高中数学(人教,选修2-3)第一章《计数原理》测试题B卷.docx

合集下载

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)(1)

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)(1)

一、选择题1.设01a <<,2a b +=,随机变量X 的分布列如表:则当()0,1a ∈内增大时( )X a1bP1313 13A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大2.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭ C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭3.已知ξ的分布列如图所示,设2-5ηξ=,则()=E η( )A .12B .13C .23D .324.已知,a b 为实数,随机变量X ,Y 的分布列如下:X 1- 0 1P13 1216Y 1-1Pabc若()(1)E Y P Y ==-,随机变量ξ满足XY ξ=,其中随机变量X ,Y 相互独立,则()E ξ取值范围的是( )A .3,14⎡⎤-⎢⎥⎣⎦B .1,018⎡⎤-⎢⎥⎣⎦C .1,118⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦5.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙每次投篮命中的概率为0.6,而且不受其他次投篮结果的影响.设投篮的轮数为X ,若甲先投,则()P X k =等于( ) A .10.60.4k -⨯B .10.240.76k -⨯C .10.40.6k -⨯D .10.760.24k -⨯6.在三次独立重复试验中,事件A 在每次试验中发生的概率相同,若事件A 至少发生一次的概率为6364,则事件A 发生次数ξ的期望和方差分别为 ( ) A .94和916 B .34和316C .916和364D .94和9647.将4个文件放入到3个盒子中,随机变量X 表示盒子中恰有文件的盒子个数,则EX 等于( ) A .6227B .73C .6427D .65278.已知随机变量X 的分布列为P(X =i)=2ia(i =1,2,3,4),则P(2<X≤4)等于( ) A .910B .710 C .35D .129.三个元件123,,T T T 正常工作的概率分别为123,,234,且是相互独立的.如图,将23,T T 两个元件并联后再与1T 元件串联接入电路,则电路不发生故障的概率是( )A .1124B .2324C .14D .173210.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072911.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ=12.2017年5月30日是我国的传统节日端午节,这天小明的妈妈为小明煮了5个粽子,其中两个大枣馅三个豆沙馅,小明随机取出两个,事件A =“取到的两个为同一种馅”,事件B =取到的两个都是豆沙馅”,则(|)P B A =( ) A .34B .14C .110D .310二、填空题13.测量某一目标的距离时,所产生的随机误差X 服从正态分布()220,10N ,如果独立测量3次,至少一次测量误差在()0,30内的概率是__________.附参考数据:()0.68P X μδμδ-<≤+=,()220.95P X μδμδ-<≤+=,()330.99P X μδμδ-<≤+=,20.1850.03=,30.1850.006=,20.8150.66=,30.8150.541=.14.如图所示,旋转一次的圆盘,指针落在圆盘中3分处的概率为a ,落在圆盘中2分处的概率为b ,落在圆盘中0分处的概率为c ,(,,(0,1)a b c ∈),已知旋转一次圆盘得分的数学期望为1分,则213a b+的最小值为________.15.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,比赛停止时一共已打ξ局, 则ξ的期望值()E ξ=______. 16.甲、乙两人投篮命中的概率分别为p,q,他们各投2次,若p=12,且甲比乙投中次数多的概率为736,则q 的值为____. 17.已知随机变量X ~B (10,0.2),Y =2X +3,则EY 的值为____________. 18.某篮球运动员投中篮球的概率为23,则该运动员“投篮3次至多投中1次”的 概率是__________.(结果用分数表示)19.设事件A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为_____. 20.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若命题:p “2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--<”;③设随机变量~(,)B n p ξ,且()2,()1E D ξξ==,则(1)p ξ==14;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上).三、解答题21.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色的单车的投放比例为2:1.监管部门为了了解两种颜色的单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同. (1)求抽取的5辆单车中有2辆是蓝色颜色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机地抽取一辆送技术部门作进一步抽样检测,并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机地抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车以ξ表示,求ξ的分布列. 22.某生物研究所为研发一种新疫苗,在200只小白鼠身上进行科研对比实验,得到如下统计数据:现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为20. (1)能否有99.9%的把握认为注射此种疫苗有效?(2)现从感染病毒的小白鼠中任意抽取2只进行病理分析,记注射疫苗的小白鼠只数为X ,求X 的概率分布和数学期望()E X .附:()()()()()22,n ad bc K n a b c d a b c d a c b d -==+++++++,23.某公司的一次招聘中,应聘者都要经过三个独立项目A ,B ,C 的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A ,B ,C 每个项目测试的概率都是12. (1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X ,求X 的概率分布和数学期望.24.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . ①利用该正态分布,求()187.8212.2P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.已知X 服从二项分布(),B n p ,利用①的结果,求()E X .15012.2若()2,Z N μσ~则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.25.推进垃圾分类处理,是落实绿色发展理念的必然选择,也是打赢污染防治攻坚战的重要环节.为了解居民对垃圾分类的了解程度某社区居委会随机抽取1000名社区居民参与问卷测试,并将问卷得分绘制频率分布表如表: 得分[30,40)[40,50) [50,60) [60,70) [70,80) [80,90) [90,100] 男性人数 40 90 120 130 110 60 30 女性人数 2050801101004020(1)从该社区随机抽取一名居民参与问卷测试试估计其得分不低于60分的概率: (2)将居民对垃圾分类的了解程度分为“比较了解”(得分不低于60分)和“不太了解”(得分低于60)两类,完成2×2列联表,并判断是否有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关?(3)从参与问卷测试且得分不低于80分的居民中,按照性别进行分层抽样,共抽取10人,现从这10人中随机抽取3人作为环保宣传队长,设3人中男性队长的人数为ξ,求ξ的分布列和期望.附:22(),()()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 临界值表:26.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求X 0=,1X =,2X =,3X =时的概率()0P X =,()1P X =,()2P X =,()3P X =;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】先求出()E X ,利用方差的定义建立()()22=13D X a -,利用二次函数单调性判断出()D X 的变化.【详解】由题意:()1111333E X a b =⨯+⨯+⨯, ∵2a b +=,∴()1E X =.∴()()()()()222221111=111123333D X a b a b -⨯+-⨯+-⨯=+-⨯ 又2a b +=,∴2b a =-,∴()()()()2222122=2=21=1333D X a b a a a +-⨯-+- ∴当01a <<时,()()22=13D X a -单调递减,即当()0,1a ∈内增大时()D X 减小. 故选:B2.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==.故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.3.C解析:C 【分析】根据分布列的性质,求得13m =,由期望的公式,可得17()6E ξ=,再根据()()5E E ηξ=-,即可求解.【详解】由题意,根据分布列的性质,可得1111663m +++=,解得13m =,所以随机变量ξ的期望为111117()123466336E ξ=⨯+⨯+⨯+⨯=, 又由2-5ηξ=,可得172()2563E η=⨯-=. 故选:C. 【点睛】本题主要考查了随机变量的期望的计算,其中解答中熟记分布列的性质和期望的计算公式是解答的关键,着重考查了计算能力.4.B解析:B 【分析】由()(1)E Y P Y ==-及1a b c ++=,可知13b a =-,2c a =;又因为0,,1a b c ≤≤,可求出103a ≤≤;由题意知1()6E a ξ=-,从而可求出()E ξ取值范围.【详解】解:由()(1)E Y P Y ==-知,a c a -+= ,即2c a = ,又1a b c ++= ,所以13b a =-;因为0,,1a b c ≤≤ ,所以0131021a a ≤-≤⎧⎨≤≤⎩ ,解得103a ≤≤.又()1110366E X =-++=- ,且X ,Y 相互独立,XY ξ=,所以()()()11(),0618E E XY E X E Y a ξ⎡⎤===-∈-⎢⎥⎣⎦. 故选:B. 【点睛】本题考查了数学期望,考查了分布列的性质,考查了推理能力和计算能力.本题的关键是由条件求出a 的取值范围.5.B解析:B 【分析】由题意知甲和乙投篮不受其他投篮结果的影响,本题是一个相互独立事件同时发生的概率,甲投篮的次数为X ,甲先投,则X k =表示甲第k 次甲投中篮球,而乙前1k -次没有投中,甲前1k -次也没有投中或者甲第k 次未投中,而乙第k 次投中篮球,根据公式写出结果. 【详解】甲和乙投篮不受其他投篮结果的影响,∴本题是一个相互独立事件同时发生的概率,每次投篮甲投中的概率为0.4,乙投中的概率为0.6,甲投篮的次数为X ,甲先投,则X k =表示甲第k 次投中篮球,而甲与乙前1k -次没有投中,或者甲第k 次未投中,而乙第k 次投中篮球. 根据相互独立事件同时发生的概率得到甲第k 次投中的概率:1110.40.60.40.240.4k k k ---⨯⨯=⨯;第k 次甲不中的情况应是10.40.60.6k k -⨯⨯,故总的情况是1110.240.40.240.60.60.240.76k k k ---⨯+⨯⨯=⨯. 故选B . 【点睛】本题考查相互独立事件同时发生的概率,是一个基础题,本题最大的障碍是理解X k =的意义,相互独立事件是指,两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式.6.A解析:A 【分析】根据独立重复试验的概率计算公式,求得34p =,再根据二项分布的期望与方差的公式,即可求解. 【详解】由题意,设事件A 在每次试验中发生的概率为P , 因为事件A 至少发生一次的概率为6364,即333631(1)64C p --=,解得34p =, 则事件A 发生的次数ξ服从二项分布3(3,)4B ξ~, 所以事件A 发生的次数ξ的期望为39()344E ξ=⨯=,方差为339()3(1)4416D ξ=⨯⨯-=,故选A. 【点睛】本题主要考查了独立重复试验的概率的计算,以及二项分布的期望与方差的计算,其中解答中熟记独立重复试验的概率的计算公式,以及二项分布的性质是解答的关键,着重考查了推理与运算能力,属于基础题.7.D解析:D 【分析】本道题分别计算X=1,2,3对应的概率,然后计算数学期望,即可.【详解】()()()21322213432423441141,2327327C C C A C C C P X P X +======, ()234344339C A P X ===列表:所以数学期望1232727927EX =⋅+⋅+⋅=,故选D . 【点睛】本道题考查了数学期望的计算方法,较容易.8.B解析:B 【分析】 由题意可得()1123412a+++=,即可求出a 的值,再利用互斥事件概率的加法公式可得 ()()()2434P X P P <≤=+,据此计算即可得到答案【详解】()()12342iP X i i a===,,,, ()1123412a∴+++= 解得5a =则()()()3472434101010P X P P <≤=+=+= 故选B 【点睛】本题是一道关于求概率的题目,解答本题的关键是熟练掌握离散型随机变量的分布列,属于基础题.9.A解析:A 【分析】若电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 【详解】记1T 正常工作为事件A记2T 正常工作为事件B 记3T 正常工作为事件C 则()12P A =,()23P B =,()34P C = 电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 则23T T ,至少有一个正常工作,概率为()1231111113412P P BC ⎛⎫⎛⎫=-=--⨯-= ⎪ ⎪⎝⎭⎝⎭则电路不发生故障的概率1111121224P =⨯= 故选A 【点睛】本题主要考查了概率知识及实际应用能力,考查了相互独立事件同时发生的概率的计算,关键是确定不发生故障时满足的条件.10.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.11.D解析:D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2,故D 不正确.故选D .12.A解析:A 【解析】由题意,2223C +C 4P A ==1010(),23C 3P AB ==1010()P AB 3P A |B ==P A 4()()()∴,故选:A .【思路点睛】求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=n AB n A ()(),其中n(AB)表示事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数. 二是直接根据定义计算,P(B|A)=p AB p A ()(),特别要注意P(AB)的求法.二、填空题13.994【分析】根据正态分布的性质求出在一次测量中误差在内的概率再求出测量3次每次测量误差均不在内的概率根据对立事件的性质可得结果【详解】由题意可知在一次测量中误差在内满足其概率为测量3次每次测量误差解析:994 【分析】根据正态分布的性质求出在一次测量中误差在()0,30内的概率,再求出测量3次,每次测量误差均不在()0,30内的概率,根据对立事件的性质可得结果. 【详解】由题意可知在一次测量中误差在()0,30内满足2X μδμδ-<<+, 其概率为()()()111220.950.680.815222p p X p X μδμδμδμδ=-<≤++-<≤+=⨯+=, 测量3次,每次测量误差均不在()0,30内的概率为:()3310.8150.1850.006-==,∴独立测量3次,至少一次测量误差在()0,30内的概率是10.0060.994-=, 故答案为:0.994. 【点睛】本题主要考查正态分布概率的求法,n 次独立重复试验的模型,利用对立事件解决问题是解题的关键,属于中档题.14.【分析】由数学期望可得再结合基本不等式求解即可【详解】解:由分布列知:又∴当且仅当即时取等号故答案为:【点睛】本题考查了数学期望的求法重点考查了基本不等式的应用属基础题解析:323.【分析】由数学期望可得231b a +=,再结合基本不等式求解即可. 【详解】解:由分布列知:()1,2301a b c E x b a c ++==++⨯=, 又,(0,1)a b ∈∴212124202032()(32)64333333b a a b a b a b a b +=++=+++≥+=+=. 当且仅当4b aa b =,即11,48a b ==时取等号, 故答案为:323. 【点睛】本题考查了数学期望的求法,重点考查了基本不等式的应用,属基础题.15.【分析】首先确定所有可能的取值;根据每个取值所对应的情况计算出其所对应的概率从而根据数学期望计算公式求得结果【详解】由题意可知所有可能的取值为:则;;本题正确结果:【点睛】本题考查离散型随机变量的数解析:26681【分析】首先确定ξ所有可能的取值;根据每个取值所对应的情况计算出其所对应的概率,从而根据数学期望计算公式求得结果. 【详解】由题意可知ξ所有可能的取值为:2,4,6则()222152339P ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭;()3311221212204333381P C C ξ⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; ()520166198181P ξ==--=()520162662469818181E ξ∴=⨯+⨯+⨯=本题正确结果:26681【点睛】本题考查离散型随机变量的数学期望的求解,关键是能够准确求解出随机变量每个取值所对应的概率,从而结合公式直接求得结果,属于常考题型.16.【分析】由题意根据甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投中2次乙投中1次或0次再由概率的加法公式即可列出方程求解答案【详解】甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投解析:23【分析】由题意,根据甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再由概率的加法公式,即可列出方程,求解答案. 【详解】甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次.由题意得p(1-p)·(1-q)2+p 2[(1-q)2+q(1-q)]=,解得q=或q=(舍). 【点睛】本题主要考查了相互独立事件的概率的计算,其中认真审题,根据甲比乙投中次数多的可能情形:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再根据概率的加法公式求解是解答的关键,着重考查了推理与运算能力.17.7【解析】【分析】先根据二项分布得EX 再根据Y =2X +3得EY=2EX+3即得结果【详解】因为X ~B(1002)所以EX=10×02=2因此EY=2EX+3=7【点睛】本题考查二项分布期望公式考查基解析:7 【解析】 【分析】先根据二项分布得EX ,再根据Y =2X +3得 EY=2EX+3,即得结果. 【详解】因为X ~B (10,0.2),,所以EX =10×0.2=2,因此EY=2EX+3=7. 【点睛】本题考查二项分布期望公式,考查基本求解能力.18.【分析】投篮3次至多投中1次包括只投中一次和全部没有投中由投篮3次至多投中1次的概率是求得结果【详解】:投篮3次至多投中1次包括只投中一次和全部没有投中故投篮3次至多投中1次的概率是故答案为【点睛】解析:727. 【分析】“投篮3次至多投中1次”包括只投中一次,和全部没有投中,由“投篮3次至多投中1次”的概率是223333121()()333C C ⋅⋅+⋅ 求得结果. 【详解】:“投篮3次至多投中1次”包括只投中一次,和全部没有投中,故“投篮3次至多投中1次”的概率是2233331217()()33327C C ⋅⋅+⋅=, 故答案为727.【点睛】本题考查n 次独立重复实验中恰好发生k 次的概率,等可能事件的概率.19.【解析】分析:假设事件A 在每次试验中发生说明试验成功设每次试验成功的概率为p 由题意得事件A 发生的次数X ~B (3p )由此能求出事件A 恰好发生一次的概率详解:假设事件A 在每次试验中发生说明试验成功设每次 解析:964【解析】分析:假设事件A 在每次试验中发生说明试验成功,设每次试验成功的概率为p ,由题意得,事件A 发生的次数X ~B (3,p ),由此能求出事件A 恰好发生一次的概率. 详解:假设事件A 在每次试验中发生说明试验成功,设每次试验成功的概率为p ,由题意得,事件A 发生的次数X ~B (3,p ), 则有1﹣(1﹣p )3=6364,得p=34, 则事件A 恰好发生一次的概率为123339(1)4464C ⨯⨯-=. 故答案为:964. 点睛:(1)本题主要考查独立重复性试验的概率,意在考查学生对该知识的掌握水平.(2) 在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率是:()(1)kkn kn n P k C p p ξ-==-,(0,1,2,3,...k n =).正好是二项式[(1)]n p p -+的展开式的第1k +项.所以记作ξ~(,)B n p ,读作ξ服从二项分布,其中,n p 为参数.20.①③【分析】求出判断①利用存在量词命题否定形式判断②二项分布的期望与方差判断③;三角函数图象变换判断④【详解】解:①函数的一个对称中心为故①正确;②若命题:则命题的否定为:;所以②不正确;③设随机变解析:①③ 【分析】 求出5()012f π-=判断①,利用存在量词命题否定形式判断②,二项分布的期望与方差判断③;三角函数图象变换判断④. 【详解】 解:①5()4cos()0122f ππ-=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确;②若命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”;所以②不正确;③设随机变量~(,)B n p ξ,且()2E ξ=,()1D ξ=,可得2np =,(1)1np p -=,可得12p =,4n =则43111(1)12412p C ξ⎛⎫==-⋅= ⎪⎝⎭;所以③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()4y x π=+,不是sin(2)4y x π=+的图象,所以④不正确;故答案为:①③. 【点睛】本题考查命题的真假判断与应用,考查sin()y A x ωϕ=+型函数的图象和性质,命题的否定,期望与方差的求法,属于中档题.三、解答题21.(1)80243;(2)分布列答案见解析. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题可知,随机变量ξ的可能取值有0、1、2、3、4,计算出随机变量ξ在不同取值下的概率,由此可得出随机变量ξ的分布列. 【详解】(1)因为随机地抽取一辆单车是蓝色单车的概率为13,用X 表示“抽取的5辆单车中蓝颜色单车的个数”,则X 服从二项分布,即15,3XB ⎛⎫ ⎪⎝⎭, 所以抽取的5辆单车中有2辆是蓝颜色单车的概率为3225218033243P C ⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭; (2)随机变量ξ的可能取值为:0、1、2、3、4,()103P ξ==,()2121339P ξ==⨯=,()221423327P ξ⎛⎫==⨯= ⎪⎝⎭, ()321833381P ξ⎛⎫==⨯= ⎪⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭.所以ξ的分布列如下表所示:思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.22.(1)有99.9%的把握认为注射此种疫苗有效;(2)概率分布见解析,77()110E X =. 【分析】(1)根据题中条件,先得出x ,y ,z ,w ,由公式求出2K ,结合临界值表,即可得出结果;(2)根据题意,得到X 的所有可能取值为0,1,2;分别求出对应的概率,即可得出分布列,以及期望. 【详解】(1)由条件知65x =,100y =,35z =,100w =,()22200353565651810.828100100100100K ⨯⨯-⨯==>⨯⨯⨯,所以有99.9%的把握认为注射此种疫苗有效.… (2)由题意,X 的所有可能取值为0,1,2.2652100C 208(0)495C P X ===,1165352100C C 91(1)198C P X ===,2352100C 119(2)990C P X ===, 所以X 的概率分布为数学期望()012495198990110E X =⨯+⨯+⨯=. 【点睛】本题主要考查独立性检验的基本思想,考查离散型随机变量的分布列与期望,属于常考题型.23.(1)38;(2)答案见解析.【解析】分析:(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X 的概率分布,计算数学期望.详解:(1)甲恰好通过两个项目测试的概率为;(2)因为每人可被录用的概率为,所以,, ,;故随机变量X 的概率分布表为: X 0123P所以,X 的数学期望为.点睛:解离散型随机变量的期望应用问题的方法(1)求离散型随机变量的期望关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用期望公式进行计算.(2)要注意观察随机变量的概率分布特征,若属二项分布的,可用二项分布的期望公式计算,则更为简单.24.(Ⅰ)200,150(Ⅱ)①0.6826②68.26 【分析】(I )由频率分布直方图可估计样本特征数均值、方差,均值为每个矩形中点横坐标与该矩形面积积的累加值.方差是矩形横坐标与均值差的平方的加权平均值; (II )①由已知得,Z ~(200,150)N ,故()187.8212.2P Z <<可根据()P Z μσμσ-<<+的概率计算;②由题意X 服从二项分布(100,0.6826)B ,根据()E X np =计算即可.【详解】(I )抽取产品的质量指标值的样本平均值x 和样本方差2s 分别为1700.021800.091900.22x =⨯+⨯+⨯+2000.332100.242200.08⨯+⨯+⨯+2300.02⨯200=,2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150=.(II )①由(I )知,Z 服从正态分布(200,150)N ,从而()187.8212.2P Z <<(20012.2200P Z =-<<12.2)0.6826+=. (ii )由①可知,一件产品的质量指标值位于区间()187.8,212.2的概率为0.6826, 依题意知(100,0.6826)X B ~, 所以()1000.682668.26E X =⨯=. 【点睛】本题考查了频率分布直方图,平均数与方差,正态分布与二项分布,属于中档题. 25.(1)35p =;(2)列联表见解析,有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关;(3)分布列见解析,()95E ξ= 【分析】(1)直接根据频率分布表得到答案.(2)根据频率分布表得到列联表,计算2 5.542 3.841K ≈>得到答案. (3)ξ的可能取值为0,1,2,3,计算概率得到分布列,计算数学期望得到答案. 【详解】(1)根据频率分布表:24021010050310005p +++==.(2)根据频率分布表得到列联表:故()221000250270150330 5.542 3.841400600580420K ⨯-⨯=≈>⨯⨯⨯,故有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关.90人,女性有60人, 故抽取男性901069060⨯=+人,抽取女性601049060⨯=+人,故ξ的可能取值为0,1,2,3,()343101030C p C ξ===;()21463103110C C p C ξ⋅===;()1246310122C C p C ξ⋅===; ()36310631C p C ξ===.故分布列为:故()01233010265ξ=⨯+⨯+⨯+⨯=E . 【点睛】本题考查了概率的计算,独立性检验,分布列和数学期望,意在考查学生的计算能力和应用能力.26.(1)()1027P X ==,()219P X ==,()429P X ==,()8327P X ==;(2)20243. 【分析】(1)根据独立事件的概率乘法公式可求得()0P X =,()1P X =,()2P X =,()3P X =;(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,找出事件M 所包含的基本事件,利用概率乘法公式和互斥事件的概率加法公式可求出事件M 的概率. 【详解】(1)由独立事件的概率乘法公式可得()32101327P X ⎛⎫==-= ⎪⎝⎭,()2222131339P X ⎛⎫==⨯⨯-= ⎪⎝⎭,()2224231339P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,()3283327P X ⎛⎫=== ⎪⎝⎭;(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则()()2,03,1M X Y X Y =====,所以,()()()()()()()2,03,12031P M P X Y P X Y P X P Y P X P Y ===+=====+==418220927279243=⨯+⨯=. 【点睛】本题考查互斥事件和独立事件的概率的计算,考查运用概率公式解决实际问题的能力,属于中等题.。

