九年级圆的基础知识点、经典例题与课后习题
人教版九年级数学《圆》全册知识梳理和经典中考复习题(含答案)
人教版九年级数学《圆》全册知识梳理和经典中考复习题(含答案)
一、圆的定义
圆是一种特殊的平面图形,它是由一个点和一个半径组成的,半径是从圆心到圆周的距离。
二、圆的性质
1、圆的圆心到圆周的距离都是相等的,即半径r是相等的;
2、圆的圆周上任意两点之间的距离都是相等的;
3、圆的圆周上任意一点到圆心的距离都是相等的;
4、圆的圆周上任意一点到圆心的距离都是半径r;
5、圆的圆周上任意一点到圆心的角度都是相等的;
6、圆的圆周上任意一点到圆心的角度都是360°;
7、圆的圆周上任意一点到圆心的弧长都是相等的;
8、圆的圆周上任意一点到圆心的弧长都是2πr;
9、圆的面积是πr2;
10、圆的周长是2πr。
三、经典中考复习题
1、已知圆的圆心坐标为(2,3),半径为5,则该圆的方程是()
A.(x-2)2+(y-3)2=25 B.(x-2)2+(y-3)2=5
C.(x-2)2+(y-3)2=125 D.(x-2)2+(y-3)2=1
答案:A
2、已知圆的圆心坐标为(2,3),半径为5,则该圆的面积是()
A.25π B.5π
C.125π D.50π答案:C。
九年级数学圆的知识点例题
九年级数学圆的知识点例题圆是我们在数学学习中经常遇到的一个几何图形。
它有着独特的性质和特点,掌握圆的知识点对于理解几何形状和解决几何问题非常重要。
在这篇文章中,我将为大家介绍一些关于九年级数学中关于圆的知识点,并提供一些练习题供大家练习。
1. 圆的定义与性质圆可以通过以下方式来定义:对于给定的一个点O(圆心),和一条线段r(半径),位于r两端点之间的点构成一个圆。
圆的性质有:- 圆上的任意两点与圆心连线的长度相等。
- 圆上的点到圆心的距离等于半径的长度。
- 具有相同半径的圆,称为"等半径"圆。
练习题1:已知点A、B、C位于同一条圆上,且AB的长度为6cm,BC的长度为8cm。
求AC的长度。
2. 圆的周长与面积圆的周长也被称为圆周长,可以通过公式C = 2πr来计算,其中r是圆的半径,π是一个数学常数,约等于3.14。
圆的面积可以通过公式A = πr²来计算,其中r是圆的半径。
练习题2:一个圆的半径为10cm,求其周长和面积。
3. 弧长与圆心角圆中的一段弧被称为弧长,可以通过公式L = 2πrθ/360来计算,其中r是圆的半径,θ是圆心角的大小(以度为单位)。
圆心角是以圆心为顶点的角,可以通过公式θ = L×360/2πr来计算,其中L是弧长,r是圆的半径。
练习题3:一个圆的半径为5cm,其中的圆心角θ的大小为60°,求其弧长。
4. 切线与切点切线是与圆相切并且只有一个公共点的直线。
圆上与切线相交的点被称为切点。
圆的切线有一个重要的性质:切线与半径的垂直关系。
练习题4:一个圆的半径为4cm,切线与半径的夹角为30°,求切线与圆的切点之间的距离。
5. 弦与弦长圆内的一条线段称为弦。
弦的长度可以通过公式l = 2r sin(θ/2)来计算,其中r是圆的半径,θ是弦对应的圆心角的大小(以度为单位)。
练习题5:一个圆的半径为7cm,其中的圆心角θ的大小为45°,求其弦的长度。
九年级数学圆知识点及习题(含答案)
1、圆的有关概念与性质1.圆上各点到圆心的距离都等于 半径 。
2.圆是 轴 对称图形,任何一条直径所在的直线都是它的 对称轴 ;圆又是 中心 对称图形, 圆心 是它的对称中心。
3.垂直于弦的直径平分 这条弦 ,并且平分 弦所对的弧 ;平分弦(不是直径)的 直径 垂直于弦,并且平分 弦所对的弧 。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 相等 ,那么它们所对应的其余各组量都分别 相等 。
5.同弧或等弧所对的圆周角 相等 ,都等于它所对的圆心角的 一半 。
6.直径所对的圆周角是 90° ,90°所对的弦是 直径 。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 外 心,是三角形 三边垂直平分线 的交点。
8.与三角形各边都相切的圆叫做三角形的 内切圆 ,内切圆的圆心是三角形 三条角平分线的交点 的交点,叫做三角形的 内心 。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. 10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆内 ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d > r ,②d = r ,③d < r.2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d < r ,②d = r ,③d > r.3.圆与圆的位置关系共有五种:① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R-r ,②d = R-r ,③ R-r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。
九年级数学圆知识点及例题
九年级数学圆知识点及例题圆是初中数学中非常重要的一个几何概念,它与我们日常生活息息相关。
本文将带领大家系统地了解九年级数学中与圆相关的知识点,并提供一些例题进行辅助学习。
一、圆的基本概念1. 圆的定义:圆是平面上到一个定点(圆心)距离相等的所有点的集合。
2. 圆的要素:圆心、半径、直径、弧、弦、切线等。
二、圆的基本性质1. 圆的半径与直径的关系:直径是半径的两倍。
2. 圆的周长:圆的周长是其直径的倍数,即周长等于直径乘以π(π≈3.14)。
3. 圆的面积:圆的面积等于半径的平方乘以π。
三、圆的判定1. 距离判定定理:给定一定距离,平面上到该距离相等的点构成的图形是圆。
2. 切线定理:过圆外一点有且仅有一条切线,该切线与半径垂直。
四、圆的位置关系1. 同圆:拥有相同半径的两个圆。
