多元线性回归方程的建立
多元线性回归分析
3
二、多元线性回归模型的建立
由于二元线性回归方程是最典型的多元线性回归方程, 通过观察求解二元线性回归方程的参数的过程,就可了 解其他类型的多元线性回归方程参数的求解方法。设有 二元线性回归方程: yc a b1x1 b2 x2
统计学
一、多元线性回归分析的意义
粮食亩产量受播种量、施肥量、降雨量等 因素的影响;又如,彩电的销售额受彩电 价格、广告费支出、消费者购买力等因素 的影响;再如,企业产品成本受原材料价 格、原材料消耗、产量、质量、工艺技术 水平等因素的影响。
对于上述情况,如果只用一个自变量来进 行回归分析,分析的结果就存在问题,如 果将影响因变量的多个因素结合在一起进 行分析,则更能揭示现象内在的规律。
2
二、多元线性回归模型的建立
多元线性回归分析研究因变量和多个自变量间的线性关 系因,变这 量种 Y与线自性变关量系可用数学模型x来1, 之x表2,间x示3,存。,在设xn线因性变关量系为,Y,可 用多元线性回归方程来表示这种关系。设多元线性回归 方程为:yc a b1 x1 b2 x2 b3 x3 bn xn
要确定该回归方程,须先求解a、b1、b2三个参数。用最
小二乘法求解得x1方y y程a组nax如1 b1下b1:x1x12b2
x2 b2
x1x2
x2 y a
x2 b1
x1x2 b2
x22
4
统计学Biblioteka
多元线性回归分析
简介多元线性回归分析是一种统计技术,用于评估两个或多个自变量与因变量之间的关系。
它被用来解释基于自变量变化的因变量的变化。
这种技术被广泛用于许多领域,包括经济学、金融学、市场营销和社会科学。
在这篇文章中,我们将详细讨论多元线性回归分析。
我们将研究多元线性回归分析的假设,它是如何工作的,以及如何用它来进行预测。
最后,我们将讨论多元线性回归分析的一些限制,以及如何解决这些限制。
多元线性回归分析的假设在进行多元线性回归分析之前,有一些假设必须得到满足,才能使结果有效。
这些假设包括。
1)线性。
自变量和因变量之间的关系必须是线性的。
2)无多重共线性。
自变量之间不应高度相关。
3)无自相关性。
数据集内的连续观测值之间不应该有任何相关性。
4)同质性。
残差的方差应该在自变量的所有数值中保持不变。
5)正态性。
残差应遵循正态分布。
6)误差的独立性。
残差不应相互关联,也不应与数据集中的任何其他变量关联。
7)没有异常值。
数据集中不应有任何可能影响分析结果的异常值。
多重线性回归分析如何工作?多元线性回归分析是基于一个简单的数学方程,描述一个或多个自变量的变化如何影响因变量(Y)的变化。
这个方程被称为"回归方程",可以写成以下形式。
Y = β0 + β1X1 + β2X2 + ... + βnXn + ε 其中Y是因变量;X1到Xn是自变量;β0到βn是系数;ε是代表没有被任何自变量解释的随机变化的误差项(也被称为"噪音")。
系数(β0到βn)表示当所有其他因素保持不变时(即当所有其他自变量保持其平均值时),每个自变量对Y的变化有多大贡献。
例如,如果X1的系数为0.5,那么这意味着当所有其他因素保持不变时(即当所有其他独立变量保持其平均值时),X1每增加一单位,Y就会增加0.5单位。
同样,如果X2的系数为-0.3,那么这意味着当所有其他因素保持不变时(即所有其他独立变量保持其平均值时),X2每增加一个单位,Y就会减少0.3个单位。
多元线性回归
Y
X
i
Y
1i i
X ki
XX 1i ki
XX 2i ki
X 2 ki
bˆk
X
k
Y
ii
正规方程
矩阵形式
n
X
X
X 1i
X 1i
X2 1i
X 2i
X X 2i 1i
2
ee ~ (n k 1)
ˆ
t
i
i ~ t(n k 1)
c ee ii n k 1
H : 0成立下,t
0
i
ˆ i
c ee ii n k 1
若 |t | t临
拒绝 H 0
认为 与0有显著的差异 i
或者根据t 查t分布表的概率p, 若
p
E[((X X )1 X ( XB N ) B)((X X )1 X ( XB N ) B)]
E[(X X )1 X NN X ( X X )1]
( X X )1 X E(NN ) X ( X X )1
E(NN )(X X )1 X X ( X X )1
最小的)
线性
Bˆ ( X X )1 X Y
无偏性
E(Bˆ) E[(X X )1 X Y ] E[(X X )1 X ( XB N )] E[(X X )1 X XB ( X X )1 X N ] B ( X X )1 E( X N ) B
i
i
ESS
2
第四章多元线性回归方程
