9234+网络操作系统
艾默生 CSI 9420 无线振动变送器 数据表
机械设备状态管理O-9420产品资料2012年12月CSI 9420无线振动变送器⏹ 对难以巡检的设备进行精确的振动和温度监测⏹ 可提供全面振动信息,包括振动总量、频带能量、高分辨率频谱以及波形⏹ 集成艾默生专利 PeakVue 技术,用于轴承和齿轮诊断⏹ 本安认证,可用于危险区域⏹ 通过 IEC 62591 (WirelessHART ®) 网络安全可靠地传送数据和设备警报⏹ 可以通过 Modbus 或 OPC 轻松集成至任何主机,由AMS 设备管理组合软件提供详细诊断概述坚固耐用的 CSI 9420 无线振动变送器是第一个通过无线自组网提供全面振动数据的设备,能够同时为运行和维护人员提供有关设备状态的丰富信息。
振动总量、PeakVue 和温度读数可以轻松集成到任何控制系统或工厂的历史数据库,同时可以通过AMS 设备管理组合:智能设备管理系统软件或任何兼容EDDL 的其他软件显示诊断数据。
如需高级诊断,可以传送高分辨率数据至AMS 设备管理组合:机械设备状态管理系统软件来查看趋势和进行分析。
高效益,高可靠性监测CSI 9420 将振动监测扩展到了一个新的应用领域。
除大多数振动监测任务外,CSI 9420 还特别适用于难以巡检的设备,如冷却水塔、泵站、远程设备以及危险区域。
一般来说,CSI 9420 能够为任何可能涉及大范围工程、布线或安装成本的应用提供优秀的替代解决方案。
在先进电子设备提供高度准确性的同时,经 IEC 认可的 WirelessHART 标准还可提供卓越的可靠性。
CSI 9420无线振动变送器通过无线自组网将全面的振动信息, 包括高分辨率频谱和波形,传送给运行和维护人员。
控制室内操控全局CSI 9420 通过 Modbus 或 OPC 将旋转设备的总体状态信息直接发至控制室。
振动总量数据可以很好地反映设备转子及转轴类的问题,如不平衡、不对中或机械松动等。
相比之下,PeakVue 读数则能够可靠地测量设备中的机械冲击。
SMGGS2410(BCM53334)测试报告
SMCGS2410交换机测试报告目录目录 (2)测试准备 (1)测试环境检查 (1)测试拓扑 (1)测试设备 (2)1 功能测试 (3)1.1启机测试 (3)1.2FE电口速率自动协商 (4)1.3流控测试(1:1) (5)1.4流控测试(2:1) (7)1.5FE端口线缆-(交叉) (9)1.6FE端口线缆-(直连) (11)1.7FE端口JUMOBO帧测试 (12)1.8单播MAC测试 (14)1.9广播MAC测试 (15)1.10普通组播MAC测试 (17)1.11BPDU报文转发 (18)1.12MAC表容量 (20)1.13不良包过滤 (21)1.14EAPOL F RAME透过 (23)1.15802.1Q T AG F RAME透过 (25)1.16MLD透过 (26)1.17IGMP透过 (28)1.18IEEE802.1P QOS (30)1.19L OOP B ACK D ETECTION (32)1.20L OOP B ACK D ETECTION(按钮按下的情况下) (33)1.21DHCP P REVENTING (34)1.22IGMP S NOOPING V1/V2 (36)测试准备测试环境检查以下环境检查过程推荐确认。
测试环境的准备有下面几个方面需要注意:设备说明:网络设备:SMCGS2410测试拓扑拓扑说明:1. 设备vlan与地址规划测试设备1 功能测试1.1 启机测试1.2 FE电口速率自动协商1.3 流控测试(1:1)1.4 流控测试(2:1)1.5 FE端口线缆-(交叉)1.6 FE端口线缆-(直连)1.7 FE端口jumobo帧测试1.8 单播MAC测试1.9 广播MAC测试1.10 普通组播MAC测试1.11 BPDU报文转发1.12 MAC表容量1.13 不良包过滤1.14 EAPOL Frame透过1.15 802.1Q Tag Frame透过1.16 MLD透过1.17 IGMP 透过1.18 IEEE 802.1p QOS1.19 Loop Back Detection1.20 Loop Back Detection(按钮按下的情况下)1.21 DHCP Preventing1.22 IGMP Snooping v1/v2。
uPD78F9234
NEC uPD78F9234在线下载实验板1. 引言NEC uPD78F9234是78K0S/KB1+ 30MC微控制器的初学者实验板。
1.1 NEC uPD78F9234在线下载实验板的主要特征• 易于使用的器件示范功能NEC uPD78F9234在线下载实验板中包含一些组件,可以很方便地演示简单的LED灯,七段代码管,蜂鸣器等I/O口操作。
• 通过USB 接口供电NEC uPD78F9234在线下载实验板通过USB 接口供电,不需要独立电源。
• WriteEZ2 闪存编程软件可以通过基于闪存编程软件的窗口,选择和下载应用程序到NEC uPD78F9234在线下载实验板用于评测。
• 支持模拟信号到数字信号的转换• 可以使用多种输入/输出信号如:连接到用户硬件上的所有I/O 端口、定时器输入/输出信号、使用USB UART 芯片FT232 的UART 接口、连接到LED 的4 个 I/O 端口。
2. 软件安装2.1 汇编程序和整合开发环境PM+的安装要安装包含有整合开发环境PM+的汇编程序包,可以点击安装程序中ra78k0s_w140_e.exe启动RA78K0S安装程序。
产品ID: 00001083P2.2 C编译器的安装要执行用C 语言开发的程序,必须安装C 编译器。
点击安装程序中的cc78k0s_w150_e启动CC78K0S安装程序。
安装过程与PM+的安装相同:ID为00001758P2.3 系统仿真器的安装点击安装程序中的sm+for78k0s_kx1+_w102_e启动78K0S/Kx1+ 安装程序。
安装过程与PM+的安装相同:ID为00001664C2.5 GUI软件驱动的安装USB驱动程序的安装在连接实验板到电脑前, 当 Windows 发现新的硬体后, 把刚才解压的驱动程式路径输入。
Windows 会自行安装实验板的 USB 驱动程式。
请使用光盘Drivers文件夹下的驱动程序。
阿朗9234基站产品介绍Feb162009
市场的驱动
近期:
“零占地”解决站址空间狭小的问题 壁挂、抱杆和地面等灵活安装方式 同时支持1X和EVDO 特定产品配置的低成本实现方式 进一步降低CAPEX和OPEX的投资
长期:
具备通过在现网设备升级支持下一代无线网络技术的能力
2 | Presentation Title | Month 2006
整体衰耗小于等于13 dB
14 | Presentation Title | Month 2006 All Rights Reserved © Alcatel-Lucent 2006, #####
多模光纤 多模光纤Multi-mode fiber (MMF) 收发单元以及光纤比相应的单模光纤便宜 MMF 支持的距离小于500 使用多模光纤需要进行相关测试,MMF的收发单元应能支持速率614 Mbps rate。
Outdoor < 15 feet use conductive conduit
•110VAC or 220VAC metered or contract provided by utility. NO BATTERY BACK UP!
Customer Provided Equipment
DC
•110VAC or 220VAC
不断追求更高的功放效率- 不断追求更高的功放效率-RU使用 Doherty + DPD 技术
RU的创新设计 的创新设计 •高度集成的RU RF通路提升RF效率 •RU采用领先的RF通路技术使功耗降至 最低 Doherty 功放 – 功放效率可达 35%. 未来将会怎样….. 未来将会怎样 •包络线追踪(Envelope Tracking )算 法 设备的效率将从30%提升至48% (增幅达60%)
AD9234_datasheet
High Speed ADC USB FIFO Evaluation KitHSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC Rev. 0Information furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, M A 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.FEATURESBuffer memory board for capturing digital dataused with high speed ADC evaluation boardsto simplify evaluation32 kB FIFO depth at 133 MSPS (upgradable)Measures performance with ADC Analyzer™Real-time FFT and time domain analysisAnalyzes SNR, SINAD, SFDR, and harmonicsSimple USB port interface (2.0)Supporting ADCs with serial port interfaces (SPI®)On-board regulator circuit, no power supply required6 V, 2 A switching power supply includedCompatible with Windows® 98 (2nd ed.), Windows 2000, Windows Me, and Windows XPEQUIPMENT NEEDEDAnalog signal source and antialiasing filterLow jitter clock sourceHigh speed ADC evaluation board and ADC data sheetPC running Windows 98 (2nd ed.), Windows 2000,Windows Me, or Windows XPLatest version of ADC AnalyzerUSB 2.0 port recommended (USB 1.1-compatible) PRODUCT DESCRIPTIONThe high speed ADC FIFO evaluation kit includes the latest version of ADC Analyzer and a buffer memory board to capture blocks of digital data from the Analog Devices high speed analog-to-digital converter (ADC) evaluation boards. The FIFO board is connected to the PC through a USB port and is used with ADC Analyzer to quickly evaluate the performance of high speed ADCs. Users can view an FFT for a specific analog input and encode rate to analyze SNR, SINAD, SFDR, and harmonic information.The evaluation kit is easy to set up. Additional equipment needed includes an Analog Devices high speed ADC evaluation board, a signal source, and a clock source. Once the kit is connected and powered, the evaluation is enabled instantly on the PC. Two versions of the FIFO are available. The HSC-ADC-EV ALB-DC is used with multichannel ADCs and converters with demulti-plexed digital outputs. The HSC-ADC-EV ALB-SC evaluation board is used with single-channel ADCs. See Table 1 to choose the FIFO appropriate for your high speed ADC evaluation board.FUNCTIONAL BLOCK DIAGRAM5Figure 1.PRODUCT HIGHLIGHTS1.Easy to Set Up. Connect the included power supply and signal sources to the two evaluation boards. Then connectto the PC and evaluate the performance instantly.2.ADIsimADC™. ADC Analyzer supports virtual ADC evaluation using ADI proprietary behavioral modeling technology. This allows rapid comparison between multiple ADCs, with or without hardware evaluation boards. For more information, see AN-737 at /ADIsimADC.B Port Connection to PC. PC interface is a USB 2.0 connection (1.1-compatible) to the PC. A USB cable is provided in the kit.4.32 kB FIFO. The FIFO stores data from the ADC for processing.A pin-compatible FIFO family is used for easy upgrading.5.Up to 133 MSPS Encode Rate on Each Channel. Single-channel ADCs with encode rates up to 133 MSPS can be used with the FIFO board. Multichannel and demultiplexed output ADCs can also be used with the FIFO board with clock rates up to 266 MSPS.6.Supports ADC with Serial Port Interface or SPI. Some ADCs include a feature set that can be changed via the SPI. The FIFO supports these SPI-driven features through the existing USB connection to the computer without additional cabling needed.HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DCRev. 0 | Page 2 of 28TABLE OF CONTENTSFeatures..............................................................................................1 Equipment Needed...........................................................................1 Product Description.........................................................................1 Functional Block Diagram..............................................................1 Product Highlights...........................................................................1 Revision History...............................................................................2 FIFO Evaluation Board Easy Start..................................................3 Requirements................................................................................3 Easy Start Steps.............................................................................3 Virtual Evaluation Board Easy Start With ADIsimADC............4 Requirements................................................................................4 Easy Start Steps.............................................................................4 FIFO 4.1 Data Capture Board Features.........................................5 FIFO 4.1 Supported ADC Evaluation Boards..........................6 Theory of Operation........................................................................9 Clocking Description...................................................................9 SPI Description.............................................................................9 Clocking with Interleaved Data................................................10 Connecting to the HSC-ADC-FPGA-4/-8.............................10 Connecting to the DEMUX BRD............................................10 Upgrading FIFO Memory.........................................................10 Jumpers............................................................................................11 Default Settings...........................................................................11 Evaluation Board............................................................................13 Power Supplies............................................................................13 Connection and Setup...............................................................13 FIFO Schematics and PCB Layout...............................................14 Schematics...................................................................................14 PCB Layout.................................................................................21 Bill of Materials...............................................................................23 Ordering Information....................................................................25 Ordering Guide..........................................................................25 ESD Caution.. (25)REVISION HISTORY2/06—Revision 0: Initial VersionHSC-ADC-EVALB-SC/HSC-ADC-EVALB-DCRev. 0 | Page 3 of 28FIFO EVALUATION BOARD EASY STARTREQUIREMENTS• FIFO evaluation board, ADC Analyzer, and USB cable • High speed ADC evaluation board and ADC data sheet • Power supply for ADC evaluation board • Analog signal source and appropriate filtering • Low jitter clock source applicable for specific ADC evaluation, typically <1 ps rms• PC running Windows 98 (2nd ed.), Windows 2000, Windows Me, or Windows XP•PC with a USB 2.0 port recommended (USB 1.1-compatible)EASY START STEPSNote: Y ou need administrative rights for the Windows operating systems during the entire easy start procedure. It is recommended to complete every step before reverting to a normal user mode.1. Install ADC Analyzer from the CD provided in the FIFOevaluation kit or download the latest version on the Web. For the latest updates to the software, check the Analog Devices website at /hsc-FIFO . 2. Connect the FIFO evaluation board to the ADC evaluationboard. If an adapter is required, insert the adapter between the ADC evaluation board and the FIFO board. If using the HSC-ADC-EV ALB-SC model, connect the evaluation board to the bottom two rows of the 120-pin connector, closest to the installed IDT FIFO chip. If using an ADC with a SPI interface, remove the two 4-pin corner keys so that the third row can be connected. 3. Connect the provided USB cable to the FIFO evaluationboard and to an available USB port on the computer. 4. Refer to Table 5 for any jumper changes. Most evaluationboards can be used with the default settings. 5. After verification, connect the appropriate power suppliesto the ADC evaluation boards. The FIFO evaluation board is supplied with a wall mount switching power supply that provides a 6 V , 2 A maximum output. Connect the supply end to the rated 100 ac to 240 ac wall outlet at 47 Hz to 63 Hz. The other end is a 2.1 mm inner diameter jack that connects to the PCB at J301. Refer to the instructions included in the ADC data sheet for more information about the ADC evaluation board’s power supply and other requirements. 