内任意实数使所以即整理得解得或所以二次函数在区间内至少存在一个实数使的实数的取值范围是考点:一元二次方程的根与系数的关系【解析:3(3,)2- 【解析】试题分析:因为二次函数()f x 在区间[1,1]-内至少存在一个实数x ,使()0f x >的否定是:“函数()f x 在区间[1,1]-内任意实数x ,使()0f x ≤”,所以(1)0{(1)0f f ≤-≤,即2242(2)210{42(2)210p p p p p p ----+≤+---+≤,整理得222390{210p p p p +-≥--≥,解得32p ≥或3p ≤-,所以二次函数在区间[1,1]-内至少存在一个实数x ,使()0f x >的实数p 的取值范围是3(3,)2-.考点:一元二次方程的根与系数的关系.【方法点晴】本题主要考查了一元二次方程的根的分布与系数的关系,其中解答中涉及到一元二次函数的图象与性质、不等式组的求解、命题的转化等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,其中根据二次函数的图象是开口方向朝上的抛物线,得到对于区间[1,1]-内的任意一个x 都有()0f x >时,得到不等式组是解答的关键,属于中档试题.20.【解析】【分析】利用代入所求式子得再对分并结合基本不等式求最小值【详解】因为所以又因为所以因此当时的最小值是;当时的最小值是故的最小值为此时即故答案为:【点睛】本题考查基本不等式求最值考查转化与化归 解析:2-【解析】 【分析】利用2a b +=代入所求式子得||4||4||a b a a a b++,再对a 分0a >,0a <并结合基本不等式求最小值. 【详解】 因为2a b +=,所以1||||||2||4||4||4||a a b a a b a a b a b a a b++=+=++, 又因为0b >,||0a >,所以||14||b a a b +=…, 因此当0a >时,1||2||a a b +的最小值是15144+=; 当0a <时,1||2||a a b +的最小值是13144-+=. 故1||2||a a b +的最小值为34,此时,42,0,ab a b a b a ⎧=⎪⎪⎪+=⎨⎪<⎪⎪⎩即2a =-. 故答案为:2-. 【点睛】本题考查基本不等式求最值,考查转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对a 的分类讨论及基本不等式求最值时,要验证等号成立的条件.三、解答题21.(1);(2)不存在. 【解析】 【分析】 (1)由已知11a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为6>,故不存在. 【详解】 (111a b =+≥,得2ab ≥,且当a b ==故33+ab ≥≥a b ==所以33+a b的最小值为(2)由(1)知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=成立. 【考点定位】 基本不等式. 22.(1)3C π=;(2)S =【解析】 【分析】(1)利用正弦定理与两角和正弦公式可得到结果;(2)由题意及三角形面积公式可得2cos 22sin ac B ac ac B -+=,结合特殊角的三角函数值得到2B π=,从而得到结果.【详解】(1)由正弦定理得2sin cos sin cos sin cos C C A B B A =+, ∴2sin cos sin()sin C C A B C =+=, ∴1cos 2C =,∵(0,)C π∈, ∴3C π=.(2)222224()22sin S b a c b a c ac ac B =--=--+=,∴由余弦定理得2cos 22sin ac B ac ac B -+=,∴sin cos 1B B +=,∴sin 42B π⎛⎫+= ⎪⎝⎭, ∵20,3B π⎛⎫∈ ⎪⎝⎭,∴2B π=,∴S = 【点睛】本题考查了正弦、余弦定理,三角形的面积公式,以及三角恒等变换,考查计算能力与推理能力,属于中档题.23.(1)证明解析,(2)2【解析】 【分析】(1)由正弦定理面积公式得:211sin tan 26S bc A b A ==,再将sin tan cos A A A=代入即可.(2)因为1c =,a =3b cosA =.代入余弦定理2222cos a b c bc A =+-得22cos 3A =,cos A =tan 2A ⇒=,b =⇒16622S =⨯⨯=. 【详解】(1)由211sin tan 26S bc A b A ==,得3sin tan c A b A = 因为sin tan cos A A A =,所以sin 3sin cos b Ac A A=,又0A π<<,所以sin 0A ≠,因此3cos b c A =. (2)由(1)得3b ccosA =.因为1c =,a =3b cosA =.由余弦定理2222cos a b c bc A =+-得:2229cos 16cos A A =+-,解得:22cos 3A =.因为3b cosA =,所以cos 0A >,cos A =.tan A ⇒=,b .211tan 66622S b A ==⨯⨯=. 【点睛】本题第一问主要考查正弦定理中的面积公式和边角互化,第二问考查了余弦定理的公式应用,属于中档题.24.(1)12;(2 【解析】 【分析】(1)在ΔABC 中,由余弦定理,求得BC =进而利用三角形的面积公式,即可求解;(2)利用三角函数的诱导公式化和恒等变换的公式,求解sin BCA ∠=,再在ΔABC 中,利用正弦定理和余弦定理,即可求解. 【详解】(1)在ΔABC 中,222AC AB BC 2AB BC COS ABC ∠=+-⋅⋅即251BC BC =++ 2BC 40⇒+-=,解得BC =.