2. 内切和外切:一个圆与另一个圆内部的一个点或外部的一个点相切。
3. 相交与相离:两个圆相交的情况包括相切和交叉,而相离则是两个圆不相交。
五、圆的综合应用1. 圆和三角形的关系:圆内切于一个三角形的关系、圆外接于一个三角形的关系等。
2. 圆和正多边形的关系:正n边形的内切和外切圆等。
3. 圆和椭圆、抛物线、双曲线的关系。
下面我们来看一些九年级数学中与圆相关的例题。
例题1:已知一个圆的半径是5cm,求其周长和面积。
解:根据圆的周长公式,周长等于直径乘以π。
我们已知半径是5cm,则直径是半径的两倍,即10cm。
所以,圆的周长为10cm × π ≈ 10 × 3.14 ≈ 31.4cm。
另外,根据圆的面积公式,面积等于半径的平方乘以π。
所以,圆的面积为5cm × 5cm × π ≈ 25 × 3.14 ≈ 78.5cm²。
例题2:已知圆A的半径是8cm,圆B的直径是12cm,判断这两个圆的位置关系。
解:首先,我们通过直径的关系得知,圆B的直径是圆A的直径的1.5倍,即12cm = 8cm × 1.5。
九年级圆的基础知识点、经典例题和课后习题
圆【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
③弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。
优弧:大于半圆的弧叫做优弧..劣弧:小于半圆的弧叫做劣弧..。
(为了区别优弧和劣弧,优弧用三个字母表示。
)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。
⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)
《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
九年级数学圆知识点和例题
九年级数学圆知识点和例题圆是我们数学学科中的一个重要概念,它有着广泛的应用。
在九年级数学中,我们需要掌握圆的基本知识和解决与圆相关的问题。
本文将围绕圆的知识点和例题展开讨论。
1. 圆的定义圆是由平面上到一个固定点的距离等于定长的所有点构成的集合。
该固定点称为圆心,定长称为半径,半径的两倍则是直径。
可以用圆的方程 x² + y² = r²表示,其中(x, y)表示平面上的任意点,r表示半径的长度。
2. 圆的性质圆的性质有很多,这里简要介绍几个重要的性质:- 圆的任意直径都相等。
也就是说,一个圆上的任意两点可以确定一个直径,而不同的圆无论大小,它们的直径长度是相等的。
- 圆上任意两点与圆心的连线都相等。
这个性质也叫做弦长定理,它可以用来解决一些与弦、弧有关的问题。
- 圆上的任意弧的度数等于对应的圆心角的度数。
这个性质与三角函数密切相关,可以用来求解一些与角度有关的问题。
3. 圆的周长和面积圆的周长和面积是我们在解决与圆有关问题时常用到的量。
- 圆的周长等于圆周上的一段弧的长度,它可以通过圆周长公式C = 2πr 计算,其中π近似等于3.14。
- 圆的面积等于圆内所有点构成的区域的大小,它可以通过圆面积公式A = πr² 计算。
4. 常见的题型和例题在九年级数学中,有一些常见的与圆相关的题型,接下来我们通过例题来介绍这些题型的解题方法。
例题1:已知圆A的半径为6cm,圆B的直径是圆A半径的2倍,求圆B的面积。
解:圆B的半径是圆A半径的2倍,所以圆B的半径为2 *6cm = 12cm。
利用圆面积公式A = πr²,圆B的面积为 A = 3.14 *12² ≈ 452.16cm²。
例题2:已知圆的周长为24πcm,求该圆的半径、直径和面积。
解:已知圆的周长为24πcm,根据圆周长公式C = 2πr,可得2πr = 24π,解方程可得 r = 12cm。
九年级圆知识点及习题(含答案)
圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。
3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90°,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。
九年级数学圆知识点及习题(含答案)
九年级数学圆知识点及习题(含答案)1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形, 圆心是它的对称中心。
3.垂直于弦的直径平分这条弦 ,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等 ,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等 ,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90° ,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外 ,②点在圆上 ,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交 ,②相切 ,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含 ,②相内切 ,③相交 ,④相外切 ,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
九年级数学圆知识点例题
九年级数学圆知识点例题圆是中学数学中常见的一个几何形状,掌握圆的知识与解题技巧对于九年级的学生来说非常重要。
在本文中,我将介绍一些九年级数学中关于圆的知识点和例题,并提供相应的解题思路。
一、圆的基本概念圆是由平面上和一个点距离相等的所有点组成的几何图形。
其中,这个点称为圆心,到圆心距离相等的线段称为半径,圆上的任意线段称为弦,通过圆心且两端点都在圆上的弦称为直径。
九年级学生要掌握圆的这些基本概念非常重要。