6. Once the cable is connected to both the computer and theFIFO board, and power is supplied, the USB drivers start to install. To complete the total installation of the FIFO drivers, you need to complete the new hardware sequence two times. The first Found New Hardware Wizard opens with the text message This wizard helps you install software for…Pre-FIFO 4.1. Click the recommended install, and go to the next screen. A hardware installation warning window should then be displayed. Click Continue Anyway . The next window that opens should finish the Pre-FIFO 4.1 installation. Click Finish . Y our computer should go through a second Found New Hardware Wizard , and the text message, This wizard helps you install software for…Analog Devices FIFO 4.1, should be displayed. Continue as you did in the previous installation and click Continue Anyway . Then click Finish on the next two windows. This completes the installation. 7. (Optional) Verify in the device manager that AnalogDevices, FIFO4.1 is listed under the USB hardware. 8. Apply power to the evaluation board and check the voltagelevels at the board level. 9. Connect the appropriate analog input (which should befiltered with a band-pass filter) and low jitter clock signal. Make sure the evaluation boards are powered on before connecting the analog input and clock. 10. Start ADC Analyzer.11. Choose an existing configuration file for the ADCevaluation board or create one. 12. Click Time Data in ADC Analyzer (left-most button underthe menus). A reconstruction of the analog input isdisplayed. If the expected signal does not appear, or if there is only a flat red line, refer to the ADC Analyzer data sheet at /hsc-FIFO for more information.HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DCRev. 0 | Page 4 of 28VIRTUAL EVALUATION BOARD EASY START WITH ADIsimADCREQUIREMENTSRequirements include • Completed installation of ADC Analyzer, Version 4.5.17 or later.•ADIsimADC product model files for the desired converter. Models are not installed with the software, but they can be downloaded from the ADIsimADC Virtual Evaluation Board website at no charge.No hardware is required. However, if you wish to compareresults of a real evaluation board and the model, you can switch easily between the two, as outlined in the following Easy Start Steps section.EASY START STEPS1. To get ADC model files, go to /ADIsimADCfor the product of interest. Download the product ofinterest to a local drive. The default location is c:\program files\adc_analyzer\models. 2. Start ADC Analyzer (see the ADC Analyzer User Manual ). 3. From the menu, click Config > Buffer > Model as thebuffer memory. In effect, the model functions in place of the ADC and data capture hardware. 4. After selecting the model, click the Model button (locatednext to the Stop button) to select and configure which converter is to be modeled. A dialog box appears in the workspace, where you can select and configure the behavior of the model. 5. In the ADC Modeling dialog box, click the Device tab andthen click the … (Browse) button, adjacent to the dialog box. This opens a file browser and displays all of the models found in the default directory: c:\program files\adc_analyzer\models. If no model files are found, follow the on-screen directions or see Step 1 to install available models. If you have saved the models somewhere other than the default location, use the browser to navigate to that location and select the file of interest. 6. From the menu, click Config > FFT . In the FFTConfiguration dialog box, ensure that the EncodeFrequency is set for a valid rate for the simulated device under test. If set too low or too high, the model does not run. 7. Once a model has been selected, information about themodel displays on the Device tab of the ADC Modeling dialog box. After ensuring that you have selected the right model, click the Input tab. This lets you configure the input to the model. Click either Sine Wave or Two Tone for the input signal. 8. Click Time Data (left-most button under the pull-downmenus). A reconstruction of the analog input is displayed . The model can now be used just as a standard evaluation board would be. 9. The model supports additional features not found whentesting a standard evaluation board. When using the modeling capabilities, it is possible to sweep either the analog amplitude or the analog frequency. For more information consult the ADC Analyzer User Manual at /hsc-FIFO .HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DCRev. 0 | Page 5 of 28FIFO 4.1 DATA CAPTURE BOARD FEATURES6V SWITCHING POWER SUPPLY CONNECTIONON BOARD +3.3V REGULATOROPTIONAL POWER CONNECTIONUSB CONNECTION TO COMPUTERµCONTROLLER CRYSTALCLOCK = 24MHz,OFF DURING DATA CAPTURERESET SWITCH WHEN ENCODE RATE IS INTERRUPTEDOPTIONAL SERIAL PORT INTERFACE CONNECTOR OPEN SOLDER MASKON ALL DATA AND CLOCK LINES FOREASY PROBINGIDT72V283 32k ⋅16-BIT 133MHz FIFO120-CONNECTOR (PARALLEL CMOSINPUTS)TIMING ADJUSTMENTJUMPERSIDT72V283 32k ⋅16-BIT 133MHz FIFO05870-002Figure 2. FIFO Components (Top View)HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DCRev. 0 | Page 6 of 28120-CONNECTOR (PARALLEL CMOS INPUTS)TIMING ADJUSTMENT JUMPERSDRIVER CIRCUIT FORSERIAL PORT INTERFACE (SPI) LINESOPTIONAL SERIAL PORT INTERFACE (SPI) CONNECTORCYPRESS Fx2 HIGH SPEED USB 2.0 µCONTROLLEREPROM TO LOAD USB FIRMWARE05870-003Figure 3. FIFO Components (Bottom View)FIFO 4.1 SUPPORTED ADC EVALUATION BOARDSThe evaluation boards in Table 1 can be used with the high speed ADC FIFO evaluation kit. Some evaluation boards require an adapter between the ADC evaluation board connector and the FIFO connector . If an adapter is needed, send an email to highspeed.converters@ with the part number of the adapter and a mailing address.Table 1. HSC-ADC-EVALB-DC- and HSC-ADC-EVALB-SC-Compatible Evaluation Boards 1Evaluation Board Model Description of ADC FIFO Board Version Comments AD6644ST/PCB 14-bit, 65 MSPS ADC SC AD6645-80/PCB 14-bit, 80 MSPS ADC SC AD6645-105/PCB 14-bit, 105 MSPS ADC SC AD9051/PCB10-bit, 60 MSPS ADC SC Requires AD9051FFA AD9200SSOP-EVAL 10-bit, 20 MSPS ADC SC Requires AD922xFFA AD9200TQFP-EVAL 10-bit, 20 MSPS ADCSC Requires AD922xFFAAD9201-EVAL Dual 10-bit, 20 MSPS ADC 1SC Requires AD922xFFA AD9203-EB 10-bit, 40 MSPS ADCSC Requires AD922xFFA AD9212-65EB 1Octal 10-bit, 65 MSPS ADC DC Requires HSC-ADC-FPGA-8 AD9215BCP-65EB 10-bit, 65 MSPS ADC SC AD9215BCP-80EB 10-bit, 80 MSPS ADC SC AD9215BCP-105EB 10-bit, 105 MSPS ADC SC AD9215BRU-65EB 10-bit, 65 MSPS ADC SC AD9215BRU-80EB 10-bit, 80 MSPS ADC SC AD9215BRU-105EB 10-bit, 105 MSPS ADC SC AD9216-80PCB Dual 10-bit, 80 MSPS ADC DCAD9216-105PCBDual 10-bit, 105 MSPS ADCDCHSC-ADC-EVALB-SC/HSC-ADC-EVALB-DCRev. 0 | Page 7 of 28Evaluation Board Model Description of ADC FIFO Board Version Comments AD9218-105PCB 10-bit, 105 MSPS ADC DC AD9218-65PCB 10-bit, 65 MSPS ADC DCAD9219-65EB 1Quad 10-bit, 65 MSPS ADC DC Requires HSC-ADC-FPGA-4/-8 AD9220-EB 12-bit, 10 MSPS ADC SC Requires AD922xFFA AD9222-65EB 1Octal 12-bit, 65 MSPS ADC DC Requires HSC-ADC-FPGA-8 AD9226-EB 12-bit, 65 MSPS ADC SC Requires AD922xFFA AD9226QFP-EB 12-bit, 65 MSPS ADC SC Requires AD922xFFA AD9228-65EB 1Quad 12-bit, 65 MSPS ADC DC Requires HSC-ADC-FPGA-4/-8AD9229-65EB 1Quad 12-bit, 65 MSPS ADC DC Requires HSC-ADC-FPGA-4/-8 AD9233-80EB 12-bit, 80MSPS ADC SC AD9233-105EB 12-bit, 105MSPS ADC SC AD9233-125EB 12-bit, 125MSPS ADC SC AD9234-EB 12-bit, 150MSPS ADC SC AD9235BCP-20EB 12-bit, 20 MSPS ADC SC AD9235BCP-40EB 12-bit, 40 MSPS ADC SC AD9235BCP-65EB 12-bit, 65 MSPS ADC SC AD9235-20PCB 12-bit, 20 MSPS ADC SC AD9235-40PCB 12-bit, 40 MSPS ADC SC AD9235-65PCB 12-bit, 65 MSPS ADC SC AD9236BRU-80EB 12-bit, 80 MSPS ADC SC AD9236BCP-80EB 12-bit, 80 MSPS ADC SC AD9237BCP-20EB 12-bit, 20 MSPS ADC SC AD9237BCP-40EB 12-bit, 40 MSPS ADC SCAD9237BCP-65EB 12-bit, 65 MSPS ADC SCAD9238BST-20PCB Dual 12-bit, 20 MSPS ADC DC AD9238BST-40PCB Dual 12-bit, 40 MSPS ADC DC AD9238BST-65PCB Dual 12-bit, 65 MSPS ADC DC AD9238BCP-20EB Dual 12-bit, 20 MSPS ADC DC AD9238BCP-40EB Dual 12-bit, 40 MSPS ADC DC AD9238BCP-65EB Dual 12-bit, 65 MSPS ADC DC AD9240-EB 14-bit, 40 MSPS ADC SC Requires AD922xFFA AD9241-EB 14-bit, 1.25 MSPS ADC SC Requires AD922xFFA AD9243-EB 14-bit, 3 MSPS ADC SC Requires AD922xFFA AD9244-40PCB 14-bit, 40 MSPS ADC SC AD9244-65PCB 14-bit, 65 MSPS ADC SCAD9245BCP-20EB 14-bit, 20 MSPS ADCSC AD9245BCP-40EB 14-bit, 40 MSPS ADCSC AD9245BCP-65EB 14-bit, 65 MSPS ADCSC AD9245BCP-80EB 14-bit, 80 MSPS ADCSC AD9246-80EB 14-bit, 80 MSPS ADCSC AD9246-105EB 14-bit, 105 MSPS ADCSC AD9246-125EB 14-bit, 125 MSPS ADCSC AD9248BST-65EB Dual 14-bit, 65 MSPS ADC DC AD9248BCP-20EB Dual 14-bit, 20 MSPS ADC DC AD9248BCP-40EB Dual 14-bit, 40 MSPS ADC DC AD9248BCP-65EB Dual 14-bit, 65 MSPS ADC DCAD9259-50EB 1Quad 14-bit, 50 MSPS ADC DC Requires HSC-ADC-FPGA-4/-8 AD9260-EB 16-bit, 2.5 MSPS ADC SC Requires AD922xFFA AD9280-EB 8-bit, 32 MSPS ADC SC Requires AD922xFFA AD9281-EB Dual 8-bit, 28 MSPS ADC SC Requires AD922xFFA AD9283/PCB 8-bit, 100 MSPS ADC SC Requires AD9283FFAAD9287-100EB 1Quad 8-bit, 100 MSPS ADC DC Requires HSC-ADC-FPGA-4/-8AD9289-65EB 1Quad 8-bit, 65 MSPS ADC DC Requires HSC-ADC-FPGA-9289 AD9411/PCB 10-bit, 200 MSPS ADC DC Requires DEMUX BRDHSC-ADC-EVALB-SC/HSC-ADC-EVALB-DCEvaluation Board Model Description of ADC FIFO Board Version CommentsAD9430-CMOS/PCB 12-bit, 210 MSPS ADC DCAD9430-LVDS/PCB212-bit, 210 MSPS ADC DC Requires DEMUX BRDAD9432/PCB 12-bit, 105 MSPS ADC SCAD9433/PCB 12-bit, 125 MSPS ADC SCAD9444-CMOS/PCB 14 bit, 80 MSPS ADC SCAD9444-LVDS/PCB 14 bit, 80 MSPS ADC SCAD9445-IF-LVDS/PCB 14-bit, 125 MSPS ADC SCAD9445-BB-LVDS/PCB 14-bit, 125 MSPS ADC SCAD9446-80LVDS/PCB 16-bit, 80 MSPS ADC SCAD9446-100LVDS/PCB 16-bit, 100 MSPS ADC SCAD9460-80EB-IF 16-bit, 80 MSPS ADC SCAD9460-80EB-BB 16-bit, 80 MSPS ADC SCAD9460-105EB-IF 16-bit, 105 MSPS ADC SCAD9460-105EB-BB 16-bit, 105 MSPS ADC SCAD9461-130EB-IF 16-bit, 130 MSPS ADC SCAD9461-130EB-BB 16-bit, 130 MSPS ADC SCAD9480-LVDS/PCB28-bit, 250 MSPS ADC DC Requires DEMUX BRDAD9481-PCB 8-bit, 250 MSPS ADC DCAD10200/PCB Dual 12-bit, 105 MSPS ADC DC Requires GS09066AD10201/PCB Dual 12-bit, 105 MSPS ADC DC Requires GS09066AD10226/PCB Dual 12-bit, 125 MSPS ADC DC Requires GS09066AD10265/PCB Dual 12-bit, 65 MSPS ADC DC Requires GS09066AD10465/PCB Dual 14-bit, 65 MSPS ADC DC Requires GS09066AD10677/PCB 16-bit, 65 MSPS ADC SC Requires GS09066AD10678/PCB 16-bit, 80 MSPS ADC SC Requires GS09066AD15252/PCB 12-bit, Dual 65 MSPS ADC DCAD15452/PCB 12-bit, Quad 65 MSPS ADC DC Requires HSC-ADC-FPGA-4/-81 The high speed ADC FIFO evaluation kit can be used to evaluate two channels at a time.2 If a DEMUX BRD is needed, send an email to highspeed.converters@.Rev. 0 | Page 8 of 28HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DCRev. 