所以ΔABC 111S AB BC sin ABC 12222∠=⋅⋅=⨯=.(2)因为0BAD 90,sin CAD 5∠∠==,所以cos BAC 5∠=,sin BAC ∠=πsin BCA sin BAC 4所以∠∠⎛⎫=- ⎪⎝⎭ )cos BAC sin BAC 2∠∠=-25510⎛=-= ⎝⎭.在ΔABC 中,AC AB sin ABC sin BCA ∠∠=, AB sin ABCAC sin BCA∠∠⋅∴==222CD AC AD 2AC AD cos CAD ∠=+-⋅⋅所以 51624135=+-⨯=所以CD = 【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.25.(1)sin 2sin C A = (2)4【解析】 【分析】(1)正弦定理得边化角整理可得()()sin 2sin A B B C +=+,化简即得答案.(2)由(1)知sin 2sin c C a A ==,结合题意由余弦定理可解得1a = ,sin B =,从而计算出面积. 【详解】(1)由正弦定理得2sin ,2sin ,2sin a R A b R b c R C ===, 所以cos cos 22sin sin cos sin A C c a C A B b B---==即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=- 即有()()sin 2sin A B B C +=+,即sin 2sin C A = 所以sin 2sin CA= (2)由(1)知sin 2sin c C a A==,即2c a =, 又因为2b = ,所以由余弦定理得:2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以2c =,又因为1cos 4B =,所以sin 4B =,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯. 【点睛】正弦定理与余弦定理是高考的重要考点,本题主要考查由正余弦定理解三角形,属于一般题.26.(1;(2)CD=5【解析】【分析】(1)直接利用余弦定理求cos∠BAC;(2)先求出sin∠DAC=8,再利用正弦定理求CD.【详解】(1)在△ABC中,由余弦定理得:222 cos2AB AC BC BACAB AC+-∠=⋅8==.(2)因为∠DAC=90°-∠BAC,所以sin∠DAC=cos∠BAC=8,所以在△ACD中由正弦定理得:sin sin45CD ACDAC=∠︒=,所以CD=5.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

2020-2021高中三年级数学下期中第一次模拟试题(带答案)(3)

2020-2021高中三年级数学下期中第一次模拟试题(带答案)(3)

2020-2021高中三年级数学下期中第一次模拟试题(带答案)(3)一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]-D .(,3][1,)-∞-⋃+∞3.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .45.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .46.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033B .1034C .2057D .20587.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭8.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( )A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形9.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S nN n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S10.已知不等式2230x x --<的解集为A ,260x x +-<的解集为B ,不等式2+0x ax b +<的解集为A B I ,则a b +=( )A .-3B .1C .-1D .311.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞B .()22,-+∞C .[)3,-+∞D .)22,⎡-+∞⎣12.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 23sin 0b A a B +=,3b c =,则ca的值为( )A .1B .33C .5 D .77二、填空题13.已知,x y 满足约束条件420y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为__________.14.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________.15.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 16.设n S 是等差数列{}n a 的前n 项和,若510S =,105S =-,则公差d =(___).17.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.18.