港澳台联考数学二轮复习试卷(含答案)——21导数及其简单应用

合集下载

港澳台数学全国联考复习数学综合练习二(试题及答案)

港澳台数学全国联考复习数学综合练习二(试题及答案)

港澳台第二学期综合练习二(答案)姓名______________ 成绩 ___________一、本大题共12小题,每小题5分,共60分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)下列命题中,真命题的个数 B ①.存在四边相等的四边形不.是菱形 ②.1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 ③.若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1④.对于任意01,n n n n n N C C C ∈+++ 都是偶数A 4B 3C 2D 1 【答案】B【命题立意】本题考查命题的真假判断。

【解析】对于B,若21,z z 为共轭复数,不妨设bi a z bi a z -=+=21,,则a z z 221=+,为实数。

设di c z bi a z +=+=21,,则i d b c a z z )()(21+++=+,若21z z +为实数,则有0=+d b ,当c a ,没有关系,所以B 为假命题,选B. (2)已知a 是实数,i 1ia z +=-是纯虚数,(32)z i -对应的点在复平面中的位置 B(A ) 虚轴 (B )第一象限 (C )第四象限 (D )实轴 (3)已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于 D(A )1 (B )53(C ) 3 (D )2(4)42lim4x x →-=- A(A )14(B )14- (C )4 (D )4-(5)若a ,b 是两个非零向量,则“+=-a b a b ”是“⊥a b ”的 C (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(6)如图:在空间直角坐标系中有直三棱柱111A B C A B C -,12C A C C C B ==,则直线1BC 与直线1A B 夹角为( A )A. arccos5B.arccos(5- C. arccos 5π- D. arccos 5【答案】A.【解析】设a CB =||,则a CC CA 2||||1==,),2,0(),0,2,0(),,0,0(),0,0,2(11a a B a C a B a A , ),2,0(),,2,2(11a a BC a a a AB -=-=∴,55,cos 111111=>=<∴BC AB ,故选(7)设65432()1250279031257071004562f x x x x x x x =--+++- 则(3)f = B(A ) 230 (B ) 217 (C ) 214 (D ) 211(8) 点M 的直角坐标是(-,则点M 的极坐标为 ( C )A .(2,)3πB .(2,)3π-C .2(2,)3π D .(2,2),()3k k Z ππ+∈答案C 2(2,2),()3k k Z ππ+∈都是极坐标(9) 已知三棱锥S A B C -的所有顶点都在球O 的求面上,A B C ∆是边长为1的正三角形,S C 为球O 的直径,且2SC =;则此棱锥的体积为( A )()A 6()B6()C3()D 2【答案】A【解析】A B C ∆的外接圆的半径3r =,点O 到面ABC的距离3d ==,S C 为球O 的直径⇒点S 到面ABC的距离为23d =此棱锥的体积为11233436ABC V S d ∆=⨯=⨯=另:1236ABC V S R ∆<⨯=排除,,B C D ,选A.(10) 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为 A(A)100101(B)99101(C)99100(D)101100【答案】A【解析】由15,555==S a ,得1,11==d a ,所以nn a n =-+=)1(1,所以111)1(111+-=+=+n n n n a a n n ,又1100111011101312121111110110021=-=-++-+-=+a a a a ,选A.(11)已知抛物线22y px =的焦点F 与双曲线22179xy-=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A在抛物线上且|||AK AF =,则△A F K 的面积为 D(A )4 (B )8 (C )16 (D )32(12)给出下列命题:①在区间(0,)+∞上,函数1y x -=,12y x =,2(1)y x =-,3y x =中有三个是增函数;②若log 3log 30m n <<,则01n m <<<;③若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;④已知函数233,2,()log (1),2,x x f x x x -⎧≤=⎨->⎩则方程 1()2f x =有2个实数根,其中正确命题的个数为 C(A )1 (B )2 (C )3 (D )4 二、填空题:本大题共6小题,每小题5分,共30分。

最新港澳台华侨生联考:数学二轮复习:综合练习4(含答案)

最新港澳台华侨生联考:数学二轮复习:综合练习4(含答案)
bn n 1
3
6 b2 .
1 1 n N 。记数列 cn 的前 n 项和为 S n . an bn


(i)求 S n ;(ii)求正整数 k ,使得对任意 n N ,均有 S k S n . 解:(I)由题意, a1a2 an

2 n N , b b
A. x | 0 x 1
5. 设 a,b 是非零向量,若函数 f ( x ) ( xa b) ( a xb) 的图象是一条直线,则必有( A. a ⊥ b B. a ∥ b C. | a || b | D. | a || b | )A
6. 将 5 本不同的书全发给 4 名同学,每名同学至少有一本书的概率是( A.
1 24
B. 2
1 29
C. 2
1 210
1 ,则该数列的前 10 项和为( 8 1 D. 2 11 2
)B
4. 设 P 和 Q 是两个集合, 定义集合 P Q x | x P,且x Q , 如果 P x | log 2 x 1 , 那么 P Q Q x | x 2 1 , 等于( )B B. x | 0 x ≤1 C. x |1 ≤ x 2 D. x | 2 ≤ x 3 )A
2
5π 6
6 5 5
17. 用 x 1 除多项式 p x 的余式为 2, 用 x 2 除多项式 p x 的余式为 1, 则用 x 3x 2 除多项式 p x
的余式为____________. x 3
18. 平面 ax by z 1 0 与 x 2 y z 3 0 互相垂直, 且其交线经过点 1, 1, 2 , 则 a b __________

最新港澳台华侨生联考:数学二轮复习:综合练习3(含答案)

最新港澳台华侨生联考:数学二轮复习:综合练习3(含答案)
4
网址:
北京博飞--华侨港澳台培训学校
f (ak ) f (ak 1) f (1) .而 an 1 f (an ) ,则 ak 1 f (ak ), ak 2 f (ak 1 ) , ak 1 ak 2 1 ,也就是说当 n k 1 时, an an 1 1 也成立;
2
5. 已知数列 {an } 的前 n 项和 S n n 9n ,第 k 项满足 5 ak 8 ,则 k ( A.9 B.8 C.7 D.6
)B
6. 已知 m,n 为两条不同的直线, , 为两个不同的平面,则下列命题中正确的是( A. m , n , m ∥ , n ∥ ∥ C. m ⊥ , m ⊥ n n ∥
由题意得 P ( B ) P ( B )







甲、乙两人各投球 2 次,共命中 2 次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中, 乙中 2 次。概率分别为
3 1 9 , P A AP B B , P A A P B B 16 64 64 3 1 9 11 所以甲、乙两人各投两次,共命中 2 次的概率为 . 16 64 64 32
乙:数列 {an } 是等比数列,则(
)B
A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件 11. 曲线 y e 2 在点 (4,e ) 处的切线与坐标轴所围三角形的面积为( A.
1 x 2
)D
9 2 e 2
25 , ) 3
16. 设函数 f ( x )

港澳台学生联招补习班内部资料:数学必考:导数综合题2(含答案)

港澳台学生联招补习班内部资料:数学必考:导数综合题2(含答案)
3
ቤተ መጻሕፍቲ ባይዱ
f '( x ) 的最小值为 12 .
(Ⅰ)求 a , b , c 的值; (Ⅱ)求函数 f ( x ) 的单调递增区间,并求函数 f ( x ) 在 [ 1,3] 上的最大值和最小值. (Ⅰ)∵ f ( x ) 为奇函数,∴ f ( x ) f ( x ) 即 ax bx c ax bx c ∵ f '( x ) 3ax b 的最小值为 12 又直线 x 6 y 7 0 的斜率为 ∴ a 2 , b 12 , c 0 . (Ⅱ) f ( x ) 2 x 12 x .
2 ln x 2a ,x 0 , x x
故 F ( x ) xf ( x ) x 2 ln x 2a,x 0 , 于是 F ( x ) 1 列表如下:
2 x2 ,x 0 , x x x F ( x ) (0, 2) (2, ∞)
2

0 极小值 F (2)
2 0
极小
( 2, )
所以函数 f ( x ) 的单调增区间是 ( , 2) 和 ( 2, ) ∵ f ( 1) 10 , f ( 2) 8 2 , f (3) 18 北京博飞华侨港澳台学校
2
网址:
北京博飞--华侨港澳台培训学校
1 2 x 2ax , g ( x ) 3a 2 ln x b ,其中 a 0 .设两曲线 y f ( x ) , 2
y g ( x ) 有公共点,且在该点处的切线相同.
(I)用 a 表示 b ,并求 b 的最大值;(II)求证: f ( x ) ≥ g ( x ) ( x 0 ). 北京博飞华侨港澳台学校
2 3

最新港澳台华侨生联考:数学二轮复习:综合练习1(含答案)

最新港澳台华侨生联考:数学二轮复习:综合练习1(含答案)
n 1
(2 )2n (n N ) , 0 ,可得
n 1
an 1
2
n 1

2 1, n
an
n
n n an 2 an 2 所以 n 为等差数列,其公差为 1 ,首项为 0 ,故 n 1 ,所以数列 an 的通项公式为 n
北京博飞--华侨港澳台培训学校
18 . 在 空 间 直 角 坐 标 系 中 , 过 两 点 A 0,1, 0 、 B 1, 0,1 且 与 平 面 : 2 x 3 y z 5 0 垂 直 的 平 面 方 程 是 . 2x y z 1 0
三、解答题 19. 已知函数 f ( x ) cos(2 x
(1)若 a 0 ,当 x 变化时, f ( x ) 的正负如下表:
x
a ∞, 3
a 3 0
a ,a 3
a
(a, ∞)
f ( x )
0