多元回归模型 三变量线性回归模型 多元线性回归模型的若干假定 多元线性回归模型的估计与假设检验
一、多元回归模型
多元回归模型(Multiple Regression Model):
包含多个解释变量的回归模型。 多元指有多种因素(即变量)对因变量有影响。
实际上,许多回归模型都是多元回归模型, 因为很少有经济现象能够仅用一个解释变 量能解释清楚。
Y :进口量;X1:个人消费支出; X2:进口价格/国内价格
美国对酒精饮料的需求
为了解释美国对酒精饮料的需求, T.McGuinness根据20年的年数据得到下 面结果: Y=-0.0140.354X1+0.0018X2+0.657X3+0.0059X4 se=(0.012)(0.2688)(0.0005)(0.266)(0.0034) t=(-1.16)(1.32)(3.39)(2.47)(1.73) R2=0.689
如果p< , 则p/2</2,
t0落入拒绝域, 应拒绝H0
p/2 /2 /2 p/2
0
-t/2
拒绝H0
t/2 t0
拒绝H0
bj
接受H0
P值检验法准则
当P 值小于显著性水平时,系数在显著性 水平下是显著的 当P 值大于显著性水平时,系数在显著性 水平下是不显著的。
解释
p-value: 确切的(或观测的)显著性水平 p-value:零假设H0 被拒绝的最低显著性水 平 在使用上更简单,不用查临界值表
事件,如果该 事件在一次抽 样中就出现, 说明假设H0值 得怀疑,应当 拒绝H0
多元线性回归的计算模型
多元线性回归的计算模型多元线性回归模型的数学表示可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y表示因变量,Xi表示第i个自变量,βi表示第i个自变量的回归系数(即自变量对因变量的影响),ε表示误差项。
1.每个自变量与因变量之间是线性关系。
2.自变量之间相互独立,即不存在多重共线性。
3.误差项ε服从正态分布。
4.误差项ε具有同方差性,即方差相等。
5.误差项ε之间相互独立。
为了估计多元线性回归模型的回归系数,常常使用最小二乘法。
最小二乘法的目标是使得由回归方程预测的值与实际值之间的残差平方和最小化。
具体步骤如下:1.收集数据。
需要收集因变量和多个自变量的数据,并确保数据之间的正确对应关系。
2.建立模型。
根据实际问题和理论知识,确定多元线性回归模型的形式。
3.估计回归系数。
利用最小二乘法估计回归系数,使得预测值与实际值之间的残差平方和最小化。
4.假设检验。
对模型的回归系数进行假设检验,判断自变量对因变量是否显著。
5. 模型评价。
使用统计指标如决定系数(R2)、调整决定系数(adjusted R2)、标准误差(standard error)等对模型进行评价。
6.模型应用与预测。
通过多元线性回归模型,可以对新的自变量值进行预测,并进行决策和提出建议。
多元线性回归模型的计算可以利用统计软件进行,例如R、Python中的statsmodels库、scikit-learn库等。
这些软件包提供了多元线性回归模型的函数和方法,可以方便地进行模型的估计和评价。
在计算过程中,需要注意检验模型的假设前提是否满足,如果不满足可能会影响到模型的可靠性和解释性。
总而言之,多元线性回归模型是一种常用的预测模型,可以分析多个自变量对因变量的影响。
通过最小二乘法估计回归系数,并进行假设检验和模型评价,可以得到一个可靠的模型,并进行预测和决策。
多元线性回归模型过程
多元线性回归模型过程
多元线性回归是一种常用的回归分析模型,它可以用来分析两个或多个自变量之间的线性关系。
下面介绍多元线性回归模型的过程:
一、建立模型
1、观察原始数据:首先要收集需要分析的原始数据,从数据中观察现象背后
的规律来获取有效信息;
2、定义自变量与因变量:根据原始数据形成假设,确定要分析的自变量和因
变量,从而确定要分析的模型;
3、归纳回归方程式:运用最小二乘法解决回归方程,归纳出多元线性回归模型;
二、检验模型
1、显著性检验:检验所选变量是否对因变量有显著影响;
2、线性有效性检验:检验多元线性回归模型的线性有效性,确定拟合数据的完整性;
3、自相关性检验:检验各个自变量间的线性关系是否存在自相关现象;
4、影响因素较差检验:检验因变量的预测值与实际值之间的相对关系;
三、参数估计
1、极大似然估计:根据已建立的多元线性回归模型,可以运用极大似然估计,得出模型中未知参数的点估计值;
2、大致估计:利用已经进行检验的多元线性回归模型,对模型参数进行大致
估计,求出平均偏差平方根,从而估计模型的精确度;
四、分析模型
1、确定因子影响:根据已建立多元线性回归模型,可以求出每个自变量的系数,从而确定影响因变量的主要因素;
