函数的值域和最值教案

合集下载

高中数学教学备课教案函数的定义域与值域

高中数学教学备课教案函数的定义域与值域

高中数学教学备课教案函数的定义域与值域高中数学教学备课教案函数的定义域与值域介绍:函数是数学中的重要概念,对于高中数学教学来说,理解函数的定义域与值域是非常关键的。

本教案将围绕函数的定义域与值域展开,旨在帮助学生深入理解函数的特性和应用。

一、函数的基本概念1.1 函数的定义函数是两个集合之间的对应关系,其中一个集合称为定义域,另一个集合称为值域。

在数学中,我们常以字母f表示函数,用x表示定义域中的元素。

1.2 定义域的确定定义域是函数中可以取得实际意义的自变量的取值范围。

它由函数的解析式、图像、实际问题和常识共同确定。

1.3 值域的确定值域是函数在定义域上所有可能的取值的集合。

通过函数的解析式、图像以及实际问题,我们可以较为准确地确定函数的值域。

二、定义域的常见类型有理函数是指可以表示为两个多项式的比值的函数。

有理函数的定义域通常由其分母的零点确定。

2.2 幂函数及其定义域幂函数是指以x为底数的指数函数,形如f(x) = x^a。

对于幂函数,定义域为实数集。

2.3 指数函数及其定义域指数函数是以一个正实数为底的指数函数,形如f(x) = a^x。

对于指数函数,定义域为实数集。

2.4 对数函数及其定义域对数函数是指以一个正实数为底的对数函数,形如f(x) = loga(x)。

对于对数函数,定义域为正实数集。

三、值域的常见类型3.1 有界函数及其值域有界函数是指在定义域上,函数的值上下都有限制的函数。

值域是一个有限的区间。

3.2 无界函数及其值域无界函数是指函数在定义域上,函数的值没有上下限的函数。

值域为整个实数集。

单调递增函数是指在定义域上,随着自变量的增大,函数值也随之增大的函数。

值域为一个区间。

3.4 单调递减函数及其值域单调递减函数是指在定义域上,随着自变量的增大,函数值反而减小的函数。

值域为一个区间。

结论:通过本教案,我们对高中数学中函数的定义域和值域有了更深入的理解。

定义域是函数自变量的取值范围,它由函数的解析式、图像、实际问题和常识共同确定。

函数的值域教案

函数的值域教案

函数的值域教案教案标题:函数的值域教案教案目标:1. 理解函数的值域的概念;2. 能够确定给定函数的值域;3. 能够解决与函数值域相关的问题。

教案步骤:引入(5分钟):1. 引入函数的概念,解释函数的定义和符号表示;2. 引入函数的定义域和值域的概念,并解释二者的区别;3. 提出一个问题,例如:对于函数f(x) = x^2,我们如何确定它的值域?探究(15分钟):1. 分组讨论:让学生分成小组,每组选择一个函数进行研究;2. 指导学生分析所选函数的定义域和值域;3. 引导学生思考如何确定函数的值域,例如通过绘制函数图像、寻找函数的最大值和最小值等方法;4. 指导学生应用所学方法确定各自函数的值域,并与其他小组分享结果。

总结(10分钟):1. 收集各组的结果,让学生分享他们所确定的函数值域;2. 引导学生总结确定函数值域的方法,并强调重要的观察点,例如函数的最大值、最小值以及是否存在水平渐近线等;3. 提出一些挑战性问题,例如如何确定复杂函数的值域。

应用(15分钟):1. 分发练习题,让学生在课堂上或课后完成;2. 引导学生应用所学方法解决练习题中的问题;3. 鼓励学生互相合作、讨论和解答问题;4. 督促学生检查答案,并解释他们的解题思路。

拓展(5分钟):1. 提出一个拓展问题,例如:如何确定反函数的值域?2. 引导学生思考并讨论拓展问题;3. 总结课堂内容,并鼓励学生在日常生活中应用所学知识。

教案评估:1. 观察学生在小组讨论中的参与程度;2. 检查学生在练习题中的解答情况;3. 评估学生对于函数值域概念的理解程度;4. 通过课堂讨论和问题解答,评估学生解决函数值域相关问题的能力。