(压轴题)高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)

(压轴题)高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)

一、选择题1.设01a <<,2a b +=,随机变量X 的分布列如表:则当()0,1a ∈内增大时( )X a1bP1313 13A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大2.孔子曰“三人行,必有我师焉.”从数学角度来看,这句话有深刻的哲理,古语说三百六十行,行行出状元,假设有甲、乙、丙三人中每一人,在每一行业中胜过孔圣人的概率为1%,那么甲、乙、丙三人中至少一人在至少一行业中胜过孔圣人的概率为( )(参考数据:3600.990.03≈,3600.010≈,30.970.912673≈) A .0.0027%B .99.9973%C .0D .91.2673%3.已知ξ的分布列如图所示,设2-5ηξ=,则()=E η( )A .12B .13C .23D .324.已知随机变量ξ服从正态分布(1,2)N ,则(23)D ξ+=( ) A .4B .6C .8D .115.已知离散型随机变量X 服从二项分布(),X B n p ,且2EX =,DX q =,则21p q+的最小值为( ) A .274B .92C .3D .46.下列命题中真命题是( )(1)在183x x 的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)7.已知随机变量,X Y 的分布列如下:X 3 2 1PabcY 123Pabc若,,a b c 成等差数列,则下列结论一定成立的是( ) A .()()D X Y D >B .()()E X E Y = C .()()E X E Y < D .()()D X Y D =8.已知随机变量X 服从正态分布2(3,)N σ,且(5)0.8P X <=,则(13)P X <<=( ) A .0.8 B .0.2C .0.1D .0.39.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于 A .715B .815C .1415D .110.三个元件123,,T T T 正常工作的概率分别为123,,234,且是相互独立的.如图,将23,T T 两个元件并联后再与1T 元件串联接入电路,则电路不发生故障的概率是( )A .1124B .2324C .14D .173211.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( ) A .18B .38C .58D .7812.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b ==B .3,10a b ==C .5,6a b ==D .6,5a b ==二、填空题13.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者贏得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立,甲在4局以内(含4局)赢得比赛的概率______. 14.已知某人每次投篮投中的概率均为13,计划投中3次则结束投篮,则此人恰好在第5次结束投篮的概率是__________.15.设离散型随机变量ξ可能取的值为1,2,3,()P k ak b ξ==+(1,2,3k =),若ξ的数学期望7()3E ξ=,则a b +=_____. 16.随机变量ξ的分布列如下:若()3E ξ=,则()D ξ=__________. 17.随机变量X 服从正态分布()2~10,X N σ,()12P X m >=,1(8)0P X n ≤≤=,则21m n+的最小值为_____. 18.江先生朝九晚五上班,上班通常乘坐公交加步行或乘坐地铁加步行.江先生从家到公交站或地铁站都要步行5分钟.公交车多且路程近一些,但乘坐公交路上经常拥堵,所需时间(单位:分钟)服从正态分布()233,4N ,下车后从公交站步行到单位要12分钟;乘坐地铁畅通,但路线长且乘客多,所需时间(单位:分钟)服从正态分布()244,2N ,下地铁后从地铁站步行到单位要5分钟.下列说法:①若8:00出门,则乘坐公交不会迟到;②若8:02出门,则乘坐地铁上班不迟到的可能性更大;③若8:06出门,则乘坐公交上班不迟到的可能性更大;④若8:12出门,则乘坐地铁几乎不可能上班不迟到.从统计的角度认为以上说法中所有合理的序号是__________. 参考数据:若()2~,Z N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.19.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望EX 等于__________(结果用最简分数表示).20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.某生物研究所为研发一种新疫苗,在200只小白鼠身上进行科研对比实验,得到如下统计数据:现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为20.(1)能否有99.9%的把握认为注射此种疫苗有效?(2)现从感染病毒的小白鼠中任意抽取2只进行病理分析,记注射疫苗的小白鼠只数为X,求X的概率分布和数学期望()E X.附:()()()()()22,n ad bcK n a b c da b c d a c b d-==+++ ++++,22.随着马拉松运动在全国各地逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对参加马拉松运动的情况进行了统计调查,其中一项是调查人员从参与马拉松运动的人中随机抽取100人,对其每月参与马拉松运动训练的天数进行统计,得到以下统计表:平均每月进行训练的天数位于该区间的概率,从该市所有参与马拉松训练的人中随机抽取4个人,求恰好有2个人是“平均每月进行训练的天数不少于20天”的概率;(2)依据统计表,用分层抽样的方法从这100个人中抽取20个,再从抽取的20个人中随机抽取4个,Y表示抽取的是“平均每月进行训练的天数不少于20天”的人数,求Y的分E Y.布列及数学期望()23.根据某电子商务平台的调查统计显示,参与调查的1 000位上网购物者的年龄情况如图所示.(1)已知[30,40),[40,50),[50,60)三个年龄段的上网购物者人数成等差数列,求,a b的值;(2)该电子商务平台将年龄在[30,50)内的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1 000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此3人获得代金券总和X(单位:元)的分布列与数学期望.24.将名为《高等代数》、《数学分析》、《概率论》和《复变函数》的4本不同的书随机放入甲、乙、丙、丁4个书包中.(1)求4本书恰好放在4个不同书包中的概率;E X.(2)随机变量X表示放在丙书包中书的本数,求X的概率分布和数学期望() 25.复旦大学附属华山医院感染科主任医师张文宏在接受媒体采访时谈到:通过救治研究发现,目前对于新冠肺炎最有用的“特效药”还是免疫力.而人的免疫力与体质息息相关,一般来讲,体质好,免疫力就强.复学已有一段时间,某医院到学校调查高二学生的体质健康情况,随机抽取12名高二学生进行体质健康测试,测试成绩(百分制)如下:65,78,90,86,52,87,72,86,87,98,88,86.根据此年龄段学生体质健康标准,成绩不低于80的为优良.(1)将频率视为概率,根据样本估计总体的思想,在该学校全体高二学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;(2)从抽取的12人中随机选取3人,记X表示成绩“优良”的人数,求X的分布列和期望.26.在湖北新冠疫情严重期间,我市响应国家号召,召集医务志愿者组成医疗队驰援湖北.某医院有2名女医生,3名男医生,3名女护士,1名男护士报名参加,医院计划从医生和护士中各选2名参加医疗队.(1)求选出的4名志愿全是女性的选派方法数;(2)记X为选出的4名选手中男性的人数,求X的概率分布和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先求出()E X ,利用方差的定义建立()()22=13D X a -,利用二次函数单调性判断出()D X 的变化.【详解】由题意:()1111333E X a b =⨯+⨯+⨯, ∵2a b +=,∴()1E X =.∴()()()()()222221111=111123333D X a b a b -⨯+-⨯+-⨯=+-⨯ 又2a b +=,∴2b a =-,∴()()()()2222122=2=21=1333D X a b a a a +-⨯-+- ∴当01a <<时,()()22=13D X a -单调递减,即当()0,1a ∈内增大时()D X 减小. 故选:B2.B解析:B 【分析】先求出一个人在所有行业中都不能胜过孔圣人的概率,再求出三个人在所有行业中都不能胜任孔圣人的概率,用1减去此概率即为所求. 【详解】一个人三百六十行全都不如孔圣人的概率为3600.990.03≈,三个人三百六十行都不如孔圣人的概率为30.030.000027=,所以至少一人在至少一行业中胜过孔圣人的概率为10.0000270.99997399.9973%-==.故选:B . 【点睛】本题考查相互独立事件的概率乘法公式,考查至多至少问题用对立事件解决的方法,属于中档题.3.C解析:C 【分析】根据分布列的性质,求得13m =,由期望的公式,可得17()6E ξ=,再根据()()5E E ηξ=-,即可求解.【详解】由题意,根据分布列的性质,可得1111663m +++=,解得13m =,所以随机变量ξ的期望为111117()123466336E ξ=⨯+⨯+⨯+⨯=, 又由2-5ηξ=,可得172()2563E η=⨯-=. 故选:C. 【点睛】本题主要考查了随机变量的期望的计算,其中解答中熟记分布列的性质和期望的计算公式是解答的关键,着重考查了计算能力.4.C解析:C 【分析】由已知条件求得()2D ξ=,再由2(23)2()D D ξξ+=⨯,即可求解. 【详解】由题意,随机变量ξ服从正态分布(1,2)N ,可得()2D ξ=, 所以2(23)2()8D D ξξ+=⨯=. 故选:C . 【点睛】本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中解答中熟记方差的求法是解答的关键,着重考查了计算能力.5.B解析:B 【分析】根据二项分布的均值与方差公式,可得,p q 的等量关系.利用“1”的代换,结合基本不等式即可求得21p q+的最小值. 【详解】离散型随机变量X 服从二项分布(),XB n p ,且2EX =,DX q =由二项分布的均值与方差公式可得()21npq np p =⎧⎨=-⎩, 化简可得22p q +=,即12qp +=由基本不等式化简可得21p q+ 221p q q p ⎛⎫=+ ⎪⎛⎫+ ⎪⎝⎝⎭⎭2525922q p p q ≥+=++= 即21p q +的最小值为92故选:B 【点睛】本题考查了二项分布的简单应用,均值与方差的求法,利用“1”的代换结合基本不等式求最值,属于中档题.6.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D. 【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.7.D解析:D 【分析】,,a b c 成等差数列,即2b a c =+,结合1a b c ++=,计算出()()()(), ,,E E Y D X X D Y ,由此判断出正确结论.【详解】由于,,a b c 成等差数列,故2b a c =+①,另根据分布列的知识可知1a b c ++=②.由①②得12,33b c a ==-. 所以()2243232333E X a b c a a a =++=++-=+, ()2282332333E Y a b c a a a ⎛⎫=++=++-=- ⎪⎝⎭,由于484224333a a a ⎛⎫+--=-+ ⎪⎝⎭正负无法确定,故()() ,E X E Y 大小无法比较. ()222444322212333D X a a a b a c ⎛⎫⎛⎫⎛⎫=--⋅+--⋅+--⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2225211222233333a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅+-⋅++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()222888122232333D Y a a a b a c ⎛⎫⎛⎫⎛⎫=-+⋅+-+⋅+-+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2225211222233333a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅+-⋅++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故()()D X Y D =. 故选D. 【点睛】本小题主要考查根据随机变量分布列计算数学期望和方差,考查等差中项的性质,考查运算求解能力,属于中档题.8.D解析:D 【分析】由已知条件可知数据对应的正态曲线的对称轴为X=3,根据正态曲线的对称性可得结果. 【详解】随机变量X 服从正态分布2(3,)N σ,则曲线的对称轴为X=3,由(5)0.8P X <=可得P(X≤1)=P(X≥5)=0.2, 则(13)P X <<=12(15)P X <<=12(1-0.2-0.2)=0.3 故选D 【点睛】本题考查根据正态曲线的对称性求在给定区间上的概率,求解的关键是把所求区间用已知区间表示,并根据对称性求解,考查数形结合的应用,属于基础题.9.C解析:C【分析】根据超几何分布的概率公式计算各种可能的概率,得出结果 【详解】由题意,知X 取0,1,2,X 服从超几何分布, 它取每个值的概率都符合等可能事件的概率公式,即P(X =0)=27210715C C =,P(X =1)=1173210715C C C =⋅,P(X =2)=23210115C C =, 于是P(X<2)=P(X =0)+P(X =1)=7714151515+= 故选C 【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.10.A解析:A 【分析】若电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 【详解】记1T 正常工作为事件A 记2T 正常工作为事件B 记3T 正常工作为事件C 则()12P A =,()23P B =,()34P C = 电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 则23T T ,至少有一个正常工作,概率为()1231111113412P P BC ⎛⎫⎛⎫=-=--⨯-= ⎪ ⎪⎝⎭⎝⎭则电路不发生故障的概率1111121224P =⨯= 故选A 【点睛】本题主要考查了概率知识及实际应用能力,考查了相互独立事件同时发生的概率的计算,关键是确定不发生故障时满足的条件.11.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率.详解:因为14244411(1)(),(2)(),22P x C P x C ====所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)kkn kn C p p --.其中p 为1次试验种A 发生得概率.12.C解析:C 【解析】 分析:详解:由随机变量X 的分布列可知,m 10.20.8=-=, ∴()00.210.80.8E X =⨯+⨯=,()10.20.80.16D X =⨯⨯=,∴()()()()2b 10?4E Y aE X D Y a D X =+===, ∴20.8a b 10? 0.164a +==, ∴5,6a b == 故选C点睛:本题考查了随机变量的数学期望及其方差,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】设表示第k 局甲获胜表示第k 局乙获胜甲在4局以内(含4局)赢得比赛结果有:求出每种结果的概率相加即可求出结论;【详解】用A 表示甲在4局以内(含4局)赢得比赛表示第k 局甲获胜表示第k 局乙获胜则故解析:5681【分析】设k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”, 甲在4局以内(含4局)赢得比赛结果有:12A A ,123B A A ,1234A B A A ,求出每种结果的概率相加,即可求出结论; 【详解】用A 表示“甲在4局以内(含4局)赢得比赛”,k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”,则2()3k P A =,1()3k P B =,1,2,3,4,5k =. 121231234()()()()P A P A A P B A A P A B A A =++121231234()()()()()()()()()()=++P A P A P A P B P A P A P A P B P A P A22221.221256()33333381⎛⎫⎛⎫⎛⎫=+⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P A .故答案为:5681【点睛】本题考查事件的独立性的概念,审清题意,细心计算,属于中档题.14.【分析】第五次结束投篮则前四次有两次投中且第五次投中根据独立重复试验的知识处理即可【详解】解:依题意恰好在第五次结束投篮则前四次有两次投中且第五次投中所以概率为:故答案为:【点睛】本题考查独立重复试 解析:881【分析】第五次结束投篮,则前四次有两次投中,且第五次投中,根据独立重复试验的知识处理即可. 【详解】解:依题意,恰好在第五次结束投篮, 则前四次有两次投中,且第五次投中, 所以概率为:22241118()(1)33381p C =⨯⨯-⨯=.故答案为:881. 【点睛】本题考查独立重复试验的知识,利用了二项分布求概率的公式.15.【分析】要求的值就是要将与求出两个未知数建立出两个方程即可由概率之和为1得到一个方程由得到第二个方程建立方程组从而得到结果【详解】解:离散随机变量可能取的值为123()故的数学期望①而且②①②联立方解析:16【分析】要求+a b 的值,就是要将a 与b 求出。

(压轴题)高中数学高中数学选修2-3第一章《计数原理》检测(含答案解析)

(压轴题)高中数学高中数学选修2-3第一章《计数原理》检测(含答案解析)