因此,函数 f ( x ) 在 x
a 4 3 a a 处取得极小值 f ,且 f a ; 3 27 3 3


(2) x [
5 , ], 2 x [ , ] 12 2 6 3 6 因为 f ( x ) sin(2 x ) 在区间 [ , ] 上单调递增,在区间 [ , ] 上单调递减, 6 12 3 3 2 所以 当 x 时, f ( x ) 取最大值 1 3
20. 在数列 an 中, a1 2,a n 1 3a n 3
2 n (n N ) .
an 2 n (Ⅰ)证明 n 为等差数列,求数列 an 的通项公式;(Ⅱ)求数列 an 的前 n 项和 S n ; 3 3

港澳台联考数学真题及答案PDF版

港澳台联考数学真题及答案PDF版

绝密★启用前2013年中华人民共和国普通高等学校联合招收华侨、港澳地区、台湾省学生入学考试数学试题一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选出的字母填在题后的括号内。

1.若多项式32x x c -+有因式1,x -则c =______A.–3B.–1C.1D.32.z=-i 22设,z=-i 22设,则│z │=_____A.2B.1C.D.3.斜率为k (k >0)的直线沿x 轴的正方向平移5个单位,平移后的直线与原直线之间的距离为4,则k=____A.53 B.43 C.34 D.354.设f (x )=x 2–2x –3在(a,+∞)上为增函数.则a 的取值范围为_____A.[1,+∞)B.(–∞,3]C.[–1,+∞)D.(–∞,–3]5.已知tan x =221aa -,其中常数()0,,cos =___a x π∈则A .221a a -+ B.221a a + C.2211a a -+ D.2211a a -++6.3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有______A.48种B.36种C.24种D.18种7.已知向量,OA OB 不共线,1,3BM BA = 则向量OM =_____A.1433OA OB -B.2133OA OB +C.1233OA OB -D.1233OA OB+8.焦点为(2,0),准线为x=–1的抛物线方程为_____A.263y x =-+B.263y x =+C.263y x =--D.263y x =-9.等比数列的前n 项和,,,nn s ab c a b c =+其中为常数,则______A.a+b=0B.b+c=0C.a+c=0D.a+b+c=010.3种颇色的卡片各5张,从中随机抽取3张,则3张卡片颜色相同的概率为____A.691 B.1291 C.8273 D.1627311.设函数f (x )=cos(sin x ).则下列结论正确的是_____A.f (x )的定义域是[–1,1]B.f (x )的值域是[–1,1]C.f (x )是奇函数D.f (x )是周期为π的函数12.把正方形ABCD 沿对角线AC 折起,当以A,B,C,D 为项点的三棱锥体积最大时,直线BD 和平面ABC 所成的大小为_____A.30。

港澳台华侨联考真题:数学必考:导数讲义及练习

港澳台华侨联考真题:数学必考:导数讲义及练习

导数的应用知识点讲解一.导数的运算导数的定义如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f′(x 0)或y′|0x x =。

即f′(x 0)=0lim →∆x x y∆∆=0lim→∆x xx f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤:①求函数的增量y ∆=f (x 0+x ∆)-f (x 0)②求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(00③取极限,得导数f’(x 0)=xyx ∆∆→∆0lim(在极限存在的前提下。

若极限不存在,则导数不存在)连续就是左值等于右值;可导是“左值等于右值,且左导等于右导”例1.⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,则=a =b 几个结论:(1)奇函数的导函数是偶函数。

(2)偶函数的导函数是奇函数。

(3)周期函数的导函数是周期函数,且周期不变。

(4)轴对称函数在对称轴处的导数为零(特别的偶函数有()00f '=),奇函数没有此性质。

1.常见函数的导数(1)0C '=(C 为常数)(2)()1m m x mx -'=(m Q ∈)(3)()x xe e '=(4)()ln x x a a a '=(5)()1ln x x'=(6)()11log log ln a a x e x a x'==(7)()sin cos x x '=(8)()cos sin x x'=-2.两个函数和、差、积、商的导数若()f x 、()g x 的导数都存在,则(1)()f g f g '''±=±(2)()f g f g f g '''=+ (3)()20f f g f g g g g '''⎛⎫-=≠ ⎪⎝⎭3.复合函数的导数设()u g x =在点x 处可导,()y f u =在()u g x =处可导,则复合函数()f g x ⎡⎤⎣⎦在点x 处可导,且()()()()f g x f u g x '''=⎡⎤⎣⎦ 。