教案扩展:1. 引导学生研究更复杂的函数,并确定其值域;2. 引导学生应用函数值域的概念解决实际问题;3. 引导学生研究函数值域的性质和特点,例如单调性、奇偶性等。

函数的值域和最值教案

函数的值域和最值教案

函数的值域和最值教案【教学目标】1.让学生了解求函数值域(最值)常用的方法;2.让学生了解各种方法的适用题型,并能灵活运用各种方法解函数的值域.【教学重点】直接法、利用函数单调性求值域(最值)、数形结合法 【教学难点】判别式法和数形结合方法的使用【例题设置】例1(强调定义域的重要性),其它例题主要指出各种方法适用的题型及注意点.【教学过程】第一课时〖例1〗已知函数3()2log f x x =+(19x ≤≤),求函数22()[()]()g x f x f x =+的最值. 错解:令3log [0,2]t x =∈,则22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+-∴当0t =时,min ()6g x =;当2t =时,max 2()()|22t g x g x ===.错因分析:当2t =时,9x =,2(9)[(9)](81)g f f =+无意义.产生错误的原因主要是忽略了定义域这个前提条件.正解:由21919x x ≤≤⎧⎨≤≤⎩,得()g x 的定义域为[1,3],3log [0,1]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+-∴当0t =时,min ()6g x =;当1t =时,max 2()()|13t g x g x ===. ★点评:1.求函数的值域(最值)同样得在定义域上进行;2.运用换元法解题时,一定要注意元的取值X 围,这步较容易被忽略;3.配方法是求“二次函数类”值域的基本方法,形如2()()()F x af x bf x c =++的函数的值域问题,均可用此法解决.该法常与换元法结合使用.〖例2〗 求下列函数的值域:⑴12121x x y ++=+;法一:(直接法)1212(21)112212121x x x x x y +++-===-+++ 由20x >,211x +>,10121x<<+,故12y <<,即原函数的值域为(1,2) 法二:(逆求法)由12121x x y ++=+得1202x y y -=>-,故12y <<,即原函数的值域为(1,2) ★点评:1.对于一些简单的函数可直接利用直接法求解即可;2.若原函数中有某一元素的X 围易确定,则常用“逆求法”来求值域,即用y 来表示该元素,通过该元素的X 围来确定原函数的值域.⑵2y x =-法一:(换元法)令0t =,则21x t =-,故2222(1)42422(1)4y t t t t t =--=--+=-++当0t =时,max 2y =;当t →+∞时,y →-∞,无最小值 ∴原函数的值域为(,2]-∞法二:由10x -≥得原函数的定义域为(,1]-∞,易知函数12y x =和2y =-(,1]-∞都为增函数,故原函数在(,1]-∞也为增函数,故1|2x y y =≤=∴原函数的值域为(,2]-∞★ 点评:求函数的解析应优先考虑直接法和判断函数的单调性.⑶y x =解:由210x -≥得原函数的定义域为[1,1]-,设cos ,[0,]x θθπ=∈,则cos |sin |cos sin sin()4y πθθθθθ=-=-=-这里可能只有极少学生会考虑到限制θ的X 围,可结合∵0θπ≤≤,3444πππθ-≤-≤,1sin()42πθ-≤-≤∴1y ≤,即原函数的值域为[★ 点评:用三角换元时,在不改变x 的X 围的前提下,应尽可能缩小θ的X 围,这样可以避免一些不必要的讨论,如本题中的|sin |θ去绝对值. ⑷221xy x x =++解:由221xy x x =++得2(2)0yx y x y +-+=……⑴,则该方程有解 ① 当0y =时,方程⑴可化为20x -=,方程有解,符合题意② 当0y ≠时,要使方程⑴有解,当且仅当22(2)40y y ∆=--≥,解得223y -≤≤,且0y ≠综上所述,223y -≤≤,即原函数的值域为2[2,]3-. ⑸221(1)1x x y x x -+=>-解:令10t x =->,则1x t =+,故222(1)(1)123212()32237t t t t y t t t t +-++++===++≥⨯+=当且仅当1t t=且0t >,即1t =时取等号另一方面,当t →+∞时,y →+∞,故原函数无最大值 ∴原函数的值域为[7,)+∞★ 点评:当函数的定义域为R 时才比较适用判别法.【课堂小结】1.求函数的值域(最值)同样得在定义域上进行;1.思考:该题为什么不采用判别式法?若用判别式法,则所方程22(1)10x y x y -+++=应是在(1,)+∞上有解,情况较为复杂2.该法采用了换元法,这要比拼凑法和待定系数法2.本节课我们复习了函数值域(最值)的几种较为常见的方法 ⑴直接法:一些简单的函数可利用该法求解;⑵配方法:求“二次函数类”值域的基本方法,该法常与换元法结合使用; ⑶ 换元法:包括代数换元和三角换元,运用换元法解题时,一定要注意元的取值X围.换元法很多时候可以很大程度的简化解题过程,如例2⑸;⑷逆求法:若原函数中有某一元素的X 围易确定,用y 来表示该元素,通过该元素的X 围来确定原函数的值域;⑸ 不等式法:利用均值不等式求最值时,一定要注意“正、定、等”三个条件缺一不可;⑹ 判别式法:该法只有当定义域为R 时才比较适用; ⑺ 利用函数的单调性(注意导数的应用);具体解题中应优先考虑直接法或判断函数的单调性.【教后反思】第二课时〖例3〗 求下列函数的值域⑴|1|y x =+解:|1||2|y x x =++-表示数轴上点x 到1-与2的距离之和,故3y ≥,即原函数的值域为[3,)+∞. ⑵|3||1|y x x =--+解:|3||1|y x x =--+表示数轴上点x 到3的距离与点x 到1-的距离的差,故44y -≤≤,即原函数的值域为[4,4]-.⑶y解:y =表示动点(,0)x 到两定点(0,2)(1,3)A B --、的距离之和,由图象分析知:min ||y AB ==,当x →∞时,y →+∞,故原函数的值域为)+∞.★ 点评:利用函数的几何意义,是解决这类特殊函数的较为简便的方法.〖例4〗 实数,x y 满足22(2)3x y -+=,求以下各式的最值: ⑴y x ; ⑵x y +; ⑶1y x + 解:因实数,x y 满足22(2)3x y -+=,故圆22(2)3x y -+=可看作点(,)x y 的可行域.⑴令yk x=,即y kx =,k 表示目标函数中的斜率,由图可知k ≤,即max ()y x min ()yx= ⑵ 令m x y =+,即y x m =-+,m 表示目标函数中的纵截距.由d =2m =±min max ()2()2x y x y +=+=+⑶ 令1yk x =+,即(1)y k x =+,目标函数过定点(1,0)-,k 表示目标函数中的斜率,由d ==2k =±,故max min (),()1212y y x x ==++ ★点评:用线性归划的观点解决该类函数的关键在于抓住可行域,并弄清所求的东西在目标函数中表示什么.变式:求函数1sin 2cos xy x+=+的值域.解:sin (1)cos (2)x y x --=--,表示动点(cos ,sin )P x x 与定点(2,1)A --连线的斜率,而动点P的轨迹为单位圆,由图象分析知:403y ≤≤,即原函数的值域为4[0,]3.【课堂小结】在具体求某个函数的值域时,首先要仔细、认真观察题型特征,然后再选择恰当的方法,一般优先考虑直接法、函数单调法和均值不等式,然后才考虑用其它各种特殊方法.【教后反思】。