0 | Page 9 of 28THEORY OF OPERATIONThe FIFO evaluation board can be divided into several circuits, each of which plays an important part in acquiring digital data from the ADC and allows the PC to upload and process that data. The evaluation kit is based around the IDT72V283 FIFO chip from Integrated Device Technology, Inc (IDT). The system can acquire digital data at speeds up to 133 MSPS and data record lengths up to 32 kB using the HSC-ADC-EV ALB-SC FIFO evaluation kit. The HSC-ADC-EVALB-DC, which has two FIFO chips, is available to evaluate multichannel ADCs or demultiplexed data from ADCs sampling faster than 133 MSPS. A USB 2.0 microcontroller communicating with ADC Analyzer allows for easy interfacing to newer computers using the USB 2.0 (USB 1.1-compatible) interface.The process of filling the FIFO chip or chips and reading the data back requires several steps. First, ADC Analyzer initiates the FIFO chip fill process. The FIFO chips are reset, using a master reset signal (MRS). The USB microcontroller is then suspended, which turns off the USB oscillator and ensures that it does not add noise to the ADC input. After the FIFO chips completely fill, the full flags from the FIFO chips send a signal to the USB microcontroller to wake up the microcontroller from suspend. ADC Analyzer waits for approximately 30 ms and then begins the readback process.During the readback process, the acquisition of data from FIFO 1 (U201) or FIFO 2 (U101) is controlled via Signal OEA and Signal OEB. Because the data outputs of both FIFO chips drive the same 16-bit data bus, the USB microcontrollercontrols the OEA and OEB signals to read data from the correct FIFO chip. From an application standpoint, ADC Analyzer sends commands to the USB microcontroller to initiate a read from the correct FIFO chip, or from both FIFO chips in dual or demultiplexed mode.CLOCKING DESCRIPTIONEach channel of the buffer memory requires a clock signal to capture data. These clock signals are normally provided by the ADC evaluation board and are passed along with the data through Connector J104 (Pin 37 for both Channel A and Channel B). If only a single clock is passed for both channels, they can be connected together by Jumper J303.Jumpers J304 and J305 at the output of the LVDS receiver allow the output clock to be inverted by the LVDS receiver. By default, the clock outputs are inverted by the LVDS receiver.The single-ended clock signal from each data channel is buffered and converted to a differential CMOS signal by two gates of a low voltage differential signal (LVDS) receiver, U301. This allows the clock source for each channel to be CMOS, TTL, or ECL. The clock signals are ac-coupled by 0.1 μF capacitors.Potentiometer R312 and Potentiometer R315 allow for fine tuning the threshold of the LVDS gates. In applications where fine-tuning the threshold is critical, these potentiometers can be replaced with a higher resistance value to increase theadjustment range. Resistors R301, R302, R303, R304, R311, R313, R314, and R316 set the static input to each of the differential gates to a dc voltage of approximately 1.5 V . At assembly, Solder Jumper J310 to Solder Jumper J313 are set to bypass the potentiometer. For fine adjustment using the pot, the solder jumpers must be removed, and R312 and R315 must be populated.U302, an XOR gate array, is included in the design to let users add gate delays to the FIFO memory chip clock paths. They are not required under normal conditions and are bypassed at assembly by Jumper J314 and Jumper J315. Jumper J306 and Jumper J307 allow the clock signals to be inverted through an XOR gate. In the default setting, the clocks are not inverted by the XOR gate.The clock paths described above determine the WRT_CLK1 and WRT_CLK2 signals at each FIFO memory chip (U101 and U201). The timing options above should let you choose a clock signal that meets the setup and hold time requirements to capture valid data.A clock generator can be applied directly to S1 and/or S3. This clock generator should be the same unit that provides the clock for the ADC. These clock paths are ac-coupled, so that a sine wave generator can be used. DC bias can be adjusted by R301/R302 and R303/R304.The DS90LV048A differential line receiver is used to square the clock signal levels applied externally to the FIFO evaluation board. The output of this clock receiver can either directly drive the write clock of the IDT72V283 FIFO(s), or first pass through the XOR gate timing circuitry described above.SPI DESCRIPTIONThe Cypress IC (U502) supports the HSC SPI standard to allow programming of ADCs that have SPI-accessible register maps. U102 is a buffer that drives the 4-wire SPI (SCLK, SDI, SDO, CSB 1) through the 120-pin connector (J104) on the third or top row. J502 is an auxiliary SPI connector to monitor the SPI signals connected directly to the Cypress IC. For more information on this and other functions, consult the user manual titled Interfacing to High Speed ADCs via SPI at /hsc-FIFO .1Note that CSB1 is the default CSB line used.HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DCRev. 0 | Page 10 of 28The SPI interface designed on the Cypress IC can communicate with up to five different SPI-enabled devices. The CLK and data lines are common to all SPI devices. The correct device ischosen to communicate by using one of the five active low chip select pins. This functionality is controlled by selecting a SPI channel in the software.CLOCKING WITH INTERLEAVED DATAADCs with very high data rates can exceed the capability of a single buffer memory channel (~133 MSPS). These converters often demultiplex the data into two channels to reduce the rate required to capture the data. In these applications, ADC Analyzer must interleave the data from both channels to process it as a single channel. The user can configure the software to process the first sample from Channel A, the second from Channel B, and so on, or vice versa. The synchronization circuit included in the buffer memory forces a small delay between the write enable signals (WENA and WENB) to the FIFO memory chips (Pin 1, U101, and U201), ensuring that the data is captured in one FIFO before the other. Jumper J401 and Jumper J402 determine which FIFO receives WENA and which FIFO receives WENB.CONNECTING TO THE HSC-ADC-FPGA-4/-8ADCs that have serial LVDS outputs require another board that is connected between the ADC evaluation board and the FIFO data capture card. This board converts the serial data into parallel CMOS so that the FIFO data capture card can accept the data. For more detailed information on this board, refer to the HSC-ADC-FPGA datasheet at /hsc-FIFO . CONNECTING TO THE DEMUX BRDADCs that have parallel LVDS outputs require another board that is connected between the ADC evaluation board and the FIFO data capture card. This board converts parallel LVDS to parallel CMOS, using both channels of the FIFO data capture card. For more detailed information on this board, send an email to highspeed.converters@UPGRADING FIFO MEMORYThe FIFO evaluation board includes one or two 32 kB FIFOs that are capable of 133 MHz clock signals, depending on the model number. Pin-compatible FIFO upgrades are available from IDT. See Table 2 for the IDT part number matrix.Table 2. IDT Part Number MatrixPart NumberFIFO Depth FIFO Speed IDT72V283-L7-5PF (Default ) 32 kB 133 MHz IDT72V293-L7-5PF 64 kB 133 MHz IDT72V2103-L7-5PF 132 kB 133 MHz IDT72V2113-L7-5PF 256 kB 133 MHz IDT72V283-L6PF 32 kB 166 MHz IDT72V293-L6PF 64 kB 166 MHz IDT72V2103-L6PF 132 kB 166 MHz IDT72V2113-L6PF256 kB166 MHzFor more information, visit .。
NI-9234说明书
Sound and Vibration Data AcquisitionOverviewNI 9233 and 9234 are 4-channel dynamic signal acquisition (DSA)modules for making high-accuracy measurements from IEPE sensors.These C Series analog input modules deliver 102 dB of dynamic range and incorporate IEPE (2 mA constant current) signal conditioning for accelerometers and microphones. The four input channels simultaneously acquire at rates from 2 to 50 kHz or, with the NI 9234, up to 51.2 kS/s.In addition, the modules include built-in antialiasing filters that automatically adjust to your sampling rate. NI 9233/9234 modules are ideal for a wide variety of mobile/portable applications such as industrial machine condition monitoring and in-vehicle noise, vibration,and harshness testing.HardwareEach simultaneous signal is buffered, analog prefiltered, and sampled by a 24-bit delta-sigma analog-to-digital converter (ADC) that performs digital filtering with a cutoff frequency that automatically adjusts to yourdata rate. NI 9233/9234 modules feature a voltage range of ±5 V and a dynamic range of more than 100 dB. In addition, the modules include thecapability to read and write to transducer electronic data sheet (TEDS)Class 1 smart sensors. NI 9233/9234 modules provide ±30 V of overvoltage protection (with respect to chassis ground) for IEPE sensor connections.The NI 9234 has three software-selectable modes of measurement operation: IEPE-on with AC coupling, IEPE-off with AC coupling, and IEPE-off with DC coupling. IEPE excitation and AC coupling are not software-selectable and are always enabled for the NI 9233.NI 9233/9234 modules use a method of A/D conversion known as delta-sigma modulation. If, for example, the data rate is 25 kS/s, then each ADC actually samples its input signal at 3.2 MS/s (128 times the data rate) and produces samples that are applied to a digital filter.This filter then expands the data to 24 bits, rejects signal components greater than 12.5 kHz (the Nyquist frequency), and digitally resamples the data at the chosen data rate of 25 kS/s. This combination of analog and digital filtering provides an accurate representation of desirable signals while rejecting out-of-band signals. The built-in antialiasing filters automatically adjust themselves to discriminate between signals based on the frequency range, or bandwidth, of the signal.•24-bit resolution•102 dB dynamic range•4 simultaneous analog inputs •±5 V input range •Antialiasing filters •TEDS read/writeRecommended Software•LabVIEW•Sound and Vibration Toolkit•Sound and Vibration Measurement SuiteSupported Hardware Platforms•NI CompactDAQ •CompactRIO•Hi-Speed USB carrier •Wi-Fi/Ethernet carrierNI 9233, NI 9234NEW!Analysis Capabilities Power spectra Zoom FFTsFractional-octave analysis Vibration level measurementsWi-Fi/Ethernet Platform NEW!NI Wi-Fi data acquisition (DAQ) devices combine IEEE 802.11 wireless or Ethernet communication; direct sensor connectivity; and the flexibility of NI LabVIEW software for remote monitoring of electrical, physical, mechanical,and acoustical signals. NI Wi-Fi DAQ devices can stream data on each channel at more than 50 kS/s with 24 bits of resolution. In addition,built-in NIST-approved 128-bit AES encryption and advanced network authentication methods offer the highest commercially available network security. With the flexibility of LabVIEW graphical programming and ubiquity of 802.11 network infrastructure, NI Wi-Fi DAQ makes it easy to incorporate wireless connectivity into new or existing PC-based measurement or control systems.USB PlatformThe NI Hi-Speed USB carrier makes portable data acquisition easy. Simply plug an NI 9233/9234 module into the USB carrier and begin acquiring data. Communication to the USB carrier is over Hi-Speed USB, guaranteeing data throughput.NI CompactDAQ PlatformNI CompactDAQ delivers the simplicity of USB to sensor and electrical measurements on the benchtop, in the field, and on the production line. By combining the ease of use and low cost of a data logger with the performance and flexibility of modular instrumentation, NI CompactDAQ offers fast, accurate measurements in a small, simple, and affordable system. Flexible software options make it easy to use NI CompactDAQ to log data for simple experiments or to develop a fully automated test or control system. The modular design can measure up to 256 channels of electrical, physical, mechanical, or acoustical signals in a single system. In addition, per-channel ADCs and individually isolated modules ensure fast, accurate, and safe measurements.NI CompactRIO PlatformWhen used with the small, rugged CompactRIO embedded control and data acquisition system, NI C Series analog input modules connect directly to reconfigurable I/O (RIO) field-programmable gate array (FPGA) hardware to create high-performance embedded systems. The reconfigurable FPGA hardware within CompactRIO provides a variety of options for custom timing, triggering, synchronization, filtering, signal processing, and high-speed decision making for all C Series analog input modules. For instance, with CompactRIO, you can implement custom triggering for any analog sensor type on a per-channel basis using the flexibility and performance of the FPGA and the numerous arithmetic and comparison function blocks built into NI LabVIEW FPGA.Analysis SoftwareNI 9233/9234 modules are well-suited for