SQL 语句完全优化

合集下载

复杂sql优化的方法及思路

复杂sql优化的方法及思路

复杂sql优化的方法及思路复杂SQL优化的方法及思路在实际的开发中,我们经常会遇到需要处理大量数据的情况,而这些数据往往需要通过SQL语句进行查询、统计、分析等操作。

然而,当数据量变得越来越大时,SQL语句的执行效率也会变得越来越低,这时就需要进行SQL优化来提高查询效率。

下面介绍一些复杂SQL 优化的方法及思路。

1. 索引优化索引是提高SQL查询效率的重要手段之一。

在使用索引时,需要注意以下几点:(1)选择合适的索引类型:根据查询条件的特点选择合适的索引类型,如B-Tree索引、Hash索引、全文索引等。

(2)避免过多的索引:过多的索引会降低SQL语句的执行效率,因为每个索引都需要占用一定的存储空间,并且在更新数据时需要维护索引。

(3)避免使用不必要的索引:有些查询条件并不需要使用索引,因此在编写SQL语句时需要避免使用不必要的索引。

2. SQL语句优化SQL语句的优化是提高查询效率的关键。

在编写SQL语句时,需要注意以下几点:(1)避免使用子查询:子查询会增加SQL语句的复杂度,降低查询效率。

可以使用JOIN语句代替子查询。

(2)避免使用OR操作符:OR操作符会使SQL语句的执行计划变得复杂,降低查询效率。

可以使用UNION操作符代替OR操作符。

(3)避免使用LIKE操作符:LIKE操作符会使SQL语句的执行计划变得复杂,降低查询效率。

可以使用全文索引代替LIKE操作符。

3. 数据库结构优化数据库结构的优化也是提高查询效率的重要手段之一。

在设计数据库结构时,需要注意以下几点:(1)避免使用过多的表:过多的表会增加SQL语句的复杂度,降低查询效率。

可以使用视图代替多个表。

(2)避免使用过多的字段:过多的字段会增加SQL语句的复杂度,降低查询效率。

可以使用分表代替过多的字段。

(3)避免使用过多的关联:过多的关联会增加SQL语句的复杂度,降低查询效率。

可以使用冗余字段代替过多的关联。

复杂SQL优化需要从索引优化、SQL语句优化和数据库结构优化三个方面入手,通过合理的优化手段提高查询效率,从而提高系统的性能和稳定性。

sql优化步骤和优化方法

sql优化步骤和优化方法

sql优化步骤和优化方法SQL优化是提高数据库查询性能的重要手段。

通过对SQL语句的优化,可以减少数据库的IO操作,提高查询效率,从而提升整个应用系统的性能。

本文将介绍SQL优化的步骤和方法,帮助读者更好地理解和应用SQL优化技巧。

一、SQL优化的步骤SQL优化的步骤可以分为以下几个阶段:1. 分析查询需求:首先要明确查询的目的和需求,确定要查询的表和字段,以及查询的条件和排序方式。

这对后续的优化工作非常重要。

2. 分析执行计划:执行计划是数据库查询优化的关键,它描述了数据库如何执行查询语句。

通过分析执行计划,可以找到查询语句中存在的性能问题,从而进行优化。

3. 优化查询语句:根据分析执行计划的结果,对查询语句进行优化。

可以从多个方面进行优化,如优化查询条件、优化索引、优化表结构等。

4. 测试和验证:对优化后的查询语句进行测试和验证,确保优化效果符合预期。

二、SQL优化的方法SQL优化的方法有很多,下面介绍几种常用的优化方法:1. 优化查询条件:合理选择查询条件,尽量减少查询结果集的大小。

可以通过使用索引、合理设计查询条件、避免使用模糊查询等方式来优化查询条件。

2. 优化索引:索引是提高查询性能的重要手段。

可以通过合理设计和使用索引,减少数据库的IO操作,提高查询效率。

需要注意的是,索引也会占用存储空间,过多的索引会影响更新操作的性能。

3. 优化表结构:合理设计表的结构,可以减少数据库的IO操作,提高查询性能。

可以通过拆分大表、合并小表、使用分区表等方式来优化表结构。

4. 避免使用子查询:子查询会导致数据库执行多次查询操作,降低查询性能。

可以通过使用连接查询、临时表等方式来避免使用子查询。

5. 避免使用不必要的字段:在查询语句中,只查询需要的字段,避免查询不必要的字段。

可以减少数据库的IO操作,提高查询效率。

6. 合理使用缓存:对于一些查询结果比较稳定的查询语句,可以将查询结果缓存起来,减少数据库的查询操作,提高查询性能。

sqlsqerver语句优化方法

sqlsqerver语句优化方法

sqlsqerver语句优化方法SQL Server是一种关系型数据库管理系统,可以使用SQL语句对数据进行操作和管理。

优化SQL Server语句可以提高查询和操作数据的效率,使得系统更加高效稳定。

下面列举了10个优化SQL Server语句的方法:1. 使用索引:在查询频繁的列上创建索引,可以加快查询速度。

但是要注意不要过度索引,否则会影响插入和更新操作的性能。

2. 避免使用SELECT *:只选择需要的列,避免不必要的数据传输和处理,提高查询效率。

3. 使用JOIN替代子查询:在进行关联查询时,使用JOIN操作比子查询更高效。

尽量避免在WHERE子句中使用子查询。

4. 使用EXISTS替代IN:在查询中使用EXISTS操作比IN操作更高效。

因为EXISTS只需要找到一个匹配的行就停止了,而IN需要对所有的值进行匹配。