函数的定义域和值域教案

函数的定义域和值域教案

函数的定义域和值域教案【教案】一、教学目标:1.了解函数的定义域和值域的概念;2.掌握求函数的定义域的方法;3.掌握求函数的值域的方法;4.能够应用所学知识解决实际问题。

二、教学内容:1.函数的定义域和值域的概念;2.求函数的定义域的方法;3.求函数的值域的方法;4.实际问题的应用。

三、教学过程:1.引入(1)复习巩固:复习一元一次方程和二元一次方程的求解方法。

(2)引入新知:通过实际问题引入函数的概念。

比如:某老师设置的体测项目中,小明的体重与身高呈正比关系,我们可以用函数的方式来表达这个关系。

2.教学展开(1)定义域- 介绍函数的定义域的概念:函数的定义域是指使函数有意义的自变量的取值集合。

- 通过例题讲解:比如给出函数f(x) = √(x + 2),问函数 f(x) 的定义域是什么?我们可以解方程x + 2 ≥ 0,得到x ≥ -2,所以函数的定义域为 [-2, +∞)。

(2)值域- 介绍函数的值域的概念:函数的值域是指因变量可能取到的值的集合。

- 通过例题讲解:比如给出函数 f(x) = x^2,问函数 f(x) 的值域是什么?我们可以通过计算函数的图像或者利用二次函数的性质知道,该函数的值域为[0, +∞)。

(3)求解定义域和值域的方法总结:- 定义域的求解方法:根据函数中涉及到的有限性、无理数和分式的限制条件,来确定定义域的范围。

- 值域的求解方法:根据函数的图像或者利用函数的性质来判断函数的取值范围。

3.实践应用通过实际问题的应用来巩固所学内容:(1)例题一:某物体下落的高度与时间的关系可以表示为函数 h(t) = 9.8t^2/2,其中 t 为时间,单位为秒。

请问该函数的定义域和值域分别是什么?- 解答:根据物理知识,时间 t 为正值,所以函数的定义域为 [0,+∞);而高度 h(t) 不会是负值,所以函数的值域为[0, +∞)。

(2)例题二:某商品的销售价格与销售数量的关系可以表示为函数 p(x) = 100 - 2x,其中 x 为销售数量,单位为件。

高中数学求值域教案

高中数学求值域教案

高中数学求值域教案一、教学目标:1. 知识目标:理解求值域的概念,掌握求值域的计算方法。

2. 能力目标:能够独立解决求值域问题,灵活运用求值域的相关知识。

3. 情感态度目标:培养学生对数学问题的探究和思考能力,增强学生对数学的兴趣和信心。

二、教学重点和难点:1. 教学重点:求值域的概念和计算方法。

2. 教学难点:掌握如何确定函数的值域。

三、教学过程:1. 导入活动(5分钟):教师简要介绍求值域的概念,并通过一个简单的例子引导学生思考什么是函数的值域。

2. 理论讲解(15分钟):教师系统地介绍求值域的定义和计算方法,重点讲解如何确定函数的最大值和最小值。

3. 示例分析(20分钟):教师通过几个实例讲解求值域的具体计算过程,引导学生掌握解题方法和技巧。

4. 练习与讨论(15分钟):学生通过小组合作或个人练习,解决一些求值域问题,并在讨论中互相交流思路和方法。

5. 总结与拓展(5分钟):教师对本节课的内容进行总结,并展示一些扩展问题,鼓励学生进一步挑战。

四、教学方法:1. 讲授法:通过系统地讲解,帮助学生建立求值域的概念。

2. 实例引导法:通过实例分析,帮助学生理解求值域的计算方法。

3. 合作探究法:通过小组合作,培养学生解决问题的能力和团队合作精神。

五、教学资源:1. 教材教辅资料2. 多媒体设备六、教学评价:1. 课堂表现:学生是否积极参与讨论和练习。

2. 作业表现:学生是否独立完成求值域问题,并能正确解答。

3. 课后反馈:通过课后作业批改和答疑,检验学生对求值域的理解和掌握程度。

函数的最值教案

函数的最值教案

函数的最值教案【学习目标】(1)明确闭区间[b a ,]上的连续函数)(x f ,在[b a ,]上必有最大、最小值。

(2)明白得函数的最值存在的可能位置。

(3)把握用导数法求函数的最大值与最小值的方法和步骤。

【学习重点】利用导数求函数的最大值和最小值的方法。

【学习难点】发觉闭区间上的连续函数)(x f 的最值只可能存在于极值点处或区间端点处. 方程0)(/=x f 的解,包含有指定区间内全部可能的极值点。

一、复习引入:问题1:函数的极大值和极小值如何定义的?一样地,设函数)(x f 在点0x 邻近有定义,(1)假如对0x 邻近的所有的点,都有 ,就说)(0x f 是函数)(x f 的一个极大值, 是极大值点。