noise and vibration analysis applications. The NI Sound and Vibration Measurement Suite, which specifically addresses these applications, has two components: the NI Sound and Vibration Assistant and LabVIEW analysis VIs (functions) for power spectra, frequency response (FRF), fractional octave analysis, sound-level measurements, order spectra, order maps, order extraction, sensor calibration, human vibration filters, and torsional vibration.NI Sound and Vibration AssistantThe Sound and Vibration Assistant is interactive software designed to simplify the process of acquiring and analyzing noise and vibrationsignals by offering:•A drag-and-drop, interactive analysis and acquisition environment •Rapid measurement configuration•Extended functionality through LabVIEWInteractive Analysis EnvironmentThe Sound and Vibration Assistant introduces an innovative approach to configuring your measurements using intuitive drag-and-drop steps. Combining the functionality of traditional noise and vibration analysis software with the flexibility to customize and automate routines, the Sound and Vibration Assistant can help you streamline your application.Rapid Measurement ConfigurationThere are many built-in steps available for immediate use in the Sound and Vibration Assistant. You can instantly configure a measurement and analysis application with:•Hardware I/O – generation and acquisition of signals from a variety of devices, including data acquisition devices and modular instruments •Signal processing – filtering, windowing, and averaging•Time-domain analysis – sound- and vibration-level measurements •ANSI and IEC fractional-octave analysis•Frequency-domain analysis – power spectrum, frequency response, power-in-band, peak search, and distortion•Order analysis – tachometer processing, order power spectrum, order tracking, and order extraction•Report generation – ability to drag and drop signals to Microsoft Excel or export data to Microsoft Word or UFF58 files Extended Functionality through LabVIEWReuse your measurement applications developed with the Sound and Vibration Assistant in LabVIEW by converting projects into LabVIEW block diagrams. With the LabVIEW full-featured graphical programming environment, you can further automate your application or customize your analysis.Sound and Vibration Analysis VIs for LabVIEWWith the sound and vibration analysis VIs in LabVIEW, you can develop a variety of custom audio, acoustic, and vibration applications. Functionality includes:•Full, 1/3, 1/6, 1/12, and 1/24 octave analysis with linearA, B, or C weighting•Baseband, zoom, and subset power spectrum•Peak search and power in band•Frequency response (FRF)•Filtering•Swept sine•Distortion analysis (THD, THD+N, IMD)•Noise measurements (SNR)•Human vibration weighting filters•Torsional vibration•Tachometer signal processing•Order tracking, spectrum, and order extraction•Waterfall display for power,octave, and order spectra•Shaft centerline, orbit, Bode, and polar plot format•File input and output to UFF58Figure 1. NI Sound and Vibration Assistant Performing Engine Run-Up TestRecommended HardwareThe Sound and Vibration Measurement Suite includes more than50examples that work with both DSA and multifunction data acquisition devices. For sound and vibration data acquisition, National Instruments recommends DSA devices. With 24-bit ADCs and digital-to-analog converters (DACs) and integrated antialiasing filters, DSA devices are ideal for acoustic, noise, and vibration measurements.Table 2. Additional NI Dynamic Signal Acquisition DevicesOrdering InformationNI 9234..................................................................................779680-01NI 9234 with Sound and VibrationMeasurement Suite ..............................................................779680-02NI USB-9234..........................................................................780235-01NI USB-9234 with Sound and VibrationMeasurement Suite ..............................................................780235-02NI WLS-9234........................................................................780507-01NI WLS-9234 with Sound and VibrationMeasurement Suite ..............................................................780507-02NI ENET-9234........................................................................780508-01NI ENET-9234 with Sound and VibrationMeasurement Suite ..............................................................780508-02NI 9233..................................................................................779015-01NI 9233 with Sound and VibrationMeasurement Suite ..............................................................779015-02NI USB-9233 with USB carrier..............................................779365-01NI USB-9233 with Sound and VibrationMeasurement Suite ..............................................................779366-01BUY NOW!For complete product specifications, pricing, and accessory information, call 800 813 3693 (U.S.) or go to /soundandvibration.There are numerous system requirements to consider when selecting data acquisition hardware for measuring or generating sound and vibration signals. From IEPE signal conditioning for accelerometers and microphones to high dynamic range (up to 118 dB) and multichannel synchronization (up to 13,000 channels), National Instruments offers a wide range of hardware products for your applications.NI 9233 Specifications>>For complete specifications, see the NI 9233 Operating Instructions and Specifications at /manuals.The following specifications are typical for the range 0 to 60 °C unless otherwise noted.Input CharacteristicsNumber of channels............................ 4 analog inputADC resolution....................................24 bitsType of ADC .......................................Delta-sigma(with analog prefiltering) Data rate (fs) Minimum......................................... 2 kS/s Maximum........................................50 kS/sMaster timebase (internal) Frequency........................................12.8 MHz Accuracy.........................................±100 ppm maxInput coupling.................................ACAC cutoff frequency-3 dB................................................0.5 Hz typ-0.1 dB............................................. 4.2 Hz maxAC voltage full-scale range Typical............................................. 5.4 V pk Minimum......................................... 5 V pk Maximum........................................ 5.8 V pkCommon-mode voltage(AI- to earth ground).......................±2 VIEPE excitation current Minimum......................................... 2.0 mA Typical............................................. 2.2 mAIEPE compliance voltage................19 V maxOvervoltage protection (with respect to chassis ground)For an IEPE sensor connectedto AI+ and AI-.................................±30 VFor a low-impedance source connectedto AI+ and AI-.................................-6 to 30 VNI 9234 Specifications>>For complete specifications, see the NI 9234 Operating Instructions and Specifications at /manuals.The following specifications are typical for the range 0 to 60 °C unless otherwise noted.Input CharacteristicsNumber of channels............................ 4 analog inputADC resolution....................................24 bitsType of ADC........................................Delta-sigma(with analog prefiltering) Data rate (fs) Minimum......................................... 1.65 kS/s Maximum........................................51.2 kS/sMaster timebase (internal) Frequency........................................13.1 MHz Accuracy.........................................±50 ppm maxInput coupling.....................................Software-selectable AC/DC AC cutoff frequency-3 dB................................................0.5 Hz typ-0.1 dB............................................. 4.6 Hz maxAC voltage full-scale range Typical............................................. 5.1 V pk Minimum......................................... 5 V pk Maximum........................................ 5.2 V pkCommon-mode voltage(AI- to earth ground).......................±2 VIEPE excitation current Minimum......................................... 2.0 mA Typical............................................. 2.1 mAIEPE compliance voltage..................... 19 V maxOvervoltage protection (with respect to chassis ground)For an IEPE sensor connectedto AI+ and AI-.................................±30 VFor a low-impedance source connectedto AI+ and AI-.................................-6 to 30 VNI Services and SupportNI has the services and support to meet your needs around the globe and through the application life cycle – from planning and development through deployment and ongoing maintenance. We offer services and service levels to meet customer requirements in research,design, validation, and manufacturing. Visit /services .Training and CertificationNI training is the fastest, most certain route to productivity with our products. NI training can shorten your learning curve, save development time, and reduce maintenance costs over the application life cycle. We schedule instructor-led courses in cities worldwide, or we can hold a course at your facility. We also offer a professional certification program that identifies individuals who have high levels of skill and knowledge on using NI products. Visit /training .Professional ServicesOur NI Professional Services team is composed of NI applications and systems engineers and a worldwide National Instruments Alliance Partner program of more than 600 independent consultants andintegrators. Services range from start-up assistance to turnkey system integration. Visit /alliance .OEM SupportWe offer design-in consulting and product integration assistance if you want to use our products for OEM applications. For information about special pricing and services for OEM customers, visit /oem .Local Sales and Technical SupportIn offices worldwide, our staff is local to the country, giving you access to engineers who speak your language. NI delivers industry-leading technical support through online knowledge bases, our applications engineers, and access to 14,000 measurement and automationprofessionals within NI Developer Exchange forums. Find immediate answers to your questions at /support .We also offer service programs that provide automatic upgrades to your application development environment and higher levels of technical support. Visit /ssp .Hardware ServicesNI Factory Installation ServicesNI Factory Installation Services (FIS) is the fastest and easiest way to use your PXI or PXI/SCXI combination systems right out of the box.Trained NI technicians install the software and hardware and configure the system to your specifications. NI extends the standard warranty by one year on hardware components (controllers, chassis, modules)purchased with FIS. To use FIS, simply configure your system online with /pxiadvisor .Calibration ServicesNI recognizes the need to maintain properly calibrated devices for high-accuracy measurements. We provide manual calibration procedures, services to recalibrate your products, and automated calibration software specifically designed for use by metrology laboratories. Visit /calibration .Repair and Extended WarrantyNI provides complete repair services for our products. Express repair and advance replacement services are also available. We offerextended warranties to help you meet project life-cycle requirements. Visit /services .SERVICE NEEDSM A I NT AI N P LA ND EV E L O PD EP L O YNational Instruments • info@ •800 813 3693*351620A-01*351620-012008-9871-101-D。
WIFI系统管理平台软件使用说明书
设备操作.............................................................................................................................. 15 6.2. 1 6.2. 2 6.2. 3 6.2.