5. 使用UNION替代UNION ALL:如果对多个表进行合并查询时,如果不需要去重,则使用UNION ALL操作比UNION操作更高效。

6. 使用TRUNCATE TABLE替代DELETE:如果要删除表中的所有数据,使用TRUNCATE TABLE操作比DELETE操作更高效。

因为TRUNCATE TABLE不会像DELETE一样逐行删除,而是直接删除整个表的数据。

7. 使用分页查询:在需要分页显示查询结果时,使用OFFSET和FETCH NEXT操作代替传统的使用ROW_NUMBER进行分页查询。

这样可以减少查询的数据量,提高效率。

8. 避免使用CURSOR:使用游标(CURSOR)会增加数据库的负载,降低查询效率。

如果可能的话,应该尽量避免使用游标。

9. 使用参数化查询:使用参数化查询可以减少SQL注入的风险,同时也可以提高查询的效率。

因为参数化查询会对SQL语句进行预编译,可以复用执行计划。

10. 定期维护数据库:定期清理过期数据、重建索引、更新统计信息等维护操作可以提高数据库的性能。

oracle sql 优化技巧

oracle sql 优化技巧

oracle sql 优化技巧(实用版3篇)目录(篇1)1.Oracle SQL 简介2.优化技巧2.1 减少访问数据库次数2.2 选择最有效率的表名顺序2.3 避免使用 SELECT2.4 利用 DECODE 函数2.5 设置 ARRAYSIZE 参数2.6 使用 TRUNCATE 替代 DELETE2.7 多使用 COMMIT 命令2.8 合理使用索引正文(篇1)Oracle SQL 是一款广泛应用于各类大、中、小微机环境的高效、可靠的关系数据库管理系统。

为了提高 Oracle SQL 的性能,本文将为您介绍一些优化技巧。

首先,减少访问数据库的次数是最基本的优化方法。

Oracle 在内部执行了许多工作,如解析 SQL 语句、估算索引的利用率、读数据块等,这些都会大量耗费 Oracle 数据库的运行。

因此,尽量减少访问数据库的次数,可以有效提高系统性能。

其次,选择最有效率的表名顺序也可以明显提升 Oracle 的性能。

Oracle 解析器是按照从右到左的顺序处理 FROM 子句中的表名,因此,合理安排表名顺序,可以减少解析时间,提高查询效率。

在执行 SELECT 子句时,应尽量避免使用,因为 Oracle 在解析的过程中,会将依次转换成列名,这是通过查询数据字典完成的,耗费时间较长。

DECODE 函数也是一个很好的优化工具,它可以避免重复扫描相同记录,或者重复连接相同的表,提高查询效率。

在 SQLPlus 和 SQLForms 以及 ProC 中,可以重新设置 ARRAYSIZE 参数。

该参数可以明显增加每次数据库访问时的检索数据量,从而提高系统性能。

建议将该参数设置为 200。

当需要删除数据时,尽量使用 TRUNCATE 语句替代 DELETE 语句。

执行 TRUNCATE 命令时,回滚段不会存放任何可被恢复的信息,所有数据不能被恢复。

因此,TRUNCATE 命令执行时间短,且资源消耗少。

在使用 Oracle 时,尽量多使用 COMMIT 命令。

如何进行SQL调优

如何进行SQL调优

如何进行SQL调优SQL调优是优化数据库性能的一个重要步骤。

通常情况下,优化SQL查询的效率会使整个系统的性能得到提升。

在这篇文章中,我们将探讨如何进行SQL调优。

一、分析SQL语句首先,我们需要分析SQL查询语句。

如果SQL查询不正确或不充分,则不可能实现有效的调优。

我们需要了解查询的目的、查询的表、所需的数据以及查询的条件等等。

在分析查询语句时,我们需要关注以下几个方面:1.查询完成的时间是否满足需求;2.过滤条件是否合适;3.表之间的关系是否正确;4.是否使用了合适的索引;5.查询中使用了哪些函数;6.是否将复杂的查询分解为简单的查询;7.是否存在重复数据;8.是否使用了动态语句。

二、优化数据表结构第二个优化策略是优化数据表结构。

优化数据表结构可以使查询更快并减少查询时间。

以下是一些优化数据表结构的建议:1.将表拆分为更小的表;2.对于大型的表,可以使查询更快,更好地维护和管理;3.添加数据到表中时,使用批量插入而不是单独插入;4.为表的主键添加索引;5.使用适当的数据类型;6.删除不必要的列;7.标准化表设计。

三、使用优化查询技术第三个优化策略是使用优化查询技术。

以下是一些优化查询技术的建议:1.使用预编译语句;2.使用存储过程;3.将大的表拆分为小表;4.优化查询过程中使用的函数;5.范围查询的优化技术;6.优化复杂查询;7.熟悉查询缓存的工作原理;8.使用正确的JOIN语句。

四、使用合适的索引使用合适的索引是第四个优化策略。

索引是用于查找表中数据的一种结构。

以下是一些使用索引的建议:1.只有在需要时才使用索引;2.使用准确性为索引提供数据;3.使用索引可以使查询更快,但也会增加插入和修改的时间;4.对于大型表,使用索引可以显著提高性能;5.使用覆盖索引;6.避免使用不规范的索引;7.使用联合索引;8.使用优化查询缓存。

五、优化数据库服务器优化数据库服务器是第五个优化策略。

以下是一些优化服务器的建议:1.选择正确的硬件;2.选择正确的操作系统;3.使用正确的配置参数;4.配置正确的缓存大小;5.使用内存表代替磁盘表;6.合理设置自动增量字段;7.优化写和读的优化区域;8.备份和压缩数据。