例题1:已知圆的直径长度为8cm,求圆的半径和周长。
解题思路:根据圆的性质可知,直径是半径的两倍,所以圆的半径为4cm。
圆的周长等于直径的乘以π,即8π cm。
二、圆的面积计算圆的面积计算是九年级数学中圆的重要知识点之一。
圆的面积可以通过直径或半径的长度来计算。
例题2:已知圆的直径为10cm,求圆的面积。
解题思路:先求出圆的半径,由于直径等于半径的两倍,所以半径为5cm。
圆的面积等于半径的平方乘以π,即25π cm²。
例题3:已知一圆的半径为6cm,求圆的面积。
解题思路:直接使用圆的面积公式,圆的面积等于半径的平方乘以π,即36π c m²。
三、圆的弧长和扇形面积计算除了了解圆的面积计算方法外,九年级的学生还需要掌握圆的弧长和扇形面积的计算方法。
例题4:已知圆的半径为5cm,圆心角为60°,求圆的弧长和扇形面积。
解题思路:弧长的计算可以使用圆周长的比例关系。
因为圆周长等于360°对应的弧长,所以圆的弧长等于圆周长的比例乘以圆心角的度数,即2πr×(θ/360),代入已知值计算得到弧长20π/3 cm。
扇形的面积等于扇形所对的圆心角的比例乘以圆的面积,即(θ/360)×πr²,代入已知值计算得到扇形面积25π/6 cm²。
四、圆与直线位置关系圆与直线的位置关系是九年级数学中一个较为难的知识点。
了解圆与直线的位置关系可以帮助学生解决复杂的几何问题。
九年级圆的基础知识点、经典例题与课后习题[1]
九年级圆的基础知识点、经典例题与课后习题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级圆的基础知识点、经典例题与课后习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级圆的基础知识点、经典例题与课后习题(word版可编辑修改)的全部内容。
圆【知识梳理】1.圆的有关概念和性质(1)圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论.③弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒"表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”.半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。
优弧:大于半圆的弧叫做优弧..劣弧:小于半圆的弧叫做劣弧..。
(为了区别优弧和劣弧,优弧用三个字母表示。
)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆.⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。
九年级数学:第二十四章圆知识点及练习题(附答案)
《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
九年级圆的基础知识点、经典例题与课后习题
圆【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
③弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以为端点的弧记为“”,读作“圆弧”或“弧”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。
优弧:大于半圆的弧叫做优弧..劣弧:小于半圆的弧叫做劣.弧.。
(为了区别优弧和劣弧,优弧用三个字母表示。
)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。
⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
初三数学九上圆所有知识点总结和常考题型练习题
圆知识点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O中,∵AB∥CD∴弧AC=弧BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE∠=∠;②AB DE=;③OC OF=;④弧BA=弧BD六、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
九年级上册 圆 知识重点 经典例题
九年级上册圆知识重点经典例题摘要:一、圆的基本概念和性质1.圆的定义2.圆心和半径3.圆的性质二、圆的计算1.圆的周长和面积2.弧和扇形3.圆的切线和圆的性质三、经典例题解析1.求解圆的周长和面积2.求解弧和扇形的相关问题3.求解圆的切线和圆的性质问题正文:九年级上册的数学课程中,我们学习了一个非常经典的数学概念——圆。
圆是几何图形中非常重要的一种,它在我们的日常生活中有着广泛的应用。
本篇文章将重点介绍圆的基本概念和性质,以及圆的计算方法和经典例题解析。
一、圆的基本概念和性质1.圆的定义:圆是一个平面内到定点的距离等于定长的所有点的集合。
这个定点被称为圆心,定长被称为半径。
圆心到圆上任一点的连线段叫做半径,通常用符号r 表示。
2.圆心和半径:圆心是圆的中心点,半径是从圆心到圆上任一点的距离。
在同一个圆中,所有的半径都相等,所有的弧都等于半径。
3.圆的性质:圆具有许多有趣的性质,如圆周上所有点到圆心的距离相等,圆心到圆上任一点的连线段叫做半径,等等。
二、圆的计算1.圆的周长和面积:圆的周长C=2πr,圆的面积S=πr。
其中,π是一个无理数,约等于3.14159。
2.弧和扇形:弧是圆周上的一段,扇形是由圆心角和半径所围成的图形。
弧长l=θr,扇形面积S=θ/360πr。
3.圆的切线和圆的性质:过圆外一点有且只有一条直线与圆相切,切线长d=sqrt(r-d)。
三、经典例题解析1.求解圆的周长和面积:假设一个圆的半径为5cm,求解这个圆的周长和面积。
解答:周长C=2πr=2π*5=10π≈31.4cm,面积S=πr=π*5=25π≈78.5cm。