2、决定系数:可以利用模型求出每个自变量的决定系数,从而求得因变量对自变量的百分比影响;
3、对因变量施加假设:多元线性回归模型可以根据模型参数影响程度和数据情况,在每个自变量上施加多种假设,以确定模型最合理的假设;
4、模型检验:根据已建立的多元线性回归模型,可以运用张量分析,根据模型的指标,检验模型的被解释力水平,判断模型的有效性。
多元线性回归模型案例
多元线性回归模型案例多元线性回归是统计学中常用的一种回归分析方法,它可以用来研究多个自变量与因变量之间的关系。
在实际应用中,多元线性回归模型可以帮助我们理解不同自变量对因变量的影响程度,从而进行预测和决策。
下面,我们将通过一个实际案例来介绍多元线性回归模型的应用。
案例背景:某电商公司希望了解其产品销售额与广告投入、季节因素和竞争对手销售额之间的关系,以便更好地制定营销策略和预测销售额。
数据收集:为了分析这一问题,我们收集了一段时间内的产品销售额、广告投入、季节因素和竞争对手销售额的数据。
这些数据将作为我们多元线性回归模型的输入变量。
模型建立:我们将建立一个多元线性回归模型,以产品销售额作为因变量,广告投入、季节因素和竞争对手销售额作为自变量。
通过对数据进行拟合和参数估计,我们可以得到一个多元线性回归方程,从而揭示不同自变量对产品销售额的影响。
模型分析:通过对模型的分析,我们可以得出以下结论:1. 广告投入对产品销售额有显著影响,广告投入越大,产品销售额越高。
2. 季节因素也对产品销售额有一定影响,不同季节的销售额存在差异。
3. 竞争对手销售额对产品销售额也有一定影响,竞争对手销售额越大,产品销售额越低。
模型预测:基于建立的多元线性回归模型,我们可以进行产品销售额的预测。
通过输入不同的广告投入、季节因素和竞争对手销售额,我们可以预测出相应的产品销售额,从而为公司的营销决策提供参考。
结论:通过以上分析,我们可以得出多元线性回归模型在分析产品销售额与广告投入、季节因素和竞争对手销售额之间关系时的应用。
这种模型不仅可以帮助我们理解不同因素对产品销售额的影响,还可以进行销售额的预测,为公司的决策提供支持。
总结:多元线性回归模型在实际应用中具有重要意义,它可以帮助我们理解复杂的变量关系,并进行有效的预测和决策。
在使用多元线性回归模型时,我们需要注意数据的选择和模型的建立,以确保模型的准确性和可靠性。
通过以上案例,我们对多元线性回归模型的应用有了更深入的理解,希望这对您有所帮助。
多元线性回归方程的建立
多元线性回归方程的建立建立多元线性回归方程,实际上是对多元线性模型(2-2-4)进行估计,寻求估计式(2-2-3)的过程。
与一元线性回归分析相同,其基本思想是根据最小二乘原理,求解使全部观测值与回归值的残差平方和达到最小值。
由于残差平方和(2-2-5)是的非负二次式,所以它的最小值一定存在。
根据极值原理,当Q取得极值时,应满足由(2-2-5)式,即满足(2-2-6)(2-2-6)式称为正规方程组。
它可以化为以下形式(2-2-7)如果用A表示上述方程组的系数矩阵可以看出A是对称矩阵。
则有(2-2-8)式中X是多元线性回归模型中数据的结构矩阵,是结构矩阵X的转置矩阵。
(2-2-7)式右端常数项也可用矩阵D来表示即因此(2-2-7)式可写成Ab=D (2-2-10)或(2-2-11)如果A满秩(即A的行列式)那么A的逆矩阵A-1存在,则由(2-10)式和(2-11)式得的最小二乘估计为(2-2-12)也就是多元线性回归方程的回归系数。
为了计算方便往往并不先求,再求b,而是通过解线性方程组(2-2-7)来求b。
(2-2-7)是一个有p+1个未知量的线性方程组,它的第一个方程可化为(2-2-13)式中(2-2-14)将(2-2-13)式代入(2-2-7)式中的其余各方程,得(2-2-15)其中(2-2-16)将方程组(2-2-15)式用矩阵表示,则有Lb=F (2-2-17)其中于是b=L-1F (2-2-18)因此求解多元线性回归方程的系数可由(2-2-16)式先求出L,然后将其代回(2-2-17)式中求解。
求b时,可用克莱姆法则求解,也可通过高斯变换求解。
如果把b直接代入(2-2-18)式,由于要先求出L的逆矩阵,因而相对复杂一些。
例2-2-1 表2-2-1为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(x1)、土壤内溶于K2CO3溶液并受溴化物水解的有机磷浓度(x2)以及土壤内溶于K2CO3溶液但不溶于溴化物的有机磷(x3)的观察数据。
多元线性回归模型原理