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.19.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.20.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________.三、解答题21.已知在等比数列{}n a 中, 11a =,且2a 是1a 和31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*21n n b n a n N =-+∈,求{}nb 的前n 项和nS.22.已知数列{}n a 的首项1122,,1,2,3, (31)n n n a a a n a +===+. (1)证明: 数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列; (2)数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 23.已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =. (1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.24.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且asin B =-bsin 3A π⎛⎫+ ⎪⎝⎭. (1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值. 25.如图,在平面四边形ABCD 中,42AB =,22BC =,4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD .26.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.B解析:B 【解析】【分析】 【详解】 先作可行域,而46y x ++表示两点P (x,y )与A (-6,-4)连线的斜率,所以46y x ++的取值范围是[,][3,1]AD AC k k =-,选B.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.3.C解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.4.A解析:A 【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标还是在点()3,2C 处取得最大值,其最大值为max 33329z x y =+=+⨯=.本题选择A 选项.5.B解析:B 【解析】 【分析】由于直线将圆平分,故直线过圆的圆心,将圆心坐标代入直线方程,利用“1”的代换的方法以及基本不等式,求得所求和的最小值. 【详解】圆的圆心为()4,1--,由于直线将圆平分,故直线过圆心,即410a b --+=,即41a b +=,故()121288444282222b a b a a b a b a b a b a b⎛⎫+=++=++≥+⋅= ⎪⎝⎭,当且仅当82b aa b =,即11,82a b ==时,取得最小值为8.故选B. 【点睛】本小题主要考查直线和圆的位置关系,考查利用“1”的代换和基本不等式求解和式的最小值问题.直线能将圆平分成面积相等的两个部分,则这条直线是经过圆心的.要注意的是,圆的标准方程是()()222x a y b r -+-=,圆心是(),a b ,所以本题的圆心是()4,1--,而不是()4,1.6.A解析:A 【解析】 【分析】 【详解】首先根据数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据a b1+a b2+…+a b10=1+2+23+25+…+29+10进行求和. 解:∵数列{a n }是以2为首项,1为公差的等差数列, ∴a n =2+(n-1)×1=n+1, ∵{b n }是以1为首项,2为公比的等比数列,∴b n =1×2n-1, 依题意有:a b1+a b2+…+a b10=1+2+22+23+25+…+29+10=1033, 故选A .7.D解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .8.B解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅=所以222sin sin sin sin cos sin cos 333A A A A A πππ⎛⎫⎛⎫⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.9.D解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列. 又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.10.A解析:A【解析】 【分析】根据题意先求出集合,A B ,然后求出=1,2A B -I (),再根据三个二次之间的关系求出,a b ,可得答案.【详解】由不等式2230x x --<有13x -<<,则(1,3)A =-. 由不等式260x x +-<有,则32x -<<,则(3,2)B =-. 所以=1,2A B -I ().因为不等式2+0x ax b +<的解集为A B I , 所以方程2+=0x ax b +的两个根为1,2-. 由韦达定理有:1212a b -+=-⎧⎨-⨯=⎩,即=12a b -⎧⎨=-⎩.所以3a b +=-. 故选:A. 