2.求解弧和扇形的相关问题:一个半径为10cm 的圆,圆心角为90°的扇形面积是多少?解答:扇形面积S=θ/360πr=90°/360*π*10≈25π≈78.5cm。
3.求解圆的切线和圆的性质问题:一个半径为15cm 的圆,圆外一点到圆心的距离为10cm,求解这个点到圆的切线长。
人教版九年级数学上册圆知识点归纳及练习(含答案)
24.1.1 圆知识点一圆的定义圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。
固定的端点O叫作圆心,线段OA叫作半径。
第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。
比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。
知识点二圆的相关概念(1) 弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。
(2) 弧:圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
(3)等圆:等够重合的两个圆叫做等圆。
(4) 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。
24.1.2 垂直于弦的直径知识点一圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
知识点二垂径定理(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
如图所示,直径为CD, AB是弦,且CtXABCMA BAM=BM垂足为M AC =BCAD=BD D垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧如上图所示,直径CD与非直径弦AB相交于点M,CtX AB AM=BMAC=BC AD=BD注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。
24.1.1 圆知识点一圆的定义圆的定义:第一种:在一个平面内,线段0A绕它固定的一个端点0旋转一周,另一个端点A所形成的图形叫作圆。
固定的端点0叫作圆心,线段0A叫作半径。
第二种:圆心为0,半径为r的圆可以看成是所有到定点0的距离等于定长r的点的集合。
比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
③弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。
优弧:大于半圆的弧叫做优弧..劣弧:小于半圆的弧叫做劣弧..。
(为了区别优弧和劣弧,优弧用三个字母表示。
)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。
⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.3. 点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上 <===> d=r;②点在圆内 <===> d<r;③点在圆外 <===> d>r.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。
4. 确定圆的条件:1. 理解确定一个圆必须的具备两个条件:圆心和半径,圆心决定圆的位置,半径决定圆的大小.经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2. 经过三点作圆要分两种情况:(1) 经过同一直线上的三点不能作圆.(2)经过不在同一直线上的三点,能且仅能作一个圆.定理: 不在同一直线上的三个点确定一个圆.3. 三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形: 经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心: 三角形外接圆的圆心叫做这个三角形的外心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.5. 直线与圆的位置关系1. 直线和圆相交、相切相离的定义:(1)相交: 直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.(2)相切: 直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点做切点.(3)相离: 直线和圆没有公共点时,叫做直线和圆相离.2. 直线与圆的位置关系的数量特征:设⊙O的半径为r,圆心O到直线的距离为d;①d<r <===> 直线L和⊙O相交.②d=r <===> 直线L和⊙O相切.③d>r <===> 直线L和⊙O相离.3. 切线的总判定定理:经过半径的外端并且垂直于这个条半径的直线是圆的切线.4. 切线的性质定理:圆的切线垂直于过切点的半径.推论1 经过圆心且垂直于切线的直线必经过切点.推论2 经过切点且垂直于切线的直线必经过圆心.分析性质定理及两个推论的条件和结论间的关系,可得如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.①垂直于切线; ②过切点; ③过圆心.5. 三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心, 这个三角形叫做圆的外切三角形.6. 三角形内心的性质:(1)三角形的内心到三边的距离相等.(2)过三角形顶点和内心的射线平分三角形的内角.由此性质引出一条重要的辅助线: 连接内心和三角形的顶点,该线平分三角形的这个内角.6. 圆和圆的位置关系.1. 