多元线性回归模型原理Y=β0+β1*X1+β2*X2+...+βn*Xn+ε其中,Y表示因变量,X1、X2、..、Xn表示自变量,β0、β1、β2、..、βn表示模型的参数,ε表示误差项。
通过对数据进行拟合,即最小化误差平方和,可以估计出模型的参数。
多元线性回归模型的原理是基于最小二乘法,即通过最小化残差平方和来估计参数的值。
残差是指模型预测值与真实值之间的差异,最小二乘法的目标是找到一组参数,使得所有数据点的残差平方和最小。
通过求解最小二乘估计,可以得到模型的参数估计值。
为了评估模型的拟合程度,可以使用各种统计指标,例如R方值、调整R方值、标准误差等。
R方值表示模型解释因变量方差的比例,取值范围在0到1之间,值越接近1表示模型对数据的拟合程度越好。
调整R方值考虑了模型中自变量的个数和样本量之间的关系,可以更准确地评估模型的拟合程度。
标准误差表示模型预测值与真实值之间的标准差,可以用于评估模型的预测精度。
在建立多元线性回归模型之前,需要进行一些前提条件的检查,例如线性关系、多重共线性、异方差性和自变量的独立性。
线性关系假设要求自变量与因变量之间存在线性关系,可以通过散点图、相关系数等方法来检验。
多重共线性指的是自变量之间存在高度相关性,会导致参数估计的不稳定性,可以使用方差膨胀因子等指标来检测。
异方差性指的是残差的方差不恒定,可以通过残差图、方差齐性检验等方法来检验。
自变量的独立性要求自变量之间不存在严重的相关性,可以使用相关系数矩阵等方法来检验。
当满足前提条件之后,可以使用最小二乘法来估计模型的参数。
最小二乘法可以通过不同的方法来求解,例如解析解和数值优化方法。
解析解通过最小化误差平方和的一阶导数为零来求解参数的闭式解。
数值优化方法通过迭代来求解参数的数值估计。
除了最小二乘法,还有其他方法可以用于估计多元线性回归模型的参数,例如岭回归和lasso回归等。
岭回归和lasso回归是一种正则化方法,可以对模型进行约束,可以有效地避免过拟合问题。
(完整版)多元线性回归模型公式
二、多元线性回归模型在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。
因此,多元地理回归模型更带有普遍性的意义。
(一)多元线性回归模型的建立假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。
那么,多元线性回归模型的结构形式为:a ka k a a a x x x y εββββ+++++=...22110(3。
2。
11)式中:k βββ,...,1,0为待定参数; a ε为随机变量。
如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为ŷ=k k x b x b x b b ++++...22110(3。
2.12)式中:0b 为常数;k b b b ,...,,21称为偏回归系数。
偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。
根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使()[]min (2)12211012→++++-=⎪⎭⎫⎝⎛-=∑∑==∧n a ka k a a a na a a xb x b x b b y y y Q (3。
2.13)有求极值的必要条件得⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫ ⎝⎛--=∂∂=⎪⎭⎫⎝⎛--=∂∂∑∑=∧=∧n a ja a a jn a a a k j x y y b Q y y b Q 110),...,2,1(0202(3.2.14) 将方程组(3。
2.14)式展开整理后得: ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================na a ka k n a ka n a ka a n a ka a n a ka n a aa k n a ka a n a a n a a a na a na aa k n a ka a n a a a n a a n a a na ak n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x yx b x x b x x b x b x y b x b x b x nb 11221211101121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2。
回归方程是如何建立的?