2024年华侨、港澳、台联考高考数学试卷

2024年华侨、港澳、台联考高考数学试卷

2024年华侨、港澳、台联考高考数学试卷A.{3}B.{0,1}C.{-2,-1,2}D.{-2,-1,0,1,2,3}A.1-2i B.1+2i C.-1-2i D.-1+2i A.1B.C.2D.-2(2024•香港)已知集合A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B=( )答案:C解析:结合交集的定义,即可求解.解答:解:A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B={-2,-1,2}.故选:C.(2024•香港)计算=( )3+4i 1-2i答案:D解析:直接利用复数代数形式的乘除运算化简得答案.解答:解:===-1+2i .故选:D.3+4i 1-2i (3+4i )(1+2i )(1-2i )(1+2i )-5+10i 5(2024•香港)函数y=sinx+cosx的最大值是( )√3√6答案:C 解析:利用两角和的正弦公式即可化为asinx+bcosx=sin(x+θ),进而利用正弦函数的单调性、最值即可得出.√+a 2b 2解答:解:∵y=sinx+cosx=2(sinx+cosx)=2sin(x+).∵-1≤sin(x+)≤1,√312√32π3π3A.y=±3x B.y=±2x C.y =±x D.y =±x A.“x=1,y=-2”是“a ∥b ”的必要条件B.“x=1,y=-2”是“a ∥b ”的充分条件C.“x=1,y=-2”是“a ⊥b ”的必要条件D.“x=1,y=-2”是“a ⊥b ”的充分条件∴当sin(x+)=1时,函数y取得最大值2.故选:C.π3(2024•香港)已知双曲线C:-=1(a >0,b >0)的离心率为,则双曲线C的渐近线方程为( )x 2a 2y 2b 2√101312答案:A 解析:利用双曲线的离心率,得到a,b关系式,然后求解双曲线的渐近线方程.解答:解:双曲线C:-=1(a >0,b >0)的离心率为,可得=,即=10,可得=3.双曲线C的渐近线方程为:y=±3x.故选:A.x 2a 2y 2b 2√10c a √10+a 2b 2a 2b a (2024•香港)已知平面向量a =(1,1),b =(x+1,y),则( )→→→→→→→→→→答案:D解析:根据已知条件,结合向量平行、垂直的性质,即可求解.解答:解:对于A,若a ∥b ,则1•y=1•(x+1),即y=x+1,充分性不成立,错误,对于B,当x=1,y=-2时,则b =(2,-2),a ∥b 不成立,错误,→→→→→A.f(x)是奇函数,不是增函数B.f(x)是增函数,不是奇函数C.f(x)既是奇函数,也是增函数D.f(x)既不是奇函数,也不是增函数A.1B.C.-D.-1对于C,若a ⊥b ,则x+1+y=0,必要性不成立,故错误,对于D,当x=1,y=-2时,则b =(2,-2),a •b =2-2=0,a ⊥b ,充分性成立,故D正确.故选:D.→→→→→→→(2024•香港)已知函数f (x )=ln (+x ),则( )√+1x 2答案:C解析:结合基本初等函数及复合函数的单调性及函数奇偶性即可判断.解答:解:函数的定义域为R,f(-x)+f(x)=ln(-x)+ln(+x)=ln(1+x 2-x 2)=0,所以f(-x)=-f(x),所以f(x)为奇函数,B,D错误;当x≥0时,t=+x单调递增,根据奇函数的单调性可知,t=+x在R上单调递增,根据复合函数单调性可知,f(x)为增函数,A错误,C正确.故选:C.√1+x 2√1+x 2√1+x 2√1+x 2(2024•香港)若(a+x)4的展开式中x的系数是-,则a=( )121212答案:C解析:根据二项式定理,建立方程,即可求解.A.2x-3y+2=0B.3x+2y+2=0C.3x+2y-2=0D.2x-3y-2=0A.4B.2C.1D.解答:解:∵(a+x)4的展开式中x的系数是•=-,∴a=-.故选:C.C 41a 31212(2024•香港)圆x 2+(y+2)2=4与圆(x+2)2+(y-1)2=9交于A,B两点,则直线AB的方程为( )答案:D 解析:将两圆的方程相减,即可求解.解答:解:圆x 2+(y+2)2=4,即x 2+y 2+4y=0①,圆(x+2)2+(y-1)2=9,即x 2+4x+y 2-2y=4②,②-①可得,化简整理可得,2x-3y-2=0,故直线AB的方程为2x-3y-2=0.故选:D.(2024•香港)已知x =和x =都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,则ω的最小值是( )π4π212答案:A 解析:根据x=和x=都是函数f(x)的极值点,得出函数的周期T≤2×(-),由此求解即可.π4π2π2π4解答:解:因为x=和x=都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,所以周期为T≤2×(-)=,所以≤,所以ω≥4,即ω的最小值是4.故选:A.π4π2π2π4π22πωπ2A.2B.1C.D.A.2B.(2024•香港)抛物线C:y 2=2px(p>0)的焦点为F,C上的点到F的距离等于到直线x=-1的距离,则p=( )1214答案:A 解析:求得抛物线的焦点和准线方程,由抛物线的定义和点到直线的距离公式,解得p,可得抛物线的方程;解答:解:抛物线C:y 2=2px(p>0)的焦点F(,0),准线方程为x=-,C上的点到F的距离等于到直线x=-1的距离,可得=1,解得p=2,故选:A.p 2p 2p 2(2024•香港)正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,则该正四棱柱的体积是( )12√2√223答案:B解析:根据题意可正四棱柱的体对角线即为其外接球的直径2R=2,再建立方程求出正四棱柱的,最后代入体积公式,即可求解.解答:解:∵正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,∴正四棱柱的底面边长为1,设正四棱柱的高为h,则正四棱柱的体对角线即为其外接球的直径2R=2,∴(2R)2=12+12+h 2,即4=2+h 2,∴h=,∴该正四棱柱的体积为1×1×=.故选:B.12√2√2√2(2024•香港)已知偶函数f(x)的图像关于直线x=1对称,当0≤x≤1时,f(x)=x 2+2x,则当2≤x≤3时,f(x)=( )A.x 2+2xB.x 2-2x C.-x 2+2x D.-x 2-2x答案:B 解析:根据题意,分析可得f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,结合函数的解析式分析可得答案.解答:解:根据题意,f(x)为偶函数,则f(-x)=f(x),又由f(x)的图像关于直线x=1对称,则f(-x)=f(2+x),则有f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,则f(x-2)=(x-2)2+2(x-2)=x 2-2x,则有f(x)=f(x-2)=x 2-2x.故选:B.(2024•香港)用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有 280个.答案:280.解析:根据排列数公式,先排个位,再排其余,即可求解.解答:解:∵1,2,…,9这9个数字中奇数共有5个,∴用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有•=280个.故答案为:280.A 51A 82(2024•香港)记等差数列{a n }的前n项和为S n ,若S 2=16,S 4=24,则a 8=-5.答案:-5.解析:根据等差数列的前n项和公式即可得.解答:解:设等差数列{a n }的首项为a 1,公差为d,由S 2=16,S 4=24,得,即,解得.所以等差数列{a n }的通项公式为a n =11-2n,a 8=11-16=-5.故答案为:-5.⎧⎨⎩2+d =164+d =24a 12×12a 14×32{2+d =162+3d =12a 1a 1{=9d =-2a 1.答案:[-2,].23解析:将不等式两边同时平方,再结合一元二次不等式的解法,即可求解.解答:解:2|x|≤|x-2|,则4x 2≤x 2-4x+4,化简整理可得,(3x-2)(x+2)≤0,解得-2≤x ≤,故所求解集为[-2,].故答案为:[-2,].232323(2024•香港)函数f(x)=e x -2x的最小值为2-2ln2.答案:见试题解答内容解析:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.利用单调性即可得出.解答:解:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.可得:函数f(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.∴x=ln2时,函数f(x)取得极小值即最小值,f(ln2)=2-2ln2.故答案为:2-2ln2.(2024•香港)已知函数f(x)的定义域为R,若f(x-1)f(x+1)=x 2+4x+3,f(1)=3,则f(9)=11.答案:11.解析:利用函数的解析式,依次能求出f(3),f(5),f(7),f(9)的值.解答:解:函数f(x)的定义域为R,f(x-1)f(x+1)=x 2+4x+3,f(1)=3,∴f(1)f(3)=4+8+3=15,∴f(3)=5,f(3)f(5)=16+16+3=35,∴f(5)=7,f(5)(7)=36+24+3=63,∴f(7)=9,f(7)f(9)=64+32+3=99,则f(9)=11.故答案为:11.(2024•香港)已知二面角α-AB-β的大小为90°,正方形ABCD在α内,等边三角形ABF在β内,则异面直线AC与BF所成角的余弦值为 .√244解析:由题意建立空间直角坐标系,设正方形的边长,求出直线BF,AC的方向向量BF ,AC 的坐标,进而求出两个向量的夹角的余弦值,进而求出异面直线所成的角的余弦值.→→解答:解:过F作FO⊥AB,在平面α过O作y轴⊥AB,因为二面角α-AB-β的大小为90°,所以FO⊥平面α,设正方形的边长为2,由题意OF=,可得F(0,0,),B(1,0,0),A(-1,0,0),C(1,2,0),则BF =(-1,0,),AC =(2,2,0),所以BF •AC =-1×2+0×2+×0=-2,|BF |==2,|AC |==2,所以cos<BF ,AC >==所以异面直线AC与BF所成角的余弦值为|cos<BF ,AC故答案为:.√3√3→√3→→→√3→√(-1++()202√3)2→√++222202√2→→BF •AC →→|BF |•|AC |→→4→→4√24(2024•香港)已知△ABC中,A =,AC=ABtanB.(1)求B;(2)求sinA+sinB+sinC.π3答案:(1);(2).π12+√3√62解析:(1)由题设及正弦定理,可得cosB=sinC,再根据诱导公式进行代换,即可求得角B;(2)根据角A,B,C的值,利用两角和的正弦公式即可求解.解答:解:(1)由AC=ABtanB,可得tanB =,由正弦定理,可得=,又B∈(0,π),sinB≠0,所以cosB=sinC,由诱导公式,可得cosB=sin(A+B)=cos[-(A +B )],所以B =-(A +B )+2kπ或B =(A +B )-+2kπ,k∈Z,又A =,所以B =+kπ,k∈Z,又B∈(0,π),故B=;(2)由(1)知,A =,B=,则C =,sin +sin =+sin (-)+sin (+)=+2sin cos2=.b csinB cosB sinB sinC π2π2π2π3π12π12ππ127π122π127π12√3πππ3π4√32π3π4222+√3√62(2024•香港)在一个工作日中,某工人至少使用甲、乙两仪器中的一个,该工人使用甲仪器的概率为0.6,使用乙仪器的概率为0.5,且不同工作日使用仪器的情况相互独立.(1)求在一个工作日中该工人既使用甲仪器也使用乙仪器的概率;(2)记X为在100个工作日中,该工人仅使用甲仪器的天数,求E(X).答案:(1)0.1;(2)50.解析:(1)利用概率的性质求解;(2)利用二项分布的期望公式求解.解答:解:(1)设事件A表示“在一个工作日中该工人既使用甲仪器也使用乙仪器”,则P(A)=0.6+0.5-1=0.1;(2)因为在一个工作日中该工人仅使用甲仪器的概率为0.6-0.1=0.5,A.{3}B.{0,1}C.{-2,-1,2}D.{-2,-1,0,1,2,3}A.1-2i B.1+2i C.-1-2i D.-1+2i A.1B.C.2D.-2则X~B(100,0.5),所以E(X)=100×0.5=50.(2024•香港)已知集合A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B=( )答案:C解析:结合交集的定义,即可求解.解答:解:A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B={-2,-1,2}.故选:C.(2024•香港)计算=( )3+4i 1-2i答案:D解析:直接利用复数代数形式的乘除运算化简得答案.解答:解:===-1+2i .故选:D.3+4i 1-2i (3+4i )(1+2i )(1-2i )(1+2i )-5+10i 5(2024•香港)函数y=sinx+cosx的最大值是( )√3√6答案:C 解析:利用两角和的正弦公式即可化为asinx+bcosx=sin(x+θ),进而利用正弦函数的单调性、最值即可得出.