外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.(1)外离: 两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(2)外切: 两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时, 叫做这两个圆外切.这个惟一的公共点叫做切点.(3)相交: 两个圆有两个公共点,此时叫做这个两个圆相交.(4)内切: 两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个惟一的公共点叫做切点. (5)内含: 两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特例.2. 两圆位置关系的性质与判定:(1)两圆外离<===> d>R+r(2)两圆外切<===> d=R+r(3)两圆相交<===> R-r<d<R+r (R≥r)(4)两圆内切<===> d=R-r (R>r)(5)两圆内含<===> d<R-r (R>r)3. 相切两圆的性质:如果两个圆相切,那么切点一定在连心线上.4. 相交两圆的性质:相交两圆的连心线垂直平分公共弦.7. 圆内接四边形若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆.圆内接四边形的特征: ①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内错角.8. 弧长及扇形的面积1. 圆周长公式:圆周长C=2 R (R表示圆的半径)2. 弧长公式:图5弧长180Rn l π=(R 表示圆的半径, n 表示弧所对的圆心角的度数) 3. 扇形定义:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形. 4. 弓形定义:由弦及其所对的弧组成的图形叫做弓形. 弓形弧的中点到弦的距离叫做弓形高. 5. 圆的面积公式.圆的面积2R S π= (R 表示圆的半径) 6. 扇形的面积公式:扇形的面积3602R n S π=扇形(R 表示圆的半径, n 表示弧所对的圆心角的度数) 弓形的面积公式:(如图5)(1)当弓形所含的弧是劣弧时, 三角形扇形弓形S S S -= (2)当弓形所含的弧是优弧时, 三角形扇形弓形S S S +=(3)当弓形所含的弧是半圆时, 扇形弓形S R S ==221πOCBAABCDO例题解析【例题1】如图1,⊙O 是ABC ∆的外接圆,AB 是直径,若︒=∠80BOC ,则A ∠等于( )A .60ºB .50ºC .40ºD .30º图1 图2 图3 【例题2】如图2,以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆半径为10cm ,小圆半径为6cm ,则弦AB 的长为 cm . 【例题3】如图3,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,AD 为⊙O 的直径,AD =6,那么BD =_________.【例题4】如图4已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=70o ,∠c=50o ,那么sin ∠AEB 的值为()A. 21 B. 33 C.22 D. 23图4【例题5】如图5,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.C ECBAOBCAOCABS 1S 2三、课堂练习1、如图6,在⊙O 中,∠ABC =40°,则∠AOC = 度.图6 图7 图8 2、如图7,AB 是⊙O 的直径,AC 是弦,若∠ACO = 32°,则∠COB 的度数等于 .3、已知⊙O 的直径AB =8cm ,C 为⊙O 上的一点,∠BAC =30º,则BC =______cm.4、如图8,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .5、如图9,⊙O 的半径OA =10cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为___________cm 。
图96、如图10,在⊙O 中,∠ACB=∠BDC=60°,AC=cm 32, (1)求∠BAC 的度数; (2)求⊙O 的周长7、已知:如图11,⊙O的直径AB与弦CD相交于E,弧BC=弧BD,⊙O的切线BF与弦AD的延长线相交于点F.(1)求证:C D∥BF.(2)连结BC,若⊙O的半径为4,co s∠BCD=34,求线段AD、CD的长.8、如图12,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作D F⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cosE的值.图12四、经典考题解析1.如图13,在⊙O中,已知∠A CB=∠CDB=60○,AC=3,则△ABC的周长是____________.图13 图14 图152.“圆材埋壁”是我国古代《九章算术》中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”.用数学语言可表述为如图14,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD 的长为()A.12.5寸 B.13寸 C.25寸 D.26寸3.如图15,已知AB是半圆O的直径,弦AD和BC相交于点P,那么CDAB等于()A.sin∠BPD B.cos∠BPD C.tan∠BPD D.cot∠BPD4.⊙O的半径是5,AB、CD为⊙O的两条弦,且AB∥CD,AB=6,CD=8,求 AB与CD之间的距离.5.如图16,在⊙M中,弧AB所对的圆心角为1200,已知圆的半径为2cm,并建立如图所示的直角坐标系,点C是y轴与弧AB的交点。