设备配置.............................................................................................................................. 20 6.3. 1 6.3. 2 6.3. 3 6.3. 4
4、 5、 6、
功能介绍........................................................................................................................................ 9 设备中心...................................................................................................................................... 10 5.1 服务设置.................................................................................................................................. 11 平台软件...................................................................................................................................... 11 6.1 路由管理.............................................................................................................................. 13 6.1.1 6.1.2 6.1.3 6.2 新增分组.................................................................................................................. 14 新增路由.................................................................................................................. 14 编辑路由.................................................................................................................. 15 查询流量.................................................................................................................. 16 TF 卡容量查询......................................................................................................... 17 查询状态.................................................................................................................. 18 设备重启.................................................................................................................. 19 参数备份.................................................................................................................. 19 参数还原.................................................................................................................. 19 WAN 设置................................................................................................................ 20 无线配置.................................................................................................................. 21 服务配置.................................................................................................................. 21 VPN 配置.................................................................................................................. 22
基于78F9234单芯片的数字温度控制器的设计与制作
基于78F9234单芯片的数字温度控制器的设计与制作Minli Tang , Hengyu Wu(Corresponding author),Baoru HanDepartment of Electronic Engineering,Hainan Software Profession Institute Qionghai,Hainan ,571400 ,Chinagslstml@ , whytml@,6183191@摘要:该系统是一个以78F9234单片机控制核心的模型,采用DS18B20温度传感器采集温度数据,数码管显示器显示温度数据,温度控制键的上下来调节温度上升和下降,还有加热指示设备,过热保护和蜂鸣器报警功能,以及单片机的烧写口和防死机电路。
该系统使用方便,成本相对较低,在不增加硬件成本的前提下可以通过控制系统软件进一步提高其扩展功能,这也将提高温度控制器的性价比。
关键词:单片机78F9234 ;自动控制技术;数字式温度控制器;介绍温度是在工业自动化,家庭电器,环境保护,安全生产,汽车产业等领域中最基本的检测参数之一。
因此,温度检测是非常重要的。
随着科学技术的发展,企业提出了更高的要求,希望利用新的检测方法,以生产出适应性强,精度更高,更稳定并且智能的新一代温度检测系统。
本文将单芯片数字控制技术整合进数字温度控制技术的设计当中,设计出了一种新型的数字化温度控制系统。
整体设计方案微控制器的数字控制系统的温度控制装置,是基于以78F9234为核心的单片机。
整个系统的硬件组成包括键盘输入电路,单片机控制,加热指示电路,过热保护电路,温度检测电路,数码显示电路,控制和防死机电路,报警电路,和烧写口部分。
微控制器的设计图数字温控装置如图1。
该系统可通过键盘输入,可以根据需要预先设定控制温度,然后系统自动完成预设的任务。
同时,系统显示模块可实时显示当前系统的温度。
78F9234单片机是整个温度控制系统的核心部件。
SIMATIC 过程控制系统 PCS 7 维护站 V9.1 功能手册说明书
3.12
PAM 站 ........................................................................................................................ 39
4 附加文档 ........................................................................................................................................ 43
维护站 V9.1
功能手册, 02/2021, A5E49490728-AA
3
目录
5.7.4
如何为 MS 或 OS/MS 客户端组态 PC 站......................................................................... 56
5.8 5.8.1 5.8.2 5.8.3 5.8.4
3.2
具有诊断功能的对象.................................................................................................... 20
3.3
“PC 站”区域 ............................................................................................................... 21
3.10
具有多个 OS 单工作站系统的工厂组态中的 MS ............................................................ 34
NI9234振动信号接收
阻带
滤波器将显著减弱所有高于阻带频率的信号。 主要目的是防 止产生混叠。 因此,阻带频率与采样率之间存在精确的比例 关系。 阻带抑制是滤波器对阻带内所有频率信号应用的最小 衰减值。
无混叠带宽
NI 9234 的无混叠带宽范围内的信号不是高频信号的混叠。 无混叠带宽是由滤波器抑制高于阻带频率信号的能力定义 的,无混叠带宽等于采样率减去阻带频率。
时基源。关于配置 NI 9234 的主时基源的详细信息,见软件 帮助文档。关于 C 系列模块的说明文档,请访问 / info,输入信息代码 cseriesdoc 查询。
可根据下列公式计算 NI 9234 的可用采样率:
fs
=
f---M-----÷-----2---5---6-n
其中 n 表示 1 ~ 31 的任意整数。
注意 电源未断开或处于非安全环境时,请勿断开 I/O 连线或连接器。
注意 电源未断开或处于非安全环境时,请勿卸除模 块。
注意 替换组件可能影响模块在环境等级为 Class I, Division 2 时的适用性。
注意 对于 Zone 2 环境中的应用,应将系统安装在 防护等级不低于 IP 54 (IEC 60529 和 EN 60529)的 外壳内。
– +
AI+ ֵো⑤
NI 9234 AI–
图 3 NI 9234 与浮接信号源的连接 NI 9234 可为用于测量的接地或浮接 IEPE 传感器提供 IEPE 激 励电流。典型 IEPE 传感器外壳与 IEPE 器件之间是电气隔离 的,因此即使传感器外壳接地, NI 9234 与传感器的连接仍 为浮接。
NI 9234 使用说明和产品规范
14
/china
注 cRIO-9151 R 系列扩展机箱不支持模块间共享时 基。
国家仪器 9234 4通道,±5V,24位软件可选IEPE和AC DC模拟输入模块验证和调整手册说明
CALIBRATION PROCEDURENI 92344-Channel, ±5 V, 24-Bit Software-SelectableIEPE and AC/DC Analog Input ModuleThis document contains the verification and adjustment procedures for the National Instruments9234. For more information on calibration, visit /calibration. Contents Software (1)Documentation (2)Test Equipment (3)Test Conditions (4)Initial Setup (4)Verification (5)Accuracy Verification (5)Gain Matching Verification (6)Phase Matching Verification (8)Common-Mode Rejection Ratio Verification (9)IEPE Current Verification (11)IEPE Compliance Voltage Verification (12)Adjustment (14)Accuracy Adjustment (14)EEPROM Update (14)Reverification (15)Accuracy Under Calibration Conditions (15)Worldwide Support and Services (16)SoftwareCalibrating the NI 9234 requires the installation of NI-DAQmx 9.2 or later on the calibration system. You can download NI-DAQmx from /downloads. NI-DAQmx supports LabVIEW, LabWindows TM/CVI, C/C++, C#, and Visual Basic .NET. When you installNI-DAQmx you only need to install support for the ADE that you intend to use.2| |NI 9234 Calibration ProcedureDocumentationConsult the following documents for information about the NI 9234, NI-DAQmx, and your application software. All documents are available on and help files install with the software.NI cDAQ-9174/9178 USB Chassis Quick Start NI-DAQmx installation and hardware setup NI 9234 Operating Instructions and SpecificationsNI 9234 specific information, specifications, and calibration interval NI-DAQmx ReadmeOperating system and application software support in NI-DAQmx LabVIEW HelpLabVIEW programming concepts and reference information about NI-DAQmx VIs and functionsNI-DAQmx C Reference HelpReference information for NI-DAQmx C functions and NI-DAQmx C properties NI-DAQmx .NET Help Support for Visual StudioReference information for NI-DAQmx .NET methods and NI-DAQmx .NETproperties, key concepts, and a C enum to .NET enum mapping tableTest EquipmentTable1 lists the equipment recommended for the performance verification and adjustment procedures. If the recommended equipment is not available, select a substitute using the requirements listed in Table1.Table 1. Recommended EquipmentEquipment RecommendedModel Where Used RequirementsCalibrator Fluke 5700A Accuracy,Adjustment Use a high-precision voltage source with an accuracy ≤100 ppm and an output that is able to be not grounded (floating).Function Generator NI 4461GainMatchingUse a function generator capable ofsourcing 1 kHz and 10 kHz ±4.5 V pkAC sinusoidal signals with amplitudeuncertainty of ±10% or less.PhaseMatchingUse a function generator capable ofsourcing both 1 kHz and 10 kHz±4.5V pk AC sinusoidal signals withamplitude uncertainty of ±10% or less.CMRR Use a function generator capable ofsourcing 1 kHz ±4.5 V pk AC sinusoidalsignals with amplitude uncertainty of±0.04dB or less.DMM NI 4070IEPECurrent Use DMM in current mode in the smallest range to measure 2 mA DC with a measurement uncertainty≤0.5%.Source Measure Unit (SMU)Keithley Model2400IEPEComplianceV oltageUse an SMU capable of sourcing 20 VDC with an accuracy ≤0.1% whilesinking >2mA DC.BNC Cable—All Use a length appropriate for yourapplication.Chassis NI cDAQ-9178All—NI 9234 Calibration Procedure|© National Instruments|3Test ConditionsThe following setup and environmental conditions are required to ensure the NI9234meets published specifications.•Keep connections to the device as short as possible. Long cables and wires act as antennas, picking up extra noise that can affect measurements.•Verify that all connections to the device are secure.•Use shielded copper wire for all cable connections to the device. Use twisted-pairs wire to eliminate noise and thermal offsets.•Maintain an ambient temperature of 23 ±5 °C. The device temperature will be greater than the ambient temperature.•Keep relative humidity below 80%.•Allow a warm-up time of at least 10minutes to ensure that the NI9234 measurement circuitry is at a stable operating temperature.Initial SetupComplete the following steps to set up the NI 9234.1.Install NI-DAQmx.2.Make sure the NI cDAQ-9178 power source is not connected.3.Connect the NI cDAQ-9178 to the system safety ground.a.Attach a ring lug to a 14 AWG (1.6 mm) wire.b.Connect the ring lug to the ground terminal on the side of the NI cDAQ-9178 usingthe ground screw.c.Attach the other end of the wire to the system safety ground.4.Install the module in slot 8 of the NI cDAQ-9178 chassis. Leave slots 1 through 7 of theNI cDAQ-9178 chassis empty.5.Connect the NI cDAQ-9178 chassis to your host computer.6.Connect the power source to the NI cDAQ-9178 chassis.unch Measurement & Automation Explorer (MAX).8.Right-click the device name and select Self-Test to ensure that the module is workingproperly.4||NI 9234 Calibration ProcedureNI 9234 Calibration Procedure |© National Instruments |5VerificationThe following performance verification procedures describe the sequence of operation and test points required to verify the NI 9234 and assumes that adequate traceable uncertainties are available for the calibration references.Accuracy VerificationComplete the following procedure to determine the As-Found status of the NI 9234.1.Set the calibrator to Standby mode (STBY).2.Connect the NI 9234 to the calibrator as shown in Figure 1.Figure 1. Accuracy Verification Connections to the NI 92343.Verify that the calibrator output is not grounded (floating).NotesThe analog inputs on the NI 9234 are grounded, so the calibrator must benot grounded (floating) to prevent ground loop measurement errors.To float the output of the Fluke 5700A, enable