√+a 2b 2A.y=±3x B.y=±2x C.y =±x D.y =±x A.“x=1,y=-2”是“a ∥b ”的必要条件B.“x=1,y=-2”是“a ∥b ”的充分条件C.“x=1,y=-2”是“a ⊥b ”的必要条件D.“x=1,y=-2”是“a ⊥b ”的充分条件解答:解:∵y=sinx+cosx=2(sinx+cosx)=2sin(x+).∵-1≤sin(x+)≤1,∴当sin(x+)=1时,函数y取得最大值2.故选:C.√312√32π3π3π3(2024•香港)已知双曲线C:-=1(a >0,b >0)的离心率为,则双曲线C的渐近线方程为( )x 2a 2y 2b 2√101312答案:A 解析:利用双曲线的离心率,得到a,b关系式,然后求解双曲线的渐近线方程.解答:解:双曲线C:-=1(a >0,b >0)的离心率为,可得=,即=10,可得=3.双曲线C的渐近线方程为:y=±3x.故选:A.x 2a 2y 2b 2√10c a √10+a 2b 2a 2b a (2024•香港)已知平面向量a =(1,1),b =(x+1,y),则( )→→→→→→→→→→答案:D解析:根据已知条件,结合向量平行、垂直的性质,即可求解.A.f(x)是奇函数,不是增函数B.f(x)是增函数,不是奇函数C.f(x)既是奇函数,也是增函数D.f(x)既不是奇函数,也不是增函数A.1B.D.-1解答:解:对于A,若a ∥b ,则1•y=1•(x+1),即y=x+1,充分性不成立,错误,对于B,当x=1,y=-2时,则b =(2,-2),a ∥b 不成立,错误,对于C,若a ⊥b ,则x+1+y=0,必要性不成立,故错误,对于D,当x=1,y=-2时,则b =(2,-2),a •b =2-2=0,a ⊥b ,充分性成立,故D正确.故选:D.→→→→→→→→→→→→(2024•香港)已知函数f (x )=ln (+x ),则( )√+1x 2答案:C解析:结合基本初等函数及复合函数的单调性及函数奇偶性即可判断.解答:解:函数的定义域为R,f(-x)+f(x)=ln(-x)+ln(+x)=ln(1+x 2-x 2)=0,所以f(-x)=-f(x),所以f(x)为奇函数,B,D错误;当x≥0时,t=+x单调递增,根据奇函数的单调性可知,t=+x在R上单调递增,根据复合函数单调性可知,f(x)为增函数,A错误,C正确.故选:C.√1+x 2√1+x 2√1+x 2√1+x 2(2024•香港)若(a+x)4的展开式中x的系数是-,则a=( )1212C.-A.2x-3y+2=0B.3x+2y+2=0C.3x+2y-2=0D.2x-3y-2=0A.4B.2C.1D.12答案:C解析:根据二项式定理,建立方程,即可求解.解答:解:∵(a+x)4的展开式中x的系数是•=-,∴a=-.故选:C.C 41a 31212(2024•香港)圆x 2+(y+2)2=4与圆(x+2)2+(y-1)2=9交于A,B两点,则直线AB的方程为( )答案:D 解析:将两圆的方程相减,即可求解.解答:解:圆x 2+(y+2)2=4,即x 2+y 2+4y=0①,圆(x+2)2+(y-1)2=9,即x 2+4x+y 2-2y=4②,②-①可得,化简整理可得,2x-3y-2=0,故直线AB的方程为2x-3y-2=0.故选:D.(2024•香港)已知x =和x =都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,则ω的最小值是( )π4π212答案:A 解析:根据x=和x=都是函数f(x)的极值点,得出函数的周期T≤2×(-),由此求解即可.π4π2π2π4A.2B.1C.D.A.2B.解答:解:因为x=和x=都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,所以周期为T≤2×(-)=,所以≤,所以ω≥4,即ω的最小值是4.故选:A.π4π2π2π4π22πωπ2(2024•香港)抛物线C:y 2=2px(p>0)的焦点为F,C上的点到F的距离等于到直线x=-1的距离,则p=( )1214答案:A 解析:求得抛物线的焦点和准线方程,由抛物线的定义和点到直线的距离公式,解得p,可得抛物线的方程;解答:解:抛物线C:y 2=2px(p>0)的焦点F(,0),准线方程为x=-,C上的点到F的距离等于到直线x=-1的距离,可得=1,解得p=2,故选:A.p 2p 2p 2(2024•香港)正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,则该正四棱柱的体积是( )12√2√223答案:B解析:根据题意可正四棱柱的体对角线即为其外接球的直径2R=2,再建立方程求出正四棱柱的,最后代入体积公式,即可求解.解答:解:∵正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,∴正四棱柱的底面边长为1,设正四棱柱的高为h,则正四棱柱的体对角线即为其外接球的直径2R=2,∴(2R)2=12+12+h 2,即4=2+h 2,∴h=,12√2A.x 2+2xB.x 2-2x C.-x 2+2x D.-x 2-2x∴该正四棱柱的体积为1×1×=.故选:B.√2√2(2024•香港)已知偶函数f(x)的图像关于直线x=1对称,当0≤x≤1时,f(x)=x 2+2x,则当2≤x≤3时,f(x)=( )答案:B解析:根据题意,分析可得f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,结合函数的解析式分析可得答案.解答:解:根据题意,f(x)为偶函数,则f(-x)=f(x),又由f(x)的图像关于直线x=1对称,则f(-x)=f(2+x),则有f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,则f(x-2)=(x-2)2+2(x-2)=x 2-2x,则有f(x)=f(x-2)=x 2-2x.故选:B.(2024•香港)用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有 280个.答案:280.解析:根据排列数公式,先排个位,再排其余,即可求解.解答:解:∵1,2,…,9这9个数字中奇数共有5个,∴用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有•=280个.故答案为:280.A 51A 82(2024•香港)记等差数列{a n }的前n项和为S n ,若S 2=16,S 4=24,则a 8=-5.答案:-5.解析:根据等差数列的前n项和公式即可得.解答:解:设等差数列{a n }的首项为a 1,公差为d,由S 2=16,S 4=24,得,即,解得.所以等差数列{a n }的通项公式为a n =11-2n,a 8=11-16=-5.故答案为:-5.⎧⎨⎩2+d =164+d =24a 12×12a 14×32{2+d =162+3d =12a 1a 1{=9d =-2a 1.答案:[-2,].23解析:将不等式两边同时平方,再结合一元二次不等式的解法,即可求解.解答:解:2|x|≤|x-2|,则4x 2≤x 2-4x+4,化简整理可得,(3x-2)(x+2)≤0,解得-2≤x ≤,故所求解集为[-2,].故答案为:[-2,].232323(2024•香港)函数f(x)=e x -2x的最小值为2-2ln2.答案:见试题解答内容解析:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.利用单调性即可得出.解答:解:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.可得:函数f(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.∴x=ln2时,函数f(x)取得极小值即最小值,f(ln2)=2-2ln2.故答案为:2-2ln2.(2024•香港)已知函数f(x)的定义域为R,若f(x-1)f(x+1)=x 2+4x+3,f(1)=3,则f(9)=11.答案:11.解析:利用函数的解析式,依次能求出f(3),f(5),f(7),f(9)的值.解答:解:函数f(x)的定义域为R,f(x-1)f(x+1)=x 2+4x+3,f(1)=3,∴f(1)f(3)=4+8+3=15,∴f(3)=5,f(3)f(5)=16+16+3=35,∴f(5)=7,f(5)(7)=36+24+3=63,∴f(7)=9,f(7)f(9)=64+32+3=99,则f(9)=11.故答案为:11.(2024•香港)已知二面角α-AB-β的大小为90°,正方形ABCD在α内,等边三角形ABF在β内,则异面直线AC与BF所成角的余弦值为 .√244解析:由题意建立空间直角坐标系,设正方形的边长,求出直线BF,AC的方向向量BF ,AC 的坐标,进而求出两个向量的夹角的余弦值,进而求出异面直线所成的角的余弦值.→→解答:解:过F作FO⊥AB,在平面α过O作y轴⊥AB,因为二面角α-AB-β的大小为90°,所以FO⊥平面α,设正方形的边长为2,由题意OF=,可得F(0,0,),B(1,0,0),A(-1,0,0),C(1,2,0),则BF =(-1,0,),AC =(2,2,0),所以BF •AC =-1×2+0×2+×0=-2,|BF |==2,|AC |==2,所以cos<BF ,AC >==所以异面直线AC与BF所成角的余弦值为|cos<BF ,AC√3√3→√3→→→√3→√(-1++()202√3)2→√++222202√2→→BF •AC →→|BF |•|AC |→→4→→44(2024•香港)已知△ABC中,A =,AC=ABtanB.(1)求B;(2)求sinA+sinB+sinC.π3答案:(1);(2).π12+√3√62解析:(1)由题设及正弦定理,可得cosB=sinC,再根据诱导公式进行代换,即可求得角B;(2)根据角A,B,C的值,利用两角和的正弦公式即可求解.解答:解:(1)由AC=ABtanB,可得tanB =,由正弦定理,可得=,又B∈(0,π),sinB≠0,所以cosB=sinC,由诱导公式,可得cosB=sin(A+B)=cos[-(A +B )],所以B =-(A +B )+2kπ或B =(A +B )-+2kπ,k∈Z,又A =,所以B =+kπ,k∈Z,又B∈(0,π),故B=;(2)由(1)知,A =,B=,则C =,sin +sin =+sin (-)+sin (+)=+2sin cos2=.b csinB cosB sinB sinC π2π2π2π3π12π12ππ127π122π127π12√3πππ3π4√32π3π4222+√3√62(2024•香港)记数列{a n }的前n项和为S n ,已知a 1=4,=(-1).(1)证明:数列{}是等比数列;(2)求{a n }的通项公式.a n +14(n +1)2n -1S n -1S n 2n -1答案:(1)证明见解答;(2)a n =4n•3n-1,n∈N *.解析:(1)根据数列的和与项的转化关系,等比数列的定义,即可证明;(2)根据数列的和与项的转化关系,分类讨论,即可求解.解答:解:(1)证明:∵=(-1),∴-=(-1),∴(2n-1)S n+1-(2n-1)S n =4(n+1)S n -4(n+1),∴(2n-1)S n+1=(6n+3)S n -4(n+1),∴(2n-1)(S n+1-1)=(6n+3)S n -(6n+3),∴(2n-1)(S n+1-1)=3(2n+1)(S n -1),∴=3(),又=a 1-1=3,∴数列{}是以首项为3,公比为3的等比数列;(2)由(1)可得=,∴-1=(2n -1)×①,当n≥2时,-1=(2n -3)×②,①-②可得=(2n -1)×-(2n -3)×=4n•3n-1(n≥2),又a 1=4,也满足上式,∴a n =4n•3n-1,n∈N *.a n +14(n +1)2n -1S n S n +1S n 4(n +1)2n -1S n -1S n +12n +1-1S n 2n -1-1S 12×1-1-1S n 2n -1-1S n 2n -13n S n 3n S n -13n -1a n 3n 3n -1(2024•香港)已知椭圆C :+=1(a >b >0)的左焦点为F,点A(-a,0),B(0,b),过F的直线x-y+1=0交C于B,P两点.(1)求P的坐标;(2)若点R(-2,y 0)在直线AB上,证明:FR是∠PFA的角平分线.x 2a 2y 2b 2答案:(1)P(-,-).(2)证明详情见解答.4313解析:(1)直线方程中x-y+1=0,分别令y,x为0,解得b,c,由a 2=b 2+c 2,解得a,即可得出椭圆的方程,联立直线x-y+1=0与椭圆的方程,即可得出答案.(2)由(1)知A(-,0),B(0,1),写出直线AB的方程,进而可得Q点坐标,推出tan2∠RFA=tan∠RFA,即可得出答案.√2解答:解:(1)因为直线x-y+1=0过焦点F和点B,所以令y=0,得x=-1,即-c=-1,则c=1,令x=0,得y=1,即b=1,又a 2=b 2+c 2=2,所以椭圆的方程为+y 2=1,联立,解得x=0或x=-,所以x P =-,y P =x P +1=(-)+1=-,所以P(-,-).(2)证明:由(1)知A(-,0),B(0,1),令x=-2,得y=1-,所以R(-2,1-),tan∠RFA==-1,tan2∠RFA==因为直线x-y+1=0的斜率为1,所以tan∠RFA=1,所以tan2∠RFA=tan∠RFA,所以FR是∠PFA的角平分线.x 22{x -y +1=0+=1x 22y 2434343134313√2√2√2|1-|√2-1-(-2)√22tan ∠RFA 1-ta ∠n 2√2。