回归方程是如何建立的?一、回归分析的基本概念回归分析是一种常用的统计工具,用于探究变量之间的关系以及预测未来的趋势。
它通过建立数学模型,研究自变量与因变量之间的函数关系,从而实现对未知数据的预测。
回归方程便是其中最为重要的数学模型,它描述了自变量与因变量之间的关系,并可以据此进行预测和解释。
二、回归方程的建立过程1. 数据收集与整理在建立回归方程之前,首先需要收集相关的数据。
这些数据应当全面、真实地反映自变量和因变量之间的关系,以确保回归分析结果的准确性和可靠性。
之后,需要对数据进行整理和清洗,排除异常值、缺失值等干扰因素,使得数据具备一定的可靠性和精确性。
2. 变量选择与处理在建立回归方程时,需要明确自变量和因变量。
在选择自变量时,应根据实际问题和研究目的进行合理的选择,避免自变量之间的相关性过高,以免产生多重共线性问题。
同时,还可以进行变量的处理,如变量变换、指标构建等,以充分利用数据的信息。
3. 建立回归模型在选择好自变量和因变量之后,可以根据实际问题和数据情况选择适合的回归模型。
常见的回归模型有线性回归、多元线性回归、非线性回归等。
线性回归是最简单和常用的回归模型,它可以通过最小二乘估计法来估计模型参数,进而得到回归方程。
4. 模型评估与拟合完成回归模型的建立后,需要对模型进行评估和拟合。
通过检验回归模型的显著性、解释度和拟合度,可以评判回归模型的合理性和可靠性。
常用的模型评估指标有残差分析、决定系数、方差分析等。
三、回归方程的应用和限制1. 应用范围回归方程可以应用于各个领域,如经济学、社会学、医学等。
它可以用于预测未来的趋势和变化,为决策提供科学依据。
同时,回归方程还可以用于解释因果关系和探究变量之间的关系。
2. 限制与注意事项在应用回归方程时,需要注意以下几个问题。
首先,回归方程是基于当前数据建立的,对于未来数据的预测存在一定的不确定性。
其次,回归方程建立的前提是自变量和因变量之间存在一定的相关性,如果相关性较弱,则回归分析的结果可能不够可靠。
多元线性回归
RC2
0.546 0.528 0.488 0.447 0.441 0.440 0.435 0.408
Cp 方程中的自变量
RC2
3.15 X2,X3
0.408
5.00 X1,X3
0.375
5.96 X4
0.347
7.97 X1
0.284
7.42 X1,X2
0.275
7.51 X3
0.231
7.72 X2
16
偏回归平方和
某自变量的偏回归平方和表示模型中含有其他 m-1个自变量的条件下该自变量对Y的回归贡 献。相当于从回归方程中剔除该自变量后所引 起的回归平方和的减少量。或者说在m-1个 自变量的基础上新增加该自变量引起回归平方 和的增加量。
m-1个自变量对Y的回归平方和由重新建立的 新方程得到。
对回归方程的预测或解释能力作出综合评价(决 定系数);
在此基础上进一步对各个自变量的重要性作出评 价(偏回归平方和、t检验、标准回归系数)。
8
方差分析步骤-建立假设
H0:自变量整体与应变量没有回归关系
1 2 m 0
H1:自变量整体与应变量有回归关系
确定检验水准: 0.05
21
偏回归平方和的检验步骤-结论
F3>F0.05,1,22 P3<0.05 F4<F0.05,1,22
P4<0.05
结论:在 0.05 水准处,拒绝胰岛素(X3)和糖化 血红蛋白(X4)的H0,接受H1,可以认为两者和血
糖有回归关系,糖化血红蛋白的回归贡献更大(偏回
归平方和越大,回归贡献越大)。
好;越接近0,说明拟合程度越差。
13
多元线性回归分析
多元线性回归分析多元线性回归分析是一种常用的统计方法,用于研究多个自变量与因变量之间的关系。
它可以帮助我们理解多个因素对于一个目标变量的影响程度,同时也可以用于预测和解释因变量的变化。
本文将介绍多元线性回归的原理、应用和解读结果的方法。
在多元线性回归分析中,我们假设因变量与自变量之间存在线性关系。