SQL优化工具及使用技巧介绍

SQL优化工具及使用技巧介绍

SQL优化工具及使用技巧介绍SQL(Structured Query Language)是一种用于管理和操作关系型数据库的编程语言。

它可以让我们通过向数据库服务器发送命令来实现数据的增删改查等操作。

然而,随着业务的发展和数据量的增长,SQL查询的性能可能会受到影响。

为了提高SQL查询的效率,出现了许多SQL优化工具。

本文将介绍一些常见的SQL优化工具及其使用技巧。

一、数据库性能优化工具1. Explain PlanExplain Plan是Oracle数据库提供的一种SQL优化工具,它可以帮助分析和优化SQL语句的执行计划。

通过使用Explain Plan命令,我们可以查看SQL查询的执行计划,了解SQL语句是如何被执行的,从而找到性能瓶颈并进行优化。

2. SQL Server ProfilerSQL Server Profiler是微软SQL Server数据库管理系统的一种性能监视工具。

它可以捕获和分析SQL Server数据库中的各种事件和耗时操作,如查询语句和存储过程的执行情况等。

通过使用SQL Server Profiler,我们可以找到数据库的性能瓶颈,并进行相应的优化。

3. MySQL Performance SchemaMySQL Performance Schema是MySQL数据库提供的一种性能监视工具。

它可以捕获和分析MySQL数据库中的各种事件和操作,如查询语句的执行情况、锁的状态等。

通过使用MySQL Performance Schema,我们可以深入了解数据库的性能问题,并对其进行优化。

二、SQL优化技巧1. 使用索引索引是提高SQL查询性能的重要手段之一。

在数据库中创建合适的索引可以加快查询操作的速度。

通常,我们可以根据查询条件中经常使用的字段来创建索引。

同时,还应注意索引的维护和更新,避免过多或过少的索引对性能产生负面影响。

2. 避免全表扫描全表扫描是指对整个表进行扫描,如果表中数据量较大,查询性能会受到较大影响。

解析并优化复杂的SQL查询语句

解析并优化复杂的SQL查询语句

解析并优化复杂的SQL查询语句当需要解析并优化复杂的SQL查询语句时,可以考虑以下步骤:1.理解查询需求:仔细阅读查询语句,并确保对查询需求的理解准确。

查看查询语句中的SELECT子句,确定需要返回的数据列;查看FROM子句,了解涉及的表和连接条件;查看WHERE子句,确认涉及的筛选条件。

2.确定索引使用:查看查询语句中的WHERE条件,并确定是否有相关的索引可以使用。

索引可以加快查询速度,减少数据库的IO操作。

可以使用EXPLAIN关键字来分析查询计划,确保查询计划中使用了正确的索引。

3.优化连接操作:当查询涉及多个表时,确保连接操作的效率。

根据数据量的大小和查询需求,可以选择合适的连接操作,如INNER JOIN、LEFT JOIN等。

同时,确保连接条件的准确性,并且检查是否需要添加索引来加快连接操作。

4.减少子查询和函数调用:子查询和函数调用可能导致额外的计算和数据库操作,从而降低查询性能。

可以考虑将子查询转换为连接操作,或者将计算逻辑移至应用程序层面。

5.避免重复计算和重复数据:如果查询结果中有重复数据,考虑使用DISTINCT关键字去重。

如果查询中有重复计算的表达式,可以使用子查询或者临时表来避免重复计算。

6.使用合适的数据类型和数据结构:根据数据的特点和查询需求,选择合适的数据类型和数据结构。

例如,对于需要进行模糊查询的文本数据,可以考虑使用全文搜索引擎来加快查询速度。

7.分页查询的优化:如果需要进行分页查询,可以考虑使用LIMIT 关键字来限制返回结果的数量。

同时,配合合适的索引使用,可以加快分页查询的速度。

8.监测和调整查询性能:使用数据库性能分析工具,监测查询的执行时间和资源使用情况。

根据监测结果,可以调整查询语句、索引和数据库配置,以提高查询性能。

拓展:-除了优化查询语句,还可以考虑优化数据库结构设计,包括合理选择数据类型、创建合适的索引、规范化数据模型等,从而提高整体的查询性能。

复杂sql优化的方法及思路

复杂sql优化的方法及思路

复杂sql优化的方法及思路复杂SQL优化的方法及思路SQL是关系型数据库管理系统中最常用的语言,但是在处理复杂查询时,SQL语句往往会变得非常复杂和冗长,导致查询速度缓慢。