港澳台学生联考试题:数学--数列各种简单综合题(含答案)

港澳台学生联考试题:数学--数列各种简单综合题(含答案)

数列综合题1.已知数列{}n a 是公差不为0的等差数列,12a =,且2a ,3a ,41a +成等比数列.(1)求数列{}n a 的通项公式;(2)设()22n n b n a =+,求数列{}n b 的前n 项和n S .2.设数列{}n a 的前n 项和为n S ,且()...,2,112=-=n a S n n .(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()2,...,2,111==+=+b n b a b n n n ,求数列{}n b 的通项公式.3.已知等差数列{}n a 的公差0> d ,其前n 项和为n S , 11=a ,3632=S S ;(1)求出数列{}n a 的通项公式n a 及前n 项和公式nS (2)若数列{}n b 满足)2(,211≥=-=-n d b b b nn n ,求数列{}n b 的通项公式nb4.等差数列{}n a 中,11-=a ,公差0≠d 且632,,a a a 成等比数列,前n 项的和为n S .(1)求n a 及n S ;(2)设11+=n n n a a b ,n n b b b T +++= 21,求n T .5.已知数列{}n a 满足22a =,n S 为其前n 项和,且(1)(1,2,3,)2n n a n S n +== .(1)求1a 的值;(2)求证:1(2)1n n na a n n -=≥-;(3)判断数列{}n a 是否为等差数列,并说明理由.6.已知等比数列{}n a 的前n 项和为n S ,且满足()122n n S p n N +*=+∈.(I )求p 的值及数列{}n a 的通项公式;(II )若数列{}n b 满足()132n n a bn a p +=+,求数列{}n b 的前n 项和n T .7.在数列}{n a 中,c c a a a n n (,111+==+为常数,)*∈N n ,521,,a a a 构成公比不等于1的等比数列.记11+=n n n a a b ()*∈N n .(Ⅰ)求c 的值;(Ⅱ)设}{n b 的前n 项和为n R ,是否存在正整数k ,使得kk R 2≥成立?若存在,找出一个正整数k ;若不存在,请说明理由.8.已知数列{}n a 的前n 项和为n S ,()()*31N n a S n n ∈-=.(Ⅰ)求21,a a ;(Ⅱ)求证:数列{}n a 是等比数列.9.设数列{}n a 的前n 项和122n n S +=-,数列{}n b 满足21(1)log n nb n a =+.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n T .10.已知数列{}n a 的前n 项和为n S ,且2n n S n +=2.(1)求数列}{n a 的通项公式;(2)若*)(,1211N n a b n n n n ∈-+=+求数列}{n b 的前n 项和n S .11.在数列{}n a 中,,31=a )n n 2,n 2-n 21*-∈≥+=且(n n a a (1)求32,a a 的值;(2)证明:数列{}n a n +是等比数列,并求{}n a 的通项公式;(3)求数列{}n a 的前n 项和n S .12.若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-,记12log n n b a =.(1)求1a ,2a 的值;(2)求数列{}n b 的通项公式;(3)若11,0,n n n c c b c +-==求证:对任意*2311132,4n n n N c c c ≥∈+++< 都有.13.设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足3(1)2n n S b =-且2152,.a b a b ==(Ⅰ)求数列{a n }和{b n }的通项公式:(Ⅱ)设T n 为数列{S n }的前n 项和,求T n .14.在数列}{n a 和等比数列}{n b 中,01=a ,23=a ,1*2()n a n b n N +=∈.(Ⅰ)求数列{}n b 及}{n a 的通项公式;(Ⅱ)若n n n b a c ⋅=,求数列{}n c 的前n 项和n S .15.设等比数列{n a }的前n 项和为n S ,已知对任意的+∈N n ,点(,)n n S ,均在函数r y x+=2的图像上.(Ⅰ)求r 的值;(Ⅱ)记n na a ab 2log 2log 2log 22212+++= 求数列⎭⎬⎫⎩⎨⎧n 1的前n 项和n T .16.设数列{}n a 满足:11,a =()121*n n a a n N +=+∈.(I )证明数列{1}n a +为等比数列,并求出数列{}n a 的通项公式;(II )若2log (1)n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .17.已知数列{}n a 是一个递增的等比数列,前n 项和为n S ,且42=a ,143=S ,①求{}n a 的通项公式;②若n n a C 2log =,求数列⎭⎬⎫⎩⎨⎧+11n n 的前n 项和nT 18.数列{}n a 中,12a =,1n n a a cn +-=(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(Ⅰ)求c 的值;(Ⅱ)求{}n a 的通项公式.19.已知数列{}n a 的前n 项和n S 满足21n n S a =-,等差数列{}n b 满足11b a =,47b =.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n c b b +=,数列{}n c 的前n 项和为n T ,求证12n T <.20.已知数列{}n a 的各项都是正数,前n 项和是n S ,且点(),2n n a S 在函数2y x x =+的图像上.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设121,2n n n nb T b b b S ==+++ ,求n T .21.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .22.已知数列{}n a 中,13a =,满足)2(1221≥-+=-n a a nn n 。

港澳台联考数学真题 (含答案与详细解析)

港澳台联考数学真题 (含答案与详细解析)
绝密★启用前
2015年中华人民共和国普通高等学校
联合招收华侨、港澳地区、台湾省学生入学考试
数 学
一、选择题:本大题共12小题;每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) ()
(A) (B) (C) (D)
(2)设平面向量 , ,则 ()
(A) (B) (C) (D)
【答案】A
(2)设平面向量 , ,则 ()
(A) (B) (C) (D)
【答案】B
(3)设集合 ,若 至少有3个元素,则这样的 共有()
(A) 个(B) 个(C) 个(D) 个
【答案】C
(4)设 是 的反函数,则 ()
(A) (B) (C) (D)
【答案】B
(5)设函数 在区间 是减函数,则 的最小值为()
(3)设集合 ,若 至少有3个元素,则这样的 共有()
(A) 个(B) 个(C) 个(D) 个
(4)设 是 的反函数,则 ()
(A) (B) (C) (D)
(5)设函数 在区间 是减函数,则 的最小值为()
(A) (B) (C) (D)
(6)不等式 的解集为()
(A) (B) (C) (D)
(7)已知函数 的图象关于直线 B
【解析】令 ,得 ,故 的最小值为 。
(8)函数 的图象按向量 平移后,所得图象对应的函数为()
(A) (B) (C) (D)
【答案】D
(9)函数 的最大值为()
(A) (B) (C) (D)
【答案】C
(10)直线 与椭圆 相交于 , 两点,线段 的中点为 ,则 的斜率为()
(15)复数 的共轭复数 _______________.