【点睛】本题考查二次不等式的解法和三个二次之间的关系,属于中档题.11.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q当x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值m -∴≥-,m 的取值范围是)⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).12.D解析:D 【解析】分析:由正弦定理可将sin2sin 0b A B =化简得cosA =,由余弦定理可得222227a b c bccosA c =+-=,从而得解.详解:由正弦定理,sin2sin 0b A B +=,可得sin2sin 0sinB A B +=,即2sin 3sin 0sinB AcosA sinA B += 由于:0sinBsinA ≠, 所以3cosA =-:, 因为0<A <π,所以5πA 6=. 又3b c =,由余弦定理可得22222222337a b c bccosA c c c c =+-=++=. 即227a c =,所以7c a =. 故选:D .点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.二、填空题13.10【解析】【分析】画出不等式组表示的可行域由得平移直线根据的几何意义求出最优解进而得到所求的最大值【详解】画出不等式组表示的可行域如图阴影部分所示由得平移直线结合图形可得当直线经过可行域内的点A 时解析:10 【解析】 【分析】画出不等式组表示的可行域,由2z x y =+得2y x z =-+,平移直线2y x z =-+,根据z 的几何意义求出最优解,进而得到所求的最大值.【详解】画出不等式组表示的可行域,如图阴影部分所示.由2z x y =+得2y x z =-+.平移直线2y x z =-+,结合图形可得,当直线经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最大值.由402x y y +-=⎧⎨=-⎩,解得62x y =⎧⎨=-⎩,故点A 的坐标为(6,2)-,所以max 26210z =⨯-=. 故答案为10. 【点睛】用线性规划求目标函数的最值体现了数形结合在数学中的应用,解题时要先判断出目标函数中z 的几何意义,然后再结合图形求解,常见的类型有截距型、斜率型和距离型三种,其中解题的关键是正确画出不等式组表示的可行域.14.512【解析】【分析】利用已知将n 换为n+1再写一个式子与已知作比得到数列的各个偶数项成等比公比为2再求得最后利用等比数列的通项公式即可得出【详解】∵anan+1=2n()∴an+1an+2=2n+解析:512 【解析】 【分析】利用已知将n 换为n +1,再写一个式子,与已知作比,得到数列{}n a 的各个偶数项成等比,公比为2,再求得2=1a ,最后利用等比数列的通项公式即可得出. 【详解】∵a n a n +1=2n ,(*n N ∈) ∴a n +1a n +2=2n +2.(*n N ∈)∴22n na a +=,(*n N ∈),∴数列{}n a 的各个奇数项513...a a a ,,成等比,公比为2, 数列{}n a 的各个偶数项246...a a a ,,成等比,公比为2, 又∵a n a n +1=2n ,(*n N ∈),∴a 1a 2=2,又12a =,∴2=1a , 可得:当n 为偶数时,1222n n a a -=⋅∴a 20=1•29=512. 故答案为:512. 【点睛】本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.15.【解析】【分析】由题意首先求得然后结合递推关系求解即可【详解】由题意可知:且:整理可得:由于故【点睛】本题主要考查递推关系的应用前n 项和与通项公式的关系等知识意在考查学生的转化能力和计算求解能力 解析:3116【解析】 【分析】由题意首先求得1S ,然后结合递推关系求解5S 即可. 【详解】由题意可知:12221S a =-=,且:()122n n n S S S +=--,整理可得:()11222n n S S +-=-, 由于121S -=-,故()455113121,21616S S ⎛⎫-=-⨯=-∴= ⎪⎝⎭. 【点睛】本题主要考查递推关系的应用,前n 项和与通项公式的关系等知识,意在考查学生的转化能力和计算求解能力.16.【解析】【分析】根据两个和的关系得到公差条件解得结果【详解】由题意可知即又两式相减得【点睛】本题考查等差数列和项的性质考查基本分析求解能力属基础题 解析:1-【解析】 【分析】根据两个和的关系得到公差条件,解得结果. 【详解】由题意可知,10551015S S -=--=-,即67891015a a a a a ++++=-, 又1234510a a a a a ++++=,两式相减得2525d =-,1d =-. 【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.17.5【解析】【分析】作出不等式组对应的平面区域利用数形结合即可得到z 的最大值【详解】作出实数xy 满足对应的平面区域如图:由z =2x+y 得y =﹣2x+z 平移直线y =﹣2x+z 由图象可知当直线y =﹣2x+解析:5 【解析】 【分析】作出不等式组对应的平面区域,利用数形结合即可得到z 的最大值. 【详解】作出实数x ,y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩对应的平面区域,如图:由z =2x +y 得y =﹣2x +z ,平移直线y =﹣2x +z 由图象可知当直线y =﹣2x +z 经过点A 时,直线y =﹣2x +z 的截距最大.