一、选择题1.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481252.某学习小组有三名男生、三名女生共计六名同学,选出四人进行学业水平测试,这四人中所含女生人数记为η,则η的数学期望为( ) A .1B .32C .2D .33.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为800元,则所需检测费的均值为( ) A .2800元B .2880元C .3500元D .3600元4.已知19,3X B ⎛⎫~ ⎪⎝⎭,则()E X 、()D X 的值依次为( ). A .3,2B .2,3C .6,2D .2,65.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙每次投篮命中的概率为0.6,而且不受其他次投篮结果的影响.设投篮的轮数为X ,若甲先投,则()P X k =等于( ) A .10.60.4k -⨯B .10.240.76k -⨯C .10.40.6k -⨯D .10.760.24k -⨯6.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是( ) A .0.72B .0.8C .89D .0.97.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=.)A .4.56%B .13.59%C .27.18%D .31.74%8.已知随机变量16,4X B ⎛⎫⎪⎝⎭,则()3P X ==( ) A .271024 B .1351024C .2151024D .40510249.设随机变量ξ的概率分布列为1()()3kP k a ξ==,其中0,1,2k =,那么a 的值为( )A .35B .2713C .919D .91310.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072911.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( ) A .0.32B .0.68C .0.36D .0.6412.设样本x 1,x 2,…,x 10数据的平均值和方差分别为3和5,若y i =x i +a(a 为非零实数,i=1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .3,5B .3+a ,5C .3+a ,5+aD .3,5+a二、填空题13.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________. 14.在高三的一个班中,有14的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生人数1(5,)4B ξ~,则()P k ξ=取最大值时k =_______. 15.测量某一目标的距离时,所产生的随机误差X 服从正态分布()220,10N ,如果独立测量3次,至少一次测量误差在()0,30内的概率是__________.附参考数据:()0.68P X μδμδ-<≤+=,()220.95P X μδμδ-<≤+=,()330.99P X μδμδ-<≤+=,20.1850.03=,30.1850.006=,20.8150.66=,30.8150.541=.16.2017年5月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~ N ()2100,σ.(试卷满分为150分)统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中成绩不低于120分的学生人数约为__________.17.为响应国家号召,打赢脱贫致富攻坚战,武汉大学团队带领湖北省大悟县新城镇熊湾村村民建立有机、健康、高端、绿色的蔬菜基地,并策划“生产、运输、销售”一体化的直销供应模式,据统计,当地村民两年时间成功脱贫.蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市,每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:*,x y N ∈,且30x y +=).若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,若购进17份比购进18份的利润的期望值大,则x 的最小值是________. 前8小时内销售量 15 16 17 18 19 20 21 频数10x16161513y18.中国光谷(武汉)某科技公司生产一批同型号的光纤通讯仪器,每台仪器的某一部件由三个电子元件按如图方式连接而成,若元件1或元件2正常工作,且元件3正常工作,则该部件正常工作.由大数据统计显示:三个电子元件的使用寿命(单位:小时)均服从正态分布()210000,10N ,且各个元件能否正常工作相互独立.现从这批仪器中随机抽取1000台检测该部件的工作情况(各部件能否正常工作相互独立),那么这1000台仪器中该部件的使用寿命超过10000小时的平均值为______台.19.江先生朝九晚五上班,上班通常乘坐公交加步行或乘坐地铁加步行.江先生从家到公交站或地铁站都要步行5分钟.公交车多且路程近一些,但乘坐公交路上经常拥堵,所需时间(单位:分钟)服从正态分布()233,4N ,下车后从公交站步行到单位要12分钟;乘坐地铁畅通,但路线长且乘客多,所需时间(单位:分钟)服从正态分布()244,2N ,下地铁后从地铁站步行到单位要5分钟.下列说法:①若8:00出门,则乘坐公交不会迟到;②若8:02出门,则乘坐地铁上班不迟到的可能性更大;③若8:06出门,则乘坐公交上班不迟到的可能性更大;④若8:12出门,则乘坐地铁几乎不可能上班不迟到.从统计的角度认为以上说法中所有合理的序号是__________. 参考数据:若()2~,Z N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.20.某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过对本地养鱼场年利润率的调研,其结果是:年利润亏损10%的概率为0.2,年利润获利30%的概率为0.4,年利润获利50%的概率为0.4,对远洋捕捞队的调研结果是:年利润获利为60%的概率为0.7,持平的概率为0.2,年利润亏损20%的可能性为0.1. 为确保本地的鲜鱼供应,市政府要求该公司对远洋捕捞队的投资不得高于本地养鱼场的投资的2倍.根据调研数据,该公司如何分配投资金额,明年两个项目的利润之和最大值为_________千万.三、解答题21.2020年4月9日起,使用青岛地铁APP 钱包支付扫码乘车可享受乘坐地铁阶梯折扣优惠、公交乘车优惠与换乘优惠政策,青岛地铁APP 将在原有微信、支付宝、银联三种支付方式的基础上,新增钱包支付方式,乘车累计优惠最高到7折.根据相关优惠政策,同一乘车码或同一NFC —HCE 乘坐地铁,一个自然月内,从第一笔消费开始享受单程票价9折优惠;累计消费满100元及以上,每笔消费享受单程票价8折优惠;累计消费满200元及以上,每笔消费享受单程票价7折优惠;累计消费达到300元及以上,恢复9折优惠,月底清零,下一自然月重新累计.其中,补交超时费、更新及APP 自助补出站等涉及的金额不参加累计.(1)若甲乘客2020年3月份乘坐地铁上下班的总费用为200元,请估计2020年5月份甲乘客乘坐地铁上下班的总费用(结果精确到0.01);(2)乘坐青岛地铁的购票方式一般有三种方式,一是通过自动售票机购票,二是购买专用的乘车卡支付,三是使用青岛地铁APP 钱包支付扫码.现随机调查了100名乘客,得到如下列联表:(3)在(2)的条件下,利用分层抽样的方法从青年人中随机抽取10人,再从这10人中随机抽取3人,记这3人中使用青岛地铁APP 乘车的人数为X ,求X 分布列和数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)2k22.抛掷一枚质地均匀的硬币2次,记正面朝上的次数为X . (1)求随机变量X 的分布列;(2)若随机变量21Y X =+,求随机变量Y 均值、方差.23.某投资公司准备在2020年年初将两千万投资东营经济开发区的“示范区”新型物流,商旅文化两个项目中的一个之中.项目一:新型物流仓是为企业提供仓储、运输、配送、货运信息等综合物流服务的平台.现准备投资建设10个新型物流仓,每个物流仓投资0.2千万元,假设每个物流仓盈利是相互独立的,据市场调研,到2022年底每个物流仓盈利的概率为(01)p p <<,若盈利则盈利为投资额的40%,否则盈利额为0.项目二:购物娱乐广场是一处融商业和娱乐于一体的现代化综合服务广场.据市场调研,投资到该项目上,到2022年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p 和1p -.(1)若投资项目一,记1X 为盈利的物流仓的个数,求()1E X (用p 表示); (2)若投资项目二,记投资项目二的盈利为2X 千万元,求()2E X (用p 表示); (3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.24.某班同学在假期进行社会实践活动,对[]25,55岁的人群随机抽取n 人进行了一次当前投资生活方式——“房地产投资”的调查,得到如下统计和各年龄段人数频率.......分布直方图:(Ⅰ)求n ,a ,p 的值;(Ⅱ)从年龄在[)4050,岁的“房地产投资”人群中采取分层抽样法抽取9人参加投资管理学习活动,其中选取3人作为代表发言,记选取的3名代表中年龄在[)4050,岁的人数为X ,求X 的分布列和期望EX .25.近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用x 表示活动推出的天数,y 表示每天使用刷脸支付的人次,统计数据如下表所示:x1 2 3 4 5 6 7y6 10 18 32 56 100 178(1)在推广期内,与y c d =⋅(均为大于零的常数)哪一个适宜作为刷脸支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用刷脸支付的人次;(3)已知一瓶该饮料的售价为2元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有10%使用现金支付,使用现金支付的顾客无优惠;有40%使用扫码支付,使用扫码支付享受8折优惠;有50%使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受7折优惠的概率为16,享受8折优惠的概率为13,享受9折优惠的概率为12.根据所给数据估计购买一瓶该饮料的平均花费.参考数据:其中1i i v g y =,7117i i v v ==∑v71i i i x v =∑0.5101.549 3.2参考公式:对于一组数据1122(,),(,),,(,)n n x v x v x v ,其回归直线ˆˆˆv a bx=+的斜率和截距的最小二乘估计公式分别为:1221ˆ,ni i i nii x v nxvbxnx==-=-∑∑ˆˆa v bx=-. 26.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X N μσ,则①()0.6827P X μσμσ-<+=;② (22)0.9545P X μσμσ-<+=;③ (33)0.9973P X μσμσ-<+=.(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.2.C解析:C 【分析】根据题意可知随机变量η的可能取值有1、2、3,计算出随机变量η在不同取值下的概率,列出分布列,进而可求得η的数学期望. 【详解】由题意可知,随机变量η的可能取值有1、2、3,()1346115C P C η===,()223346325C C P C η===,()1346135C P C η===. 所以,随机变量η的分布列如下表所示:因此,随机变量η的数学期望为1232555E η=⨯+⨯+⨯=. 故选:C. 【点睛】本题考查随机变量数学期望的计算,一般要列出随机变量的分布列,考查计算能力,属于中等题.3.A解析:A 【分析】设检测机器所需检测费为X ,则X 的可能取值为2000,3000,4000,分别求出相应的概率,由此能求出所需检测费的均值. 【详解】设检测机器所需检测费为X ,则X 的可能取值为1600,2400,3200,211(1600)5410P X ==⨯=,2313213213(2400)54354354310P X ==⨯⨯+⨯⨯+⨯⨯=,133(3200)110105P X ==--=, 则133()160024003200280010105E X =⨯+⨯+⨯=. 故选:A. 【点睛】本题考查了独立事件概率的求法,离散型随机变量的数学期望的求法,考查对立事件概率计算公式,是中档题.4.A解析:A 【分析】直接利用二项分布公式计算得到答案. 【详解】19,3X B ⎛⎫~ ⎪⎝⎭,则()=⨯=1933E X ,()1191233D X ⎛⎫=⨯⨯-= ⎪⎝⎭故选:A 【点睛】本题考查了二项分布,意在考查学生对于二项分布的理解.5.B解析:B 【分析】由题意知甲和乙投篮不受其他投篮结果的影响,本题是一个相互独立事件同时发生的概率,甲投篮的次数为X ,甲先投,则X k =表示甲第k 次甲投中篮球,而乙前1k -次没有投中,甲前1k -次也没有投中或者甲第k 次未投中,而乙第k 次投中篮球,根据公式写出结果. 【详解】甲和乙投篮不受其他投篮结果的影响,∴本题是一个相互独立事件同时发生的概率,每次投篮甲投中的概率为0.4,乙投中的概率为0.6,甲投篮的次数为X ,甲先投,则X k =表示甲第k 次投中篮球,而甲与乙前1k -次没有投中,或者甲第k 次未投中,而乙第k 次投中篮球. 根据相互独立事件同时发生的概率得到甲第k 次投中的概率:1110.40.60.40.240.4k k k ---⨯⨯=⨯;第k 次甲不中的情况应是10.40.60.6k k -⨯⨯,故总的情况是1110.240.40.240.60.60.240.76k k k ---⨯+⨯⨯=⨯. 故选B . 【点睛】本题考查相互独立事件同时发生的概率,是一个基础题,本题最大的障碍是理解X k =的意义,相互独立事件是指,两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式.6.A解析:A 【分析】设一批种子的发芽率为事件A ,则()0.9P A =,出芽后的幼苗成活率为事件B ,则()|0.8P B A =,根据条件概率公式计算即可,【详解】设一批种子的发芽率为事件A ,则()0.9P A =, 出芽后的幼苗成活率为事件B ,则()|0.8P B A =,∴这粒种子能成长为幼苗的概率()()()|0.90.80.72P P AB P A P B A ===⨯=. 故选:A . 【点睛】本题主要考查了条件概率的问题,关键是分清是在什么条件下发生的,属于基础题.7.B解析:B 【解析】 试题分析:由题意13368.26%6695.44%3695.44%68.26%13.59%2P P P (<<),(<<),(<<)().ξξξ-=-=∴=-=故选B . 考点:正态分布8.B解析:B 【解析】分析:由题意结合二项分布的概率公式求解概率值即可,注意运算的准确性.详解:由二项分布概率公式可得:()3336131271353204464641024P X C ⎛⎫⎛⎫===⨯⨯=⎪ ⎪⎝⎭⎝⎭. 本题选择B 选项.点睛:本题主要考查二项分布的概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.9.D解析:D 【解析】分析:根据离散型随机变量分布列的性质,变量取各个量对应的概率和等于1,建立关于a 的等量关系式,最后求得结果.详解:根据分布列的性质可得,()()()0121110121333P P P a a a ξξξ⎛⎫⎛⎫⎛⎫=+=+==++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得913a =,故选D. 点睛:解决该题的关键是明确离散型随机变量的分布列的性质,从而找到关于参数a 所满足的等量关系式,最后求得结果.10.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.11.C解析:C 【解析】如图,由正态曲线的对称性可得(4)12()0.36P a X a P X a ≤<-=-<=.故选C.12.B解析:B 【解析】根据题意,样本x 1,x 2,…,x 10数据的平均值和方差分别为3和5, 则有x =110(x 1+x 2+…+x 10)=3, S 2x =110[(x 1-3)2+(x 2-3)2+…+(x 10-3)2]=5, 对于y i =x i +a ; 则有y =110(x 1+a +x 2+a +…+x 10+a )=(x 1+x 2+…+x 10+10a )=3+a , S 2y =110[(y 1-3-a )2+(y 2-3-a )2+…+(y 10-3-a )2]=5, 本题选择B 选项.二、填空题13.【分析】设事件表示该选手能正确回答第轮的问题选手被淘汰考虑对立事件代入的值可得结果;【详解】记该选手能正确回答第轮的问题为事件则该选手被淘汰的概率:故答案为:【点睛】求复杂互斥事件概率的两种方法:( 解析:101125【分析】设事件(1,2,3)i A i =表示“该选手能正确回答第i 轮的问题”,选手被淘汰,考虑对立事件,代入123(),(),()P A P A P A 的值,可得结果; 【详解】记“该选手能正确回答第i 轮的问题”为事件(1,2,3)i A i =,则()()()123432,,555P A P A P A ===. 该选手被淘汰的概率:112123112123()()()()()()()P P A A A A A A P A P A A P A A A =++=++142433101555555125=+⨯+⨯⨯= 故答案为:101125【点睛】求复杂互斥事件概率的两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;(2)间接法:先求该事件的对立事件的概率,再由()1()P A P A =-求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.14.1【分析】可得则且计算可得【详解】解:依题意可得则且解得又所以故答案为:1【点睛】本题考查了二项分布列的概率计算公式组合数的计算公式考查了推理能力与计算能力属于中档题解析:1 【分析】1~(5,)4B ξ,可得5511()()(1)44k k k P k C ξ-==⨯-.则()(1)P k P k ξξ=≥=-且()(1)P k P k ξξ=≥=+计算可得.【详解】解:依题意,可得5511()()(1)44kk k P k C ξ-==⨯-则5C k3()45k-1()4k15C k -≥3()45(1)k --1()41k -,且5C k3()45k-1()4k ≥15C k +5(1)3()4k -+11()4k +, 解得12k ≤≤32,又*k N ∈,所以1k =. 故答案为:1 【点睛】本题考查了二项分布列的概率计算公式、组合数的计算公式,考查了推理能力与计算能力,属于中档题.15.994【分析】根据正态分布的性质求出在一次测量中误差在内的概率再求出测量3次每次测量误差均不在内的概率根据对立事件的性质可得结果【详解】由题意可知在一次测量中误差在内满足其概率为测量3次每次测量误差解析:994根据正态分布的性质求出在一次测量中误差在()0,30内的概率,再求出测量3次,每次测量误差均不在()0,30内的概率,根据对立事件的性质可得结果. 【详解】由题意可知在一次测量中误差在()0,30内满足2X μδμδ-<<+, 其概率为()()()111220.950.680.815222p p X p X μδμδμδμδ=-<≤++-<≤+=⨯+=, 测量3次,每次测量误差均不在()0,30内的概率为:()3310.8150.1850.006-==,∴独立测量3次,至少一次测量误差在()0,30内的概率是10.0060.994-=, 故答案为:0.994. 【点睛】本题主要考查正态分布概率的求法,n 次独立重复试验的模型,利用对立事件解决问题是解题的关键,属于中档题.16.【分析】根据正态分布对称性知计算得到答案【详解】根据正态分布对称性知:故此次统考中成绩不低于120分的学生人数约为故答案为:【点睛】本题考查了正态分布意在考查学生对于正态分布性质的应用 解析:200【分析】根据正态分布对称性知()11208p X >=,计算得到答案. 【详解】根据正态分布对称性知:()()131120801248p X p X ⎛⎫>=<=⋅-= ⎪⎝⎭.故此次统考中成绩不低于120分的学生人数约为116002008⨯=. 故答案为:200. 【点睛】本题考查了正态分布,意在考查学生对于正态分布性质的应用.17.25【分析】先根据条件求出分布列和期望再根据购进17份比购进18份的利润的期望值大即可得出答案【详解】解:若该超市一天购进17份这种有机蔬菜表示当天的利润(单位:元)那么的分布列为 65 75 85解析:25 【分析】先根据条件求出分布列和期望,再根据“购进17份比购进18份的利润的期望值大”即可得出答案.解:若该超市一天购进17份这种有机蔬菜,1Y 表示当天的利润(单位:元),那么1Y 的分布列为1Y 的数学期望()16575100100E Y =⨯+⨯83001085100100x x--+⨯=, 若该超市一天购进18份这种有机蔬菜,2Y 表示当天的利润(单位:元),那么2Y 的分布列为2Y 的数学期望()26070100100E Y =⨯+⨯167480+90100100x -+⨯⨯854020100x-=, ∵购进17份比购进18份的利润的期望值大, ∴830010854020100100x x-->,且30x <,解得2430x <<,又*x ∈N , ∴x 的最小值为25,故答案为:25. 【点睛】本题主要考查离散型随机变量的分布列和期望,属于中档题.18.375【分析】先求得元件和并联电路正常工作的概率乘以元件正常工作的概率由此求得部件正常工作超过小时的概率利用二项分布均值计算计算公式计算出台仪器中该部件的使用寿命超过小时的平均值【详解】由正态分布可解析:375 【分析】先求得元件1和2并联电路正常工作的概率,乘以元件3正常工作的概率,由此求得部件正常工作超过10000小时的概率.利用二项分布均值计算计算公式,计算出1000台仪器中该部件的使用寿命超过10000小时的平均值. 【详解】由正态分布可知,每个元件正常工作超过10000小时的概率为12,则部件正常工作超过10000小时的概率为21131228⎡⎤⎛⎫-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又1000台仪器的该部件工作服从二项分布,所以平均值为310003758⨯=台. 故答案为:375 【点睛】本小题主要考查相互独立事件概率计算,考查二项分布的识别和二项分布期望的计算,属于基础题.19.③④【分析】利用正态分布对每一个说法求解其发生的概率逐项分析选出正确的选项【详解】解:①若8:00出门江先生乘坐公交因为从家到车站要5分钟下车步行到公司要12分钟并且乘公交车所需时间服从正态分布故当解析:③④ 【分析】利用正态分布对每一个说法求解其发生的概率,逐项分析,选出正确的选项. 【详解】解:①若8:00出门,江先生乘坐公交,因为从家到车站要5分钟,下车步行到公司要12分钟,并且乘公交车所需时间服从正态分布()233,4N ,故当满足().().1P 21Z 45109974P Z 450001322-<<-≥===时,江先生仍旧有可能迟到,只不过发生的概率较小,故①错误; ②若8:02出门,江先生乘坐公交,因为从家到车站要5分钟,下车步行到公司要12分钟,并且乘公交所需时间服从正态分布()233,4N ,故当满足()()().1P 25Z 41P Z 41P 25Z 41097722-<<≤=+<<=时,江先生乘公交不会迟到;若8:02出门,江先生乘坐地铁,因为从家到车站要5分钟,下地铁步行到公司要5分钟,并且乘地铁所需时间服从正态分布()244,2N ,故当满足()()().1P 40Z 48P Z 48P 40Z 48097722-<<≤=+<<=时,江先生乘地铁不会迟到;此时两种上班方式,江先生不迟到的概率相当,故②错误; ③若8:06出门,江先生乘坐公交上班;因为从家到车站要5分钟,下车步行到公司要12分钟,并且乘公交所需时间服从正态分布()233,4N ,故当满足()()().1P 29Z 37P Z 37P 29Z 37084132-<<≤=+<<=时,江先生乘地铁不会迟到; 若8:06出门,江先生乘坐地铁,因为从家到车站要5分钟,下地铁步行到公司要5分钟,并且乘地铁所需时间服从正态分布()244,2N ,故当满足().1P Z 44052≤==时,江先生乘地铁不会迟到, 此时两种上班方式,显然江先生公交上班不迟到的可能性更大,故③正确; ④若8:12出门,江先生乘坐地铁上班,因为从家到车站要5分钟,下地铁步行到公司要5分钟,并且乘地铁所需时间服从正态分布()244,2N ,故当满足()().1P 38Z 50P Z 38000132-<<≤==时,江先生乘地铁不会迟到,此时不迟到的可能性极小,故江先生乘坐地铁几乎不可能上班不迟到,故④正确; 综上:③④正确. 【点睛】本题考查了正态分布的实际应用,解题的关键是熟知正态曲线是关于x μ=对称,在正态曲线下方和x 轴上方范围内的区域面积为1等正态密度曲线图象的特征.20.2【解析】【分析】先求出本地养鱼场平均年利润远洋捕捞队平均平均年利润再利用线性规划求明年两个项目的利润之和最大值【详解】设本地养鱼场平均年利润远洋捕捞队平均平均年利润设本地养鱼场投千万元远洋捕捞队投解析:2 【解析】 【分析】先求出本地养鱼场平均年利润1ξ,远洋捕捞队平均平均年利润2ξ,再利用线性规划求明年两个项目的利润之和最大值. 【详解】设本地养鱼场平均年利润1ξ,远洋捕捞队平均平均年利润2ξ10.10.20.30.40.50.40.3E ξ=-⨯+⨯+⨯=, 20.60.700.20.20.10.4E ξ=⨯+⨯-⨯=设本地养鱼场投x 千万元,远洋捕捞队投y 千万元,则利润之和0.30.4z x y =+。

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)