External Guard mode (EX GRD).4.Set the calibrator voltage to a Test Point value indicated in Table 4.5.Set the calibrator to Operate mode (OPR).6.Acquire and average samples.a.Create an AI voltage task on the NI 9234 according to Table 2.b.Configure the AI voltage task timing according to Table 3.c.Start the task.Table 2. NI 9234 Configuration for Accuracy VerificationMin (V)Max (V)Scaled Units Channel Configuration-55V olts DC CoupledTable 3. NI 9234 Timing ConfigurationSample Mode Samples Per Channel Rate (kHz)Finite Samples 1024010.246| |NI 9234 Calibration Procedured.Average the readings and record the averagpare the average to the limits in Table 4.f.Clear the task.7.Set the calibrator to Standby mode (STBY).8.Repeat steps 3 through 7 for each test point in Table 4.NoteThe test limits listed in Table 4 are derived using the values in Table 21.9.Disconnect the calibrator from the device.10.Repeat steps 1 through 9 for each channel on the NI 9234.Gain Matching VerificationComplete the following procedure to determine the As-Found status of the NI 9234.1.Set the calibrator to Standby mode (STBY).2.Connect the NI 9234 to the calibrator. Refer to Figure 2 for a connection diagram.Figure 2. Gain Matching Verification Connections to the NI 92343.Verify that the calibrator output is not grounded (floating).NotesThe analog inputs on the NI 9234 are grounded, so the calibrator must benot grounded (floating) to prevent ground loop measurement errors.To float the output of the Fluke 5700A, enable External Guard mode (EX GRD).4.Set the calibrator voltage to 4.0 V .5.Set the calibrator to Operate mode (OPR).Table 4. NI 9234 Verification T est Limits for AccuracyTest Point1-Year LimitsLocationValue (V)Lower Limit (V)Upper Limit (V)Max 4.0 3.9952 4.0048Mid 0.0-0.00120.0012Min-4.0-4.0048-3.9952NI 9234 Calibration Procedure |© National Instruments |76.Acquire and average samples.a.Create an AI voltage task on the NI 9234 according to Table 5.b.Configure the AI voltage task timing according to Table 6.c.Start the task.d.Average the readings and record the average as V 1.e.Clear the task.f.Set the calibrator to Standby mode (STBY).g.Set the calibrator voltage to -4.0 V .h.Set the calibrator to Operate mode (OPR).i.Start the task.j.Average the readings and record the average as V 2.k.Clear the task.7.Set the calibrator to Standby mode (STBY).8.Disconnect the calibrator from the device.9.Perform the following calculation using the recorded V 1 and V 2 values.10.Repeat steps 1 through 9 for each channel.pare the channel-to-channel gain difference to the maximum limit of ±40 mdB.If the Gain Matching verification procedure determines that the NI 9234 is outside of the limits,refer to Worldwide Support and Services for assistance in returning the device to NI.Table 5. NI 9234 Configuration for Gain Matching VerificationMin (V)Max (V)Scaled Units Channel Configuration-55V olts DC CoupledTable 6. Timing ConfigurationSample Mode Samples Per Channel Rate (kHz)Finite Samples1024010.24Gain dB ()2010log ×V 1V 2–8-----------------⎭⎫⎝⎛⎝⎭⎛⎫=8| |NI 9234 Calibration ProcedurePhase Matching VerificationComplete the following procedure to determine the As-Found status of the NI 9234.1.Connect the NI 9234 to the function generator as shown in Figure 3.Figure 3. Phase Matching Verification Connections to the NI 92342.Configure function generator according to Table 7.3.Set the function generator frequency to a value indicated in Table 10.4.Acquire and average samples.a.Create an AI voltage task on the NI 9234 according to Table 8.NoteWait 20 s for the AC coupling filter on the NI 9234 to settle.b.Configure the AI voltage task timing according to Table 9.c.Enable the function generator.d.Start the task.Table 7. Function Generator Configuration for Phase Matching VerificationSignal TypeAmplitude (V pk )Sinewave±4.5Table 8. NI 9234 Configuration for Phase Matching VerificationMin (V)Max (V)Scaled Units Channel Configuration-55V olts AC CoupledTable 9. NI 9234 Timing ConfigurationSample Mode Samples Per Channel Rate (kHz)Finite Samples 1638451.2NI 9234 Calibration Procedure |© National Instruments |9e.Disable the function generator.f.Clear the task.5.Calculate the phase for each channel on the NI 9234. NI recommends using the Extract Single Tone Information VI to calculate phase.pare the channel-to-channel phase difference to the limits in Table 10.7.Repeat steps 2 through 6 for each test point in Table 10.If the Phase Matching verification procedure determines that the NI 9234 is outside of the limits, refer to Worldwide Support and Services for assistance in returning the device to NI.Common-Mode Rejection Ratio VerificationComplete the following procedure to determine the As-Found status of the NI 9234.1.Connect the NI 9234 to the function generator and short the positive pin and negative shell of the NI 9234 channel.2.Connect the function generator to the chassis ground as shown in Figure 4.Figure 4. CMRR Verification Connections to the NI 92343.Configure the function generator according to Table 11.Table 10. NI 9234 Verification Test Limits for Phase MatchingGenerator Frequency (kHz)Phase Matching Channel-to-Channel Limit1±0.085°10±0.49°Table 11. Function Generator Configuration for CMRR VerificationSignal TypeAmplitude (V pk )Frequency (kHz)Sinewave ±0.5110| |NI 9234 Calibration Procedure4.Acquire a reference amplitude.a.Create and configure an AI voltage task on the NI 9234 according to Table 12.b.Configure the AI voltage task timing according to Table 13.c.Enable the function generator.d.Start the task.e.Record the measured amplitude as Amplitude Acq .f.Disable the function generator.g.Clear the task.5.Perform the following calculation using the recorded Amplitude Acq .h.Compare the calculation result to the minimum CMRR limit of 40 dB.6.Repeat steps 1 through h for each channel.If the Common-Mode Rejection Ratio verification procedure determines that the NI 9234 isoutside of the limits, refer to Worldwide Support and Services for assistance in returning the device to NI.Table 12. NI 9234 Configuration for CMRR VerificationMin (V)Max (V)Scaled Units Channel Configuration-55V olts DC CoupledTable 13. NI 9234 Timing ConfigurationSample Mode Samples Per Channel Rate (kHz)Finite Samples 1638451.2CMRR 2010log ×–Amplitude Acq 0.5-----------------------------------⎭⎫⎝⎛=NI 9234 Calibration Procedure |© National Instruments |11IEPE Current VerificationComplete the following procedure to determine the As-Found status of the NI 9234.1.Connect the NI 9234 to the DMM as shown in Figure 5.Figure 5. IEPE Current Verification Connections to the NI 92342.Configure the DMM for a DC current measurement in the lowest appropriate range to measure 2mA.3.Measure IEPE Source short circuit current.a.Create an AI voltage task on the NI 9234 according to Table 14.b.Configure the AI voltage task timing according to Table 15.c.Start the task.d.Record the DMM measurement.e.Clear the task.pare the DMM measurement to the minimum current limit of 2.0 mA.5.Repeat steps 1 through 4 for each channel.If the IEPE Current verification procedure determines that the NI 9234 is outside of the limits, refer to Worldwide Support and Services for assistance in returning the device to NI.Table 14. NI 9234 Configuration for IEPE Current VerificationMin (V)Max (V)Scaled Units Channel ConfigurationIEPE Excitation-55V olts AC Coupled EnabledTable 15. NI 9234 Timing ConfigurationSample Mode Rate (kHz)Continuous Samples51.212| |NI 9234 Calibration ProcedureIEPE Compliance Voltage VerificationComplete the following procedure to determine the As-Found status of the NI 9234.1.Connect the NI 9234 to the DMM as shown in Figure 6.Figure 6. IEPE Compliance Voltage Verification Connections to the NI 9234(IEPE Source Short Circuit Current Measurement)2.Configure the DMM for a DC current measurement in the lowest appropriate range to measure 2mA.3.Measure IEPE Source short circuit current.a.Create an AI voltage task on the NI 9234 according to Table 16.b.Configure the AI voltage task timing according to Table 17.c.Start the task.d.Record the DMM measurement DMM Current .e.Perform the following calculation using the recorded DMM Current value.SMU SourceCurrent = -(0.95 × DMM Current )4.Record the calculation result as SMU SourceCurrent .Table 16. NI 9234 Configuration for IEPE Voltage VerificationChannel Configuration IEPE ExcitationAC Coupled with IEPE EnabledTable 17. NI 9234 Timing ConfigurationSample Mode Rate (kHz)Continuous Samples51.25.Connect the SMU to the channel you want to verify on the NI9234. Refer to Figure7 fora connection diagram.Figure 7. IEPE Compliance Voltage Verification Connections to the NI 9234(IEPE Source Compliance Voltage Measurement)6.Configure the SMU as a current source and set the voltage limit to the lowest appropriaterange to measure 24 V.7.Measure IEPE Source compliance voltage.a.Create and configure an AI voltage task on the NI 9234 according to Table18.Table 18. IEPE Compliance Verification Equipment Configuration Channel Configuration IEPE ExcitationAC Coupled with IEPE Enabledb.Configure the AI voltage task timing according to Table19.Table 19. NI 9234 Timing ConfigurationSample Mode Rate (kHz)Continuous Samples51.2c.Set the source current on the SMU to the recorded SMU SourceCurrent value.d.Start the task.e.Enable the SMU.f.Record the SMU measurement SMU Voltage.g.Disable the SMU.h.Clear the task.pare the voltage measurement from the SMU to the minimum voltage limit of 19 V.9.Repeat steps1 through8 for each channel.If the IEPE Compliance V oltage verification procedure determines that the NI 9234 is outside of the limits, refer to Worldwide Support and Services for assistance in returning the device to NI.NI 9234 Calibration Procedure|© National Instruments|13AdjustmentThe following performance adjustment procedure describes the sequence of operations required to adjust the NI 9234.Accuracy AdjustmentComplete the following procedure to adjust the accuracy performance of the NI 9234.1.Set the calibrator to Standby mode (STBY).2.Connect the NI 9234 to the calibrator as shown in Figure1.3.Adjust the NI 9234.a.Initialize a calibration session on the NI 9234. The default password is NI.b.Input the external temperature in degrees Celsius.c.Call the NI 9234 get C Series adjustment points function to obtain an array ofrecommended calibration voltages for the NI 9234.d.Set the calibrator to a reference value determined by the array of recommendedcalibration voltages.e.Set the calibrator to Operate mode (OPR).f.Call and configure the NI 9234 gain instance of