(2)假如对0x 邻近的所有的点,都有 ,就说)(0x f 是函数)(x f 的一个极小值, 是极小值点。

问题2:如何求某个函数的极大值与极小值?问题3:函数的最大值和最小值是如何定义的?函数最值的定义:假如在函数定义域I 内存在0x ,使得对任意的I x ∈,(1)总有 ,那么)(0x f 为函数在定义域上的最大值;(2) 总有 ,那么)(0x f 为函数在定义域上的最小值。

问题4:如何求函数的最大值和最小值呢?二、讲解新课问题5:观看以上4个函数的图象,找出函数在区间],[b a 上何时取得最值?问题6:函数在闭区间],[b a 上取得最值的位置有规律吗?问题7:函数在闭区间],[b a 上的最值唯独吗?问题8:函数在开区间),(b a 上一定有最值吗?问题9:如何求函数在闭区间],[b a 上的最值?设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:三、例题讲解例1、求函数2()43f x x x =-+在区间[]1,4-上的最大值与最小值例2、求函数x x x f sin 21)(+=在区间]2,0[π上的最大值与最小值。

必修一教案_求函数的值域

必修一教案_求函数的值域

课题:函数的值域的求法教学目的:掌握求函数值域的几种基本方法:直接观察法,配方法,分享常数法,换元法,数形结合法等。

教学重点:函数值域的基本求法方法的掌握;教学难点:配方法及换元法的掌握。

一、复习引入函数三要素:定义域,对应法则,值域。

一个函数的值域由定义域和对应关系唯一确定,所以我们求函数值域时一定要注意定义域。

二、讲授新课类型1、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

例1. 求下列函数的值域。

(1)3y =-(2)221y x =-(3)31y x =+类型2、配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

例2.求函数225y x x =-+的值域。

思考:若[1,2]x ∈-呢?(2,0)x ∈-呢?类型3、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法。

例3. 求函数346x y x +=-的值域。

思考:若3456x y x +=-呢?类型4、换元法:运用代数代换,将所给函数转化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b=+±a、b、c、d均为常数,且0a≠)的函数常用此法求解。

例4.求函数2y x=+类型5、图像法(数型结合法):函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。

例5.求函数|2||1|y x x=-++的值域。

思考:求函数|3||7|y x x=-++的值域呢?小结:1.直接法: 2.配方法: 3. 分离常数法: 4. 换元法: 5.:.图像法(数型结合法):作业:求下列函数的值域:(1)321x yx-=+(2)232,[1,2] y x x x=+-∈-(3) y x=+(4) y=(5) |1||3|y x x=-++。

高中数学人教版《函数的定义域与值域》教案2023版

高中数学人教版《函数的定义域与值域》教案2023版

高中数学人教版《函数的定义域与值域》教案2023版一、教学目标通过本节课的学习,学生应能够:1. 理解函数的定义域和值域的概念;2. 掌握求解函数的定义域和值域的方法;3. 运用所学知识解决相关问题。