为了提高查询效率,我们需要进行SQL优化。

以下是一些复杂SQL优化的方法及思路。

1.索引优化索引是提高数据库查询效率的重要手段之一。

在设计表结构时,应该根据实际情况建立适当的索引。

在查询语句中使用索引可以大大减少数据扫描量,从而提高查询效率。

2.避免使用子查询子查询虽然方便了我们编写复杂的SQL语句,但是在执行过程中会增加额外的开销。

因此,在编写复杂SQL语句时应尽量避免使用子查询。

3.减少JOIN操作JOIN操作也是影响查询效率的一个重要因素。

在设计表结构时应尽量避免使用JOIN操作或者减少JOIN操作次数。

4.合理使用聚合函数聚合函数(如SUM、AVG等)可以对数据进行统计分析,在处理大量数据时非常有用。

但是,在使用聚合函数时要注意不要频繁调用,否则会降低查询效率。

5.使用EXPLAIN命令分析查询语句EXPLAIN命令可以分析查询语句的执行计划,从而找出影响查询效率的因素。

通过分析EXPLAIN结果,可以对SQL语句进行优化。

6.避免使用SELECT *SELECT *会查询所有列,包括不需要的列,增加了数据扫描量,降低了查询效率。

在编写SQL语句时应尽量避免使用SELECT *。

7.合理使用缓存缓存可以减少数据库访问次数,提高查询效率。

在设计系统架构时应考虑缓存的使用。

8.优化表结构表结构的设计也是影响SQL查询效率的一个重要因素。

在设计表结构时应尽量避免冗余数据和过多的列。

以上是一些复杂SQL优化的方法及思路。

通过合理运用这些方法和思路,可以大大提高SQL查询效率,为数据库管理系统提供更好的性能和稳定性。

oracle sql优化常用的15种方法

oracle sql优化常用的15种方法

oracle sql优化常用的15种方法1. 使用合适的索引索引是提高查询性能的重要手段。

在设计表结构时,根据查询需求和数据特点合理地添加索引。

可以通过创建单列索引、复合索引或者位图索引等方式来优化SQL查询。

2. 确保SQL语句逻辑正确SQL语句的逻辑错误可能会导致低效查询。

因此,在编写SQL语句前,需要仔细分析查询条件,确保逻辑正确性。

3. 使用连接替代子查询在一些场景下,使用连接(JOIN)操作可以替代子查询,从而减少查询的复杂度。

连接操作能够将多个数据集合合并为一个结果集,避免多次查询和表的扫描操作。

4. 避免使用通配符查询通配符查询(如LIKE '%value%')在一些情况下可能导致全表扫描,性能低下。

尽量使用前缀匹配(LIKE 'value%')或者使用全文索引进行模糊查询。

5. 注意选择合适的数据类型选择合适的数据类型有助于提高SQL查询的效率。

对于整型数据,尽量使用小范围的数据类型,如TINYINT、SMALLINT等。

对于字符串数据,使用CHAR字段而不是VARCHAR,可以避免存储长度不一致带来的性能问题。

6. 优化查询计划查询计划是数据库在执行SQL查询时生成的执行计划。

通过使用EXPLAIN PLAN命令或者查询计划工具,可以分析查询计划,找出性能瓶颈所在,并对其进行优化。

7. 减少磁盘IO磁盘IO是影响查询性能的重要因素之一。

可以通过增加内存缓存区(如SGA)、使用高速磁盘(如SSD)、使用合适的文件系统(如ASM)等方式来减少磁盘IO。

8. 分区表对于大数据量的表,可以考虑使用分区表进行查询优化。

分区表可以将数据按照某个规则分散到不同的存储区域,从而减少查询范围和加速查询。

9. 批量操作尽量使用批量操作而不是逐条操作,可以减少数据库的事务处理开销,提高SQL执行效率。

可以使用INSERT INTO SELECT、UPDATE、DELETE等批量操作语句来实现。

sql语句优化面试题

sql语句优化面试题

sql语句优化面试题在数据库开发和优化领域,SQL语句优化是一个重要的话题。

随着数据量的增长,SQL查询性能的优化变得尤为重要。

本文将介绍一些常见的SQL语句优化面试题,并提供一些解析和最佳实践。

1. 什么是SQL语句优化?SQL语句优化是为了提高数据库查询性能而对SQL查询语句进行的一系列改进和调整的过程。

通过对SQL查询进行优化,可以减少数据库的负载,加快查询速度,提升应用程序的性能。

2. SQL语句优化的方法有哪些?- 索引优化:为表中的关键列创建索引,并确保索引被合理地使用。

- 查询重写:通过改变查询方式或者重写查询语句,使其更加高效。

- 视图优化:使用视图来优化复杂的查询,减少重复性的计算和读取操作。

- 表分区:根据数据特性和查询模式将表划分成多个分区,提高查询效率。

- 缓存优化:通过使用缓存技术,减少对数据库的访问次数,加快查询速度。

3. 请列举一些常见的SQL查询性能问题。

- 缺乏合适的索引导致全表扫描,查询速度慢。

- 过多的连接操作导致查询复杂度高。

- 子查询嵌套层次过多,增加查询开销。

- 数据库统计信息不准确,导致查询优化器做出错误的执行计划。

- 数据库设计模型不合理,导致查询需要多次关联多个表。

4. 如何通过索引优化来提高查询性能?- 确保重要的查询列都有索引,特别是在WHERE和JOIN子句中经常使用的列。

- 避免在索引列上进行函数、计算或者转换操作,这会导致索引失效。

- 确保索引的列的顺序和查询条件的顺序一致,可以减少索引树的搜索次数。

- 如果一次查询中需要访问的数据较少,可以使用覆盖索引来避免对表的访问。

5. 如何避免SQL注入攻击?- 使用参数化查询或者预编译语句,将用户输入的数据作为参数传递给SQL查询。

- 对输入进行严格的合法性验证,过滤掉潜在的恶意字符。

- 使用ORM框架或者存储过程等抽象层来处理SQL查询,减少直接操作数据库的风险。

6. 如何优化复杂查询?- 尽量避免使用嵌套查询,可以使用关联查询或者临时表来替代。

SQL优化的几种方法及总结

SQL优化的几种方法及总结

SQL优化的⼏种⽅法及总结优化⼤纲:通过explain 语句帮助选择更好的索引和写出更优化的查询语句。

SQL语句中的IN包含的值不应该过多。

当只需要⼀条数据的时候,使⽤limit 1。

如果限制条件中其他字段没有索引,尽量少⽤or。

尽量⽤union all代替union。

不使⽤ORDER BY RAND()。

区分in和exists、not in和not exists。

使⽤合理的分页⽅式以提⾼分页的效率。

查询的数据过⼤,可以考虑使⽤分段来进⾏查询。

避免在where⼦句中对字段进⾏null值判断。

避免在where⼦句中对字段进⾏表达式操作。

必要时可以使⽤force index来强制查询⾛某个索引。

注意查询范围,between、>、<等条件会造成后⾯的索引字段失效。

关于JOIN优化。

优化使⽤1、mysql explane ⽤法 explane显⽰了mysql如何使⽤索引来处理select语句以及连接表。

可以帮助更好的索引和写出更优化的查询语句。

EXPLAIN SELECT*FROM l_line WHERE `status` =1and create_at >'2019-04-11';explain字段列说明table:显⽰这⼀⾏的数据是关于哪张表的type:这是重要的列,显⽰连接使⽤了何种类型。