the DAQmx adjustment functionaccording to Table20.Table 20. Adjustment ConfigurationPhysical Channel Reference ValuecDAQMod8/ai x The reference value from the array of adjustment pointsg.Set the calibrator to Standby mode (STBY).h.Repeat steps d through g for each calibration voltage in the array.i.Disconnect the NI 9234 from the calibrator.j.Short AI+ and AI- on the BNC connector together for the channel under adjustment on the NI 9234.k.Take a measurement using the NI 9234 offset instance of the DACQmx adjust function for the channel under adjustment.l.Close the calibration session.4.Repeat steps1 through3 for each channel on the NI 9234.EEPROM UpdateWhen an adjustment procedure is completed, the NI 9234 internal calibration memory (EEPROM) is immediately updated.If you do not want to perform an adjustment, you can update the calibration date and onboard calibration temperature without making any adjustments by initializing an external calibration, setting the C Series calibration temperature, and closing the external calibration.14||NI 9234 Calibration ProcedureNI 9234 Calibration Procedure |© National Instruments |15ReverificationRepeat the Verification section to determine the As-Left status of the device.NoteIf any test fails Reverification after performing an adjustment, verify that youhave met the Test Conditions before returning your device to NI. Refer to Worldwide Support and Services for assistance in returning the device to NI.Accuracy Under Calibration ConditionsThe following calibration specifications are valid under the following conditions:•Ambient temperature 23 ±5 °C•NI 9234 installed in slot 8 of an NI cDAQ-9178 chassis •Slots 1 through 7 of the NI cDAQ-9178 chassis are emptyNoteThe test limits listed in Table 4 are derived using the values in Table 21.NoteFor operational specifications, refer to the most recent NI 9234 OperatingInstructions and Specifications online at /manuals .Table 21. NI 9234 Accuracy Under Calibration ConditionsPercent of Reading (Gain Error)Percent of Range * (Offset Error)±0.09%±0.024% (±1.2mV)*Range equals 5.1 VWorldwide Support and ServicesThe National Instruments website is your complete resource for technical support. At / support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.Visit /services for NI Factory Installation Services, repairs, extended warranty, and other services.Visit /register to register your National Instruments product. Product registration facilitates technical support and ensures that you receive important information updates from NI.A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting /certification. If your product supports calibration, you can obtain the calibration certificate for your product at /calibration. National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world. For telephone support in the United States, create your service request at /support or dial 1866ASK MYNI(2756964). For telephone support outside the United States, visit the Worldwide Offices section of /niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.Refer to the NI Trademarks and Logo Guidelines at /trademarks for more information on National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patents Notice at /patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at /legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14s, DFAR 252.227-7014, and DFAR 252.227-7015.© 2009–2014 National Instruments. All rights reserved.372678G-01Dec14。
大唐技术说明书
一、数字同步网基本概念 (4)1.1 引言 (4)1.2 同步与滑动 (4)1.2.1 同步的概念 (4)1.2.2 滑动的概念 (5)1.3 同步网的组织结构 (6)1.3.1 准同步方式 (6)1.3.2 主从同步方式 (6)1.3.3 互同步方式 (6)1.3.4 混合同步方式 (6)1.4 定时环路 (7)1.5 时钟类型 (7)二、GNSS-97系统概述 (7)2.1 概述 (7)2.2 GNSS-97的系统结构 (8)2.3 GNSS-97系统的性能特点 (9)三、GNSS系统的组网结构 (10)3.1 概述 (10)3.1.1 等级结构 (10)3.1.2 数字同步网的构成 (11)3.1.3 同步区划分 (11)3.2 用GNSS-97组建省内数字同步网 (12)3.2.1 规划目标 (12)3.2.2 局内定时分配方案 (12)3.2.3 局间定时分配 (13)3.2.4 GNSS-97 组网结构 (16)3.2.5 省内数字同步网的可靠性 (16)四、系统的硬件结构 (17)4.1概述 (17)4.2定时参考输入单元 (17)4.3受控时钟单元 (18)4.4定时输出单元 (19)4.5 管理控制单元 (19)4.6 性能监测单元 (19)4.7 时间服务功能单元 (20)4.8 电源系统单元 (20)4.9告警单元 (21)五、网管系统 (21)5.1 网管系统拓朴图 (21)5.2 网管系统主要功能模块 (22)5.3系统体系结构 (22)5.4主要技术指标 (23)5.5网管界面 (24)5.6软硬件需求 (24)六、系统配置 (25)6.1 系统满配置框图 (25)6.2 板卡类型代码表 (26)6.3 GNSS时钟配置级别 (26)6.4 输出接口的配置 (27)七、GNSS系统指标和规范 (27)7.1主要技术规范 (27)7.2 卫星信号输入接口指标 (28)7.3 2048kb/s定时信号输出接口 (28)7.42048KHz定时信号输出接口 (29)7.5 1PPS定时信号输出接口 (29)7.65/10MHz定时信号输出接口 (29)7.7输出信号长期频率准确度和定时精度 (30)7.8内部振荡器输出特性 (30)7.8.1 内部振荡器控制特性 (31)7.9 网络时间同步性能 (31)7.10 TOD时间输出性能 (31)7.11电源要求 (32)7.12 定时性能 (32)7.12.1 噪声产生 (32)7.12.2 漂动产生(恒温条件下的漂动产生) (32)7.12.3 抖动产生 (33)7.12.4 输入漂动容限 (33)7.12.5 输入抖动容限 (33)7.12.6噪声转移特性 (34)7.12.7相位瞬变和保持性能 (34)7.12.8 相位瞬变 (34)7.12.9保持性能 (34)7.12.10相位不连续性 (35)7.12.11保持到跟踪定时性能 (35)7.12.12 输出信号的静态相位误差 (36)八、GNSS 系统的机械和电气特性 (36)8.1机柜 (36)8.2 系统子框和单盘结构 (37)8.2.1PAD子框 (37)8.2.2TSG子框 (38)8.2.3TSD子框 (39)8.2.4 标准的6U机盘 (40)8.2.5 标准的3U机盘 (40)8.3 避雷处理 (41)8.4 设备工作环境 (41)附录A专用词及缩写词 (42)附录B 术语 (43)一、数字同步网基本概念1.1 引言通信网是在任何时间、任何地点、任何用户都能进行传输和交换的系统,是各种交换设备、传输设备、终端设备组成的整体。
HXD3微机网络系统介绍
用于连接系统电源,保证系统 正常运行。
03
HXD3微机网络系统软件介绍
软件架构与功能
软件架构
HXD3微机网络系统的软件架构采用模块化设计,使得系统 更加灵活、易于扩展和维护。主要模块包括数据处理、通信 控制、用户界面等。
功能特点
HXD3微机网络系统软件具有实时数据采集、数据处理与分 析、远程控制与监测等功能。此外,还支持多种通信协议, 可与其他系统进行集成。
高成本
由于该系统采用先进的技术和优质的硬件设备,导致其成 本相对较高,可能会影响其推广和应用。
技术更新迅速
信息技术发展迅速,HXD3微机网络系统需要不断进行技 术更新和升级,以适应不断变化的市场需求和技术环境。
依赖性
HXD3微机网络系统的高度智能化和自动化使其对外部设 备和环境的依赖性较强,一旦出现故障或外部环境变化, 可能会影响系统的正常运行。
特点
具有高可靠性、实时性、可扩展性和 灵活性,能够实现对电力机车的全面 控制和监测,提高机车的运行效率和 安全性。
系统组成与功能
系统组成
HXD3微机网络系统由多个子系统组成,包括主控系统、辅助控制系统、牵引 控制系统、制动控制系统等。
功能
实现对电力机车的全面控制和监测,包括机车牵引、制动、辅助设备控制等功 能,同时能够实时监测机车的运行状态和故障情况,为机车的维护和检修提供 数据支持。
案例二:智能交通系统的应用
总结词
提升交通管理效率、改善城市交通状况
详细描述
智能交通系统通过HXD3微机网络系统连接交通信号灯、监控摄像头等设备,实现了对交通流量的实 时监控和智能调度,有效缓解了城市交通拥堵问题,提高了交通管理效率。
案例三
总结词
923 FILTERS 快速入门指南说明书
Quick Start Guide923 FILTERSLegendary Analog Dual Filter Module for EurorackControls(1) LOW PASS – This knob controls the threshold or “cutoff”frequency for the low pass filter. The low pass filter willroll off all frequencies above this threshold frequency. (2) LOW PASS IN/OUT – Route the incoming signal into thelow pass filter via the IN jack, and then send the outgoing,filtered signal back out via the OUT jack. Connect theincoming and outgoing signals by using cables with3.5 mm TS connectors.(3) HIGH PASS – This knob controls the threshold or “cutoff”frequency for the high pass filter. The high pass filter willroll off all frequencies below this threshold frequency. (4) HIGH PASS IN/OUT – Route the incoming signal into thehigh pass filter via the IN jack, and then send the outgoing,filtered signal back out via the OUT jack. Connect theincoming and outgoing signals by using cables with3.5 mm TS connectors.(5) NOISE SOURCE/WHITE – Use these parallel jacks tosend out a white noise signal via cables with 3.5 mmTS connectors.(6) NOISE SOURCE/PINK – Use these parallel jacks tosend out a pink noise signal via cables with 3.5 mmTS connectors.Power ConnectionThe 923 FILTERS module comes with the required power cable for connecting to a standard Eurorack power supply system. Follow these steps to connect power to the module. It is easier to make these connections before the module has been mounted into a rack case.1. Turn the power supply or rack case power off anddisconnect the power cable.2. Insert the 16-pin connector on the power cable into thesocket on the power supply or rack case. The connector hasa tab that will align with the gap in the socket, so it cannotbe inserted incorrectly. If the power supply does not havea keyed socket, be sure to orient pin 1 (-12 V) with the redstripe on the cable.3. Insert the 10-pin connector into the socket on the back ofthe module. The connector has a tab that will align with thesocket for correct orientation.4. After both ends of the power cable have beensecurely attached, you may mount the module in a case andturn on the power supply.InstallationThe necessary screws are included with the module for mounting in a Eurorack case. Connect the power cable before mounting. Depending on the rack case, there may be a series of fixed holes spaced 2 HP apart along the length of the case, or a track that allows individual threaded plates to slide along the lengthof the case. The free-moving threaded plates allow precise positioning of the module, but each plate should be positionedin the approximate relation to the mounting holes in your module before attaching the screws.Hold the module against the Eurorack rails so that each of the mounting holes are aligned with a threaded rail or threaded plate. Attach the screws part way to start, which will allow small adjustments to the positioning while you get them all aligned. After the final position has been established, tighten the screws down.LEGAL DISCLAIMERMusic Tribe accepts no liability for any loss which may be suffered by any person who relies either wholly or in part upon any description, photograph,or statement contained herein. Technical specifications, appearances and other information are subject to change without notice. All trademarks are the property of their respective owners. Midas, Klark Teknik, Lab Gruppen, Lake, Tannoy, Turbosound, TC Electronic, TC Helicon, Behringer, Bugera, Auratone and Coolaudio are trademarks or registered trademarks of Music Tribe Global Brands Ltd. © Music Tribe Global Brands Ltd. 2019 All rights reserved.LIMITED WARRANTYFor the applicable warranty terms and conditions and additional information regarding Music Tribe’s Limited Warranty, please see complete details online at /warranty.Zhongshan Eurotec Electronics LimitedNo. 10 Wanmei Road, South China Modern Chinese Medicine Park, Nanlang Town, 528451, Zhongshan City, Guangdong Province, ChinaSpecifications。
国家工程实验室9234E 4通道,±5伏特,24位软件选择的IEPE和交流 直流分析输入模块操作指南
Figure 5. NI 9234E Input Circuitry for One Channel
2 mA IEPE on/off
AC/DC Coupling
AI+ +
AI–
–7.62 (–0.300) 0.00 (0.000)
Connecting the NI 9234E
The NI 9234E has four BNC connectors that provide connections to four simultaneously sampled analog input channels.
NI 9234E Operating Instructions and Specifications| © National Instruments | 5
Refer to Figures 3 and 4 for illustrations of connecting grounded and floating signal sources to the NI 9234E.
If you make a ground-referenced connection between the signal source and the NI 9234E, make sure the voltage on the AI- shell is in the common-mode range to ensure proper operation of the NI 9234E. The AI- shell is protected against accidental contact with overvoltages within the overvoltage protection range. Refer to the Specifications section for more information about operating voltages and overvoltage protection.