又x 10y --=与20x y -=联立得A (2,1) 此时z 最大,此时z 的最大值为z =2×2+1=5, 故答案为5. 【点睛】本题主要考查线性规划的应用,考查了z 的几何意义,利用数形结合是解决本题的关键.18.()【解析】如图所示延长BACD 交于E 平移AD 当A 与D 重合与E 点时AB 最长在△BCE 中∠B=∠C=75°∠E=30°BC=2由正弦定理可得即解得=平移AD 当D 与C 重合时AB 最短此时与AB 交于F 在△B解析:(62-,6+2) 【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BEE C=∠∠,即o o2sin 30sin 75BE=,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BCFCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF=62-,所以AB 的取值范围为(62-,6+2).考点:正余弦定理;数形结合思想19.121)【解析】试题分析:由题意对任意实数xy ∈R 都有f(x)f(y)=f(x+y)则令x=ny=1可得f(n)f(1)=f(n+1)即f(n+1)an+1an=f(n+1)f(n)=12即数列{a 解析:【解析】试题分析:由题意,对任意实数,都有,则令可得 ,即,即数列是以为首项,以为公比的等比数列,故考点:抽象函数及其应用,等比数列的通项及其性质20.【解析】【分析】利用成等比数列得到再利用余弦定理可得而根据正弦定理和成等比数列有从而得到所求之值【详解】∵成等比数列∴又∵∴在中由余弦定理因∴由正弦定理得因为所以故故答案为【点睛】在解三角形中如果题 23【解析】 【分析】利用,,a b c 成等比数列得到222c b a bc +-=,再利用余弦定理可得60A =︒,而根据正弦定理和,,a b c 成等比数列有1sin sin c b B A=,从而得到所求之值. 【详解】∵,,a b c 成等比数列,∴2b ac =.又∵22a c ac bc -=-,∴222c b a bc +-=.在ABC ∆中,由余弦定理2221cos 22c b a A bc +-== ,因()0,A π∈,∴60A =︒. 由正弦定理得2sin sin sin sin sin sin c C Cb B B B B==, 因为2b ac =, 所以2sin sin sin B A C = , 故2sin sin 123sin sin sin sin 3C C B A C A ===. 故答案为23. 【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.三、解答题21.(1) 12n n a -=(2) n S 221n n =+-【解析】 【分析】(1)由题意结合等差数列的性质得到关于公比的方程,解方程求得公比的值,然后结合首项求解数列的通项公式即可.(2)结合(1)的结果首先确定数列{}n b 的通项公式,然后分组求和即可求得数列{}n b 的前n 项和n S . 【详解】(1)设等比数列{}n a 的公比为q ,则2a q =,23a q =,∵2a 是1a 和31a -的等差中项, ∴()21321a a a =+-, 即()2211q q =+-, 解得2q =,∴12n n a -=.(2) 121212n n n b n a n -=-+=-+,则()()11321122n n S n -⎡⎤=+++-++++⎣⎦L L()12112212n n n ⎡⎤+--⎣⎦=+-. 221n n =+-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.22.(1)证明见解析;(2)24222n n n n n S +++=-.【解析】试题分析:(1)对121n n n a a a +=+两边取倒数得111111222n n n na a a a ++==+⋅,化简得1111112n n a a +⎛⎫-=- ⎪⎝⎭,所以数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)由(1)11n a ⎧⎫-⎨⎬⎩⎭是等比数列.,求得1112n n a =+,利用错位相减法和分组求和法求得前n 项和24222n n n n n S +++=-.试题解析:(1)111211111111,?,1112222n n n n n n n n n a a a a a a a a a +++⎛⎫+=∴==+∴-=- ⎪+⎝⎭Q ,又 11211,132a a =∴-=,∴数列11n a ⎧⎫-⎨⎬⎩⎭是以为12首项,12为公比的等比数列.(2)由(1)知,1111111?222n n n a -+-==,即1112n n a =+,设23123...2222n n nT =++++, ① 则2311121...22222n n n n nT +-=++++, ② 由①-②得 21111111111122 (112222222212)nn n n n n n n n n T +++⎛⎫- ⎪⎝⎭=+++-=-=---,11222nn n n T -∴=--.又()1123 (2)n n n +++++=.∴数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和()2124222222n n n n n n n n n S +++++=-+=-.考点:配凑法求通项,错位相减法. 23.(1)21n a n =-;(2)2312n n -+【解析】 【分析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,运用通项公式,可得3,2q d ==,进而得到所求通项公式;(2)由(1)求得1(21)3n n n n c a b n -=+=-+,运用等差数列和等比数列的求和公式,即可得到数列{}n c 和. 