一、选择题1.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05 B .0.1C .0.15D .0.22.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为( ) A .0.2484B .0.25C .0.90D .0.39243.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭5.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列命题中真命题是( )(1)在18的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2) B .(1)(3)C .(2)(3)D .(1)(2)(3)7.设102x <<,随机变量ξ的分布列如下:ξ0 1 2P0.50.5x -x则当x 在10,2⎛⎫ ⎪⎝⎭内增大时( )A .()E ξ减小,()D ξ减小B .()E ξ增大,()D ξ增大C .()E ξ增大,()D ξ减小D .()E ξ减小,()D ξ增大8.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13C .14D .389.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于 A .715B .815C .1415D .110.随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A .2B .3C .4D .511.某工厂生产的零件外直径(单位:cm )服从正态分布()10,0.04N ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm 和9.35cm ,则可认为( )A .上午生产情况异常,下午生产情况正常B .上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常12.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.随着电商的兴起,物流快递的工作越来越重要了,早在周代,我国便已出现快递制度,据《周礼·秋官》记载,周王朝的官职中设置了主管邮驿,物流的官员“行夫”,其职责要求是“虽道有难,而不时必达”.现某机构对国内排名前五的5家快递公司的某项指标进行了3轮测试(每轮测试的客观条件视为相同),每轮测试结束后都要根据该轮测试的成绩对这5家快递公司进行排名,那么跟测试之前的排名比较,这3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为_________.14.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.15.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X表示这6位乘客在第20层下电梯的人数,则(4)P X==________.16.若随机变量3~34X B⎛⎫⎪⎝⎭,, 则方差()D x=____________.17.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X的均值EX=_____.18.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.19.运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为35,则他的得分期望为_____.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“行让行人”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让行人”行为的统计数据:月份x1 2 3 4 5 6 不“礼让斑马线"驾驶员人数y120105100859080(1)请根据表中所给前5个月的数据,求不“礼让行人”的驾驶员人数y 与月份x 之间的回归直线方程ˆˆˆy bx a =+;(2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让行人”情况达到“理想状态”.试判断6月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起15天内需完成罚款缴纳,记录5月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为X ,若X 服从正态分布()~8,9X N ,求该月没能在 14天内缴纳人数. 参考公式:()()()112211ˆˆˆ,nni i i ii i nniii i x x y yx y nxybay bx x x xnx====---===---∑∑∑∑()()()0.6826,220.9544,330.9974P Z P Z P Z μσμσμσμσμσμσ-<<+=-<<+=-<<+=22.某运动会将在深圳举行,组委会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm ),身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180cm 以上(包括180cm )的志愿者中选出男、女各一人,设这2人身高相差cm ξ(0ξ≥),求ξ的分布列和数学期望(均值).23.某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了100名职工进行测试,得到频数分布表如下: 日组装个数 [)155,165[)165,175[)175,185[)185,195[)195,205[]205,215人数6123430108(1)现从参与测试的日组装个数少于175的职工中任意选取3人,求至少有1人日组装个数少于165的概率;(2)由频数分布表可以认为,此次测试得到的日组装个数Z 服从正态分布(),169N μ,μ近似为这100人得分的平均值(同一组数据用该组区间的中点值作为代表).(i )若组装车间有20000名职工,求日组装个数超过198的职工人数;(ii )为鼓励职工提高技能,企业决定对日组装个数超过185的职工日工资增加50元,若在组装车间所有职工中任意选取3人,求这三人增加的日工资总额的期望.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.24.某高三年级学生为了庆祝教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若A 项技术指标达标的概率为3,4B 项技术指标达标的概率为89,按质量检验规定:两项技术指标都达标的工艺品为合格品.(1)求一个工艺品经过检测至少一项技术指标达标的概率;(2)任意依次抽取该工艺品4个,设ξ表示其中合格品的个数,求ξ的分布列. 25.近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用x 表示活动推出的天数,y 表示每天使用刷脸支付的人次,统计数据如下表所示:(1)在推广期内,与y c d =⋅(均为大于零的常数)哪一个适宜作为刷脸支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用刷脸支付的人次;(3)已知一瓶该饮料的售价为2元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有10%使用现金支付,使用现金支付的顾客无优惠;有40%使用扫码支付,使用扫码支付享受8折优惠;有50%使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受7折优惠的概率为16,享受8折优惠的概率为13,享受9折优惠的概率为12.根据所给数据估计购买一瓶该饮料的平均花费.参考数据:其中1i i v g y =,7117i i v v ==∑参考公式:对于一组数据1122,),,(,)n n x v x v ,其回归直线ˆˆˆv a bx=+的斜率和截距的最小二乘估计公式分别为:1221ˆ,ni i i nii x v nxvbxnx==-=-∑∑ˆˆa v bx=-. 26.2020年1月10日,引发新冠肺炎疫情的COVID -9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数k 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元. 比较随机变量X 和Y 的数学期望的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.2.D解析:D 【分析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案. 【详解】由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=;两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D. 【点睛】本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.5.C解析:C【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.6.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D. 【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.7.B解析:B 【分析】分别计算()E ξ和()D ξ的表达式,再判断单调性. 【详解】()00.51(0.5)20.5E x x x ξ=⨯+⨯-+=+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()E ξ增大()222210.5(0.50)(0.5)(0.51)(0.52)24D x x x x x x x ξ=⨯+-+-⨯+-++-=-++ ()25(1)4D x ξ=--+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()D ξ增大 故答案选B 【点睛】本题考查了()E ξ和()D ξ的计算,函数的单调性,属于综合题型.8.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.9.C解析:C 【分析】根据超几何分布的概率公式计算各种可能的概率,得出结果 【详解】由题意,知X 取0,1,2,X 服从超几何分布, 它取每个值的概率都符合等可能事件的概率公式,即P(X =0)=27210715C C =,P(X =1)=1173210715C C C =⋅,P(X =2)=23210115C C =, 于是P(X<2)=P(X =0)+P(X =1)=7714151515+= 故选C 【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.10.C解析:C 【解析】1111632p =--=,111()0223623E X a a =⨯+⨯+⨯=⇒=∴222111()(02)(22)(32)1623D X =-⨯+-⨯+-⨯=∴2(23)2()4D X D X -==点晴:本题考查的是离散型随机变量的期望,方差和分布列中各个概率之间的关系.先根据概率之和为1,求出p 的值,再根据数学期望公式,求出a 的值,再根据方差公式求出D (X ),继而求出D (2X-3).解决此类问题的关键是熟练掌握离散型随机变量的分布列与数学期望.11.B解析:B 【解析】分析:根据3σ原则判断.详解:因为服从正态分布()10,0.04N ,所以10,0.2(100.23,100.23)(9.4,10.6)x μσ==∴∈-⨯+⨯= 所以上午生产情况正常,下午生产情况异常, 选B.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34, 故选B .二、填空题13.【分析】根据题意求出家快递公司进行排名与测试之前的排名比较出现家公司排名不变的概率根据题意满足二项分布根据二项分布概率计算即可【详解】解:首先在一轮测试中家快递公司进行排名与测试之前的排名比较出现家解析:572【分析】根据题意求出5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率,根据题意满足二项分布,根据二项分布概率计算即可. 【详解】解:首先,在一轮测试中5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率为255522011206C A ⨯==, 其次,3轮测试每次发生上述情形的概率均为16P =, 故3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为223155()6672C ⨯⨯=. 故答案为:572. 【点睛】独立重复试验与二项分布问题的常见类型及解题策略:(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率;(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.14.【分析】首先对事件进行分类分成女生0分男生6分或女生2分男生4分或女生4分男生2分女生的概率可以按照超几何概率求解男生按照独立重复求解概率【详解】依题意设该班所选队员得分之和为6分记为事件A 则可分为 解析:43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【详解】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭, ()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭,()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=. 故答案为:43120【点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.15.【分析】根据次独立重复试验的概率公式进行求解即可【详解】解:考查一位乘客是否在第20层下电梯为一次试验这是次独立重复试验故即有123456故答案为:【点睛】本题主要考查次独立重复试验的概率的计算根据 解析:20243【分析】根据n 次独立重复试验的概率公式进行求解即可. 【详解】解:考查一位乘客是否在第20层下电梯为一次试验,这是6次独立重复试验, 故1~6,3X B ⎛⎫ ⎪⎝⎭.即有6612()()()33k kk P X k C -==⨯,0k =,1,2,3,4,5,6.42641220(4)()()33243P X C ∴==⨯=.故答案为:20243【点睛】本题主要考查n 次独立重复试验的概率的计算,根据题意确实是6次独立重复试验,是解决本题的关键,属于中档题.16.【分析】利用方差公式即可得出答案【详解】结合方差【点睛】本题考查了方差计算公式记住即可 解析:916【分析】利用方差公式()D x npq =,即可得出答案. 【详解】结合方差()31934416D x npq ==⋅⋅=. 【点睛】本题考查了方差计算公式,记住()D x npq =,即可.17.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.18.【解析】试题分析:的可能取值是012345 0 1 2 3 4 5 考点:期望方差的计算解析:510 , 39【解析】试题分析:ξ的可能取值是0,1,2,3,4,5,012345.考点:期望、方差的计算.19.552【解析】分析:由次独立重复试验的概率公式计算出射中01234次的概率得到得分的分布列再由期望公式得期望详解:设该运动员中弹数为ξ得分数为η则P(ξ=4)==01296P(ξ=3)==03456解析:552.【解析】分析:由n次独立重复试验的概率公式计算出射中0,1,2,3,4次的概率得到得分的分布列,再由期望公式得期望.详解:设该运动员中弹数为ξ,得分数为η,则P(ξ=4)=435⎛⎫⎪⎝⎭=0.129 6,P(ξ=3)=33432C?·55⎛⎫⎪⎝⎭=0.345 6,P(ξ=2)=222432C?·55⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=0.345 6,P(ξ=1)=31432C?·55⎛⎫⎪⎝⎭=0.153 6,P(ξ=0)=425⎛⎫⎪⎝⎭=0.025 6.由题意可知P (η)=P (ξ),所以E (η)=100×0.129 6+65×0.345 6+40×0.345 6+15×0.153 6+0×0.025 6=51.552.点睛:本题考查随机变量的分布列与期望.解题时关键是理解射击时命中n 次就是n 次独立重复试验,由此可由概率公式计算出概率,从而可得得分的分布列,由分布列的期望公式计算出期望.20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点 解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)ˆ8124yx =-+;(2)达到“理想状态”;(3)2. 【分析】(1)请根据表中数据计算x 、y ,求出回归系数,写出回归直线方程;(2)利用回归方程计算6x =时ˆy的值,比较即可得出结论; (3)根据正态分布的性质,结合()2140.9544P X <<=即可得答案. 【详解】(1)请根据表中所给前5个月的数据,计算1(12345)35x =⨯++++=, 1(1201051008590)1005y =⨯++++=;12222221()()(2)20(1)5001(15)2(10)ˆ8(2)(1)012()nii i nii xx y y bxx ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆˆ100(8)3124ay bx =-=--⨯=; y ∴与x 之间的回归直线方程ˆ8124y x =-+;(2)由(1)知ˆ8124yx =-+,当6x =时,ˆ8612476y =-⨯+=; 且807645-=<,6∴月份该十字路口“礼让斑马线”情况达到“理想状态”;(3)因为X 服从正态分布()~8,9X N , 所以()2140.9544P X <<=, 该月没能在14天内缴纳人数为10.95449022-⨯=, 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nnii ii i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+. 22.(1)710p =;(2)分布列见解析,()116E ξ= 【分析】(1)根据分层抽样的比例关系得到人数,再计算概率得到答案.(2)ξ的可能取值为0,1,2,3,4,计算概率得到分布列,再计算数列期望得到答案. 【详解】(1)根据茎叶图:“高个子”有12个,“非高个子”有18个, 故抽取的“高个子”为125230⨯=个,抽取的“非高个子”有3个. 至少有一人是“高个子”的概率为232537111010C p C =-=-=. (2)身高180cm 以上(包括180cm )的志愿者中选出男,女各有3人和2人, 故ξ的可能取值为0,1,2,3,4, 故()1113206p ξ==⨯=,()11111321323p ξ=⨯+⨯==, ()1113226p ξ==⨯=, ()1113236p ξ==⨯=,()1113246p ξ==⨯=.故分布列为:故()01234636666E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了分层抽样,概率的计算,分布列,数学期望,意在考查学生的计算能力和综合应用能力. 23.(1)149204(2)(i )3173人(ii )75 【分析】(1)利用对立事件公式结合古典概型求解(2)(i )先求平均数185μ=,结合σ公式求得()10.68271980.158652P X ->==,再求人数;(ii )先由正态分布得日组装个数为185以上的概率为0.5.设三人中日组装个数超过185个的人数为ξ,增加的日工资总额为η,得到ξ服从二项分布,由50ηξ=求得期望【详解】(1)设至少有1人日组装个数少于165为事件A ,则()3123181491204C P A C =-=,(2)1606170121803419030200102108185100X ⨯+⨯+⨯+⨯+⨯+⨯==(个)又2169σ=,所以13σ=,所以185μ=,13σ=, 所以198μσ+=.(i )()10.68271980.158652P X ->==, 所以日组装个数超过198个的人数为0.15865200003173⨯=(人)(ii )由正态分布得,日组装个数为185以上的概率为0.5.设这三人中日组装个数超过185个的人数为ξ,这三人增加的日工资总额为η,则50ηξ=,且()~3,0.5B ξ,所以()30.5 1.5E ξ=⨯=,所以()()5075E E ηξ==. 【点睛】本题考查古典概型,考查正态分布的概率,考查二项分布,考查转化化归能力,其中确定人数与工资总额的函数关系是关键,是中档题 24.(1)3536;(2)见解析 【分析】(1)结合对立事件的概率关系可求出至少一项技术指标达标的概率; (2)由题意知,2~4,3B ξ⎛⎫⎪⎝⎭,从而可求出()0P ξ=,(1)P ξ=,()2P ξ=,()3P ξ=,()4P ξ=的值,从而可求出分布列.【详解】(1)设:M 一个工艺品经过检测至少一项技术指标达标,则38()1-11493635P M ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭;(2)依题意知2~4,3B ξ⎛⎫ ⎪⎝⎭,则411(0)381P ξ⎛⎫=== ⎪⎝⎭,1314218(1)3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()222421823327P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()334213233381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭分布列为:本题考查了独立事件的概率,考查了离散型随机变量的分布列求解.本题关键是求出ξ每种可能取值下的概率.求离散型随机变量的分布列时,第一步写出变量的可能取值,第二步求出每种取值下的概率,第三步写出分布列.25.(1)x y c d =⋅适宜(2)23.210320y =⨯=,活动推出第8天使用刷脸支付的人次为320(3)平均花费为251150(元) 【分析】(1)直接根据统计数据表判断,x y c d =⋅适宜;(2)把x y c d =⋅,两边同时取常用对数,1gy 11gc gd x =+⋅,则lg y 与x 两者线性相关,根据已知条件求出lg y 关与x 的线性回归方程,进而转化为y 关与x 的线性回归方程;(3)记购买一瓶该饮料的花费为Z (元),则Z 的取值可能为:2,1.8,1.6,1.4,求出Z 的分布,进而求出Z 的期望. 【详解】(1)直接根据统计数据表判断,x y c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;。

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试卷(有答案解析)

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试卷(有答案解析)

一、选择题1.先后投掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“x y 、中有偶数,且x y ≠”,则概率()P B A =( ) A .13B .12C .14D .252.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.随机变量X 的分布列如表所示,若1()3E X =,则(32)D X -=( )A .59B .53C .5D .74.已知随机变量ξ的分布列如表,则ξ的标准差为( )A .3.56B C .3.2D 5.已知离散型随机变量X 服从二项分布(),X B n p ,且2EX =,DX q =,则21p q+的最小值为( ) A .274B .92C .3D .46.某班有18名学生数学成绩优秀,若从该班随机找出6名学生,其中数学成绩优秀的学生数1~6,3X B ⎛⎫ ⎪⎝⎭,则()21E X +=( )A .13B .12C .5D .47.下列命题中真命题是( )(1)在1831x x ⎛⎫+ ⎪⎝⎭的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)8.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .259.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072910.某校高一(1)班共有54人,如图是该班期中考试数学成绩的频率分布直方图,则成绩在[]100,120内的学生人数为A .36B .27C .22D .1111.已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,(02)P ξ<<=( ). A .0.6B .0.4C .0.3D .0.212.某班有14名学生数学成绩优秀,如果从该班随机找出5名学生,其中数学成绩优秀的学生数1~(5)4X B ,,则(21)E X += A .54B .72C .3D .52二、填空题13.设随机变量ξ服从二项分布16,2B ξ⎛⎫⎪⎝⎭~ ,则()3P ξ≤等于__________ 14.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,若1()3E X =,则(31)D X +的值是______15.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.16.设在15个相同类型的产品中有2个是次品,每次任取1个,共取3次,并且每次取出后不放回,若以ξ表示取出次品的个数,则()E ξ=________.17.如图所示,旋转一次的圆盘,指针落在圆盘中3分处的概率为a ,落在圆盘中2分处的概率为b ,落在圆盘中0分处的概率为c ,(,,(0,1)a b c ∈),已知旋转一次圆盘得分的数学期望为1分,则213a b+的最小值为________.18.随机变量X 服从正态分布()2~10,X N σ,()12P X m >=,1(8)0P X n ≤≤=,则21m n+的最小值为_____. 19.邮局工作人员整理邮件,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果()100.3P X <=,()10300.4P X ≤≤=,那么()30P X >等于_________. 20.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,此时()~10,.X B p 若() 2.1,D X =()()37,P X P X =<=则p =_______. 三、解答题21.在一场青年歌手比赛中,由20名观众代表平均分成A ,B 两个评分小组,给参赛选手评分,下面是两个评分小组对同一名选手的评分情况:A 组8.3 9.3 9.6 9.4 8.5 9.6 8.8 8.4 9.4 9.7 B 组8.69.19.28.89.29.19.29.38.88.7(1)分别计算这两个小组评分的平均数和方差,并根据结果判断哪个小组评分较集中; (2)在评分较集中的小组中,去掉一个最高分和一个最低分,从剩余的评分中任取2名观众的评分,记X 为这2个人评分之差的绝对值,求X 的分布列和数学期望.22.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[)80,100.例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T 服从正态分布()2,N μσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).参考数据:若()2,T N μσ~,则()0.6827P T μσμσ-<≤+=,()220.9545P T μσμσ-<≤+=,()330.9973P T μσμσ-<≤+=.23.抛掷一枚质地均匀的硬币2次,记正面朝上的次数为X . (1)求随机变量X 的分布列;(2)若随机变量21Y X =+,求随机变量Y 均值、方差.24.某班同学在假期进行社会实践活动,对[]25,55岁的人群随机抽取n 人进行了一次当前投资生活方式——“房地产投资”的调查,得到如下统计和各年龄段人数频率.......分布直方图:(Ⅰ)求n ,a ,p 的值;(Ⅱ)从年龄在[)4050,岁的“房地产投资”人群中采取分层抽样法抽取9人参加投资管理学习活动,其中选取3人作为代表发言,记选取的3名代表中年龄在[)4050,岁的人数为X ,求X 的分布列和期望EX .25.数学是研究数量、结构、变化、空间以及信息等概念的一门科学.在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具.(1)为调查大学生喜欢数学命题是否与性别有关,随机选取50名大学生进行问卷调查,当被调查者问卷评分不低于80分则认为其喜欢数学命题,当评分低于80分则认为其不喜欢数学命题,问卷评分的茎叶图如下:依据上述数据制成如下列联表:请问是否有90%的把握认为大学生是否喜欢数学命题与性别有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 20()P K k ≥0.100 0.050 0.010 0.001 0k2.7063.8416.63510.828(01)p p <<,各轮命题相互独立,若该同学在3轮命题中恰有2次成功的概率为49,记该同学在3轮命题中的成功次数为X ,求()E X .26.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求X 0=,1X =,2X =,3X =时的概率()0P X =,()1P X =,()2P X =,()3P X =;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()))|(=(n AB P n A A B ,所以只须分析事件A 和事件AB 所包含的基本事件,即可根据公式求出结果. 【详解】解:事件A 中“x y +为偶数”,所以,x y 同奇同偶,共包含22318⨯=种基本事件;事件AB 同时发生,则,x y 都为偶数,且x y ≠,则包含236A =个基本事件;()()61=)13|=(8n AB n A P B A =. 故选:A. 【点睛】本题考查条件概率的应用,考查基本事件的求法,解题的关键是辨析条件概率,属于基础题.2.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件. 故选:C【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.3.C解析:C 【分析】 由1()3E X =,利用随机变量X 的分布列列出方程组,求出13a =,12b =,由此能求出()D X ,再由(32)9()D X D X -=,能求出结果.【详解】 1()3E X =∴由随机变量X 的分布列得:1161163a b b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩, 2221111115()(1)(0)(1)3633329D X ∴=--⨯+-⨯+-⨯=,5(32)9()959D X D X ∴-==⨯=故选:C . 【点睛】本题考查方差的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.D解析:D 【分析】由分布列的性质求得x ,利用方差的计算公式可求得()D ξ,进而得到标准差. 【详解】由分布列的性质得:0.40.11x ++=,解得:0.5x =,()10.430.150.5 3.2E ξ∴=⨯+⨯+⨯=,()()()()2221 3.20.43 3.20.15 3.20.5 3.56D ξ∴=-⨯+-⨯+-⨯=,ξ∴=故选:D . 【点睛】本题考查根据离散型随机变量的分布列求解标准差的问题,考查了分布列的性质、数学期望和方差的求解,考查基础公式的应用.5.B解析:B 【分析】根据二项分布的均值与方差公式,可得,p q 的等量关系.利用“1”的代换,结合基本不等式即可求得21p q+的最小值. 【详解】离散型随机变量X 服从二项分布(),XB n p ,且2EX =,DX q =由二项分布的均值与方差公式可得()21npq np p =⎧⎨=-⎩, 化简可得22p q +=,即12qp +=由基本不等式化简可得21p q+ 221p q q p ⎛⎫=+ ⎪⎛⎫+ ⎪⎝⎝⎭⎭2525922q p p q ≥+=++= 即21p q +的最小值为92故选:B 【点睛】本题考查了二项分布的简单应用,均值与方差的求法,利用“1”的代换结合基本不等式求最值,属于中档题.6.C解析:C 【分析】根据1~6,3X B ⎛⎫⎪⎝⎭得到()2E X =,再根据()()2121E X E X +=+,计算得到答案. 【详解】1~6,3X B ⎛⎫⎪⎝⎭,则()1623E X =⨯=,故()()21215E X E X +=+=.故选:C . 【点睛】本题考查了二项分布的均值,同时也考查了期望性质的应用,意在考查学生的计算能力.7.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D.【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.8.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.9.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.10.B解析:B根据频率分布直方图,得成绩在[90120],内的频率为:10.0150.0.0100.005100.70-++⨯=(),∴120.0300.7010a +=⨯,解得0.020a =;∴成绩在[100120],内的频率为0.0300.020100.50+⨯=(),所求的学生人数为540.5027⨯=,故选B.11.C解析:C 【解析】∵P (ξ<4)=0.8,∴P (ξ>4)=0.2, 由题意知图象的对称轴为直线x =2,P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3 12.B解析:B 【解析】因为115(5,)()5444X B E X ~⇒=⨯=,所以57(21)2()12142E X E X +=+=⨯+=,应选答案B 。

(必考题)高中数学高中数学选修2-3第一章《计数原理》检测卷(含答案解析)(5)

(必考题)高中数学高中数学选修2-3第一章《计数原理》检测卷(含答案解析)(5)