港澳台学生联考数学复习资料:含答案

港澳台学生联考数学复习资料:含答案

y1 x1

2p y1 y2
( x1

x2 )
将 y1 y2 2 y0 ( y0 0) 代入得
k AB

2p y1 y2
p y0
,所以 k AB 是非零常数
北京博飞华侨港澳台学校
7
网址:
北京博飞--华侨港澳台培训学校 如图,抛物线关于 x 轴对称,它的顶点在坐标原点,点 P(1,2),A( x1 , y1 ),B( x2 , y2 )均在抛物线上.
B( x2 , y2 ) (I)求该抛物线上纵坐标为 p 的点到其焦点 F 的距离 2 (II)当 PA 与 PB 的斜率存在且倾斜角互补时,求 y1 y2 的值,并证明直线 AB 的斜率是非零常数. y0
y
P
O A
解:(I)当 y p 时, x p
2
8
又抛物线 y 2 2 px 的准线方程为 x p 2
【答案】B
B. y2 x2 1 12 24
C. x2 y2 1 12 24
D. x2 y2 1 24 12
11. 记 cos(80) k ,那么 tan100 ( C )
(A)— k 1 k2
(B) k 1 k2
(C)— 1 k 2 k
(D) 1 k 2 k
A. (, 4]
B. (, 4)
北京博飞华侨港澳台学校
C. (4, 4]
D.[4, 4]
1
网址:
【答案】D
北京博飞--华侨港澳台培训学校
7. 已知直线 y x m 是曲线 y x2 3ln x 的一条切线,则 m 的值为( )
B.(-2,2) D.(-∞,-2)∪(2,+∞)

港澳台联考数学真题 (含答案)

港澳台联考数学真题 (含答案)

绝密★启用前2014年中华人民共和国普通高等学校 联合招收华侨、港澳地区、台湾省学生入学考试数 学一、选择题:本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{(3)(2)0}P xx x =+-≥,{2}Q x x =>,则P Q =( )(A )Q (B )∅ (C ){2}(D )P(2)抛物线28y x =-的准线方程为( )(A )2x =-(B )1x =-(C )1x =(D )2x =(3)若直线21y x =+与圆222(3)(2)x y r -+-=相切,则2r =( )(A )8(B )5(C )(D (4)若实数,a b 满足0ab <,则 ( )(A )a b a b +<- (B )a b a b +>- (C )a b a b -<+ (D )a b a b ->+(5)函数4sin cos2y x x =+的值域为( )(A )[]5,4- (B )[]3,7 (C )[]5,3-(D )[]1,3-(6)使函数()sin(2)f x x ϕ=+为偶函数的最小正数ϕ= ( )(A )π(B )2π(C )4π(D )8π(7)等比数列4,10,20x x x +++的公比为( )(A )12(B )43(C )32(D )53(8)9(x 的展开式中3x 的系数是( )(A )336 (B )168(C )168- (D )336-(9)8把不同的钥匙中只有1把能打开某锁,那么从中任取2把能将该锁打开的概率为 ( )(A )14(B )17(C )18(D )116(10)平面10ax by z +++=与230x y z +-+=互相垂直,且其交线经过点(1,1,2)-,则a b +=(A )23(B )13(C )13-(D )23- (11)有一块草地为菱形,在菱形的对角线交点处有一根垂直于草地的旗杆,若该菱形面积为2240m ,周长为80m ,旗杆高8m ,则旗杆顶端到菱形边的最短距离为 ( )(A )6m(B )8m(C )10m(D )12m(12)函数21()1x f x x -=+的最大值为( ) (A)2(B)14(C)4(D)12- 二、填空题:本大题共6小题;每题5分. (13)函数tan(3)18y x π=+的最小正周期是_____________.(14)设双曲线经过点,且其渐近线方程为230x y ±=,则该双曲线的标准方程为________. (15)已知点A 、B 在球O 的表面上,平面AOB 截该球面所得圆上的劣弧AB 长为80,=120AOB ∠,则该球的半径为_______________.(16)若211,()1,1x x f x x a x ⎧-≠⎪=-⎨⎪=⎩, 是R 上的连续函数,则a =______________.(17)用1x +除多项式()P x 的余式为2,用2x +除多项式()P x 的余式为1,则用232x x ++除多项式()P x 的余式为______________.(18)设函数213()log (443)f x x ax a =-+在(0,1)是增函数,则a 的取值范围____________.三、解答题:本大题共4小题;每小题15分.解答应写出文字说明,证明过程或演算步骤. (19)甲、乙、丙各自独立投篮一次.已知乙投中的概率是23,甲投中并且丙投中的概率是38,乙投不中并且丙投不中的概率是16. (I )求甲投中的概率;(II )求甲、乙、丙3人中恰有2人投中的概率.(20)设椭圆2212x y +=的左、右焦点分别为1F 、2F ,过点2F 的直线l 交椭圆于A 、B 两点,1F l ∉,求1F AB ∆重心的轨迹方程.(21)设曲线22y x ax =-与2y x x =-所围成的区域被直线1x =分成面积相等的两部分,求a .(22)在数列{}n a 中,11a =,112(1)2n n a a n n +=+++,1,2,3,n =⋅⋅⋅. (I )求2a ,3a ,4a ; (II )求数列{}n a 的通项公式.2014年港澳台联考数学真题答案一、选择题1—12:BDBAC BDAAC CD 二、填空题13.3π 14.221188x y -= 15.120π 16.2 17.3x + 18.[2,4] 三、解答题19.解:(I )设甲和丙投中的概率分别是P 甲、P 丙,则3=8P P ⋅甲丙,且21(1)(1)36P --=丙, 解得3=4P 甲,1=2P 丙. (II )所求概率设为P ,则32132132111(1)(1)(1)43243243224P =⨯⨯-+⨯-⨯+-⨯⨯=. 20.解:由已知条件可知,1(1,0)F -、2(1,0)F ,①当直线l 的斜率不存在时,此时直线l 的方程为:1x =,则可得A、(1,B ,又1(1,0)F -,所以1F AB ∆重心坐标为1(,0)3;②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,因为1F l ∉,所以0k ≠,与椭圆的方程联立2212(1)y k x y x ⎧+=-=⎪⎨⎪⎩,整理得2222(12)4220k x k x k +-+-=,则22412A B k x x k +=+,故22()212A B A Bky y k x x k k -+=+-=+ 所以1F AB ∆的重心坐标为222102(,)(,)1233(12)3(123)A B A B x x y y k kk k +-++--++=即222213(12)23(2))1k x k k y k ⎧-=⎪+⎪⎨-⎪=⎪+⎩重重,消去k 得,22129x y +=,因为0k ≠,所以130x y ⎧≠-⎪⎨⎪≠⎩故三角形的重心轨迹方程为22112()93x y x +=≠-.21.解:(1)令222y x ax x x =-=-可得0x =或212a x +=,故两曲线的交点为(0,0)和22114(,)24a a +-,显然由题意可得2112a +>,得12a >, 设区域被直线1x =分成左右两部分的面积分别为1S ,2S ,则122211002121=[(2)]()|236a S x x x ax dx x x a +---=-=-⎰, 21212223222112121211=[(2)]()|()23326a a a a S x x x ax dx x x a ++++---=-=-+⎰,由12S S =得,311211()6326a a a +-=-+,即328124290a a a +-+=,即2(23)(4123)0a a a -+-=,解得32a =,32a =-因为12a >,所以32a =.22.解:(1)由11a =,112(1)2n n a a n n +=+++,可得283a =,392a =,4325a =.(2)由112(1)2n n a a n n +=+++得121(1)(2)n n a a n n n n +=++++,即1112()112n n a a n n n n +-=-+++, 当2n ≥时,21112()2123a a -=-; 32112()3234a a -=-; ...;1112()11n n a a n n n n --=--+ 以上各式两边同时相加可得:11122()1211n a a n n n -=-=-++, 化简得,221n n a n =+.。

港澳台高考辅导班内部讲义:数学必考:导数简单大题

港澳台高考辅导班内部讲义:数学必考:导数简单大题

导数大题1.已知函数()3ln 42x a f x x x =+--,其中a R ∈,且曲线()y f x =在点()()1,1f 处的切线垂直于直线12y x =。

(Ⅰ)求a 的值;(Ⅱ)求函数()f x 的单调区间及极值.2.设函数()x ax x f ln 2+=.(Ⅰ)当1-=a 时,求函数()x f y =的图象在点()()1,1f 处的切线方程;(Ⅱ)已知0<a ,若函数()x f y =的图象总在直线21-=y 的下方,求a 的取值范围;3.已知函数2()ln (1)2x f x a x a x =+-+.(Ⅰ)当0a >时,求函数()f x 的单调区间;(Ⅱ)当1a =-时,证明1()2f x ≥.4.已知函数()ln (0)a f x b x c a x=++>的图象在点(1,(1))f 处的切线方程为20x y --=.(1)用a 表示b c ,;(2)若函数()()g x x f x =-在(0,1]x ∈上的最大值为2,求实数a 的取值范围.5.已知函数()316f x x x =+-.(1)求曲线()y f x =在点()2,6-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.6.已知函数e a ax e x f x,0(1)(>--=为自然对数的底数).(Ⅰ)求函数)(x f 的最小值;(Ⅱ)若0)(≥x f 对任意的R ∈x 恒成立,求实数a 的值.7.设函数;(1)若,求函数在点处的切线方程;(2)讨论的单调性.8.已知:函数21()(1)2f x x ax ln x =--+,其中a R ∈.(Ⅰ)若2x =是()f x 的极值点,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)若()f x 在[)0,+∞上的最大值是0,求a 的取值范围.9.已知函数()ln()(0)x a f x ax a -=->(1)求函数()f x 的最值;(2)当1a =时,是否存在过点(1,1)-的直线与函数()y f x =的图像相切?若存在,有多少条?若不存在,说明理由.10.已知函数()ln ()f x x a x a R =-∈.(Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(Ⅱ)求函数()y f x =的极值.11.已知函数()f x =alnx+x 2+bx+1在点(1,f (1))处的切线方程为4x−y−12=0。