【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,因为233,9b b ==,可得323b q b ==,所以2212333n n n n b b q ---==⋅=, 又由111441,27a b a b ====,所以1412141a a d -==-, 所以数列{}n a 的通项公式为1(1)12(1)21n a a n d n n =+-⨯=+-=-.(2)由题意知1(21)3n n n n c a b n -=+=-+,则数列{}n c 的前n 项和为12(121)1331[13(21)](1393)2132n n n n n n n -+---+++-+++++=+=+-L L . 【点睛】本题主要考查了等差数列和等比数列的通项公式和求和公式的运用,以及数列的分组求和,其中解答中熟记等差、等比数列的通项公式和前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.24.(1)56π;(2【解析】 【分析】(1)利用正弦定理化简已知等式即得A=56π.(2)先根据△ABC 的面积S 2得到b =c ,再利用余弦定理得到a c ,再利用正弦定理求出sin C 的值. 【详解】(1)因为asin B =-bsin)3A π+(,所以由正弦定理得sin A =-sin )3A π+(,即sin A =-12sin A ,化简得tan A 因为A∈(0,π),所以A =56π.(2)因为A =56π,所以sin A =12,由S =4c 2=12bcsin A =14bc ,得b c ,所以a 2=b 2+c 2-2bccos A =7c 2,则a c ,由正弦定理得sin C =sin 14c A a =. 【点睛】本题主要考查三角恒等变换,考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理计算能力.25.(1)8;(2)CD =5【解析】【分析】(1)直接利用余弦定理求cos∠BAC;(2)先求出sin∠DAC=8,再利用正弦定理求CD.【详解】(1)在△ABC中,由余弦定理得:222 cos2AB AC BC BACAB AC+-∠=⋅8==.(2)因为∠DAC=90°-∠BAC,所以所以在△ACD中由正弦定理得:sin sin45CD ACDAC=∠︒=,所以CD=5.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.26.(1)61na n=-;(2)1116565nTn⎛⎫=-⎪+⎝⎭【解析】【分析】(1)根据等差数列通项公式及前n项和公式求得首项和公差,即可得到数列{}n a的通项公式;(2)将n b化简后利用列项求和法即可求得数列{}n b的前n项和n T.【详解】(1)(方法一)由题意得217111721161a a dS a d=+=⎧⎨=+=⎩,解得156ad=⎧⎨=⎩,故61na n=-.(方法二)由747161S a==得423a=,因为42642a ad-==-,从而15a=,故61na n=-.(2)因为111111(61)(65)66165n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 所以121111111651111176165n n T b b b n n ⎛⎫=+++=-+-++- ⎪-+⎝⎭L L 1116565n ⎛⎫=- ⎪+⎝⎭. 【点睛】本题主要考查的是数列的通项公式的基本量求法,以及等差数列通项公式、前n 项和公式的求法,同时考查的是裂项求和,是中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021深圳武汉大学深圳外国语学校高中三年级数学下期中一模试卷(带答案)一、选择题1.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A .100B .-100C .-110D .1102.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .113.已知x ,y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,z =2x +y 的最大值为m ,若正数a ,b 满足a +b =m ,则14a b+的最小值为( ) A .3B .32C .2D .524.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .15.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .36.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1227.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+8.已知{}n a 为等差数列,n S 为其前n 项和,若3572a a +=,则13S =( )A .49B .91C .98D .1829.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)10.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .811.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14± D .1412.