具体而言,我们假设因变量是自变量的线性组合,加上一个误差项。
通过最小二乘法可以求得最佳拟合直线,从而获得自变量对因变量的影响。
多元线性回归分析的第一步是建立模型。
我们需要选择一个合适的因变量和若干个自变量,从而构建一个多元线性回归模型。
在选择自变量时,我们可以通过领域知识、经验和统计方法来确定。
同时,我们还需要确保自变量之间没有高度相关性,以避免多重共线性问题。
建立好模型之后,我们需要对数据进行拟合,从而确定回归系数。
回归系数代表了自变量对因变量的影响大小和方向。
通过最小二乘法可以求得使残差平方和最小的回归系数。
拟合好模型之后,我们还需要进行模型检验,以评估模型拟合的好坏。
模型检验包括对回归方程的显著性检验和对模型的拟合程度进行评估。
回归方程的显著性检验可以通过F检验来完成,判断回归方程是否显著。
而对模型的拟合程度进行评估可以通过判断决定系数R-squared的大小来完成。
解读多元线性回归结果时,首先需要看回归方程的显著性检验结果。
如果回归方程显著,说明至少一个自变量对因变量的影响是显著的。
接下来,可以观察回归系数的符号和大小,从中判断自变量对因变量的影响方向和相对大小。
此外,还可以通过计算标准化回归系数来比较不同自变量对因变量的相对重要性。
标准化回归系数表示自变量单位变化对因变量的单位变化的影响程度,可用于比较不同变量的重要性。
另外,决定系数R-squared可以用来评估模型对观测数据的拟合程度。
R-squared的取值范围在0到1之间,越接近1说明模型对数据的拟合越好。
但需要注意的是,R-squared并不能反映因果关系和预测能力。
多元线性回归模型
多元线性回归模型(1)模型准备多元线性回归模型是指含有多个解释变量的线性回归模型,用于解释被解释的变量与其他多个变量解释变量之间的线性关系。
其数学模型为:上式表示一种 p 元线性回归模型,可以看出里面共有 p 个解释变量。
表示被解释变量y 的变化可以由两部分组成:第一部分,是由 p 个解释变量 x 的变化引起的 y 的线性变化部分。
第二部分,是要解释由随机变量引起 y 变化的部分,可以用 \varepsilon 部分代替,可以叫随机误差,公式中的参数都是方程的未知量,可以表示为偏回归常数和回归常数,则多元线性回归模型的回归方程为:(2)模型建立首先在中国A股票市场中,根据各指标与估值标准 y 的关联度来选取变量,选取指标为:年度归母净利润 x_{1} 、年度营业收入 x_{2} 、年度单只股票交易量 x_{4} 、年度单只股票交易量金额 x_{6} 。
有如下表达式为:其中 y 是因变量, x_{1},x_{2},x_{4},x_{6} 是自变量,α为误差项,b_{1},b_{2},b_{4},b_{6} 为各项系数。
(3)中国A股票市场模型求解运用SPSS软件,运用多元线性回归方程可以得出如下:下表模型有4个自变量,模型调整后的拟合度为0.976,说明模型的拟合度非常好。
下表为方差分析表,告诉我们F 的值值为1.794,显著性概率p 为0.004小于0.005,因此自变量系数统计较为显著。
下表给出模型常数项和自变量系数,并对系数统计显著性进行检验,常数项的值为2.618,显著性为0.002,统计比较显著,其它指标的显著性都小于0.005,故该模型比较准确。
故得出中国A股市场中的估值水平与这四个指标的线性关系为:(4)美国NASDAQ市场模型求解下表模型有4个自变量,模型调整后的拟合度为0.862,说明模型的拟合度非常好。
下表为方差分析表,告诉我们 F 值为15.081,显著性概率 p 为0.005等于0.005,因此自变量系数统计较为显著。
线性回归分析的SPSS操作(多元线性回归)
线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。
数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。