二、教学重点与难点1. 教学重点:函数的定义域和值域的概念及求解方法;2. 教学难点:应用所学知识解决相关问题。

三、教学过程1. 导入新课通过提问引入函数的定义域和值域的概念,为引出本课的教学内容做铺垫。

2. 概念讲解(1)函数的定义域定义域是指函数中自变量可以取值的范围。

根据函数的定义和实际问题,确定自变量取值范围时需要考虑以下几点:- 函数中是否包含分母为零的情况;- 若函数存在根式,要求根式内的式子必须为非负数。

(2)函数的值域值域是指函数的所有可能取值所组成的集合。

要确定函数的值域,一般需要进行以下步骤:- 分析函数的性质,判断函数是增函数还是减函数;- 确定函数的最大值和最小值。

3. 求解示范通过具体的例题,讲解如何求解函数的定义域和值域。

引导学生理解求解过程,并解释每一步的原因和依据。

4. 深化训练组织学生进行一些练习,注重培养学生独立解决问题的能力。

根据学生的解答情况,及时给予指导和反馈。

5. 拓展应用提供一些拓展应用题,让学生将所学知识应用到实际问题中。

鼓励学生思考、分析和解决问题的能力,培养学生的数学建模能力。

6. 归纳总结通过学生讨论、总结,归纳总结本节课的内容,并梳理相关的思维导图或概念框架,帮助学生将知识点整合,加深记忆。

四、课堂小结本节课主要介绍了函数的定义域和值域的概念,并讲解了求解函数定义域和值域的方法。

通过练习与应用,帮助学生巩固所学知识。

五、作业布置1. 完成课后习题;2. 思考并解答一道与函数的定义域和值域相关的问题。

六、教学反思本节课的教学内容与学生的预期目标相符,通过多种教学方法的运用,调动了学生的学习积极性。

在示范求解步骤和培养学生解决实际问题的能力方面,可能还需要进一步加强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的值域和最值教案
【教学目标】1.让学生了解求函数值域(最值)常用的方法;
2.让学生了解各种方法的适用题型,并能灵活运用各种方法解函数的值域.
【教学重点】直接法、利用函数单调性求值域(最值)、数形结合法 【教学难点】判别式法和数形结合方法的使用
【例题设置】例1(强调定义域的重要性),其它例题主要指出各种方法适用的题型及
注意点.
【教学过程】
第一课时
〖例1〗已知函数3()2log f x x =+(19x ≤≤),求函数22()[()]()g x f x f x =+的最值. 错解:令3log [0,2]t x =∈,则
22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+-
∴当0t =时,min ()6g x =;当2t =时,max 2()()|22t g x g x ===.
错因分析:当2t =时,9x =,2(9)[(9)](81)g f f =+无意义.产生错误的原因主要是忽略了定义域这个前提条件.
正解:由2
1919
x x ≤≤⎧⎨≤≤⎩,得()g x 的定义域为[1,3],3log [0,1]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+-
∴当0t =时,min ()6g x =;当1t =时,max 2()()|13t g x g x ===. ★点评:1.求函数的值域(最值)同样得在定义域上进行;
2.运用换元法解题时,一定要注意元的取值范围,这步较容易被忽略;
3.配方法是求“二次函数类”值域的基本方法,形如2()()()F x af x bf x c =++的函数的值域问题,均可用此法解决.该法常与换元法结合使用.
〖例2〗 求下列函数的值域:
⑴ 121
21
x x y ++=+;
法一:(直接法)1212(21)11
2212121
x x x x x
y +++-===-+++ 由20x >,211x +>,1
0121
x <
<+,故12y <<,即原函数的值域为(1,2)
法二:(逆求法)由121
21
x x y ++=+得1202x y y -=>-,
故12y <<,即原函数的值域为(1,2) ★ 点评:1.对于一些简单的函数可直接利用直接法求解即可;
2.若原函数中有某一元素的范围易确定,则常用“逆求法”来求值域,即用y 来表示该元素,通过该元素的范围来确定原函数的值域.

2y x =-;
法一:
(换元法)令0t =,则21x t =-,故
2222(1)42422(1)4y t t t t t =--=--+=-++
当0t =时,max 2y =;当t →+∞时,y →-∞,无最小值 ∴原函数的值域为(,2]-∞
法二:由10x -≥得原函数的定义域为(,1]-∞,易知函数12y x =
和2y =-(,1]-∞都为增函数,故原函数在(,1]-∞也为增函数,故1|2x y y =≤=
∴原函数的值域为(,2]-∞
★ 点评:求函数的解析应优先考虑直接法和判断函数的单调性.

y x =
解:由210x -≥得原函数的定义域为[1,1]-,设cos ,[0,]x θθπ=∈,则
cos |sin |cos sin sin()4
y π
θθθθθ=-=-=-
∵0θπ≤≤,34
4
4
π
π
πθ-≤
-≤
,1sin()4
π
θ-≤-