港澳台联招辅导班考前综合试题:数学2含答案

港澳台联招辅导班考前综合试题:数学2含答案

2014.11.01数学测试(含答案)1.已知集合{}0|=-=m x x A ,{}01|=-=mx x B ,若B B A = ,则m 等于()A .1B .0或1C .﹣1或1D .0或1或﹣1【答案】D.2.已知222,0()1,0x ax a x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若)0(f 是)(x f 的最小值,则a 的取值范围为()(A )[-1,2](B )[-1,0](C )[1,2](D )[0,2]【答案】D3.设()f x 是定义在R 上的奇函数,当x ≤0时,x x x f -=22)(,则()f 1=().A .-3B .-1C .1D .3【答案】A.4.已知0,1a b a b <<+=,则221,,b a b +的大小关系是A .2212a b b <+< B.2212b a b <<+C.2212a b b +<<D.无法确定【答案】A5.已知集合0)(:},1,0,1{},,,{=→-==b f Q P f Q c b a P 满足映射的映射的个数共有个A .2B .4C .6D .9【答案】D6.设函数()cos()3),(0,)2f x x x πωϕωϕωϕ=+-+><,且其图像相邻的两条对称轴为0,2x x π==,则A .()y f x =的最小正周期为2π,且在(0,)π上为增函数B .()y f x =的最小正周期为π,且在(0,)π上为减函数C .()y f x =的最小正周期为π,且在(0,)2π上为增函数D .()y f x =的最小正周期为π,且在(0,π上为减函数【答案】D7.在ABC ∆中,角A,B,C 所对应的边分别为c b a ,,,则""b a ≤是"sin sin "B A ≤的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件【答案】A8.在△ABC 中,AB =c ,AC =b ,若点D 满足BD =2DC ,则AD=().A .23b +13cB .53c -23bC .23b -13cD .13b +23c【答案】A .9.等边数列{}n a 的各项均为正数,其前n 项的积为n T ,若201220121⎪⎭⎫⎝⎛=T ,则20112a a +的最小值为A.1B.1C.4D.2【答案】A10.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =()A .(1)n n +B .(1)n n -C .(1)n n +D .(1)n n -【答案】A11.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序C B ,实施时必须相邻,请问实验顺序的编排方法共有()A .24种B .96种C .120种D .144种【答案】B12.现有4名教师参加说课比赛,共有4道备选题目,若每位教师从中有放回地随机选出一道题目进行说课,其中恰有一道题目没有被这4位教师选中的情况有()A .288种B .144种C .72种D .36种【答案】B13.关于x 的不等式240x x m --≥对任意[]1,1x ∈-恒成立,则实数m 的取值范围是_______.【答案】3-≤m .14.数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________.【答案】222n n ++15.已知数列{}n a 的通项公式*21()n a n n N =+∈,其前n 项和为n S ,则数列}{nS n的前10项的和为【答案】7516.在ABC ∆中,下列三角表达式:①()sin sin A B C ++,②()cos cos B C A ++,③tan tan 22A B C +,④cos cos 22A B C +,其中恒为定值的有_____________(请将你认为正确的式子的序号都填上).【答案】②③17.1+3+32+…+399被4除,所得的余数为________.【答案】018.某工厂将4名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、乙两名员工必须分配至同一车间,则不同的分配方法总数为(用数字作答).【答案】6.19.在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=.(1)求证:,,a b c 成等比数列;(2)若1,2a c ==,求△ABC 的面积S.【答案】(1)证明见解析;(2)47=S 20.从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。

港澳台联考数学二轮复习试卷(含答案)——20数列极限、函数的极限与连续函数

港澳台联考数学二轮复习试卷(含答案)——20数列极限、函数的极限与连续函数

15. 求 lim x2 3x 2 ____________. x 2x 1
16.
lim
x
a0 xn b0 xm

a1xn1 b1xm1

________
an1x an bm1x bm

________ ________
nm nm nm
81
45
2
11.设
a,
b

1
,计算:
lim
n
1 1

an bn
解:(1)当 a b 时, lim 1 an 1; n 1 bn
港澳台联合招生二轮复习资料/中山一中/朱欢
20.数列极限、函数极限及连续函数
试卷(1)
1. lim 1 3 (2n 1) (
)
n n(2n 1)
A. 0
B. 2
C. 1
D. 1 2
2. lim n2 2 (
)
n n(3n 2)
A. 1 3
B. 2 3
C. 2
3.设
(a0 0,b0 0)
17.设 f (x) =
A. 7
≥ B. 6
若 f (x) 是连续函数,则 c ( )
C. 4
D. 3
港澳台联合招生二轮复习资料/中山一中/朱欢
18.若函数
f
(x)

x2,x
1,
在 x 1处可导,则 a b (
ax b,x 1

an bn
港澳台联合招生二轮复习资料/中山一中/朱欢
12.设 lnim(2an 3bn ) 1,lnim(an 2bn ) 4

港澳台学生联招补习班内部资料:数学必考:导数综合题3(不含答案)

港澳台学生联招补习班内部资料:数学必考:导数综合题3(不含答案)

导数综合题三1.设函数323()(1)1,32a f x x x a x a =-+++其中为实数。

(Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。

2.已知函数32()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数.(Ⅰ)求a ,c 的值;(Ⅱ)求函数()f x 的单调区间.3.已知函数322()1f x x mx m x =+-+(m 为常数,且m >0)有极大值9.(Ⅰ)求m 的值;(Ⅱ)若斜率为-5的直线是曲线()y f x =的切线,求此直线方程.4.设1x =和2x =是函数()531f x x ax bx =+++的两个极值点。

(Ⅰ)求a 和b 的值;(Ⅱ)求()f x 的单调区间5.设函数32()91(0).f x x ax x a =+--<若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求:(Ⅰ)a 的值;(Ⅱ)函数f (x )的单调区间.6.设函数2()(0),f x ax bx c a =++≠曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴.(Ⅰ)用a 分别表示b 和c ;(Ⅱ)当bc 取得最小值时,求函数()()xg x f x e-=-的单调区间.7.已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间.8.设函数()bf x ax x=-,曲线()y f x =在点(2(2))f ,处的切线方程为74120x y --=.(Ⅰ)求()f x 的解析式;(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.9.设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3.(Ⅰ)求()f x 的解析式:(Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心;10.已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点.(Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围.11.已知a 是实数,函数2()()f x x x a =-。

最新港澳台华侨生联考:数学二轮复习:综合练习2(含答案)

最新港澳台华侨生联考:数学二轮复习:综合练习2(含答案)
2 2
11. 已知对任意实数 x , 有 f ( x ) f ( x ),g ( x ) g ( x ) , 且 x 0 时, f ( x ) 0,g ( x ) 0 , 则x0时 ( B A. f ( x ) 0,g ( x ) 0 C. f ( x ) 0,g ( x ) 0
* n 1 * *
,于是数列 an 的通项公式为 an 4
n 1
n.
4n 1 n( n 1) . 3 2
(Ⅲ)证明:对任意的 n N ,
S n 1 4S n
4n 1 n( n 1) 1 4n 1 1 ( n 1)( n 2) 2 4 (3n n 4) ≤ 0 . 2 3 2 2 3
6. 在正方体 ABCD A1B1C1D1 中,E,F,G,H 分别为 AA1 , AB , BB1 ,B1C1 的中点,则异面直线 EF 与 GH 所成的角等于( A. 45

)B

B. 60
C. 90

D. 120

7. 某通讯公司推出一组手机卡号码, 卡号的前七位数字固定, 从 “ 0000 ” 到 “ 9999 ” 共 10000 个号码.公司规定:凡卡号的后四位带有数字“ 4 ”或“ 7 ”的一律作为“优惠卡”,则这组号码中“优惠卡”的 个数为( )C A. 2000 B. 4096 C. 5904 D. 8320 8. 在一个袋子中装有分别标注数字 1,2,3,4,5 的五个小球,这些小球除标注的数字外完全相同.现从中随机取 出 2 个小球,则取出的小球标注的数字之和为 3 或 6 的概率是( )A A.
设 A( x1,y1 ) , B ( x2,y2 ) ,又 M 1,