一、选择题1.已知()~,X B n p ,且()2E X =,()43D X =,则n =( ) A .5B .6C .7D .82.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05 B .0.1C .0.15D .0.23.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为( ) A .0.2484B .0.25C .0.90D .0.39244.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭ C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭5.已知ξ的分布列如图所示,设2-5ηξ=,则()=E η( )A .12B .13C .23D .326.某地7个贫困村中有3个村是深度贫困,现从中任意选3个村,下列事件中概率等于67的是( )A .至少有1个深度贫困村B .有1个或2个深度贫困村C .有2个或3个深度贫困村D .恰有2个深度贫困村7.某班有18名学生数学成绩优秀,若从该班随机找出6名学生,其中数学成绩优秀的学生数1~6,3X B ⎛⎫ ⎪⎝⎭,则()21E X +=( ) A .13B .12C .5D .48.下列命题中真命题是( )(1)在183x x 的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)9.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .2510.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13C .14D .3811.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为X ,则X 的均值为( ) A .20B .25C .30D .4012.某学校高三模拟考试中数学成绩X 服从正态分布()75,121N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.参考数据:()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=) A .261B .341C .477D .683二、填空题13.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 14.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.15.《史记·卷六十五·孙子吴起列传第五》中记载了“田忌赛马”的故事.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现规定每场比赛从双方的马匹中随机各选取一匹进行比试,若有优势的马一定获胜,且每场比赛相互独立,则采取三局两胜制齐王获胜的概率为________. 16.在高三的一个班中,有14的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生人数1(5,)4B ξ~,则()P k ξ=取最大值时k =_______.17.袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是______.18.某同学解答两道试题,他能够解出第一道题的概率为0.8,能够解出第二道题的概率为0.6,两道试题能够解答与否相互独立,记该同学解出题目的个数为随机变量X ,则X 的数学期望()E X =______.19.随机变量X 服从正态分布()2~10,X N σ,()12P X m >=,1(8)0P X n ≤≤=,则21m n+的最小值为_____. 20.邮局工作人员整理邮件,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果()100.3P X <=,() 10300.4P X ≤≤=,那么()30P X >等于_________. 三、解答题21.已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个.现从中随机取球,每次只取一球.()1若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;()2若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望.22.某校准备从报名的6位教师(其中男教师3人,女教师3人)中选3人去边区支教. (1)设所选3人中女教师的人数为X ,求X 的分布列及数学期望;(2)若选派的三人依次到甲、乙、丙三个地方支教,求甲地是男教师的情况下,乙地为女教师的概率.23.复旦大学附属华山医院感染科主任医师张文宏在接受媒体采访时谈到:通过救治研究发现,目前对于新冠肺炎最有用的“特效药”还是免疫力.而人的免疫力与体质息息相关,一般来讲,体质好,免疫力就强.复学已有一段时间,某医院到学校调查高二学生的体质健康情况,随机抽取12名高二学生进行体质健康测试,测试成绩(百分制)如下:65,78,90,86,52,87,72,86,87,98,88,86.根据此年龄段学生体质健康标准,成绩不低于80的为优良.(1)将频率视为概率,根据样本估计总体的思想,在该学校全体高二学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;(2)从抽取的12人中随机选取3人,记X 表示成绩“优良”的人数,求X 的分布列和期望.24.已知从A 地到B 地有两条道路可以到达,走道路①准点到达的概率为34,不准点到达的概率为14;走道路②准点到达的概率为p ,不准点到达的概率为(1)p -.若甲乙两车走道路①,丙车由于其他原因走道路②,且三辆车是否准点到达相互之间没有影响. (1)若三辆车中恰有一辆车没有准点到达的概率为716,求走道路②准点到达的概率p ; (2)在(1)的条件下,求三辆车中准点到达车辆的辆数的分布列和数学期望.25.某投资公司准备在2020年年初将两千万投资东营经济开发区的“示范区”新型物流,商旅文化两个项目中的一个之中.项目一:新型物流仓是为企业提供仓储、运输、配送、货运信息等综合物流服务的平台.现准备投资建设10个新型物流仓,每个物流仓投资0.2千万元,假设每个物流仓盈利是相互独立的,据市场调研,到2022年底每个物流仓盈利的概率为(01)p p <<,若盈利则盈利为投资额的40%,否则盈利额为0.项目二:购物娱乐广场是一处融商业和娱乐于一体的现代化综合服务广场.据市场调研,投资到该项目上,到2022年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p 和1p -.(1)若投资项目一,记1X 为盈利的物流仓的个数,求()1E X (用p 表示); (2)若投资项目二,记投资项目二的盈利为2X 千万元,求()2E X (用p 表示); (3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.26.某工厂计划建设至少3个,至多5个相同的生产线车间,以解决本地区公民对特供商品A 的未来需求.经过对先期样本的科学性调查显示,本地区每个月对商品A 的月需求量均在50万件及以上,其中需求量在50~ 100万件的频率为0.5,需求量在100~200万件的频率为0.3,不低于200万件的频率为0.2.用调查样本来估计总体,频率作为相应段的概率,并假设本地区在各个月对本特供商品A 的需求相互独立.(1)求在未来某连续4个月中,本地区至少有2个月对商品A 的月需求量低于100万件的概率.(2)该工厂希望尽可能在生产线车间建成后,车间能正常生产运行,但每月最多可正常生产的车间数受商品A 的需求量x 的限制,并有如下关系:若一个车间正常运行,则该车间月净利润为1500万元,而一个车间未正常生产,则该车间生产线的月维护费(单位:万元)与月需求量有如下关系:试分析并回答该工厂应建设生产线车间多少个?使得商品A 的月利润为最大.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】∵~(,)X B n p ,∴()2E X =,4()3D X =,∴2np =,且4(1)3np p -=,解得613n p =⎧⎪⎨=⎪⎩, ∴6n =,故选B .2.B解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.3.D解析:D 【分析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案. 【详解】由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=;两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D. 【点睛】本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题.4.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==.故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.5.C解析:C 【分析】根据分布列的性质,求得13m =,由期望的公式,可得17()6E ξ=,再根据()()5E E ηξ=-,即可求解.【详解】由题意,根据分布列的性质,可得1111663m +++=,解得13m =,所以随机变量ξ的期望为111117()123466336E ξ=⨯+⨯+⨯+⨯=, 又由2-5ηξ=,可得172()2563E η=⨯-=. 故选:C. 【点睛】本题主要考查了随机变量的期望的计算,其中解答中熟记分布列的性质和期望的计算公式是解答的关键,着重考查了计算能力.6.B解析:B 【分析】用X 表示这3个村庄中深度贫困村数,则X 服从超几何分布,故()33437k kC C P X k C -==,分别求得概率,再验证选项. 【详解】用X 表示这3个村庄中深度贫困村数,X 服从超几何分布,故()33437k kC C P X k C -==, 所以()3043374035C C P X C ===, ()21433718135C C P X C ===,()12433712235C C P X C ===,()0343371335C C P X C ===, ()()6127P X P X =+==. 故选:B 【点睛】本题主要考查超几何分布及其应用,属于基础题.7.C解析:C 【分析】根据1~6,3X B ⎛⎫ ⎪⎝⎭得到()2E X =,再根据()()2121E X E X +=+,计算得到答案. 【详解】1~6,3X B ⎛⎫⎪⎝⎭,则()1623E X =⨯=,故()()21215E X E X +=+=.故选:C . 【点睛】本题考查了二项分布的均值,同时也考查了期望性质的应用,意在考查学生的计算能力.8.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D. 【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.9.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.10.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果, 所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.11.B解析:B 【分析】先求得抛掷一次的得到2枚正面向上,3枚反面向上的概率,再利用二项分布可得结果.【详解】由题,抛掷一次恰好出现2枚正面向上,3枚反面向上的概率为:2555216C =因为5枚硬币正好出现2枚正面向上,3枚反面向上的概率是一样的,且各次试验是相互独立的,所以X 服从二项分布5(80,)16X B 则5()802516E X =⨯= 故选B 【点睛】本题咔嚓了二项分布,掌握二项分布是解题的关键,属于中档题.12.B解析:B 【解析】分析:正态总体的取值关于75x =对称,位于6486(,)之间的概率是0.6826,根据概率求出位于6486(,)这个范围中的个数,根据对称性除以2 得到要求的结果.详解:正态总体的取值关于75x =对称,位于6486(,)之间的概率是(75117511)0.682?6P X -+=<<,则估计数学成绩在75分到86分之间的人数约为110000.682?63412⨯⨯≈人. 故选B .点睛:题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩X 关75X =于对称,利用对称写出要用的一段分数的频数,题目得解.二、填空题13.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=.故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.14.【分析】首先对事件进行分类分成女生0分男生6分或女生2分男生4分或女生4分男生2分女生的概率可以按照超几何概率求解男生按照独立重复求解概率【详解】依题意设该班所选队员得分之和为6分记为事件A 则可分为 解析:43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【详解】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭, ()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭,()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=. 故答案为:43120【点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.15.【分析】列出所有情况统计满足条件的情况得到齐王每次胜利的概率再根据独立事件计算得到答案【详解】设齐王的上中下等马为田忌的上中下等马为则共有9种情况其中齐王获胜的有6种情况故故答案为:【点睛】本题考查 解析:2027【分析】列出所有情况,统计满足条件的情况得到齐王每次胜利的概率123p =,再根据独立事件计【详解】设齐王的上中下等马为ABC ,田忌的上中下等马为abc , 则共有,,,,,,,,Aa Ab Ac Ba Bb Bc Ca Cb Cc 9种情况, 其中齐王获胜的有,,,,,Aa Ab Ac Bb Bc Cc 6种情况,故16293p ==, 32232212033327p C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭. 故答案为:2027. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.1【分析】可得则且计算可得【详解】解:依题意可得则且解得又所以故答案为:1【点睛】本题考查了二项分布列的概率计算公式组合数的计算公式考查了推理能力与计算能力属于中档题解析:1 【分析】1~(5,)4B ξ,可得5511()()(1)44k k k P k C ξ-==⨯-.则()(1)P k P k ξξ=≥=-且()(1)P k P k ξξ=≥=+计算可得.【详解】解:依题意,可得5511()()(1)44kk k P k C ξ-==⨯-则5C k3()45k-1()4k15C k -≥3()45(1)k --1()41k -,且5C k3()45k-1()4k ≥15C k +5(1)3()4k -+11()4k +, 解得12k ≤≤32,又*k N ∈,所以1k =. 故答案为:1 【点睛】本题考查了二项分布列的概率计算公式、组合数的计算公式,考查了推理能力与计算能力,属于中档题.17.【分析】分别分析最大号码为345的情况再根据所对应的概率求解数学期望即可【详解】所有可能的情况一共有种其中最大号码为3的情况一共有种;其中最大号码为4的情况一共有种;其中最大号码为5的情况一共有种;解析:92分别分析最大号码为3,4,5的情况再根据所对应的概率求解数学期望即可.【详解】所有可能的情况一共有3510C=种,其中最大号码为3的情况一共有221C=种;其中最大号码为4的情况一共有233C=种;其中最大号码为5的情况一共有246C=种;故ξ的数学期望是136312309 345101010102++⨯+⨯+⨯==.故答案为:9 2【点睛】本题主要考查了排列组合解决数学期望的问题,根据题意分析所有可能的情况再利用数学期望公式求解即可.属于中等题型.18.4【解析】【分析】由题意求得随机变量的取值利用相互独立事件的概率公式求得相应的概率再由期望的计算公式即可求解数学期望【详解】由题意该同学解出题目的个数为随机变量的取值为则所以【点睛】本题主要考查了随解析:4【解析】【分析】由题意求得随机变量X的取值,利用相互独立事件的概率公式,求得相应的概率,再由期望的计算公式,即可求解数学期望.【详解】由题意,该同学解出题目的个数为随机变量X的取值为0,1,2X=,则P(X0)0.20.40.08==⨯=,P(X1)0.80.40.20.60.44==⨯+⨯=,P(X2)0.80.60.48==⨯=.所以E(X)00.0810.4420.48 1.4=⨯+⨯+⨯=.【点睛】本题主要考查了随机变量的分布列与数学期望的计算,其中解答中正确理解题意,利用相互独立事件的概率计算公式求得相应的概率是解答的关键,着重考查了推理与运算能力,属于基础题.19.【分析】根据正态分布的对称性得到再利用均值不等式计算的最小值【详解】随机变量服从正态分布∴由得又∴且则当且仅当即时等号成立∴的最小值为故答案为【点睛】本题考查了正态分布的计算均值不等式的运用综合性较解析:6+根据正态分布的对称性,得到12m n +=,再利用均值不等式计算21m n+的最小值. 【详解】随机变量X 服从正态分布210(),X N σ~,∴1(10)2P X ≥=, 由1(8)0P X n ≤≤=,得1(10)2P X n ≤≤=, 又()12P X m >=, ∴12m n +=,且0m >,0n >, 则2121(22)m n m n m n ⎛⎫+=++= ⎪⎝⎭42662642n m m n+⋅=+=+. 当且仅当42n m m n =,即222m -=,212n -=时等号成立. ∴21m n+的最小值为642+. 故答案为642+. 【点睛】本题考查了正态分布的计算,均值不等式的运用,综合性较强,需要同学们熟练掌握各个知识点.20.3【分析】根据随机变量的概率之和为1即可求出【详解】根据随机变量的概率分布的性质可知故【点睛】本题主要考查了随机变量的概率分布的性质属于中档题解析:3 【分析】根据随机变量的概率之和为1,即可求出()30P X >. 【详解】根据随机变量的概率分布的性质,可知()()()101030301P X P X P X <+≤≤+>=, 故(30)10.30.40.3P X >=--=. 【点睛】本题主要考查了随机变量的概率分布的性质,属于中档题.三、解答题21.(1);(2)随机变量X 的分布列见解析,期望为133. 【分析】(1)可从正面计算取得两次、三次、四次白球的概率和,也可以用1减去取得一次、两次白球的概率,而四次取球中每次是否取得白球相互独立,只需用组合数即可得到相应概率;(2)注意取出的球不放回,因此最多取5次白球就会被取完,故X =2,3,4,5,分别计算对应的概率,写出分布列,进而可求出期望. 【详解】(1)记随机变量ξ表示连续取球四次,取得白球的次数,则ξ~B (4,13) 则P (ξ>1)=1-P (ξ=0)-P (ξ=1)=1-00411344121211()()()()333327C C -=(2)随机变量X 的取值分别为2,3,4,5∴P (X =2)=2226115C C =,P (X =3)=11242612415C C C ⨯= P (X =4)=1224361135C C C ⨯=,P (X =5)=134244446635C C C C C += ∴随机变量X 的分布列为∴随机变量X 的期望为:1313()23451515553E X =⨯+⨯+⨯+⨯= 考点:古典概型,相互独立事件,随机变量的分布列与期望 22.(1)分布列见解析,期望为32;(2)35. 【分析】(1)X 的值依次为0,1,2,3,分别计算出概率得概率分布列,再由期望公式计算出期望; (2)设事件A 为“甲地是男教师”,事件B 为“乙地是女教师”,利用条件概率公式,即可求出概率. 【详解】(1)X 的所有可能取值为0,1,2,3,33361(0)20C P X C ===,1233369(1)20C C P X C ===,2133369(2)20C C P X C ===,33361(3)20C P X C ===,所以X 的分布列为:故()1232020202E X =⨯+⨯+⨯=; (2)设事件A 为“甲地是男教师”,事件B 为“乙地是女教师”,则1236361()2C A P A A ==,111334363()10C C C P AB A ==, 所以3()310(|)1()52P AB P B A P A ===. 【点睛】本题考查随机变量的概率分布列和数学期望,考查条件概率,解题时确定出随机变量的所有可能取值,然后计算出概率后可得概率分布列,由期望公式可计算出期望.掌握条件概率公式即可计算条件概率. 23.(1)2627(2)见解析,2 【分析】(1)从该社区中任选1人,成绩是“优良”的概率为23,由此能求出在该社区老人中任选三人,至少有1人成绩是‘优良’的概率.(2)由题意得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和期望. 【详解】解:(1)抽取的12人中成绩是优良的频率为23, 故从该校全体高二学生中任选1人,成绩是“优良”的概率是23, 设“在该校全体高二学生中任选3人,至少有1人成绩优良”为事件A ,则()33212611132727P A C ⎛⎫=-⨯-=-= ⎪⎝⎭. (2)由题意可知,X 的可能取值为0,1,2,3,()3431241022055C P X C ====,()12843124812122055C C P X C ====,()218431211228222055C C P X C ====,()383125614122055C P X C ====,所以X 的分布列为0123255555555EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用,属于中档题. 24.(1)716(2)见解析,136【分析】(1)三辆车中恰有一辆车没有准点到达包含两种情况:甲乙中有一辆没有准点到达或丙没有准点到达,由相互独立事件同时发生的概率公式列出关于p 的方程,解方程即可得结果;(2)设三辆车中准点到达车辆的辆数为ξ,则ξ可能的取值为0,1,2,3,由题写出变量的分布列,算出数学期望. 【详解】解:(1)由已知条件得2123137(1)44416C p p ⎛⎫⨯⨯+-= ⎪⎝⎭,解得23p =; (2)ξ可能的取值为0,1,2,3,()1111044348P ξ==⨯⨯=,123111121(1)4434436P C ξ==⨯⨯⨯+⨯⨯=,123123317(2)44344316P C ξ==⨯⨯⨯+⨯⨯=,3323(3)4438P ξ==⨯⨯=,ξ的分布列为所以01234861686E ξ=⨯+⨯+⨯+⨯=. 【点睛】本题主要考查了离散型随机变量的分布列和期望,考查了相互独立事件同时发生的概率,考查了学生的运算求解能力.25.(1)()110E X p =;(2)()2 1.60.6E X p =-;(3)分类讨论,见解析. 【分析】(1)由题意结合二项分布的期望公式即可得解;(2)由题意列出分布列,利用离散型随机变量期望公式即可得解;(3)由题意分别计算出项目一、项目二的利润的期望与方差,分类比较即可得解. 【详解】(1)由题意1~(10,)X B p ,则盈利的物流仓数的期望()110E X p =;(2)若投资项目二,盈利的金额为20.51⨯=(千万元),亏损的金额为20.30.6⨯=(千万元), 则2X 的分布列为所以盈利的期望)20.6(1) 1.60.6E X p p p =--=-; (3)若盈利,则每个物流仓盈利0.240%0.08⨯=(千万元),若选择项目一,盈利的期望为()()110.080.080.08100.8E X E X p p ==⨯=(千万元),方差为()()22110.080.080.0810(1)0.064(1)D X D X p p p p ==⨯-=-,若选择项目二,盈利的方差为:()222(1 1.60.6)(0.6 1.60.6)(1) 2.56(1)D X p p p p p p =-++--+-=-,①当()()120.08E X E X =时,0.8 1.60.6p p =-,解得34p =, 而()()120.08D X D X <,故选择项目一;②当()()120.08E X E X >时,0.8 1.60.6p p >-,解得304p <<,此时选择项目一;③当()()120.08E X E X <时,0.8 1.60.6p p <-,解得34p >,此时选择项目二. 【点睛】本题考查了离散型随机变量期望与方差的求解和应用,考查了二项分布的应用与分类讨论思想,属于中档题. 26.(1)1116(2)4个 【分析】(1)由独立重复实验的概率公式结合题意计算即可得解;(2)按照建设3个车间、4个车间、5个车间讨论,分别求出对应的分布列和期望,比较期望大小即可得解. 【详解】(1)由题意每月需求量在50~ 100万件的概率为0.5,则由独立重复实验概率公式可得所求概率223142344441111111112222216P C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (2)(i )当建设3个车间时,由于需求量在50万件以上,此时的净利润Y 的分布列为:则(万元);(ii )当建设4个车间时,需求量50100x ≤<时,则有3个车间正常运行时,会有1个车间闲置,此时的净利润150035004000Y =⨯-=;需求量100x ≥时,则4个车间正常运行,此时的净利润150046000Y =⨯=; 则Y 的分布列为:则(万元)(iii )当建设5个车间时,需求量50100x ≤<时,则有3个车间正常运行时,会有2个车间闲置,此时的净利润1500350023500Y =⨯-⨯=; 需求量100200x ≤<时,则4个车间正常运行,会有1个车间闲置, 此时1500460015400Y =⨯-⨯=;需求量200x ≥时,则5个车间正常运行,此时的净利润150057500Y =⨯=; 则Y 的分布列为:则4870=(万元)综上所述,要使该工厂商品A的月利润为最大,应建设4个生产线车间.【点睛】本题考查了独立重复实验概率公式的应用,考查了离散型随机变量期望的求解与应用,属于中档题.。

高二数学选修2-3第一章测试题(含答案)

高二数学选修2-3第一章测试题(含答案)

高中数学选修2-3第一章测试题一.选择题(每题5分,满分60分)1.四个同学,争夺三项冠军,冠军获得者可能有的种类是( ) A .4 B .24 C .43D .34[答案] C[解析] 依分步乘法计数原理,冠军获得者可能有的种数是4×4×4=43.故选C.2.210所有正约数的个数共有( ) A .12个 B .14个 C .16个 D .20个[答案] C[解析] 由210=2·3·5·7知正约数的个数为2·2·2·2=16.∴选C. 3.设m ∈N *,且m <15,则(15-m )(16-m )…(20-m )等于( ) A .A 615-m B .A 15-m20-mC .A 620-mD .A 520-m[答案] C[解析] 解法1:(15-m )(16-m )…(20-m )=(20-m )(19-m )……[(20-m )-6+1]=A 620-m .解法2:特值法.令m =14得1×2×3×4×5×6=A 66.∴选C.4.A 、B 、C 、D 、E 五人站成一排,如果A 必须站在B 的左边(A 、B 可以不相邻),则不同排法有( )A .24种B .60种C .90种D .120种[答案] B[解析] 5个人全排列有5!=120种、A 在B 左边和A 在B 右边的情形一样多,∴不同排法有12×120=60种.5.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610B .27C 410 C .-9C 610D .9C 410[答案] D[解析] ∵T r +1=C r 10x 10-r(-3)r .令10-r =6, 解得r =4.∴系数为(-3)4C 410=9C 410.6.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中奇数的个数为( )A .36B .30C .40D .60[答案] A[解析] 奇数的个位数字为1、3或5,偶数的个位数字为2、4.故奇数有35A 35=36个.7.6人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为( ) A .A 66B .3A 33C .A 33·A 33D .4!·3! [答案] D[解析] 甲、乙、丙三人站在一起有A 33种站法,把3人作为一个元素与其他3人排列有A 44种,∴共有A 33·A 44种.故选D. 8.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为( ) A .720 B .144 C .576D .684[答案] C[解析] “不能都站在一起”与“都站在一起”是对立事件,由间接法可得A 66-A 33A 44=576.[点评] 不能都站在一起,与都不相邻应区分.9.C 9798+2C 9698+C 9598等于( )A .C 9799B .C 97100C .C 9899D .C 98100[答案] B[解析] 原式=C 9798+C 9698+C 9698+C 9598=C 9799+C 9699=C 97100,故选B.10.已知集合A ={1,2,3,4,5,6},B ={1,2},若集合M 满足B M A ,则不同集合M的个数为( )A .12B .13C .14D .15[答案] C[解析] ∵B M ,∴M 中必含有1、2且至少含有3、4、5、6中的一个元素,又M A ,∴M ≠A ,∴M 的个数为C 14+C 24+C 34=14个.11.某年级有6个班,分别派3名语文教师任教,每个教师教2个班,则不同的任课方法种数为( )A .C 26·C 24·C 22 B .A 26·A 24·A 22 C .C 26·C 24·C 22·C 33 D.A 26·C 24·C 22A 33[答案] A12.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( ) A .2n -1B .2n -1C .2n +1-1 D .2n [答案] C[解析] 解法一:令x =1得,1+2+22+…+2n =1×(2n +1-1)2-1=2n +1-1.解法二:令n =1,知各项系数和为3,排除A 、B 、D ,选C.二.填空题(每小题5分,满分20分)13.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.[答案] 24[解析] “每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空档中即可.∴有A 34=24种不同坐法.14.方程C x 17-C x 16=C 2x +216的解集是________.[答案] {5}[解析] 因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,得x 1=-3(舍去),x 2=5.15.方程组⎩⎪⎨⎪⎧x 2+y 2=3,y 2+z 2=4,z 2+x 2=5.有________组解.[答案] 8[解析] 由方程组⎩⎪⎨⎪⎧x 2+y 2=3,y 2+z 2=4,z 2+x 2=5.可得⎩⎪⎨⎪⎧x 2=2,y 2=1,z 2=3.因此在{2,-2},{1,-1},{3,-3}中各取一个即可构成方程组的一组解,由分步乘法计数原理共有2×2×2=8组解.16.(2010·湖北文,11)在(1-x 2)10的展开式中,x 4的系数为________. [答案] 45[解析] 本题主要考查二项式定理.(1-x 2)10的展开式中,只有两个括号含x 2的项,则x 4的系数为C 210(-1)2=45三、解答题17.(满分12分)求和:12!+23!+34!+…+n(n +1)!.[解析] ∵k (k +1)!=k +1-1(k +1)!=k +1(k +1)!-1(k +1)!=1k !-1(k +1)!,∴原式=⎝⎛⎭⎫11-12!+⎝⎛⎭⎫12!-13!+⎝⎛⎭⎫13!-14!+…+⎝⎛⎭⎫1n !-1(n +1)!=1-1(n +1)!.18.(满分10分)用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数. (1)这些四位数中偶数有多少个?能被5整除的有多少个? (2)这些四位数中大于6500的有多少个?[解析] (1)偶数的个位数只能是2、4、6有A 13种排法,其它位上有A 36种排法,由分步乘法计数原理知共有四位偶数A 13·A 36=360个;能被5整除的数个位必须是5,故有A 36=120个.(2)最高位上是7时大于6500,有A 36种,最高位上是6时,百位上只能是7或5,故有2×A 25种.∴由分类加法计数原理知,这些四位数中大于6500的共有A 36+2A 25=160个.19.(满分12分)一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单. (1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?(以上两个题只列出算式)[解析](1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有A25A66种排法.(2)先不考虑排列要求,有A88种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有(A88-A45A44)种.20.(满分12分)六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站右端,也不站左端;(2)甲、乙站在两端;(3)甲不站左端,乙不站右端.[解析](1)解法一:因甲不站左右两端,故第一步先从甲以外的5个人中任选二人站在左右两端,有A25种不同的站法;第二步再让剩下的4个人站在中间的四个位置上,有A44种不同的站法,由分步乘法计数原理共有A25·A44=480种不同的站法.解法二:因甲不站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A14种不同的站法;第二步再让余下的5个人站在其他5个位置上,有A55种不同的站法,故共有A14·A55=480种不同的站法.解法三:我们对6个人,不考虑甲站位的要求,做全排列,有A66种不同的站法;但其中包含甲在左端或右端的情况,因此减去甲站左端或右端的排列数2A55,于是共有A66-2A55=480种不同的站法.(2)解法一:首先考虑特殊元素,让甲、乙先站两端,有A22种不同的站法;再让其他4个人在中间4个位置做全排列,有A44种不同的站法,根据分步乘法计数原理,共有A22·A44=48种不同的站法.解法二:“位置分析法”,首先考虑两端2个位置,由甲、乙去站,有A22种站法,再考虑中间4个位置,由剩下的4个人去站,有A44种站法,根据分步乘法计数原理,共有A22·A44=48种不同的站法.(3)解法一:“间接法”,甲在左端的站法有A55种,乙在右端的站法有A55种,而甲在左端且乙在右端的站法有A44种,故共有A66-2A55+A44=504种不同的站法.解法二:“直接法”,以元素甲的位置进行考虑,可分两类:a.甲站右端有A55种不同的站法;b.甲在中间4个位置之一,而乙不在右端,可先排甲后排乙,再排其余4个,有A14·A14·A44种不同的站法,故共有A55+A14·A14·A44=504种不同的站法.21.(满分12分)有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本; (2)一人得4本,一人得3本,一人得2本; (3)甲、乙、丙各得3本.[分析] 由题目可获取以下主要信息: ①9本不同的课外书分给甲、乙丙三名同学; ②题目中的3个问题的条件不同.解答本题先判断是否与顺序有关,然后利用相关的知识去解答. [解析] (1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C 49种方法; 第二步:从余下的5本书中,任取3本给乙,有C 35种方法; 第三步:把剩下的书给丙有C 22种方法,∴共有不同的分法有C 49·C 35·C 22=1260(种).(2)分两步完成:第一步:将4本、3本、2本分成三组有C 49·C 35·C 22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A 33种方法,∴共有C 49·C 35·C 22·A 33=7560(种).(3)用与(1)相同的方法求解,得C 39·C 36·C 33=1680(种).22.(满分12分)已知在(3x -123x )n 的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项. [解析] (1)T r +1=C r n ·(3x )n -r ·(-123x )r =C r n ·(x 13)n -r ·(-12·x -13)r =(-12)r ·C r n ·x n -2r 3. ∵第6项为常数项,∴r =5时有n -2r3=0,∴n =10.(2)令n -2r 3=2,得r =12(n -6)=2,∴所求的系数为C 210(-12)2=454. (3)根据通项公式,由题意得:⎩⎪⎨⎪⎧10-2r3∈Z0≤r ≤10r ∈Z令10-2r3=k (k ∈Z ),则10-2r =3k , 即r =10-3k 2=5-32k .∵r ∈Z ,∴k 应为偶数,∴k 可取2,0,-2, ∴r =2,5,8,∴第3项、第6项与第9项为有理项. 它们分别为C 210·(-12)2·x 2,C 510(-12)5, C 810·(-12)8·x -2.。