从最好到最差的连接类型为const、eq_reg、ref、range、indexhe和allpossible_keys:显⽰可能应⽤在这张表中的索引。

如果为空,没有可能的索引。

可以为相关的域从where语句中选择⼀个合适的语句key:实际使⽤的索引。

如果为null,则没有使⽤索引。

很少的情况下,mysql会选择优化不⾜的索引。

这种情况下,可以在select语句中使⽤use index(indexname)来强制使⽤⼀个索引或者⽤ignore index(indexname)来强制mysql忽略索引key_len:使⽤的索引的长度。

DB2_SQL优化

DB2_SQL优化

DB2_SQL优化
1、对SQL语句进行整体优化
在进行DB2SQL优化之前,首先要对SQL语句进行整体优化,这需要考虑数据库表的数据量、存储索引的有效性以及数据库系统的功能特性。

一般来说,进行整体优化需要遵循以下几点原则:
(1)优化SQL语句的语法。

要检查SQL语句中是否存在语法错误,并尽可能减少不必要的运算和空语句;
(2)把变量与常量进行区分,优先使用常量;
(3)使用合适的数据类型,减少不必要的转换操作;
(4)优化查询条件,尽量不要使用*,减少查询数据量;
(5)减少不必要的函数操作,例如使用 "case when" 语句取代"if" 语句;
(6)尽量不要使用子查询,子查询会降低查询效率,应当尽量使用关联查询。

2、使用索引提高查询性能
索引是数据库中实现快速检索的重要机制,针对查询表中不同的字段构建适当的索引可以有效地减少查询的时间,提高查询性能。

(1)最常用的方式是使用普通索引,普通索引可以提高SELECT和ORDERBY的查询性能;
(2)使用唯一索引,可以满足检索结果中每条记录的唯一性;
(3)使用组合索引,它是多个字段的索引;
(4)使用复合索引,它是多个组合索引组成的一种索引。

SQL优化查询速度的方法

SQL优化查询速度的方法

SQL优化查询速度的方法
1、优化SQL语句:
(1)改善SQL语句的语法和逻辑结构
SQL语法的效率取决于SQL的结构,要想提高SQL的查询结果,需要
有良好的结构来表达,常见的结构如下:
(1)尽可能使用join操作,而不是使用函数,比如使用inner
join或outer join替代union all或sub queries;
(2)优化where子句,尽量将where中的查询条件尽量细化,以提
高查询速度;
(3)尽量使用到sql的索引功能,使用合适的索引可以大大提高
sql语句的执行效率;
(4)考虑使用exists和not exists代替in和not in,因为in和not in只能执行单表查询,而exists和not exists可以实现多表查询,提高查询效率;
(5)尽量避免使用order by和group by,它们会对结果集进行排
序和分组,浪费大量时间;
(6)尽量避免使用like操作符,因为它会导致索引失效。

(2)利用缓存技术优化查询
缓存技术是指将查询条件放在缓存中,根据缓存的内容来提高查询速度。

在同一个环境中,如果时间跨度较长,可以考虑使用缓存技术,以提
高查询速度。

(3)优化sql语句的执行计划
sql语句的执行计划是指sql语句经过编译后,数据库系统根据具体的sql语句结构和条件给出的执行计划,优化sql语句的执行计划则指在sql语句的结构和条件不变的前提下。

mssql sql查询语句优化的实用方法

mssql sql查询语句优化的实用方法

mssql sql查询语句优化的实用方法### SQL查询语句优化:提升MS SQL性能的实用方法在数据库管理与应用中,查询语句的性能直接关系到整个系统的响应速度和用户体验。

针对MS SQL(Microsoft SQL Server)的查询优化显得尤为重要。

本文将深入探讨一些实用的方法,帮助您优化MS SQL查询语句,提升数据库性能。

#### 一、合理使用索引索引是数据库查询性能提升的关键。

正确创建和使用索引可以大幅提高查询速度。

1.**创建合适的索引**:根据查询模式创建索引,对于经常作为查询条件的列,应创建索引。

2.**避免过多索引**:索引虽好,但也会增加写操作的负担,应避免不必要的索引。

3.**索引维护**:定期对索引进行维护,如重建索引,以消除碎片。

#### 二、优化查询逻辑查询逻辑的优化可以有效减少数据库的负担,提高查询效率。

1.**优化查询条件**:尽量使查询条件能够利用索引,避免使用函数在列上,导致索引失效。

2.**合理使用连接**:只有在必要时才使用JOIN操作,并确保JOIN操作的表上有适当的索引。

3.**子查询优化**:将子查询转换为JOIN,以提高查询性能。

#### 三、控制查询返回数据量减少返回的数据量可以缩短查询时间,提高效率。

1.**使用LIMIT**:当只需要部分数据时,使用TOP或LIMIT子句限制返回的记录数。

2.**选择必要的列**:只选择需要的列,避免使用SELECT *。

#### 四、查询缓存的使用利用MS SQL的查询缓存可以减少重复执行相同查询的次数。

1.**启用查询缓存**:对于不经常变更的数据,启用查询缓存可以显著提高查询效率。

2.**合理设置缓存策略**:根据实际应用场景,合理设置缓存失效时间。

#### 五、查询语句的编写技巧在编写查询语句时,一些小技巧可以大大提升查询性能。

1.**避免使用通配符**:在LIKE查询中避免使用前导百分号,这将导致索引失效。

数据库查询优化-20条必备sql优化技巧

数据库查询优化-20条必备sql优化技巧

数据库查询优化-20条必备sql优化技巧0、序⾔本⽂我们来谈谈项⽬中常⽤的 20 条 MySQL 优化⽅法,效率⾄少提⾼ 3倍!具体如下:1、使⽤ EXPLAIN 分析 SQL 语句是否合理使⽤ EXPLAIN 判断 SQL 语句是否合理使⽤索引,尽量避免 extra 列出现:Using File Sort、Using Temporary 等。