如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
(完整版)多元线性回归模型原理
(完整版)多元线性回归模型原理研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。
计算公式如下:设随机y 与一般变量12,,k x x x L 的线性回归模型为:01122k k y x x x ββββε=++++其中01,,k βββL 是1k +个未知参数,0β称为回归常数,1,k ββL 称为回归系数;y 称为被解释变量;12,,k x x x L 是k 个可以精确可控制的一般变量,称为解释变量。
当1p =时,上式即为一元线性回归模型,2k ≥时,上式就叫做多元形多元回归模型。
ε是随机误差,与一元线性回归一样,通常假设2()0var()E εεσ?=?=?同样,多元线性总体回归方程为01122k k y x x x ββββ=++++L 系数1β表示在其他自变量不变的情况下,自变量1x 变动到一个单位时引起的因变量y 的平均单位。
其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。
多元线性样本回归方程为:01122k ky x x x ββββ=++++L多元线性回归方程中回归系数的估计同样可以采用最小二乘法。
由残差平方和:()0SSE y y∑=-= 根据微积分中求极小值得原理,可知残差平方和SSE 存在极小值。
欲使SSE 达到最小,SSE 对01,,k βββL 的偏导数必须为零。
将SSE 对01,,k βββL 求偏导数,并令其等于零,加以整理后可得到1k +各方程式:?2()0i SSE y yβ?=--=?∑ 0?2()0i SSE y y x β?=--=?∑通过求解这一方程组便可分别得到01,,k βββL 的估计值0?β,1?β,···?kβ回归系数的估计值,当自变量个数较多时,计算十分复杂,必须依靠计算机独立完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归方程的建立
建立多元线性回归方程,实际上就是对多元线性模型(2-2-4)进行估计,寻求估计式(2-2-3)的过程。
与一元线性回归分析相同,其基本思想就是根据最小二乘原理,求解使全部观测值与回归值的残差平方与达到最小值。
由于残差平方与
(2-2-5)
就是的非负二次式,所以它的最小值一定存在。
根据极值原理,当Q取得极值时,应满足
由(2-2-5)式,即满足
(2-2-6)
(2-2-6)式称为正规方程组。
它可以化为以下形式
(2-2
-7)
如果用A表示上述方程组的系数矩阵可以瞧出A就是对称矩阵。
则有
(2-2-8)
式中X就是多元线性回归模型中数据的结构矩阵,就是结构矩阵X的转置矩阵。
(2-2-7)式右端常数项也可用矩阵D来表示
即
因此(2-2-7)式可写成
Ab=D (2-2-10)
或
(2-2-11)
如果A满秩(即A的行列式)那么A的逆矩阵A-1存在,则由(2-10)式与(2-11)式得的最小二乘估计为
(2-2-12) 也就就是多元线性回归方程的回归系数。
为了计算方便往往并不先求,再求b,而就是通过解线性方程组(2-2-7)来求b。
(2-2-7)就是一个有p+1个未知量的线性方程组,它的第一个方程可化为
(2-2-13) 式中
(2-2-14) 将(2-2-13)式代入(2-2-7)式中的其余各方程,得
(2-2-15) 其中
(2-2-16)
将方程组(2-2-15)式用矩阵表示,则有
Lb=F (2-2-17)
其中
于就是
b=L-1F (2-2-18)
因此求解多元线性回归方程的系数可由(2-2-16)式先求出L,然后将其代回(2-2-17)式中求解。
求b时,可用克莱姆法则求解,也可通过高斯变换求解。
如果把b直接代入(2-2-18)式,由于要先求出L的逆矩阵,因而相对复杂一些。