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试(包含答案解析)

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试(包含答案解析)

一、选择题1.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .792.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .7103.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .254.连续投掷2粒大小相同,质地均匀的骰子3次,则恰有2次点数之和不小于10的概率为( ) A .112B .572C .115D .52165.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙每次投篮命中的概率为0.6,而且不受其他次投篮结果的影响.设投篮的轮数为X ,若甲先投,则()P X k =等于( ) A .10.60.4k -⨯B .10.240.76k -⨯C .10.40.6k -⨯D .10.760.24k -⨯6.已知随机变量X 服从正态分布()100,4N ,若()1040.1359P m X <<=,则m 等于 ( )[附:()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=] A .100B .101C .102D .D .1037.随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A .2B .3C .4D .58.已知在5件产品中混有2件次品,现需要通过逐一检测直至查出2件次品为止,每检测一件产品的费用是10元,则所需检测费的均值为( )A .32元B .34元C .35元D .36元9.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( ) A .67B .335C .1135D .0.1910.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072911.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落A 袋中的概率为( ).A .18B .14C .38D .3412.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ=二、填空题13.若有一个不透明的袋子内装有大小、质量相同的6个小球,其中红球有2个,白球有4个,每次取两个,取后放回,连续取三次,设随机变量ξ表示取出后都是白球的次数,则()E ξ=______ .14.已知随机变量ξ服从正态分布()21,N σ,若(3)0.0442P ξ>=,则(13)P ξ≤≤=________.15.(理)设随机变量ξ的概率分布律如下表所示:x0 1 2()P x ξ= abc其中a ,b ,c 成等差数列,若随机变量ξ的均值为43,则ξ的方差为__________. 16.如图所示,旋转一次的圆盘,指针落在圆盘中3分处的概率为a ,落在圆盘中2分处的概率为b ,落在圆盘中0分处的概率为c ,(,,(0,1)a b c ∈),已知旋转一次圆盘得分的数学期望为1分,则213a b+的最小值为________.17.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为______. 18.中国光谷(武汉)某科技公司生产一批同型号的光纤通讯仪器,每台仪器的某一部件由三个电子元件按如图方式连接而成,若元件1或元件2正常工作,且元件3正常工作,则该部件正常工作.由大数据统计显示:三个电子元件的使用寿命(单位:小时)均服从正态分布()210000,10N ,且各个元件能否正常工作相互独立.现从这批仪器中随机抽取1000台检测该部件的工作情况(各部件能否正常工作相互独立),那么这1000台仪器中该部件的使用寿命超过10000小时的平均值为______台.19.已知随机变量X ~B (10,0.2),Y =2X +3,则EY 的值为____________. 20.已知随机变量2~(1,)N ξσ,且(1)0.1P ξ≤-=,(23)0.15P ξ≤≤=,则(02)P ξ≤≤=_______.三、解答题21.设甲、乙两位同学上学期间,每天7:10之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的每周五天中7:10之前到校的天数,求随机变量X 的分布列和数学期望;(2)记“上学期间的某周的五天中,甲同学在7:10之前到校的天数比乙同学在7:10之前到校的天数恰好多3天”为事件M ,求事件M 发生的概率. 22.某射手每次射击击中目标的概率均为23,且各次射击的结果互不影响. (1)假设这名射手射击3次,求至少2次击中目标的概率;(2)假设这名射手射击3次,每次击中目标得10分,未击中目标得0分.在3次射击中,若有2次连续击中目标,而另外1次未击中目标,则额外加5分;若3次全部击中,则额外加10分.用随机变量ζ表示射手射击3次后的总得分,求ζ的分布列和数学期望. 23.某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了100名职工进行测试,得到频数分布表如下:(1)现从参与测试的日组装个数少于175的职工中任意选取3人,求至少有1人日组装个数少于165的概率;(2)由频数分布表可以认为,此次测试得到的日组装个数Z 服从正态分布(),169N μ,μ近似为这100人得分的平均值(同一组数据用该组区间的中点值作为代表).(i )若组装车间有20000名职工,求日组装个数超过198的职工人数;(ii )为鼓励职工提高技能,企业决定对日组装个数超过185的职工日工资增加50元,若在组装车间所有职工中任意选取3人,求这三人增加的日工资总额的期望.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.24.在湖北新冠疫情严重期间,我市响应国家号召,召集医务志愿者组成医疗队驰援湖北.某医院有2名女医生,3名男医生,3名女护士,1名男护士报名参加,医院计划从医生和护士中各选2名参加医疗队.(1)求选出的4名志愿全是女性的选派方法数;(2)记X 为选出的4名选手中男性的人数,求X 的概率分布和数学期望.25.某单位选派甲、乙、丙三人组队参加知识竞赛,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是34,甲、丙两人都答错的概率是112,乙、丙两人都答对的概率是14,规定每队只要有一人答对此题则该队答对此题.(1)求该单位代表队答对此题的概率;(2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得10-分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1分).26.推进垃圾分类处理,是落实绿色发展理念的必然选择,也是打赢污染防治攻坚战的重要环节.为了解居民对垃圾分类的了解程度某社区居委会随机抽取1000名社区居民参与问卷测试,并将问卷得分绘制频率分布表如表:(1)从该社区随机抽取一名居民参与问卷测试试估计其得分不低于60分的概率:(2)将居民对垃圾分类的了解程度分为“比较了解”(得分不低于60分)和“不太了解”(得分低于60)两类,完成2×2列联表,并判断是否有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关?(3)从参与问卷测试且得分不低于80分的居民中,按照性别进行分层抽样,共抽取10人,现从这10人中随机抽取3人作为环保宣传队长,设3人中男性队长的人数为ξ,求ξ的分布列和期望.附:22(),() ()()()()n ad bcK n a b c da b c d a c b d-==+++++++.临界值表:【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.2.B解析:B 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==,11155561116691()1216C C C P B C C C =-=()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.3.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.4.B解析:B 【分析】基本事件总数n =6×6=36,利用列举法求出出现向上的点数之和不小于10包含的基本事件有6个,由此能求出一次出现向上的点数之和不小于10的概率,再结合独立重复试验的概率公式求解即可. 【详解】连续投掷2粒大小相同,质地均匀的骰子1次, 基本事件总数n =6×6=36,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共有6个, ∴每次投掷,两骰子点数之和不小于10的概率为16, 又投掷3次,相当于3次独立重复试验,故恰有两次点数之和不小于10的概率为2231556672C ⎛⎫⋅= ⎪⎝⎭. 故选:B 【点睛】本题考查独立重复试验的概率的求法,考查古典概型概率计算公式、列举法等基础知识,考查运算求解能力,是中档题.5.B解析:B 【分析】由题意知甲和乙投篮不受其他投篮结果的影响,本题是一个相互独立事件同时发生的概率,甲投篮的次数为X ,甲先投,则X k =表示甲第k 次甲投中篮球,而乙前1k -次没有投中,甲前1k -次也没有投中或者甲第k 次未投中,而乙第k 次投中篮球,根据公式写出结果. 【详解】甲和乙投篮不受其他投篮结果的影响,∴本题是一个相互独立事件同时发生的概率,每次投篮甲投中的概率为0.4,乙投中的概率为0.6,甲投篮的次数为X ,甲先投,则X k =表示甲第k 次投中篮球,而甲与乙前1k -次没有投中,或者甲第k 次未投中,而乙第k 次投中篮球. 根据相互独立事件同时发生的概率得到甲第k 次投中的概率:1110.40.60.40.240.4k k k ---⨯⨯=⨯;第k 次甲不中的情况应是10.40.60.6k k -⨯⨯,故总的情况是1110.240.40.240.60.60.240.76k k k ---⨯+⨯⨯=⨯. 故选B . 【点睛】本题考查相互独立事件同时发生的概率,是一个基础题,本题最大的障碍是理解X k =的意义,相互独立事件是指,两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式.6.C解析:C 【分析】 由()()0.1322259P X P X μσμσμσμσ-<<+--<<+=,再根据正态分布的对称性,即可求解. 【详解】由题意,知()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=, 则()()220.95440.682620.13592P X P X μσμσμσμσ-<<+--<<+-==,所以要使得()1040.1359P m X <<=,则102m =,故选C. 【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布的对称性,以及概率的计算方法是解答的关键,着重考查了运算与求解能力,属于基础题.7.C解析:C 【解析】1111632p =--=,111()0223623E X a a =⨯+⨯+⨯=⇒=∴222111()(02)(22)(32)1623D X =-⨯+-⨯+-⨯=∴2(23)2()4D X D X -==点晴:本题考查的是离散型随机变量的期望,方差和分布列中各个概率之间的关系.先根据概率之和为1,求出p 的值,再根据数学期望公式,求出a 的值,再根据方差公式求出D (X ),继而求出D (2X-3).解决此类问题的关键是熟练掌握离散型随机变量的分布列与数学期望.8.C解析:C 【解析】 【分析】随机变量X 的可能取值为20,30,40,结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】X 的可能取值为20,30,40,()222521202010A P X A ====;()311232323562323306010A C C A P X A +⋅⋅+⨯⨯====; ()()()1334012030110105P X P X P X ==-=-==--=,数学期望2030403510105EX =⨯+⨯+⨯=, 即需检测费的均值为35,故选C. 【点睛】本题主要考查组合的应用、古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.9.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==, 由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.10.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.11.D解析:D 【解析】由于小球每次遇到黑色障碍物时,有一次向左和两次向右或两次向左和一次向右下落时,小球将落入A 袋,所以22123311113()C 1C 122224P A ⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅-+⋅⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选D . 12.D解析:D由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2,故D 不正确.故选D .二、填空题13.【分析】计算出从袋中随机抽取两个球都是白球的概率可知然后利用二项分布的期望公式可计算出的值【详解】从袋中随机抽取两个球都是白球的概率为由题意可知由二项分布的期望公式得故答案为:【点睛】本题考查二项分解析:65【分析】计算出从袋中随机抽取两个球都是白球的概率p ,可知()3,B p ξ,然后利用二项分布的期望公式可计算出()E ξ的值. 【详解】从袋中随机抽取两个球都是白球的概率为242625C p C ==,由题意可知,23,5B ξ⎛⎫⎪⎝⎭,由二项分布的期望公式得()26355E ξ=⨯=.故答案为:65. 【点睛】本题考查二项分布期望的计算,解题时要弄清随机变量满足的分布列类型,考查计算能力,属于中等题.14.4558【分析】随机变量服从正态分布根据对称性可求得的值再根据概率的基本性质可求得【详解】因为所以故所以故答案为:04558【点睛】本题考查了正态分布曲线的对称性属于基础题解析:4558 【分析】随机变量ξ服从正态分布()21,N σ,(3)0.0442P ξ>=,根据对称性可求得(1)P ξ<-的值,再根据概率的基本性质,可求得(13)P ξ≤≤. 【详解】因为(3)0.0442P ξ>=, 所以(1)0.0442P ξ<-=,故(13)1(3)(1)0.9116P P P ξξξ-≤≤=->-<-=. 所以(13)0.4558P ξ≤≤=. 故答案为:0.4558.本题考查了正态分布曲线的对称性,属于基础题.15.【分析】根据题意已知成等差数列随机变量的均值为列出方程组得由此能求出【详解】解:由随机变量的概率分布律得:①因为成等差数列所以②而随机变量的均值为则③联立①②③得所以故答案为:【点睛】本题考查方差的解析:59【分析】根据题意,已知a ,b ,c 成等差数列,随机变量ξ的均值为43,列出方程组,得16a =,13b =,12c =,由此能求出()D ξ. 【详解】解:由随机变量ξ的概率分布律得:1a b c ++=,① 因为a ,b ,c 成等差数列,所以2b a c =+,② 而随机变量ξ的均值为43,则 40123a b c ⨯+⨯+⨯=,③联立①②③,得16a =,13b =,12c =, 所以2224141415012363()(3329()))(D ξ=-⨯+-⨯+-⨯=. 故答案为:59. 【点睛】本题考查方差的求法,以及离散型随机变量的分布列、等差数列的性质等基础知识.16.【分析】由数学期望可得再结合基本不等式求解即可【详解】解:由分布列知:又∴当且仅当即时取等号故答案为:【点睛】本题考查了数学期望的求法重点考查了基本不等式的应用属基础题解析:323. 【分析】由数学期望可得231b a +=,再结合基本不等式求解即可. 【详解】解:由分布列知:()1,2301a b c E x b a c ++==++⨯=, 又,(0,1)a b ∈∴212124202032()(32)64333333b a a b a b a b a b +=++=+++≥+=+=. 当且仅当4b aa b =,即11,48a b ==时取等号, 故答案为:323. 【点睛】本题考查了数学期望的求法,重点考查了基本不等式的应用,属基础题.17.【分析】前三局乙获胜一场计算得到概率【详解】根据题意知:前三局乙获胜一场故故答案为:【点睛】本题考查了概率的计算意在考查学生的理解应用能力 解析:827【分析】前三局,乙获胜一场,计算得到概率. 【详解】根据题意知:前三局,乙获胜一场,故3131283327p C ⎛⎫=⨯⨯=⎪⎝⎭ 故答案为:827【点睛】本题考查了概率的计算,意在考查学生的理解应用能力.18.375【分析】先求得元件和并联电路正常工作的概率乘以元件正常工作的概率由此求得部件正常工作超过小时的概率利用二项分布均值计算计算公式计算出台仪器中该部件的使用寿命超过小时的平均值【详解】由正态分布可解析:375 【分析】先求得元件1和2并联电路正常工作的概率,乘以元件3正常工作的概率,由此求得部件正常工作超过10000小时的概率.利用二项分布均值计算计算公式,计算出1000台仪器中该部件的使用寿命超过10000小时的平均值. 【详解】由正态分布可知,每个元件正常工作超过10000小时的概率为12,则部件正常工作超过10000小时的概率为21131228⎡⎤⎛⎫-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又1000台仪器的该部件工作服从二项分布,所以平均值为310003758⨯=台.故答案为:375 【点睛】本小题主要考查相互独立事件概率计算,考查二项分布的识别和二项分布期望的计算,属于基础题.19.7【解析】【分析】先根据二项分布得EX 再根据Y =2X +3得EY=2EX+3即得结果【详解】因为X ~B(1002)所以EX=10×02=2因此EY=2EX+3=7【点睛】本题考查二项分布期望公式考查基解析:7 【解析】 【分析】先根据二项分布得EX ,再根据Y =2X +3得 EY=2EX+3,即得结果. 【详解】因为X ~B (10,0.2),,所以EX =10×0.2=2,因此EY=2EX+3=7. 【点睛】本题考查二项分布期望公式,考查基本求解能力.20.【解析】【分析】利用随机变量关于对称结合已知求出结果【详解】随机变量满足图象关于对称则故答案为【点睛】本题考查了正态分布由正态分布的对称性即可计算出结果 解析:0.5【解析】 【分析】利用随机变量()2~1N ξσ,,关于1x =对称,结合已知求出结果【详解】随机变量满足()2~1N ξσ,,∴图象关于1x =对称()10.1P ξ≤-=,()30.1P ξ∴≥=则()()()120.5?23?30.50.150.10.25P P P ξξξ≤≤=-≤≤-≥=--= ()020.5P ξ∴≤≤=故答案为0.5 【点睛】本题考查了正态分布,由正态分布的对称性即可计算出结果三、解答题21.(1)分布列见解析,10()3E X =;(2)802187. 【分析】(1)先根据已知条件分析出X 服从二项分布,再利用二项分布概率计算公式求出相应概率,即可求出其分布列与数学期望;(2)先分析出乙同学7:10之前到校的天数Y 也服从二项分布,再根据互斥事件与相互独立事件的概率计算公式求概率即可. 【详解】(1)因为甲同学上学期间的五天中到校情况相互独立,且每天7:10之前到校的概率为23, 所以2(5,)3XB ,从而5521()()()33k k kP X k C -==,0,1,2,3k =,所以,随机变量X 的分布列为:所以()533E X =⨯=; (2)设乙同学上学期间的五天中7:10之前到校的天数为Y ,则2(5,)3Y B ,且事件{}{}{}3,04,15,2M X Y X Y X Y =======,由题意知,事件{}{}{}3,0,4,1,5,2X Y X Y X Y ======之间互斥,且X 与Y 相互独立, 由(1)可得8018010324080()2432432432432432432187P M =⨯+⨯+⨯=. 【点睛】该题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识,考查运用概率知识解决简单实际问题的能力. 22.(1)2027;(2)分布列见解析,2209E ζ=. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题意可知,随机变量ζ的可能取值有0、10、20、25、40,计算出随机变量ζ在不同取值下的概率,可得出随机变量ζ的分布列,由此可求得随机变量ζ的数学期望值. 【详解】(1)设X 为射手3次射击击中目标的总次数,则23,3XB ⎛⎫⎪⎝⎭.故()()()23233322220223133327P X P X P X C C ⎛⎫⎛⎫⎛⎫≥==+==⋅⋅-+⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以,所求概率为2027;(2)由题意可知,ζ的所有可能取值为0、10、20、25、40,用()1,2,3i A i =表示事件“第i 次击中目标”,则()()31100327P P X ζ⎛⎫===== ⎪⎝⎭,()()2132221011339P P X C ζ⎛⎫====⋅⋅-= ⎪⎝⎭, ()()12321242033327P P A A A ζ===⨯⨯=,()()()82522027P P X P ζζ===-==, ()()328403=327P P X ζ⎛⎫==== ⎪⎝⎭.故ζ的分布列如下表所示:因此,随机变量的数学期望为1648822001020254027272727279E ζ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查利用独立重复试验的概率公式计算事件的概率,同时也考查了随机变量分布列与数学期望的求解,考查计算能力,属于中等题. 23.(1)149204(2)(i )3173人(ii )75 【分析】(1)利用对立事件公式结合古典概型求解(2)(i )先求平均数185μ=,结合σ公式求得()10.68271980.158652P X ->==,再求人数;(ii )先由正态分布得日组装个数为185以上的概率为0.5.设三人中日组装个数超过185个的人数为ξ,增加的日工资总额为η,得到ξ服从二项分布,由50ηξ=求得期望【详解】(1)设至少有1人日组装个数少于165为事件A ,则()3123181491204C P A C =-=,(2)1606170121803419030200102108185100X ⨯+⨯+⨯+⨯+⨯+⨯==(个)又2169σ=,所以13σ=,所以185μ=,13σ=, 所以198μσ+=.(i )()10.68271980.158652P X ->==, 所以日组装个数超过198个的人数为0.15865200003173⨯=(人)(ii )由正态分布得,日组装个数为185以上的概率为0.5.设这三人中日组装个数超过185个的人数为ξ,这三人增加的日工资总额为η,则50ηξ=,且()~3,0.5B ξ,所以()30.5 1.5E ξ=⨯=,所以()()5075E E ηξ==. 【点睛】本题考查古典概型,考查正态分布的概率,考查二项分布,考查转化化归能力,其中确定人数与工资总额的函数关系是关键,是中档题 24.(1)3(2)详见解析 【分析】(1)选出的4名志愿全是女性,则从2名女医生选2人有22C 种选法,从3名女护士选2人有23C 选法,根据乘法原理可得答案.(2)由题意有X 的取值可能为0,1,2,3,再分别计算出X 取各个值的概率,列出分布列,求出期望即可. 【详解】解:(1)从2名女医生选2人有22C 种选法,从3名女护士选2人有23C 选法 则选出的4名志愿全是女性有22233C C ⋅=种不同的选法. 所以选出的4名志愿全是女性的选派方法数有3种, (2)X 的取值可能为0,1,2,3()222322541020C C P X C C ===,()11221132323122547120C C C C C C P X C C +===, ()22111133323122549220C C C C C C P X C C +===, ()21133122543320C C C P X C C ===,列表如下:∴()01232020202010E X =⨯+⨯+⨯+⨯=. 【点睛】本题考查组合问题和求概率分布列以及数学期望,求概率分布列先要弄清楚随机变量的取值情况,准确求出其对应的概率时关键,属于中档题. 25.(1)9196(2)184 【分析】(1)根据已知条件列方程组解得甲、乙、丙答对的概率,再根据对立事件的概率公式可求得结果;(2)记X 为该单位代表队必答题答对的道数,Y 为必答题的得分,则91~10,96X B ⎛⎫ ⎪⎝⎭,30100Y X =-,根据二项分布的期望公式以及期望的性质可得结果.【详解】(1)记甲、乙、丙分别答对此题为事件A ,B ,C , 由已知,得3()4P A =,1[1()][1()]12P A P C --=, 2()3P C ∴=.又13()(),()48P B P C P B =∴=. ∴该单位代表队答对此题的概率为:332911[1()][1()][1()]111148396P P A P B P C ⎛⎫⎛⎫⎛⎫=----=--⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)记X 为该单位代表队必答题答对的道数,Y 为必答题的得分,则91~10,96X B ⎛⎫ ⎪⎝⎭,91455()109648E X ∴=⨯=. 而()20101030100Y X X X =-⨯-=-,4551475()30()10030100184488E Y E X ∴=-=⨯-=≈. 【点睛】本题考查了对立事件的概率公式和独立事件的乘法公式,考查了二项分布的期望,属于中档题. 26.(1)35p =;(2)列联表见解析,有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关;(3)分布列见解析,()95E ξ= 【分析】(1)直接根据频率分布表得到答案.(2)根据频率分布表得到列联表,计算2 5.542 3.841K ≈>得到答案. (3)ξ的可能取值为0,1,2,3,计算概率得到分布列,计算数学期望得到答案. 【详解】(1)根据频率分布表:24021010050310005p +++==.(2)根据频率分布表得到列联表:故()221000250270150330 5.542 3.841400600580420K ⨯-⨯=≈>⨯⨯⨯,故有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关.90人,女性有60人, 故抽取男性901069060⨯=+人,抽取女性601049060⨯=+人,故ξ的可能取值为0,1,2,3,()343101030C p C ξ===;()21463103110C C p C ξ⋅===;()1246310122C C p C ξ⋅===;()36310631C p C ξ===.故分布列为:故()01233010265ξ=⨯+⨯+⨯+⨯=E . 【点睛】本题考查了概率的计算,独立性检验,分布列和数学期望,意在考查学生的计算能力和应用能力.。