港澳台侨联招考试内部资料:数学必考:导数单调性

港澳台侨联招考试内部资料:数学必考:导数单调性
22.函数 y ax x 在 R 上时减函数,则 a 的取值范围为:(
3

A、 a
1 3
B、 a 1
2
C、 a 2
D、 a 0
23.函数 f ( x ) 2 x ln x 的递增区间是 A、 (0, )
2
1 2
B、 (
1 1 1 , 0)及( , ) C、 ( , ) 2 2 2
3 x
) D. 0 <a< 3 )
B. a 3
C. a 3
7.函数 f ( x ) x e ax 在区间 [0, ) 上单调递增,则实数 a 的取值范围是( A. [0,1)
x
B. (0,1] )
C. [1, )
D. ( ,1]
8.函数 f ( x ) ( x 3)e 的单调递增区间是 ( A. , 2 9.已知 y B. 0,3
C. 1, 4
D. 2,
1 3 ) x bx 2 (b 2) x 3 是 R 上的单调增函数,则 b 的取值范围是( 3 A. b 1或b 2 B. 1 b 2 C. 1 b 2 D. b 1或b 2 1 10.已知 y f ( x ) 是奇函数,当 x (0, 2) 时, f ( x ) ln x ax ( a ) , 当 x ( 2, 0) 时, f ( x ) 的最小值为 1, 2 则 a 的值等于( ) 1 1 1 A. B. C. D. 1 2 4 3

D. a=1 ( )
29.若函数 f ( x ) x ax 在区间 (, ) 内是增函数,则实数 a 的取值范围是 A. (, ) B. [ , ) C. ( , ) )

2024年华侨、港澳、台联考高考数学试卷[含答案]

2024年华侨、港澳、台联考高考数学试卷[含答案]

2024年华侨、港澳、台联考高考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,0,1,,,,2,,则 {2A =-1-2}{2B =-1-3}(A B = )A .B .,{3}{01}C .,,D .,,0,1,2,{2-1-2}{2-1-3}2.计算 34(12ii +=-)A .B .C .D .12i -12i+12i --12i-+3.函数的最大值是 sin y x x =+()A .1B C .2D .2-4.已知双曲线的渐近线方程为 2222:1(0,0)x y C a b a b-=>>C ()A .B .C .D .3y x =±2y x =±13y x =±12y x=±5.已知平面向量,,则 (1,1)a =(1,)b x y =+ ()A .“,”是“”的必要条件1x =2y =-//a bB .“,”是“”的充分条件1x =2y =-//a bC .“,”是“”的必要条件1x =2y =-a b ⊥D .“,”是“”的充分条件1x =2y =-a b ⊥6.已知函数,则 ())f x ln x =+()A .是奇函数,不是增函数()f x B .是增函数,不是奇函数()f x C .既是奇函数,也是增函数()f x D .既不是奇函数,也不是增函数()f x 7.若的展开式中的系数是,则 4()a x +x 12-(a =)A .1B .C .D .1212-1-8.圆与圆交于,两点,则直线的方程为 22(2)4x y ++=22(2)(1)9x y ++-=A B AB ()A .B .C .D .2320x y -+=3220x y ++=3220x y +-=2320x y --=9.已知和都是函数的极值点,则的最小值是 4x π=2x π=()sin()(0)f x x ωϕω=+>ω()A .4B .2C .1D .1210.抛物线的焦点为,上的点到的距离等于到直线的距离,则 2:2(0)C y px p =>F C F 1x =-(p =)A .2B .1C .D .121411.正四棱柱的八个顶点都在一个半径为1的球的球面上,到该正四棱柱侧面的距离为,则该正O O 12四棱柱的体积是 ()A .BC D12.已知偶函数的图像关于直线对称,当时,,则当时, ()f x 1x =01x 2()2f x x x =+23x ()(f x =)A .B .C .D .22x x +22x x -22x x -+22x x--二、填空题:本题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




a 在区间(1,+∞)是增函数,则常数 a 的取值范围为( ) x 27 64 32 A. (-∞,-2] B. (-∞,- ] C. (-∞,- ] D. (-∞,- ] 4 27 27 4 7.已知点 p 在曲线 y x 上, 为曲线在点 p 处的切线的倾斜角,则 的取值范围是( ) e 1 3 3 ] A.[0, ) B. [ , ) C. ( , D. [ , ) 2 4 4 2 4 4 2 8.曲线 x y 8 按向量 e (1, 2) )平移后得到的曲线 C 与直线 l:2x+y=a 相切,求 a 的值以及 C 与 l 公共
3 2
) D. y x e ) D. y 4 x 5
B. y ex 1
C. y e( x 1)
4.曲线 y x 3x 1 在点(1,-1)处的切线方程为( A. y 3x 4 5.已知曲线 y A.3 6.若曲线 y A. 2 B. y 3x 2 C. y 4 x 3
点的坐标.
港澳台联合招生二轮复习资料/中山一中/朱欢
9.设 f(x)=x -2x+a ln x(x>0)不是单调函数,且无最小值. (Ⅰ) 求常数 a 的取值范围; (Ⅱ) 设 x0 是函数 f(x)的极值点,证明
2
3 ln 4 f ( x0 ) 0 . 4
10.设函数 f(x)=ax—ln x(x>0)在 x = x0 处取得最小值 2. (Ⅰ)求 a 和 x0 的值; (Ⅱ)设 x1、x2 是任意正数,证明:f(x1)+ f(x2)≥2 f (
1 f ( x0 ) 2
B. f ( x0 )
2.若 f ( x0 ) 2 , 则 lim A.-1
f ( x0 k ) f ( x0 ) =( k 0 2k B.0 C.1 D.2
x
3.函数 f ( x) e ln x 在点 (1, f (1)) 处的切线方程是( A. y 2e( x 1)
5.已知 f ( x) 是 R 上的可导函数,下列陈述中正确的是( A.若 f ( x) 是偶函数则 f ( x) 是偶函数 C.若 f ( x) 是奇函数则 f ( x) 是奇函数 6. 若函数 f ( x) =x² -4x+

B.若 f ( x) 是偶函数则 f ( x) 是奇函数 D.若 f ( x) 是奇函数则 f ( x) 是偶函数
3.设 R 上的可导函数 f(x)满足 f(x+y)= f(x)+ f(y)+4xy(x、y R) ,且 f(1)=2, f ' (1) 2 则 方程 f ' (x)=0 的根为( ) (A)0 (B)0,2 (C)
1 3 , 2 2
(D)
1 2
4. 已知 f ( x) 和 g ( x) 是 R 上的可导函数, 对任意实数 x, 都有 f ( x) g ( x) 0 和 f ( x) g ( x) > f ( x) g ( x) , 那么,当 a<x<b 时,必有( A. f (b) g ( x) > f ( x) g (b) C. f ( x) g (b) > f (b) g ( x) ) B. f ( x ) g ( x ) > f ( a ) g ( a ) D. f ( x ) g ( a ) > f ( a ) g ( x ) )
x -ln ( 3 x )(x > 0) ,数列 a n 的首项 a1 >0 且 a1 1 ,当 n≥2 时,a n =3f ( a n 1 ) . 3
(Ⅰ) 求函数 f ( x) 的最小值,以及对应的 x 值;(Ⅱ)证明:当 n≥2 时,都有 an>an+1>1
港澳台联合招生二轮复习资料/中山一中/朱欢
(Ⅱ)求 f ( x) 在区间 0, e 上的最小值.
港澳台联合招生二轮复习资料/中山一中/朱欢
21.导数及其简单应用答案 试卷(2)
1.已知 f ( x) 在 x0 处可导,则 A.
lim
h 0
f x0 h f x0 等于( 2h
C. 2 f ( x0 ) )
) D. 4 f ( x0 )
x2 1 3ln x 1 的一条切线的斜率为 ,则切点的横坐标为( 4 2
B.2 C.1 D.

1 2
1 2 x 与曲线 y a ln x 在它们的公共点 P s, t 处具有公共切线,则实数 a ( ) 2e 1 B. C. 1 D. 2 2
2a 2b +b ln < ln 2 . ab ab
12﹒已知 a R ,函数 f ( x)
a ln x 1 . x (Ⅰ)当 a 1 时,求曲线 y f ( x) 在点 (2, f (2)) 处的切线方程; (Ⅱ)求 f ( x) 在区间 0, e 上的最小值.
13. 设函数 f ( x) =
港澳台联合招生二轮复习资料/中山一中/朱欢
21.导数及其简单应用 试卷(1) 1.已知 f ( x0 ) 2, 则
'
3
lim
k 0
k f ( x0 ) f ( x0 ) 2 k
) D.[-6,19] C.[-6,12]
2.函数 f ( x) = x -12x+3(-3≤ x ≤3)的值域区间( A.[-13,19] B.[-13,21]
x1 x2 ) ,当且仅当 x1 = x2 时,等号成立. 2
港澳台联合招生二轮复习资料/中山一中/朱欢
11.设函数 f ( x) = x - ln( x 1) ( x >-1). (Ⅰ) 求函数 f ( x) 的单调区间和最小值; (Ⅱ) 又设 0< a-b < 1 ≤ a + b,求证: 0< a ln
14.设函数 f ( x) 2e ( x 若对任意 x 0, f '( x) 0 ,求 a 的取值范围; (Ⅱ)求 f ( x) 的极值
15.已知 a R ,函数 f ( x)
a ln x 1 . x (Ⅰ)当 a 1 时,求曲线 y f ( x) 在点 (2, f (2)) 处的切线方程;
相关文档
最新文档