例2-2-1 表2-2-1为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(x1)、土壤内溶于K2CO3溶液并受溴化物水解的有机磷浓度(x2)以及土壤内溶于K2CO3溶液但不溶于溴化物的有机磷(x3)的观察数据。
求y对x1,x2,x3的线性回归方程。
表2-2-1 土壤含磷情况观察数据
计算如下:
由(2-2-16)式
代入(2-2-15)式得
(2-2-19) 若用克莱姆法则解上述方程组,则其解为
(2-2-20) 其中
计算得
b 1=1、7848,b
2
=-0、0834,b
3
=0、1611
回归方程为
应用克莱姆法则求解线性方程组计算量偏大,下面介绍更实用的方法——高斯消去法与消去变换。
多项式回归
标签: c
2009-07-04 14:52 6443人阅读评论(0) 收藏举报在上一节所介绍的非线性回归分析,首先要求我们对回归方程的函数模型做出判断。
虽然在一些特定的情况下我们可以比较容易地做到这一点,但就是在许多实际问题上常常会令我们不知所措。
根据高等数学知识我们知道,任何曲线可以近似地用多项式表示,所以在这种情况下我们可
以用多项式进行逼近,即多项式回归分析。
一、多项式回归方法
假设变量y与x的关系为p次多项式,且在x i处对y的随机误
差(i=1,2,…,n)服从正态分布N(0,),则
令
x i1=x
i
, x
i2
=x
i
2,…,x
ip
=x
i
p
则上述非线性的多项式模型就转化为多元线性模型,即
这样我们就可以用前面介绍的多元线性回归分析的方法来解决上述问题了。
其系数矩阵、结构矩阵、常数项矩阵分别为
(2-4-11)
(2-4-12)
(2-4-
13)
回归方程系数的最小二乘估计为
(2-4
-14)
需要说明的就是,在多项式回归分析中,检验b j就是否显著,实质上就就是判断x的j次项x j对y就是否有显著影响。
对于多元多项式回归问题,也可以化为多元线性回归问题来解决。
例如,对于
(2-4-15)
令x
i1=Z
i1
, x
i2
=Z
i2
, x
i3
=Z
i1
2, x
i4
=Z
i1
Z
i2
, x
i5
=Z
i2
2
则(2-4-15)式转化为
转化后就可以按照多元线性回归分析的方法解决了。
下面我们通过一个实例来进一步说明多项式回归分析方法。
一、应用举例
例2-4-2 某种合金中的主要成分为元素A与B,试验发现这两种元素之与与合金膨胀系数之间有一定的数量关系,试根据表2-4-3给出的试验数据找出y与x之间的回归关系。
表2-4-3 例2-4-2试验数据
首先画出散点图(图2-4-3)。
从散点图可以瞧出,y与x的关系可以用一个二次多项式来描述:
i=1,2,3…,13
图2-4-3 例2-4-2的散点图令
x i1=x
i
,x
i2
=x
i
2,
则
现在我们就可以用本篇第二章介绍的方法求出
的最小二乘估计。
由表2-4-3给出的数据,求出
由(2-2-16)式
由此可列出二元线性方程组
将这个方程组写成矩阵形式,并通过初等变换求b1,b2与系数矩阵L的逆矩阵L-1:
于就是
=-13、3854
b
1
=0、16598
b
2
=2、3323+13、385440-0、165981603、5=271、599
b
因此
下面对回归方程作显著性检验:
由(2-2-43)式
S
回
=由(2-2-42)式
S
总
=
S
残=L
yy
- S
回
=0、2572
将上述结果代入表2-2-2中制成方差分析表如下:
表2-4-4 方差分析表
查F检验表,F0。
01(2,10)=7、56, F>F0、01(2 ,10),说明回归方程就是高度显著的。
下面对回归系数作显著性检验
由前面的计算结果可知:
b
1=-13、3854 b
2
=0、16598
c
11=51、125 c
22
=7、991610-3
由(2-2-54)式
由(2-2-53)式
检验结果说明的x一次及二次项对y都有显著影响。