高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)

高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)

一、选择题1.设01a <<,2a b +=,随机变量X 的分布列如表:则当()0,1a ∈内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大2.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481253.已知离散型随机变量X 的分布列为则D (X )的最大值是( ) A .29B .59C .89D .2094.星期天上午,甲、乙、丙、丁到绿博园、四牟园、湿地公园、蟹岛游玩,每人只去一个地方,设事件A 为“4个人去的地方各不相同”,事件B 为“甲独自去一个地方”,则()P A B =( )A .29B .13C .49D .595.已知随机变量ξ的分布列如表,则ξ的标准差为( )A .3.56B C .3.2D 6.某班有18名学生数学成绩优秀,若从该班随机找出6名学生,其中数学成绩优秀的学生数1~6,3X B ⎛⎫ ⎪⎝⎭,则()21E X +=( ) A .13B .12C .5D .47.已知随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<.令随机变量|()|E ηξξ=-,则( )A .()()E E ηξ>B .()()E E ηξ<C .()()D D ηξ>D .()()D D ηξ<8.已知随机变量,X Y 的分布列如下:若成等差数列,则下列结论一定成立的是()A .()()D X Y D >B .()() E X E Y =C .()()E X E Y < D .()()D X Y D =9.某工厂生产的零件外直径(单位:cm )服从正态分布()10,0.04N ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm 和9.35cm ,则可认为( )A .上午生产情况异常,下午生产情况正常B .上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常10.若随机变量ξ满足(1)4E ξ-=,(1)4D ξ-=,则下列说法正确的是 A .4,4E D ξξ=-= B .3,3E D ξξ=-= C .4,4E D ξξ=-=- D .3,4E D ξξ=-= 11.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( )A .0.32B .0.68C .0.36D .0.6412.已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,(02)P ξ<<=( ). A .0.6B .0.4C .0.3D .0.2二、填空题13.设随机变量ξ服从二项分布16,2B ξ⎛⎫ ⎪⎝⎭~ ,则()3P ξ≤等于__________14.退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在[20,80]内的600人进行调查,并按年龄层次绘制频率分布直方图,如图所示.若规定年龄分布在[60,80]内的人为“老年人”,将上述人口分布的频率视为该城市年龄段在[20,80]的人口分布的概率.从该城市年龄段在[20,80]内的市民中随机抽取3人,记抽到“老年人”的人数为X 则随机变量X 的数学期望为______.15.改革开放40年来,我国城市基础设施发生了巨大的变化,各种交通工具大大方便了人们的出行需求.某城市的A 先生实行的是早九晚五的工作时间,上班通常乘坐公交或地铁加步行.已知从家到最近的公交站或地铁站都需步行5分钟,乘坐公交到离单位最近的公交站所需时间Z 1(单位:分钟)服从正态分布N (33,42),下车后步行再到单位需要12分钟;乘坐地铁到离单位最近的地铁站所需时间Z 2(单位:分钟)服从正态分布N (44,22),从地铁站步行到单位需要5分钟.现有下列说法:①若8:00出门,则乘坐公交一定不会迟到;②若8:02出门,则乘坐公交和地铁上班迟到的可能性相同;③若8:06出门,则乘坐公交比地铁上班迟到的可能性大;④若8:12出门,则乘坐地铁比公交上班迟到的可能性大.则以上说法中正确的序号是_____.参考数据:若Z ~N (μ,σ2),则P (μ﹣σ<Z ≤μ+σ)=0.6826,P (μ﹣2σ<Z ≤μ+2σ)=0.9544,P (μ﹣3σ<Z ≤μ+3σ)=0.997416.测量某一目标的距离时,所产生的随机误差X 服从正态分布()220,10N ,如果独立测量3次,至少一次测量误差在()0,30内的概率是__________.附参考数据:()0.68P X μδμδ-<≤+=,()220.95P X μδμδ-<≤+=,()330.99P X μδμδ-<≤+=,20.1850.03=,30.1850.006=,20.8150.66=,30.8150.541=.17.随机变量ξ服从正态分布()240,N σ,若()300.2P ξ<=,则()3050P ξ<<=______.18.运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为35,则他的得分期望为_____. 19.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,则随机变量ξ的分布列为________.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色的单车的投放比例为2:1.监管部门为了了解两种颜色的单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同. (1)求抽取的5辆单车中有2辆是蓝色颜色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机地抽取一辆送技术部门作进一步抽样检测,并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机地抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车以ξ表示,求ξ的分布列. 22.已知甲盒中有三个白球和三个红球,乙盒中仅装有三个白球,球除颜色外完全相同,现从甲盒中任取三个球放入乙盒中.(1)求乙盒中红球个数X 的分布列与期望; (2)求从乙盒中任取一球是红球的概率.23.某投资公司准备在2020年年初将两千万投资东营经济开发区的“示范区”新型物流,商旅文化两个项目中的一个之中.项目一:新型物流仓是为企业提供仓储、运输、配送、货运信息等综合物流服务的平台.现准备投资建设10个新型物流仓,每个物流仓投资0.2千万元,假设每个物流仓盈利是相互独立的,据市场调研,到2022年底每个物流仓盈利的概率为(01)p p <<,若盈利则盈利为投资额的40%,否则盈利额为0.项目二:购物娱乐广场是一处融商业和娱乐于一体的现代化综合服务广场.据市场调研,投资到该项目上,到2022年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p 和1p -.(1)若投资项目一,记1X 为盈利的物流仓的个数,求()1E X (用p 表示); (2)若投资项目二,记投资项目二的盈利为2X 千万元,求()2E X (用p 表示); (3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.24.在湖北新冠疫情严重期间,我市响应国家号召,召集医务志愿者组成医疗队驰援湖北.某医院有2名女医生,3名男医生,3名女护士,1名男护士报名参加,医院计划从医生和护士中各选2名参加医疗队.(1)求选出的4名志愿全是女性的选派方法数;(2)记X 为选出的4名选手中男性的人数,求X 的概率分布和数学期望.25.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率. 26.现有甲乙两组学生,分别参加某项体能测试,所得成绩的茎叶图如图.规定测试成绩大于等于90分为优秀,80至89分为良好,60至79分为合格,60分以下为不合格.(1)现从甲组数据中抽取一名学生的成绩,有放回地抽取6次,记抽到优秀成绩的次数为X ,求4P X ;(2)从甲、乙两组学生中任取3名学生,记抽中成绩优秀的学生数为Y ,求Y 的概率分布与数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先求出()E X ,利用方差的定义建立()()22=13D X a -,利用二次函数单调性判断出()D X 的变化.【详解】由题意:()1111333E X a b =⨯+⨯+⨯,∵2a b +=,∴()1E X =.∴()()()()()222221111=111123333D X a b a b -⨯+-⨯+-⨯=+-⨯ 又2a b +=,∴2b a =-,∴()()()()2222122=2=21=1333D X a b a a a +-⨯-+- ∴当01a <<时,()()22=13D X a -单调递减,即当()0,1a ∈内增大时()D X 减小. 故选:B2.A解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.3.C解析:C 【分析】根据分布列中概率和为1可得a 的范围和b 的值,再求出,EX DX 的表达式,转化成求二次函数在闭区间的最值问题. 【详解】12133b a a b +-+=⇒=,又110033a a -≥⇒≤≤,1242()3333EX b a a a b a =+⨯-+⨯=++=+,2221(1)(2)()(3)3DX EX b EX a EX a =-⋅+-⋅-+-⋅2221215()()()()3333a b a a a a =--⋅+-⋅-+-⋅22212215()()()()33333a a a a a =--⋅+-⋅-+-⋅27239a a =-++,对称轴为7163a =>,∴max 1728()9999DX =-++=, 故选:C. 【点睛】本题考查标准差的最值求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将问题转化为函数的最值问题.4.A解析:A 【分析】甲独自去一个景点,有14C 种方法,其余3人去剩下的3个景点,有3327=种方法,由分步计数原理可求得甲独自去一个景点的有1427C ⋅种选择方法.若4个人去的地方各不相同,则属于排列问题,有44A 种.根据条件概率计算公式,即可求出相应的概率. 【详解】甲单独去一个景点有14C 4=种方法,其余3人去剩下的3个景点,有3327=种方法, 则甲独自去一个景点,有427108⨯=种方法, 而4个人去的地方各不相同,有4424A =种方法, 则242()1089P A B ==. 故选:A. 【点睛】本题考查了条件概率,分步乘法计数原理,排列问题,属于中档题.5.D解析:D 【分析】由分布列的性质求得x ,利用方差的计算公式可求得()D ξ,进而得到标准差. 【详解】由分布列的性质得:0.40.11x ++=,解得:0.5x =,()10.430.150.5 3.2E ξ∴=⨯+⨯+⨯=,()()()()2221 3.20.43 3.20.15 3.20.5 3.56D ξ∴=-⨯+-⨯+-⨯=,ξ∴=故选:D . 【点睛】本题考查根据离散型随机变量的分布列求解标准差的问题,考查了分布列的性质、数学期望和方差的求解,考查基础公式的应用.6.C解析:C 【分析】根据1~6,3X B ⎛⎫ ⎪⎝⎭得到()2E X =,再根据()()2121E X E X +=+,计算得到答案. 【详解】1~6,3X B ⎛⎫⎪⎝⎭,则()1623E X =⨯=,故()()21215E X E X +=+=.故选:C . 【点睛】本题考查了二项分布的均值,同时也考查了期望性质的应用,意在考查学生的计算能力.7.D解析:D 【分析】根据题意,列表求得随机变量ξ及η的分布列,可知均为两点分布.由两点分布的均值及方差表示出()(),E D ξξ和()E η()D η,根据01p <<比较大小即可得解. 【详解】随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<. 则随机变量ξ的分布列为:所以,1E p D p p ==- 随机变量|()|E ηξξ=-,所以当0ξ=时,()E p ηξξ=-=,当1ξ=时,()1E p ηξξ=-=-所以随机变量|()|E ηξξ=-的分布列如下表所示(当0.5p =时,η只有一个情况,概率为1):则1121E p p p p p p =-+-=-()()()()22211121D p p p p p p p p η=--⋅-+---⋅⎡⎤⎡⎤⎣⎦⎣⎦()()2121p p p =--当()()E E ξη=即()21p p p =-,解得12p =.所以A 、B 错误. ()()D D ξη-()()()21121p p p p p =----()22410p p =->恒成立.所以C 错误,D 正确 故选:D 【点睛】本题考查了随机变量的分布列,两点分布的特征及均值和方差求法,属于中档题.8.D解析:D 【分析】,,a b c 成等差数列,即2b a c =+,结合1a b c ++=,计算出()()()(), ,,E E Y D X X D Y ,由此判断出正确结论.【详解】由于,,a b c 成等差数列,故2b a c =+①,另根据分布列的知识可知1a b c ++=②.由①②得12,33b c a ==-. 所以()2243232333E X a b c a a a =++=++-=+, ()2282332333E Y a b c a a a ⎛⎫=++=++-=- ⎪⎝⎭,由于484224333a a a ⎛⎫+--=-+ ⎪⎝⎭正负无法确定,故()() ,E X E Y 大小无法比较. ()222444322212333D X a a a b a c ⎛⎫⎛⎫⎛⎫=--⋅+--⋅+--⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2225211222233333a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅+-⋅++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()222888122232333D Y a a a b a c ⎛⎫⎛⎫⎛⎫=-+⋅+-+⋅+-+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2225211222233333a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅+-⋅++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故()()D X Y D =. 故选D. 【点睛】本小题主要考查根据随机变量分布列计算数学期望和方差,考查等差中项的性质,考查运算求解能力,属于中档题.9.B解析:B 【解析】分析:根据3σ原则判断.详解:因为服从正态分布()10,0.04N ,所以10,0.2(100.23,100.23)(9.4,10.6)x μσ==∴∈-⨯+⨯= 所以上午生产情况正常,下午生产情况异常, 选B.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.10.D解析:D 【解析】分析:由题意结合随机变量的性质整理计算即可求得最终结果. 详解:随机变量ξ满足()14E ξ-=,()14D ξ-=, 则:()214,14E D ξξ-=-=, 据此可得:3,4E D ξξ=-=. 本题选择D 选项.点睛:本题主要考查期望的数学性质,方差的数学性质等知识,意在考查学生的转化能力和计算求解能力.11.C解析:C 【解析】如图,由正态曲线的对称性可得(4)12()0.36P a X a P X a ≤<-=-<=.12.C解析:C 【解析】∵P (ξ<4)=0.8,∴P (ξ>4)=0.2, 由题意知图象的对称轴为直线x =2,P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3 二、填空题13.【分析】利用独立重复试验的概率计算出再将这些相加可得出【详解】由于所以因此故答案为【点睛】本题考查二项分布独立重复试验的概率解这类问题要注意将基本事件列举出来关键在于灵活利用独立重复试验的概率公式进 解析:2132【分析】利用独立重复试验的概率计算出()0P ξ=、()1P ξ=、()2P ξ=、()3P ξ=,再将这些相加可得出()3P ξ≤. 【详解】由于1~6,2B ξ⎛⎫ ⎪⎝⎭,所以,()6110264P ξ⎛⎫=== ⎪⎝⎭,()616131232P C ξ⎛⎫==⋅=⎪⎝⎭, ()6261152264P C ξ⎛⎫==⋅= ⎪⎝⎭,()636153216P C ξ⎛⎫==⋅= ⎪⎝⎭,因此,()()()()()213012332P P P P P ξξξξξ≤==+=+=+==,故答案为2132.【点睛】本题考查二项分布独立重复试验的概率,解这类问题要注意将基本事件列举出来,关键在于灵活利用独立重复试验的概率公式进行计算,考查计算能力,属于中等题.14.6【分析】通过频率分布直方图求出年龄段在的频率即概率通过二项分布求出数学期望即可【详解】通过频率分布直方图得年龄段在的频率为即概率为抽到老年人的人数为服从二项分布即所以期望为故答案为:06【点睛】本解析:6 【分析】通过频率分布直方图求出年龄段在[]60,80的频率即概率,通过二项分布求出数学期望即可.通过频率分布直方图得年龄段在[]60,80的频率为20.01100.2⨯⨯=,即概率为0.2, 抽到“老年人”的人数为X 服从二项分布,即()3,0.2X B ,所以期望为()30.20.6E X np ==⨯=, 故答案为:0.6. 【点睛】本题主要考查了频率分布直方图的应用,二项分布期望的求法,属于中档题.15.②④【分析】利用正态分布对每一个说法求解其概率逐项分析即可选出正确答案【详解】解:①若8:00出门江先生乘坐公交从家到车站需要5分钟下车后步行再到单位需要12分钟乘坐公交到离单位最近的公交站所需时间解析:②④ 【分析】利用正态分布对每一个说法求解其概率,逐项分析,即可选出正确答案. 【详解】解:①若8:00出门,江先生乘坐公交,从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故()()12145452P Z P Z -<<≥=10.99740.00132-==, ∴江先生仍有可能迟到,只不过概率较小,故①错误; ②若8:02出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足P (Z≤41)()()1254125410.97722P Z P Z -=+=<<<<时,江先生乘坐公交不会迟到;若8:02出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟,乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足P (Z≤48)()()1404840480.99722P Z P Z -=+=<<<<时,江先生乘坐地铁不会迟到,此时两种上班方式江先生不迟到的概率相当,故②正确; ③若8:06出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足()()()129373729370.84132P Z P Z P Z -≤=+=<<<<时,江先生乘坐公交不会迟到;若8:06出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟,乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足()1440.52P Z ≤==时,江先生乘坐地铁不会迟到, 此时两种上班方式,乘坐公交比地铁上班迟到的可能性小,故③错误; ④若8:12出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足()31P Z ≤时,江先生乘坐公交不会迟到, 而()()()1293731290.18572P Z P Z P Z -≤>≤==<<;若8:12出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟,乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足()()13850380.001352P Z P Z -<<≤==时,江先生乘坐地铁不会迟到,由0.18570.00135>,∴若8:12出门,则乘坐地铁比公交上班迟到的可能性大,故④正确; 故答案为:②④. 【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,正确理解题意是关键,考查计算能力,属于中档题.16.994【分析】根据正态分布的性质求出在一次测量中误差在内的概率再求出测量3次每次测量误差均不在内的概率根据对立事件的性质可得结果【详解】由题意可知在一次测量中误差在内满足其概率为测量3次每次测量误差解析:994 【分析】根据正态分布的性质求出在一次测量中误差在()0,30内的概率,再求出测量3次,每次测量误差均不在()0,30内的概率,根据对立事件的性质可得结果. 【详解】由题意可知在一次测量中误差在()0,30内满足2X μδμδ-<<+, 其概率为()()()111220.950.680.815222p p X p X μδμδμδμδ=-<≤++-<≤+=⨯+=, 测量3次,每次测量误差均不在()0,30内的概率为:()3310.8150.1850.006-==,∴独立测量3次,至少一次测量误差在()0,30内的概率是10.0060.994-=, 故答案为:0.994. 【点睛】本题主要考查正态分布概率的求法,n 次独立重复试验的模型,利用对立事件解决问题是解题的关键,属于中档题.17.6【解析】【分析】根据随机变量服从正态分布知正态曲线的对称轴是且依据正态分布对称性即可求得答案【详解】解:根据随机变量服从正态分布知正态曲线的对称轴是利用正态分布的对称性可得所以故答案为06【点睛】解析:6 【解析】 【分析】根据随机变量ξ服从正态分布,知正态曲线的对称轴是40ξ=,且()300.2P ξ<=,依据正态分布对称性,即可求得答案. 【详解】解:根据随机变量ξ服从正态分布,知正态曲线的对称轴是40ξ=, 利用正态分布的对称性可得()()50300.2P P ξξ>=<=, 所以()()()30501503010.40.6P P P ξξξ⎡⎤<<=->+<=-=⎣⎦ 故答案为0.6 【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,考查运算求解能力,属于基础题.18.552【解析】分析:由次独立重复试验的概率公式计算出射中01234次的概率得到得分的分布列再由期望公式得期望详解:设该运动员中弹数为ξ得分数为η则P(ξ=4)==01296P(ξ=3)==03456解析:552. 【解析】分析:由n 次独立重复试验的概率公式计算出射中0,1,2,3,4次的概率得到得分的分布列,再由期望公式得期望.详解:设该运动员中弹数为ξ,得分数为η,则P (ξ=4)=435⎛⎫ ⎪⎝⎭=0.129 6, P (ξ=3)=33432C ?·55⎛⎫ ⎪⎝⎭=0.345 6,P (ξ=2)=222432C ?·55⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=0.345 6,P (ξ=1)=31432C ?·55⎛⎫⎪⎝⎭=0.153 6,P (ξ=0)=425⎛⎫ ⎪⎝⎭=0.025 6. 由题意可知P (η)=P (ξ),所以E (η)=100×0.129 6+65×0.345 6+40×0.345 6+15×0.153 6+0×0.025 6=51.552.点睛:本题考查随机变量的分布列与期望.解题时关键是理解射击时命中n 次就是n 次独立重复试验,由此可由概率公式计算出概率,从而可得得分的分布列,由分布列的期望公式计算出期望.19.ξ 0 1 P 【分析】正方体的12条棱中任取两条共有种情况若两条棱相交则交点必在正方体的顶点处过任意一个顶点的棱有3条共有对相交棱若两条棱平行则它们的距离为1或而距离为的共有6对ξ的可正方体的12条棱中任取两条共有212C 种情况,若两条棱相交,则交点必在正方体的顶点处,过任意一个顶点的棱有3条,共有238C 对相交棱,若两条棱平行,则它们的距离为16对,ξ的可能取值为0,1. 【详解】ξ的可能取值为0,1若两条棱相交,则交点必在正方体的顶点处,过任意一个顶点的棱有3条,所以P (ξ=0)=232128C C=411,若两条棱平行,则它们的距离为16对,则P (ξ=2126C =111,P (ξ=1)=1-P (ξ=0)-P (ξ=1-411-111=611,所以随机变量ξ的分布列为:20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点 解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)80243;(2)分布列答案见解析. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题可知,随机变量ξ的可能取值有0、1、2、3、4,计算出随机变量ξ在不同取值下的概率,由此可得出随机变量ξ的分布列. 【详解】(1)因为随机地抽取一辆单车是蓝色单车的概率为13,用X 表示“抽取的5辆单车中蓝颜色单车的个数”,则X 服从二项分布,即15,3XB ⎛⎫ ⎪⎝⎭, 所以抽取的5辆单车中有2辆是蓝颜色单车的概率为3225218033243P C ⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭; (2)随机变量ξ的可能取值为:0、1、2、3、4,()103P ξ==,()2121339P ξ==⨯=,()221423327P ξ⎛⎫==⨯= ⎪⎝⎭, ()321833381P ξ⎛⎫==⨯= ⎪⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭.所以ξ的分布列如下表所示:思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 22.(1)答案见解析,32;(2)14. 【分析】(1)由题意知X 的可能取值为0,1,2,3.分别求出随机变量取各值的概率,得出分布列,再由期望公式求出期望;(2)分乙盒中红球个数为0,为1,为2,为3时的概率,再得用概率的加法公式可得答案. 【详解】解:(1)由题意知X 的可能取值为0,1,2,3.()0333361020C C P X C ===,()1233369120C C P X C ===,()2133369220C C P X C ===,()3033361320C C P X C ===, 所以X 的分布列为所以()0123202020202E X =⨯+⨯+⨯+⨯=. (2)当乙盒中红球个数为0时,10P =, 当乙盒中红球个数为1时,291320640P =⨯=, 当乙盒中红球个数为2时,392320620P =⨯=, 当乙盒中红球个数为3时,413120640P =⨯=, 所以从乙盒中任取一球是红球的概率为123414P P P P +++=. 【点睛】本题考查离散型随机变量的分布列和数学期望,以及概率的加法公式,属于中档题. 23.(1)()110E X p =;(2)()2 1.60.6E X p =-;(3)分类讨论,见解析. 【分析】(1)由题意结合二项分布的期望公式即可得解;(2)由题意列出分布列,利用离散型随机变量期望公式即可得解;(3)由题意分别计算出项目一、项目二的利润的期望与方差,分类比较即可得解. 【详解】(1)由题意1~(10,)X B p ,则盈利的物流仓数的期望()110E X p =;(2)若投资项目二,盈利的金额为20.51⨯=(千万元),亏损的金额为20.30.6⨯=(千万元), 则2X 的分布列为所以盈利的期望)20.6(1) 1.60.6E X p p p =--=-; (3)若盈利,则每个物流仓盈利0.240%0.08⨯=(千万元),若选择项目一,盈利的期望为()()110.080.080.08100.8E X E X p p ==⨯=(千万元),方差为()()22110.080.080.0810(1)0.064(1)D X D X p p p p ==⨯-=-,若选择项目二,盈利的方差为:()222(1 1.60.6)(0.6 1.60.6)(1) 2.56(1)D X p p p p p p =-++--+-=-,①当()()120.08E X E X =时,0.8 1.60.6p p =-,解得34p =, 而()()120.08D X D X <,故选择项目一;②当()()120.08E X E X >时,0.8 1.60.6p p >-,解得304p <<,此时选择项目一; ③当()()120.08E X E X <时,0.8 1.60.6p p <-,解得34p >,此时选择项目二. 【点睛】本题考查了离散型随机变量期望与方差的求解和应用,考查了二项分布的应用与分类讨论思想,属于中档题. 24.(1)3(2)详见解析 【分析】(1)选出的4名志愿全是女性,则从2名女医生选2人有22C 种选法,从3名女护士选2人有23C 选法,根据乘法原理可得答案.(2)由题意有X 的取值可能为0,1,2,3,再分别计算出X 取各个值的概率,列出分布列,求出期望即可. 【详解】解:(1)从2名女医生选2人有22C 种选法,从3名女护士选2人有23C 选法 则选出的4名志愿全是女性有22233C C ⋅=种不同的选法. 所以选出的4名志愿全是女性的选派方法数有3种, (2)X 的取值可能为0,1,2,3()222322541020C C P X C C ===,()11221132323122547120C C C C C C P X C C +===, ()22111133323122549220C C C C C C P X C C +===, ()21133122543320C C C P X C C ===,列表如下:。