2、必须被索引重要SQL必须被索引:update、delete 的 where 条件列、order by、group by、distinct 字段、多表 join 字段。

3、联合索引对于联合索引来说,如果存在范围查询,⽐如between、>、<等条件时,会造成后⾯的索引字段失效。

对于联合索引来说,要遵守最左前缀法则:举列来说索引含有字段 id、name、school,可以直接⽤ id 字段,也可以 id、name 这样的顺序,但是 name; school 都⽆法使⽤这个索引。

所以在创建联合索引的时候⼀定要注意索引字段顺序,常⽤的查询字段放在最前⾯。

4、强制索引必要时可以使⽤ force index 来强制查询⾛某个索引: 有的时候MySQL优化器采取它认为合适的索引来检索 SQL 语句,但是可能它所采⽤的索引并不是我们想要的。

这时就可以采⽤ forceindex 来强制优化器使⽤我们制定的索引。

5、⽇期时间类型对于⾮标准的⽇期字段,例如字符串的⽇期字段,进⾏分区裁剪查询时会导致⽆法识辨,依旧⾛全表扫描。

尽管 TIMESTAMEP 存储空间只需要 datetime 的⼀半,然⽽由于类型 TIMESTAMP 存在性能问题,建议你还是尽可能使⽤类型 DATETIME。

(TIMESTAMP ⽇期存储的上限为2038-01-19 03:14:07,业务⽤ TIMESTAMP 存在风险;)6、禁⽌使⽤ SELECT *SELECT 只获取必要的字段,禁⽌使⽤ SELECT *。

SQL语句的优化与性能调优技巧

SQL语句的优化与性能调优技巧

SQL语句的优化与性能调优技巧在数据库开发和管理中,优化SQL语句的性能是极为重要的一项工作。

通过调整和优化SQL语句,可以大大提高数据库的响应速度和吞吐量,从而提升系统的整体性能。

本文将介绍一些常见的SQL语句优化与性能调优技巧,帮助读者理解并应用于实际项目中。

1. 使用合适的索引索引是加速数据库查询速度的重要手段。

通过在表的列上创建索引,可以快速定位符合条件的记录,减少磁盘IO和CPU消耗。

在选择索引列时,考虑到经常被查询的列、过滤条件频繁出现的列和联合查询列等因素。

但要注意索引不是越多越好,因为索引也需要空间存储和维护成本。

2. 优化SQL查询语句优化SQL查询语句是提升性能的关键。

首先,尽量避免使用SELECT *,而是选择需要的列。

次之,合理使用WHERE子句,通过条件过滤掉不必要的记录。

同时,使用JOIN关键字连接表时,考虑到被连接表上的索引列,以及避免笛卡尔积的产生。

3. 使用预处理语句预处理语句(Prepared Statement)在SQL语句和执行之间进行了解耦,提高了执行效率和安全性。

这是因为预处理语句使用参数绑定,可以先将SQL语句发送给数据库进行编译和优化,然后再绑定参数执行。

这样可以减少SQL语句的解析开销,提高重复执行的效果。

4. 适当分页在查询返回大量数据时,如果一次性返回所有记录会对数据库和网络造成很大的压力。

而适当地进行分页可以提高用户体验和系统性能。

可以通过使用LIMIT 和OFFSET语句进行分页查询,限制返回结果的数量,并指定偏移量。

5. 避免使用子查询子查询虽然灵活,但通常会造成性能问题。

在使用子查询之前,可以考虑使用连接查询或者临时表来替代。

这样可以将查询过程分解为多个步骤,降低复杂度,提高查询效率。

6. 避免重复查询和计算重复查询和计算是常见的性能问题之一。

为了避免反复查询相同的数据或重复计算相同的结果,可以使用临时表、视图或变量来存储中间结果。

在需要使用这些结果时,直接从中间存储中获取,避免不必要的开销。

优化sql语句提高oracle执行效率

优化sql语句提高oracle执行效率

优化sql语句提高oracle执行效率
1.尽可能高效:采用最有效的查询方式、避免使用不必要的查询语句、提高检索速度而非数据量。

2.避免使用子查询:尽量不使用子查询,把子查询换成联合查询或者
通过多表连接更新数据。

3.避免重复读取:尽量从数据库中读取一次数据,不要读取多次相同
的数据,避免多次查询,提高数据库的查询效率。

4.避免使用NOTIN和NOTEXISTS:尽量不用NOTIN和NOTEXISTS查询
语句,因为这种查询方式比较耗时,可以把NOTIN换成LEFTJOIN不为空
即可。