F4930 使用说明书
F4930使用说明书文档版本密级V2.0.0产品名称:F4930共31页F4930使用说明书此说明书适用于下列型号产品:型号产品类别F4930工业计算机厦门四信通信科技有限公司Add:厦门市集美区软件园三期诚毅大街370号A06栋11层客户热线:400-8838-199电话:+86-592-6300320传真:+86-592-5912735网址文档修订记录日期版本说明作者2016.1.21V1.0初始版本CYB/WZQ 2017.5.22V1.1增加辅助功能和系统升级的说明XGF 2017.9.23V2.0.0更新地址Faine更新产品尺寸图著作权声明本文档所载的所有材料或内容受版权法的保护,所有版权由厦门四信通信科技有限公司拥有,但注明引用其他方的内容除外。
未经四信公司书面许可,任何人不得将本文档上的任何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他所有权的说明)除外。
商标声明Four-Faith 、四信、、、均系厦门四信通信科技有限公司注册商标,未经事先书面许可,任何人不得以任何方式使用四信名称及四信的商标、标记。
产品外形图目录目录 (4)第一章产品简介 (6)1.1产品概述 (6)1.2产品特点 (6)1.3产品规格 (8)第二章安装 (11)2.1概述 (11)2.2开箱 (11)2.3安装与电缆连接 (12)第三章硬件功能 (13)3.1外部接口指示图 (13)3.1.1前视图 (13)3.1.2侧视图 (13)3.2前面板I/O连接器 (14)3.2.1音频接口(Speak-out,Mic-in) (14)3.2.2LED指示灯 (14)3.2.3串口(COM1-COM6) (14)3.2.4USB接口 (15)3.2.5以太网接口(LAN) (16)3.2.6显示接口(HDMI高清接口、VGA) (16)3.2.7电源接口 (17)3.3内部接口说明 (17)3.3.1CAN&RS485接口 (18)3.3.2SATA接口(mSATA、J23) (18)3.3.3音频接口(ADUIO、J22) (19)3.3.4显示接口(LVDS、CN3) (20)3.3.5Micro SD卡槽 (21)3.3.6SIM卡槽 (22)第四章软件功能 (23)4.1Android系统 (23)4.1.1显示功能 (23)4.1.2USB接口 (23)4.1.3COM接口 (23)4.1.4TF卡 (23)4.1.5硬盘 (23)4.1.6WIFI (23)4.1.73G/4G (24)4.1.8以太网 (24)4.1.9网络自动切换 (26)4.1.10USB摄像头 (26)4.1.11声卡 (26)4.1.12GPIO (26)4.1.13RS485 (26)4.1.14系统导航栏和通知栏的隐藏 (26)4.1.15显示设备接口和分辨率 (26)4.1.16辅助功能 (27)4.1.17系统升级 (28)附录一常见问题 (30)第一章产品简介1.1产品概述工控机(Industrial Personal Computer,IPC)即工业控制计算机,是一种采用总线结构,对生产过程及机电设备、工艺装备进行检测与控制的工具总称。
开发和调试ADS应用程序的几个问题
开发和调试ADS应用程序的几个问题
袁鹏
【期刊名称】《微计算机应用》
【年(卷),期】1998(019)002
【摘要】用VisualC建立开发ADS的集成环境,给出了编写ADS程序的标准模式。
【总页数】4页(P76-79)
【作者】袁鹏
【作者单位】中国人民解放军89003部队4分队
【正文语种】中文
【中图分类】TP311
【相关文献】
1.用High C开发自动机CAD的ADS应用程序 [J], 罗国富;邹景超;蒋玮
2.Windows下用VB开发AutoCAD的ADS应用程序 [J], 王小平;王斌
3.安装调试"军字1号"工程应用程序应注意的几个问题 [J], 王晓虹;刘振波;任小雷;张小芊
4.用C开发AutoCAD的ADS应用程序 [J], 王琦;张勇
5.用ADS在AutoCAD for Windows环境中开发应用程序的方法 [J], 孙力红因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年秋期成人教育(本科)《网络操作系统》期末复习指导2010年12月修订第一部分课程考核说明1.考核目的通过本次考试,了解学生对本课程基本内容和重难点的掌握程度,以及运用本课程的基本知识、基本理论和基本方法来分析和解决网络操作系统的综合应用问题。
2.考核方式本课程期末考试为开卷笔试,考试时间为90分钟。
3、适用范围、教材本复习指导适用范围为成人教育本科计算机科学技术专业的选修课程。
考试命题依据的教材采用中央广播电视大学出版社出版、王兆青主编的《网络操作系统》(2001年1月第1版)。
4.命题依据本课程的命题依据《网络操作系统》课程的教学大纲、教材、实施意见。
5.考试要求考试主要是考核学生对基本理论和基本问题的理解和应用能力。
在能力层次上,从了解、掌握、重点掌握3个角度来要求。
主要考核学生对网络操作系统技术、配置及综合应用的能力。
6.考题类型及比重考题类型及分数比重大致为:填空题(30%);单项选择题(20%);多项选择题(20%);简答题(30%)。
第二部分期末复习重点范围第一章网络操作系统导言一、重点掌握1.网络操作系统的基本功能。
2.网络操作系统中的资源共享和安全管理的基本原理及概念。
3.网络操作系统各种工作模式、文件系统格式和体系结构。
二、掌握3.操作系统与网络操作系统的关系与区别,网络操作系统的最新技术和发展方向。
第二章Windows NT操作系统及使用一、重点掌握1.Windows NT的用户、组及一般资源的管理。
2.域的概念及域之间的委托关系。
TCP/IP的配置第三章Unix操作系统及使用一、重点掌握1.Unix的用户、组及一般资源的管理。
2.守护神和日志文件的使用,TCP/IP协议的配置。
二、掌握1.Unix的引导文件及其用户使用环境和脚本设置,进程调度。
第四章NetWare网络操作及使用一、重点掌握1.Netware网络用户和组的管理操作。
2.Netware网络底稿的使用,TCP/IP的配置。
第五章网络操作系统的新技术一、重点掌握1.分布操作系统的基本工作原理。
2.网络操作系统的新技术及发展趋势。
第三部分综合练习题一、填空题1、表格左边的分类名称,给右边的分类内容填写对应的编号。
(1)(2)(3)二、单项选择1.下列关于网络接口打印机描述错误的是( )。
A.该类型的打印机内嵌一个网络适配器B.该类型的打印机不能直接与网络电缆相连C.该类型的打印机可以不与服务器上的串口相连D.该类型的打印机可以不与服务器上的并口相连2.关于Windows NT中的SID,正确的描述是( ) A.在域中并不是每个用户账号都有SIDB.用户账号被删除,则SID也被删除C.用户账号的SID可以不惟一D.SID可以继承老用户的权限、特权3.在制作引导软盘时,除了将引导磁盘根目录下的Ntldr、Ntdetect文件复制到软盘上之外,还需要( )文件。
A.boot B.Bootsect.dosC.Ntbootdd.sys D.inl sys4.在制作引导软盘时,除了将引导磁盘根目录下的Ntldr、Ntdeteet文件复制到软盘上之外,还需要( )文件。
A.boot B.Bootsect.dosC.Ntbootdd.sys D.ini.sys5.NDS安全性管理的是( )。
A.文件B.目录C.叶D.NDS树中的对象6.下列关于网络操作系统工作模式描述正确的是( )。
A.Client和Server不能在同一台机器上B.Server是一个具体的机器硬件,和软件没有关系C.在文件服务器上,各用户可以同时对相同的数据做同时的更新D.C/S模式可以给用户提供理想的分布环境,减少网络传输负担7.在Linux系统中,SCSI链上的第1硬盘的第3分区记为( )。
A./dev/sdalB./dev/sda3C./dev/hdblD./dev/hdb38.一个用户对系统管理员说他忘记了他的登录密码,无法登录了。
系统管理员有什么办法让他登录( )。
A.为他创建一个新的不带密码的用户账号B.修改这个用户的密码并对这个账号的策略进行设置,使他的密码永不失效并且不能被修改C.使用User:Manager来修改他的密码,并对这个账号的策略进行设置,使他在下次登录时必须修改密码。
然后告诉这个用户新的密码,并告诉他下次登录时必须修改这个密码D.告诉用户再试着用其它密码进行登录,希望他能突然回忆起原来的密码9.下列( )不是Administrators的权限。
A.访问系统上的所有资源B.创建用户C.创建用户组D.对文件的拥有权10.下列关于网络测试描述错误的是( )。
A.Ping用于测试网络的连通性B.ipconfig可以检测丢包现象C.netstat可用于分配子网掩码D.route用于维护路由表11.在WindowsNT中,有如下所示信任图:各域之间的信任关系为( )。
A.A域上的所有用户账号可以访问所有域中的资源B.B域上的所有用户账号可以访问B域以及C域中的资源C.C域上的所有用户账号可以访问A域、B域以及C域中的资源D.D域上的所有用户账号可以访问C域、B域以及D域中的资源A.访问系统上的所有资源12.下列哪些不属于shell中的保留字( )。
A.do B.if,thenC.hello world D.for13.下列关于网络测试描述错误的是( )。
A.Ping用于测试网络的连通性B.ipconfig可以检测丢包现象C.netstat可用于分配子网掩码D.route用于维护路由表14.WindowsNT中,关于域用户管理器的描述错误的是( )。
A.用来管理用户账号和安全权限的主要工具B.是图形界面工具C. 可以在成员服务器中使用D.可以更新域目录数据库中的内容15.下列( )不是Administrators的权限。
A.访问系统上的所有资源B.创建用户C.创建用户组D.对文件的拥有权16.在UNIX中,删除名为mywork的用户组,采用( )语句。
A.userdel myworkB.groupmod myworkC.groupdel myworkD.groupdel group-mywork17.在UNIX中,硬链接可以链接( )。
A.目录B.跨越文件系统的文件C.同一文件系统的文件D.文件系统18.在制作引导软盘时,除了将引导磁盘根目录下的Ntldr、Ntdetect文件复制到软盘上之外,还需要( )文件。
A.boot B.Bootsect.dosC.Ntbootdd.sys D.ini.Sys19.在Linux系统中,SCSI链上的第1硬盘的第2分区记为( )。
A./dev/sdal B./dev/sda2C./dev/hdbl D./dev/hdb220.Windows NT Server不能运行于( )环境中。
A.Intel X86系统B.精简指令集计算机(RISC)C.复杂指令集计算机(CISC) D.DEC Alpha处理机21.Windows NT 4.0下,FAT支持的文件名的特点是( )。
A.8.3格式B.最长可达125字符C.最长可达255字符D.取决于分区的大小22.某使用WindowsNT的工作环境中有A、B、C等多部门共用一台打印机,现在B部门希望在某个时间内该部门的人禁用打印机,最好的做法是( )。
A.给整个工作环境中计算机的打印机控制存取列表设置一个禁止访问控制权限B.分别给A、C部门所有计算机的打印机控制存取列表设置一个禁止访问控制权限C.给B部门的人创建一个组,将B部门的所有计算机归人该组,对该组的打印机控制存取列表设置一个禁止访问控制权限D.拆除网络打印机23.关于Windows NT中的SID,正确的描述是( )。
A.在域中并不是每个用户账号都有SIDB.用户账号的SID可以不唯一C.SID可以继承老用户的权限、特权D.用户账号被删除,则SID也被删除24.假设某人不想让使用他工作站的人访问他正在处理的文件。
他应如何做才能达到目的( )。
A.将这些文件存储到公文包中,公文包具有安全性选项实现密码保护B.将文件存储到桌面上,桌面具有安全性选项实现密码保护C.用FAT格式化硬盘。
FAT具有内置的对基于账号的访问控制的支持D.用NTFS格式化硬盘。
NTFS具有内置的对基于账号的访问控制的支持25.有人不想让使用他的工作站的人访问他正在处理的一些文件。
他应如何做才能达到目的( )。
A.将这些文件存储到公文包中,公文包具有安全性选项实现密码保护B.用FAT格式化硬盘。
FAT具有内置的对基于账号的访问控制的支持C.用NTFS格式化硬盘。
NTFS具有内置的对基于账号的访问控制的支持D.将文件存储到桌面上,桌面具有安全性选项实现密码保护26.在UNIX系统中,锁住用户“zhangh"的口令使用下列语句( )。
A.#passwd B.#passwd—l zhanghC.#passwd—n zhangh D.#passwd—f zhangh27.在UNIX中,硬链接可以链接( )。
A.目录B.跨越文件系统的文件C.同一文件系统的文件D.文件系统28.下列关于网络测试描述错误的是( )。
A.Ping用于测试网络的连通性B.ipconfig可以检测丢包现象C.Netstat可用于分配子网掩码D.route用于维护路由表29.下列( )属于一种容错技术的应用。
A.磁盘镜像B.引导分区C.卷集D.系统分区30.在Windows NT中,关于镜像的描述错误的是( )。
A.系统分区可以被镜像B.引导分区可以被镜像C.任何分区都可以被镜像D.磁盘镜像可以在同一个硬盘上生成三、多项选择题1.域用户管理器可以在( )中使用。
A.主域控制器B.备份域控制器C.成员服务器D.独立服务器2.在UNIX中,关于粘连位的正确描述是( )。
A.粘连位可以在目录中设置B.根的拥有者可以删除目录中的具有粘连位的文件C.drwxrwxrwt中的d表示粘连位D.组可以删除目录中的具有粘连位的文件3.在UNIX系统中,下列( )操作与组的属性有关。
A.groupadd B.passwdC.groupmod D.mount4.Netware中Console One()A.负责统一管理网络资源的应用程序B.可以运行在客户端C.可以运行在服务器起上D.能够建立用户帐号5.关于NTFS和FAT的描述正确的是( )。
A.软盘可以使用NTFS格式化B.NTFS和FAT可以互相转化C.NTFS支持长文件名D.FAT支持2种文件属性,即读和写6.FATl6支持( )。
A.扩展属性B.MS-DOSC.OS/2D.文件级安全性7.Netware服务器提供的服务包括( )。
A.目录服务B.安全性C.文件系统D.应用程序访问8.下列( )属于电子商务的内容。