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( )A .20B .24C .28D .32二、填空题13.已知,x y 满足约束条件420y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为__________.14.设0a >,若对于任意满足8m n +=的正数m ,n ,都有1141a m n ++≤,则a 的取值范围是______.15.设x ,y 满足则220,220,20,x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩则3z x y =-的最小值是______.16.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式n a =_______.17.已知各项为正数的等比数列{}n a 满足7652a a a =+,若存在两项,m n a a使得1=,则14m n+的最小值为__________. 18.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______ 19.在△ABC 中,2BC =,AC =3B π=,则AB =______;△ABC 的面积是______.20.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xfm f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 三、解答题21.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 22.已知000a b c >,>,>,函数().f x a x x b c =-+++ (1)当1a b c ===时,求不等式()3f x >的解集; (2)当()f x 的最小值为3时,求111a b c++的最小值. 23.已知角A ,B ,C 为等腰ABC ∆的内角,设向量(2sin sin ,sin )m A C B =-r,(cos ,cos )n C B =r ,且//m n r r,7BC =(1)求角B ;(2)在ABC ∆的外接圆的劣弧»AC 上取一点D ,使得1AD =,求sin DAC ∠及四边形ABCD 的面积.24.已知数列{}n a 满足:121n n a a n +=-+,13a =.(1)设数列{}n b 满足:n n b a n =-,求证:数列{}n b 是等比数列; (2)求出数列{}n a 的通项公式和前n 项和n S .25.如图,在平面四边形ABCD 中,42AB =,22BC =,4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD .26.已知向量113,sin 22x x a ⎛⎫ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C ,若有33f A π⎛⎫-= ⎪⎝⎭,边217,sin 7BC B ==,求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】数列{a n }满足1(1)nn n a a n ++=-⋅,可得a 2k ﹣1+a 2k =﹣(2k ﹣1).即可得出.【详解】∵数列{a n }满足1(1)nn n a a n ++=-⋅,∴a 2k ﹣1+a 2k =﹣(2k ﹣1).则数列{a n }的前20项的和=﹣(1+3+……+19)()101192⨯+=-=-100.故选:B . 【点睛】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.2.C解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由30x yx y-+=⎧⎨+=⎩,解得3232xy⎧=-⎪⎪⎨⎪=⎪⎩,故点A的坐标为33(,)22-.∴min333()322z=⨯-+=-.选C.3.B解析:B【解析】【分析】作出可行域,求出m,然后用“1”的代换配凑出基本不等式的定值,从而用基本不等式求得最小值.【详解】作出可行域,如图ABC∆内部(含边界),作直线:20l x y+=,平移该直线,当直线l 过点(3,0)A时,2x y+取得最大值6,所以6m=.1411414143()()(5)(5)6662b a b aa ba b a b a b a b+=++=++≥+⨯=,当且仅当4b aa b=,即12,33a b==时等号成立,即14a b+的最小值为32.故选:B.【点睛】本题考查简单的线性规划,考查用基本不等式求最值,解题关键是用“1”的代换凑配出基本不等式的定值,从而用基本不等式求得最小值.4.D解析:D【解析】【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可.【详解】目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.5.C解析:C 【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a b A B =知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.6.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.7.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。

相关文档
最新文档