5.避免使用OR:尽量不用OR,用AND替代OR,AND通常比OR更有效。

6.避免使用模糊查询:尽量不用模糊查询,模糊查询效率较低,可以
用相似查询替代模糊查询。

7.合并多个表:如果有多个表,尽量合并这些表,以便减少查询次数。

8. 使用索引: 设置索引来提高查询速度,尽可能在 Where、Group by、Having、Order by等关键字中使用索引。

9. 优化sql语句顺序: 尽可能把WHERE条件的语句写在前面,以便
优先查询出少量的数据来,提高查询效率;把ORDER BY语句写在最后,
以便能有效地利用索引。

10.选择可用的查询方法:使用最适合的查询方法,选择适当的SELECT语句、JOIN语句和UNION语句,以使SQL语句更快地返回结果。

11. 避免使用Distinct: Distinct能会导致查询效率降低,尽量避免使用Distinct。

sql优化案例

sql优化案例

sql优化案例SQL优化案例在一个大型电商平台中,有一个订单表(order)存储了所有的订单信息,包括订单编号、下单时间、支付时间、收货地址等等。

该表中数据量非常庞大,每天都会有数百万笔订单数据被写入该表中。

同时,在查询方面也有很多需求,比如根据订单编号查询订单详情、根据下单时间查询当天的所有订单等等。

由于数据量非常大,查询速度变得非常缓慢,导致用户体验不佳,因此需要对该表进行SQL优化。

具体优化方案如下:1. 添加索引在该表中,最常用的查询条件是根据订单编号进行查询。

因此,在order表上添加一个以order_id为主键的索引可以极大地提高查询速度。

2. 使用分区表由于order表中的数据量非常庞大,因此使用分区表可以更好地管理和维护这些数据。

将order表分为按月份分区的子表可以有效地减少单个子表中的数据量,并且便于备份和恢复。

3. 减少子查询在一些复杂的SQL语句中,经常会使用到子查询。

但是过多的子查询会导致性能下降。

因此,在编写SQL语句时应尽可能避免使用子查询,并且可以考虑将一些子查询转换为JOIN查询。

4. 使用缓存由于order表中的数据量非常大,每次查询都需要从磁盘中读取数据,因此会导致查询速度变慢。

可以考虑使用缓存技术,在内存中保存一些经常被访问的数据,以减少磁盘I/O操作。

5. 数据库优化在优化SQL性能时,还需要对数据库本身进行优化。

比如调整数据库参数、增加内存、使用SSD等等。

通过以上优化措施,可以极大地提高订单查询的速度和效率,从而提高用户体验和平台的整体性能。

SQL语句的优化策略

SQL语句的优化策略

SQL语句的优化:1、如果需要控制查询的记录条数,可以使用dao.query()的方法来实现,不要在sql语句中采取rownum<n的方式;2、数据库索引的建立:目前的系统中很多表没有建立必要的索引,导致查询消耗了很长时间。

随着系统的不断运行,数据量不断加大,效率会越来越低。

请建立必要的数据库索引,并注意:◆避免对索引字段进行计算操作◆避免在索引字段上使用not,<>,!=:对不等于操作符的处理会造成全表扫描,可以用“<” or “>”代替,不等于操作符是永远不会用到索引的,因此对它的处理只会产生全表扫描。

不用“<>”或者“!=”操作符。

Where子句中出现IS NULL或者IS NOT NULL时,Oracle会停止使用索引而执行全表扫描。

◆避免在索引列上使用IS NULL和IS NOT NULL◆避免在索引列上出现数据类型转换◆避免在索引字段上使用函数;如果需要,可以建立函数索引◆避免建立索引的列中使用空值。

◆对于有连接的列“||”,最后一个连接列索引会无效。

尽量避免连接,可以分开连接或者使用不作用在列上的函数替代。

3、部分UPDATE、SELECT 语句写得很复杂(经常嵌套多级子查询),可以考虑适当拆成几步进行处理;4、update:同一个表的修改在一个过程里出现好几十次,如:update table1set col1=...where col2=...;update table1set col1=...where col2=.........,象这类脚本其实可以很简单就整合在一个UPDATE语句来完成。

5、在可以使用UNION ALL的语句里,使用了UNION:UNION 因为会将各查询子集的记录做比较,故比起UNION ALL ,通常速度都会慢上许多。

一般来说,如果使用UNION ALL能满足要求的话,务必使用UNION ALL。

还有一种情况大家可能会忽略掉,就是虽然要求几个子集的并集需要过滤掉重复记录,但由于脚本的特殊性,不可能存在重复记录,这时便应该使用UNION ALL。

SQL优化的几种方法

SQL优化的几种方法

SQL优化的⼏种⽅法1、对查询进⾏优化,应尽量避免全表扫描,⾸先考虑在where及order by上建⽴索引。

2、应尽量避免在where⼦句中进⾏以下操作:对字段进⾏null判断;使⽤!=或<>操作符;使⽤or连接条件;使⽤in或not in;使⽤like;等号左侧使⽤算术运算;对字段进⾏函数运算等。

以上操作将导致引擎放弃索引⽽进⾏全表扫描。

3、不要写⼀些没有意义的查询,如⽣成⼀个空表。

4、使⽤exists替代in,⽤not exists替代not in。

not in 是低效的,因为它对⼦查询中的表执⾏了⼀个全表遍历,他执⾏了⼀个内部的排序和合并。

select num from a where exists(select 1 from b where num=a.num)5、对只含数值信息的字段尽量使⽤数值型代替字符型,否则会降低查询和连接性能。