∴1y ≤
,即原函数的值域为[
★ 点评:用三角换元时,在不改变x 的范围的前提下,应尽可能缩小θ的范围,这
样可以避免一些不必要的讨论,如本题中的|sin |θ去绝对值.
⑷ 2
21
x
y x x =
++ 解:由221
x
y x x =++得2(2)0yx y x y +-+=……⑴,则该方程有解
① 当0y =时,方程⑴可化为20x -=,方程有解,符合题意
② 当0y ≠时,要使方程⑴有解,当且仅当22(2)40y y ∆=--≥,解得223
y -≤≤,且0y ≠
这里可能只有极少学生会考虑到限制
θ的范围,可结合
后面去绝对值,强调限制θ的范围的必要性.
综上所述,2
23
y -≤≤
,即原函数的值域为2[2,]3-.
⑸ 221
(1)1
x x y x x -+=>-
解:令10t x =->,则1x t =+,故
2
2
2(1)(1)12321
2()32237t t t t y t t t t +-++++=
==++≥⨯+=
当且仅当1
t t
=且0t >,即1t =时取等号
另一方面,当t →+∞时,y →+∞,故原函数无最大值 ∴原函数的值域为[7,)+∞
★ 点评:当函数的定义域为R 时才比较适用判别法.
【课堂小结】
1.求函数的值域(最值)同样得在定义域上进行;
2.本节课我们复习了函数值域(最值)的几种较为常见的方法 ⑴ 直接法:一些简单的函数可利用该法求解;
⑵ 配方法:求“二次函数类”值域的基本方法,该法常与换元法结合使用;
⑶ 换元法:包括代数换元和三角换元,运用换元法解题时,一定要注意元的取值范
围.换元法很多时候可以很大程度的简化解题过程,如例2⑸;
⑷ 逆求法:若原函数中有某一元素的范围易确定,用y 来表示该元素,通过该元素的范围来确定原函数的值域;
⑸ 不等式法:利用均值不等式求最值时,一定要注意“正、定、等”三个条件缺一
不可;
⑹ 判别式法:该法只有当定义域为R 时才比较适用; ⑺ 利用函数的单调性(注意导数的应用);
具体解题中应优先考虑直接法或判断函数的单调性.
【教后反思】
1.思考:该题为什么不采用判别式法?
若用判别式法,则所方程
22(1)10x y x y -+++=应是在(1,)+∞上有解,情况较为复杂
2.该法采用了换元法,这要比拼凑法和待定系数法更容易让学生接受.
第二课时
〖例3〗 求下列函数的值域
⑴ |1|y x =+解:|1||2|y x x =++-表示数轴上点x 到1-与2的距离之和,故3y ≥,即原函数的值域为[3,)+∞. ⑵ |3||1|y x x =--+
解:|3||1|y x x =--+表示数轴上点x 到3的距离与点x 到1-的距离的差,故
44y -≤≤,即原函数的值域为[4,4]-.
⑶ y =
解:y =表示动点(,0)x 到两定点
(0,2)(1,3)A B --、的距离之和,由图象分析知:min ||y AB ==,当x →∞时,
y →+∞,故原函数的值域为)+∞.
★ 点评:利用函数的几何意义,是解决这类特殊函数的较为简便的方法.
〖例4〗 实数,x y 满足22(2)3x y -+=,求以下各式的最值: ⑴
y x ; ⑵ x y +; ⑶ 1
y x + 解:因实数,x y 满足22(2)3x y -+=,故圆22(2)3x y -+=可看作点(,)x y 的可行域.
⑴令y
k x
=
,即y kx =,k 表示目标函数中的斜率,由图可知k ≤,即
max ()y x min ()y
x
= ⑵ 令m x y =+,即y x m =-+,m 表示目标函数中的纵截距.

d =
=2m =±min max ()2()2x y x y +=+=+
⑶ 令1
y
k x =+,即(1)y k x =+,目标函数过定点(1,0)-,k 表示目标函数中的斜率,

d =
=k =,故max min (),()11y y x x ==++ ★点评:用线性归划的观点解决该类函数的关键在于抓住可行域,并弄清所求的东西在目标函数中表示什么.
变式:求函数
1sin
2cos
x
y
x
+
=
+
的值域.
解:
sin(1)
cos(2)
x
y
x
--
=
--
,表示动点(cos,sin)
P x x与定点(2,1)
A--连线的斜率,而动点P
的轨迹为单位圆,由图象分析知:
4
3
y
≤≤,即原函数的值域为
4
[0,]
3

【课堂小结】
在具体求某个函数的值域时,首先要仔细、认真观察题型特征,然后再选择恰当的方法,一般优先考虑直接法、函数单调法和均值不等式,然后才考虑用其它各种特殊方法.
【教后反思】。

相关文档
最新文档