6、尽可能使⽤varchar代替char,节约存储空间,提⾼效率。

7、尽量⽤具体字段代替*进⾏查询。

8、在使⽤索引字段作为条件时,如果索引是复合索引,必须使⽤该索引的第⼀个字段作为条件才能保证系统使⽤该索引。

9、当索引中有⼤量重复数据时,索引是⽆效的。

10、当进⾏update或insert操作时,索引的存在会降低该操作的效率。

11、尽量避免频繁创建或删除临时表,减少系统资源消耗。

12、在新建临时表时,如果⼀次性插⼊数据量很⼤,那么可以使⽤select into代替create table,避免产⽣⼤量log,提⾼效率。

13、如果使⽤到了临时表,在存储过程的最后务必将所有的临时表显⽰的删除,先truncate table ,然后drop table,避免系统表长时间锁定。

14、尽量避免使⽤游标,因为游标效率较差,如果游标操作的数据超过1万⾏,那么就应该考虑改写。

15、对于⼩型数据集使⽤fast_forward游标要优于其他逐⾏处理⽅法,尤其是在必须引⽤⼏个表才能获取所需要的数据时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们要做到不但会写SQL,还要做到写出性能优良的SQL语句。

(1)选择最有效率的表名顺序(只在基于规则的优化器中有效):Oracle的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。

如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表。

(2)WHERE子句中的连接顺序:Oracle采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。

(3)SELECT子句中避免使用‘*’:Oracle在解析的过程中, 会将‘*’依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间。

(4)减少访问数据库的次数:Oracle在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量, 读数据块等。

(5)在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量,建议值为200。

(6)使用DECODE函数来减少处理时间:使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表。

(7)整合简单,无关联的数据库访问:如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)。

(8)删除重复记录:最高效的删除重复记录方法( 因为使用了ROWID)例子:DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID) FROM EMP X WHERE X.EMP_NO = E.EMP_NO);(9)用TRUNCATE替代DELETE:当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息。

当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短。

(TRUNCATE 只在删除全表适用,TRUNCATE是DDL不是DML)。

(10)尽量多使用COMMIT:只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少,COMMIT所释放的资源:a. 回滚段上用于恢复数据的信息。

b. 被程序语句获得的锁。

c. redo log buffer 中的空间。

d. Oracle为管理上述3种资源中的内部花费。

(11)用Where子句替换HA VING子句:避免使用HA VING子句,HA VING 只会在检索出所有记录之后才对结果集进行过滤。

这个处理需要排序,总计等操作。

如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销。

(非oracle中)on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后才进行sum,在两个表联接时才用on的,所以在一个表的时候,就剩下where 跟having比较了。

在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。

在多表联接查询时,on比where更早起作用。

系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。

由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里。

(12)减少对表的查询:在含有子查询的SQL语句中,要特别注意减少对表的查询。

例子:SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECTTAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604)(13)通过内部函数提高SQL效率:复杂的SQL往往牺牲了执行效率。

能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的。

(14)使用表的别名(Alias):当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上。

这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误。

(15)用EXISTS替代IN、用NOT EXISTS替代NOT IN:在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接。

在这种情况下,使用EXISTS(或NOT EXISTS)通常将提高查询的效率。

在子查询中,NOT IN子句将执行一个内部的排序和合并。

无论在哪种情况下,NOT IN都是最低效的(因为它对子查询中的表执行了一个全表遍历)。

为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS。

例子:(高效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND EXISTS (SELECT ‘X' FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = ‘MELB')(低效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC = ‘MELB')(16)识别‘低效执行’的SQL语句:虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法:SELECT EXECUTIONS , DISK_READS, BUFFER_GETS, ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio, ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run, SQL_TEXT FROM V$SQLAREA WHERE EXECUTIONS>0 AND BUFFER_GETS > 0 AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8 ORDER BY 4 DESC;索引是表的一个概念部分,用来提高检索数据的效率,Oracle使用了一个复杂的自平衡B-tree 结构。

通常,通过索引查询数据比全表扫描要快。

当Oracle找出执行查询和Update语句的最佳路径时, Oracle优化器将使用索引。

同样在联结多个表时使用索引也可以提高效率。

另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证。

那些LONG或LONG RAW 数据类型, 你可以索引几乎所有的列。

通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率。

虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价。

索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改。

这意味着每条记录的INSERT,DELETE ,UPDATE将为此多付出4、5次的磁盘I/O 。

因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢。

定期的重构索引是有必要的:ALTER INDEX <INDEXNAME> REBUILD <TABLESPACENAME>(18)用EXISTS替换DISTINCT:当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT。

一般可以考虑用EXIST替换,EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果。

例子:(低效): SELECT DISTINCT DEPT_NO,DEPT_NAME FROM DEPT D , EMP E WHERE D.DEPT_NO = E.DEPT_NO (高效): SELECT DEPT_NO,DEPT_NAME FROM DEPT D WHERE EXISTS ( SELECT ‘X' FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO);(19)SQL语句用大写的;因为Oracle总是先解析SQL语句,把小写的字母转换成大写的再执行。

(20)在Java代码中尽量少用连接符“+”连接字符串。

(21)避免在索引列上使用NOT通常,我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响。

当Oracle“遇到”NOT,他就会停止使用索引转而执行全表扫描。

(22)避免在索引列上使用计算。

WHERE子句中,如果索引列是函数的一部分。

优化器将不使用索引而使用全表扫描。

举例:低效:SELECT …FROM DEPT WHERE SAL * 12 > 25000; 高效: SELECT …FROM DEPT WHERE SAL > 25000/12;(23)用>=替代>:高效:SELECT * FROM EMP WHERE DEPTNO >=4 低效: SELECT * FROM EMP WHERE DEPTNO >3两者的区别在于,前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录。

(24)用UNION替换OR (适用于索引列):通常情况下,用UNION替换WHERE子句中的OR将会起到较好的效果。

对索引列使用OR将造成全表扫描。

注意,以上规则只针对多个索引列有效。

相关文档
最新文档