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测题(含答案解析)(2)

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测题(含答案解析)(2)

一、选择题1.已知随机变量ξ服从正态分布(1,2)N ,则(23)D ξ+=( ) A .4B .6C .8D .112.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.随机变量X 的取值为0,1,2,若1(0)5P X ==,()1E X =,则()D X =( )A .15B .25C D 4.已知随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<.令随机变量|()|E ηξξ=-,则( )A .()()E E ηξ>B .()()E E ηξ<C .()()D D ηξ> D .()()D D ηξ<5.将4个文件放入到3个盒子中,随机变量X 表示盒子中恰有文件的盒子个数,则EX 等于( ) A .6227B .73C .6427D .65276.已知随机变量X 的方差()D X m =,设32Y X =+,则()D Y =( ) A .9mB .3mC .mD .32m +7.设X 为随机变量,且1:,3X B n ⎛⎫ ⎪⎝⎭,若随机变量X 的方差()43D X =,则()2P X == ( )A .4729B .16C .20243D .802438.设随机变量X 的分布列为()()1,2,32iP X i i a===,则()2P X ≥= ( ) A .16B .56 C .13D .239.已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,(02)P ξ<<=( ). A .0.6 B .0.4C .0.3D .0.210.如果()20,X B p ,当12p =且()P X k =取得最大值时, k 的值是( )A .8B .9C .10D .1111.2017年5月30日是我国的传统节日端午节,这天小明的妈妈为小明煮了5个粽子,其中两个大枣馅三个豆沙馅,小明随机取出两个,事件A =“取到的两个为同一种馅”,事件B =取到的两个都是豆沙馅”,则(|)P B A =( ) A .34B .14C .110D .31012.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,若1()3E X =,则(31)D X +的值是______14.在高三的一个班中,有14的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生人数1(5,)4B ξ~,则()P k ξ=取最大值时k =_______.15.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为___________ 16.若随机变量~(2,)X B p ,随机变量~(3,)Y B p ,若4(2)9P X ==,则(21)E Y +的值为_______.17.(理)假设某10张奖券中有一等奖1张,奖品价值100元;有二等奖3张,每份奖品价值50元;其余6张没有奖.现从这10张奖券中任意抽取2张,获得奖品的总价值ξ不少于其数学期望E ξ的概率为_________.18.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是_______.19.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X 的均值EX=_____.20.设随机变量ξ的分布列为P (ξ=k )=300-30012C?33kkk ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭(k=0,1,2,…,300),则E (ξ)=____.三、解答题21.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色的单车的投放比例为2:1.监管部门为了了解两种颜色的单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同. (1)求抽取的5辆单车中有2辆是蓝色颜色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机地抽取一辆送技术部门作进一步抽样检测,并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机地抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车以ξ表示,求ξ的分布列. 22.为加快推进我区城乡绿化步伐,植树节之际,决定组织开展职工义务植树活动,某单位一办公室现安排4个人去参加植树活动,该活动有甲、乙两个地点可供选择.约定:每个人通过掷一枚质地均匀的骰子决定自己去哪个地点植树,掷出点数为1或2的人去甲地,掷出点数大于2的人去乙地.(1)求这4个人中恰有2人去甲地的概率;(2)求这4个人中去甲地的人数大于去乙地的人数的概率;(3)用,X Y 分别表示这4个人中去甲、乙两地的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望()E ξ.23.某省高考改革新方案,不分文理科,高考成绩实行“33+”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S ,从学生群体S 中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;(II)从所调查的50名学生中任选2名,记X 表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X 的分布列和数学期望;(III)将频率视为概率,现从学生群体S 中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y ,求事件“2y ≥”的概率.24.国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm )在区间[]165,175内.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为[)165,167,[)167,169,[)169,171,[)171,173,[]173,175五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.(1)请根据频率分布直方图估计样本的平均数x 和方差2s (同一组中的数据用该组区间的中点值代表);(2)根据样本数据,可认为受阅女兵的身高X (cm )近似服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )求()167.86174.28P X <<;(ii )若从全体受阅女兵中随机抽取10人,求这10人中至少有1人的身高在174.28cm 以上的概率.参考数据:若()2~,X N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=11510.7≈,100.95440.63≈,90.97720.81≈,100.97720.79≈.25.在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数X 的分布列; (2)取出的3个球中红球个数多于白球个数的概率.26.某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动. (1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由已知条件求得()2D ξ=,再由2(23)2()D D ξξ+=⨯,即可求解. 【详解】由题意,随机变量ξ服从正态分布(1,2)N ,可得()2D ξ=, 所以2(23)2()8D D ξξ+=⨯=. 故选:C . 【点睛】本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中解答中熟记方差的求法是解答的关键,着重考查了计算能力.2.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.3.B解析:B 【分析】设(1)P X p ==,(2)P X q ==,则由1(0)5P X ==,()1E X =,列出方程组,求出35p =,15q =,由此能求出()D X . 【详解】设(1)P X p ==,(2)P X q ==,1()0215E X p q =⨯++=①,又115p q ++=,② 由①②得,35p =,15q =, 2221312()(01)(11)(21)5555D X ∴=-+-+-=,故选:B . 【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.4.D解析:D 【分析】根据题意,列表求得随机变量ξ及η的分布列,可知均为两点分布.由两点分布的均值及方差表示出()(),E D ξξ和()E η()D η,根据01p <<比较大小即可得解. 【详解】随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<. 则随机变量ξ的分布列为:所以,1E p D p p ==- 随机变量|()|E ηξξ=-,所以当0ξ=时,()E p ηξξ=-=,当1ξ=时,()1E p ηξξ=-=-所以随机变量|()|E ηξξ=-的分布列如下表所示(当0.5p =时,η只有一个情况,概率为1):则1121E p p p p p p =-+-=-()()()()22211121D p p p p p p p p η=--⋅-+---⋅⎡⎤⎡⎤⎣⎦⎣⎦()()2121p p p =--当()()E E ξη=即()21p p p =-,解得12p =.所以A 、B 错误. ()()D D ξη-()()()21121p p p p p =----()22410p p =->恒成立.所以C 错误,D 正确 故选:D 【点睛】本题考查了随机变量的分布列,两点分布的特征及均值和方差求法,属于中档题.5.D解析:D 【分析】本道题分别计算X=1,2,3对应的概率,然后计算数学期望,即可. 【详解】()()()21322213432423441141,2327327C C C A C C C P X P X +======, ()234344339C A P X ===列表:所以数学期望1232727927EX =⋅+⋅+⋅=,故选D . 【点睛】本道题考查了数学期望的计算方法,较容易.6.A解析:A 【解析】∵()D X m =,∴2()(32)3()D Y D X D X =+=9()D X =9m =,故选A .7.D解析:D 【解析】随机变量X 满足二项分布,所以1224(),3393D x npq n n ==⨯⨯==n=6,所以224612(2)()()33P X C ===80243,选D.8.B解析:B 【解析】 由概率和为1,可知1231222a a a++=,解得3a =,()P X 2≥=235(2)(3)666P X P X =+==+=选B. 9.C解析:C 【解析】∵P (ξ<4)=0.8,∴P (ξ>4)=0.2,由题意知图象的对称轴为直线x =2,P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3 10.C解析:C 【解析】因为()20,X B p ~,12p =,所以()20202020111222kkk k P X k C C -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当10k = 时20kC 取得最大值,故选C. 11.A解析:A 【解析】由题意,2223C +C 4P A ==1010(),23C 3P AB ==1010()P AB 3P A |B ==P A 4()()()∴,故选:A .【思路点睛】求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=n AB n A ()(),其中n(AB)表示事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数. 二是直接根据定义计算,P(B|A)=p AB p A ()(),特别要注意P(AB)的求法.12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34,故选B .二、填空题13.5【分析】由离散型随机变量的分布列的性质可知结合数学期望公式和abc 成等差数列列出式子求出各个概率的值以及方差并代入即可【详解】abc 成等差数列又且联立以上三式解得:则故答案为:5【点睛】本题考查随解析:5 【分析】由离散型随机变量的分布列的性质可知, 1a b c ++=,结合数学期望公式和a ,b ,c 成等差数列列出式子,求出各个概率的值以及方差,并代入(31)D X +即可. 【详解】a ,b ,c 成等差数列,2b a c ∴=+, 又1a b c ++=,且1()3E X a c =-+=,联立以上三式解得:111,,632a b c ===, ()22211111151013633329D X ⎛⎫⎛⎫⎛⎫∴=--⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()25(31)3959D X D X +==⨯=,故答案为: 5. 【点睛】本题考查随机变量的分布列以及随机变量的方差的求法,解题时需认真审题,注意使用离散型随机变量的分布列的性质和数学期望的性质,结合等差数列合理运用.14.1【分析】可得则且计算可得【详解】解:依题意可得则且解得又所以故答案为:1【点睛】本题考查了二项分布列的概率计算公式组合数的计算公式考查了推理能力与计算能力属于中档题解析:1 【分析】1~(5,)4B ξ,可得5511()()(1)44k k k P k C ξ-==⨯-.则()(1)P k P k ξξ=≥=-且()(1)P k P k ξξ=≥=+计算可得.【详解】解:依题意,可得5511()()(1)44kk k P k C ξ-==⨯-则5C k3()45k-1()4k15C k -≥3()45(1)k --1()41k -,且5C k3()45k-1()4k ≥15C k +5(1)3()4k -+11()4k +, 解得12k ≤≤32,又*k N ∈,所以1k =. 故答案为:1 【点睛】本题考查了二项分布列的概率计算公式、组合数的计算公式,考查了推理能力与计算能力,属于中档题.15.3500【分析】设检测机器所需检测费为则的可能取值为200030004000分别求出相应的概率由此能求出所需检测费的均值【详解】设检测的机器的台数为则的所有可能取值为234所以所需的检测费用的均值为解析:3500 【分析】设检测机器所需检测费为X ,则X 的可能取值为2000,3000,4000,分别求出相应的概率,由此能求出所需检测费的均值.【详解】设检测的机器的台数为X ,则X 的所有可能取值为2,3,4.1123223233522513133(2000),(3000),(4000)1101010105A C A A A P X P X P X A A +========--=所以所需的检测费用的均值为()133200030004000350010105E X =⨯+⨯+⨯=. 故答案为: 3500. 【点睛】本题考查离散型随机变量的分布列和均值,考查学生分析问题的能力,难度一般.16.5【分析】根据随机变量和求出从而确定随机变量再用均值公式求解【详解】因为随机变量所以所以所以随机变量所以所以故答案为:5【点睛】本题主要考查了随机变量的二项分布还考查了运算求解的能力属于基础题解析:5 【分析】根据随机变量~(2,)X B p ,和2224(2)9===P X C p 求出p ,从而确定随机变量~(3,)Y B p ,再用均值公式求解.【详解】因为随机变量~(2,)X B p ,所以2224(2)9===P X C p 所以23p =所以随机变量2~(3,)3Y B , 所以()2==E Y np所以(21)2()15+=+=E Y E Y 故答案为:5 【点睛】本题主要考查了随机变量的二项分布,还考查了运算求解的能力,属于基础题.17.【分析】奖品的总价值可能值为050100150分别求出求出期望即可求解【详解】奖品的总价值可能值为050100150其分布列为 150 获得奖品的总价值不少于其数学期望的概率即获解析:23【分析】奖品的总价值ξ可能值为0,50,100,150,分别求出()0P ξ=,5(0)P ξ=,0(0)1P ξ=,5(0)1P ξ=,求出期望,即可求解.【详解】奖品的总价值ξ可能值为0,50,100,150,262101()03C P C ξ===,11632105502()C C P C ξ===,1263210+101()50C C P C ξ===,132101(150)15C P C ξ===, 其分布列为()0501001505055515E ξ=⨯+⨯+⨯+⨯=,获得奖品的总价值ξ不少于其数学期望E ξ的概率, 即获得奖品的总价值ξ不少于50的概率为23. 故答案为:23【点睛】本题考查离散型随机变量的期望,求出随机变量的概率是解题的关键,属于中档题.18.46【分析】得分不低于300分包括得300分或得400分这两种情况是互斥的根据互斥事件和相互独立事件的概率公式得到答案【详解】解:设同学甲答对第i 个题为事件则且相互独立同学甲得分不低于300分对应于解析:46 【分析】得分不低于300分包括得300分或得400分,这两种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到答案. 【详解】解:设“同学甲答对第i 个题”为事件(1,2,3)i A i =,则()10.8P A =,()20.6P A =,()30.5P A =,且1A ,2A ,3A ,相互独立,同学甲得分不低于300分对应于事件()()()123123123A A A A A A A A A ⋂⋂⋃⋂⋂⋃⋂⋂发生,故所求概率为()()()123123123P P A A A A A A A A A ⎡⎤=⋂⋂⋃⋂⋂⋃⋂⋂⎦⎣()()()123123123P A A A P A A A P A A A =⋂⋂+⋂⋂+⋂⋂ ()()()()()()()()()123123123P A P A P A P A P A P A P A P A P A =++0.80.60.50.80.40.50.20.60.50.46=⨯⨯+⨯⨯+⨯⨯=.故答案为0.46【点睛】本题考查相互独立事件同时发生的概率,考查应用概率知识解决实际问题的能力,是一个综合题,注意对题目中出现的“不低于”的理解19.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.20.【解析】分析:由二项分布的期望公式计算详解:由题意得ξ~B 所以E(ξ)=300=100点睛:本题考查二项分布的期望计算公式若则解析:【解析】分析:由二项分布的期望公式计算. 详解:由题意,得ξ~B 1300,3⎛⎫ ⎪⎝⎭,所以E (ξ)=30013⨯=100. 点睛:本题考查二项分布的期望计算公式.若(,)B n p ξ,则E np ξ=,(1)D np p ξ=-.三、解答题21.(1)80243;(2)分布列答案见解析. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题可知,随机变量ξ的可能取值有0、1、2、3、4,计算出随机变量ξ在不同取值下的概率,由此可得出随机变量ξ的分布列. 【详解】(1)因为随机地抽取一辆单车是蓝色单车的概率为13,用X 表示“抽取的5辆单车中蓝颜色单车的个数”,则X 服从二项分布,即15,3XB ⎛⎫ ⎪⎝⎭, 所以抽取的5辆单车中有2辆是蓝颜色单车的概率为3225218033243P C ⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭; (2)随机变量ξ的可能取值为:0、1、2、3、4,()103P ξ==,()2121339P ξ==⨯=,()221423327P ξ⎛⎫==⨯= ⎪⎝⎭, ()321833381P ξ⎛⎫==⨯= ⎪⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭.所以ξ的分布列如下表所示:思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 22.(1)827;(2)19;(3)分布列答案见解析,数学期望:14881. 【分析】(1)参加甲游戏的概率P=13,设"这4个人中恰有k 人去参加甲游戏"为事件A k (k =0,1,2,3,4),可求这4个人中恰有2个人去参加甲游戏的概率()2P A ,计算即可得出结果; (2)由(1)可知求()()34P A P A +;(3)ξ的所有可能取值为0,2,4,写出其对应的概率和分布列. 【详解】依题意知,这4个人中每个人去甲地的概率为13,去乙地的概率为23.设“这4个人中恰有i 人去甲地”为事件0,1,2,3,4i A i =(),则4-412()()()33iiii P A C =.(1)这4个人中恰有2人去甲地的概率为22224128()()()3327P A C ==(2)设“这4个人中去甲地的人数大于去乙地的人数”为事件B ,则34B A A =⋃,由于3A 与4A 互斥,故3144443341211()()()3339PB P A PC C A =++==()()(). 所以这4个人中去甲地的人数大于去乙地的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于1A 与3A互斥,0A 与4A 互斥, 故28270PP A ξ===()(),1340812P P A P A ξ==+=()()(), 0417814P P A P A ξ==+=()()(). 所以ξ的分布列为:故1714827801818124Eξ=⨯+⨯+⨯=(). 【点睛】本小题主要考查古典概型及其概率计算公式、互斥事件、事件的相互独立性、离散型随机变量的分布列与数学期望等基础知识,考查运用概率知识解决简单实际问题的能力.应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,对二项分布的正确判读是解题的关键,属于一般难度题型. 23.(Ⅰ)2949; (Ⅱ)见解析; (Ⅲ)1116.【解析】试题分析:(Ⅰ)设“所选取的2名学生选考物理、化学、生物科目数量相等”为事件的概率,从而得到选考物理、化学、生物科目数量不相等的概率;(Ⅱ)由题意得到随机变量的取值,计算其概率,列出分布列,根据公式求解数学期望. (Ⅲ)由题意得所调查的学生中物理、化学、生物选考两科目的学生的人数,得到相应的概率,即可求解“2Y ≥”的概率. 试题(Ⅰ)记“所选取的2名学生选考物理、化学、生物科目数量相等”为事件A则()222525202502049C C C P A C ++== 所以他们选考物理、化学、生物科目数量不相等的概率为()29149P A -=(Ⅱ)由题意可知X 的可能取值分别为0,1,2()2225252025020049C C C P X C ++===, ()1111525202525025149C C C C P X C +=== ()115202504249C C P X C === 从而X 的分布列为()01249494949E X =⨯+⨯+⨯= (Ⅲ)所调查的50名学生中物理、化学、生物选考两科目的学生有25名 相应的概率为251502P ==,所以Y ~14,2B ⎛⎫⎪⎝⎭所以事件“2Y ≥”的概率为()223423444411111112112222216P Y C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≥=-+-+= ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 24.(1)170x =,2 4.6s =;(2)(i )0.8185;(ii )0.21 【分析】(1)由题意求出各组频率,由平均数公式及方差公式即可得解; (2)(i )由题意结合正态分布的性质即可得解;(ii )由题意结合正态分布的性质可得()174.280.0228P X >=,再由()10110.0228P =--即可得解.【详解】(1)由题知第三组的频率为750.375200=, 则第五组的频率为0.70.3750.12520.075--⨯=,第二组的频率为10.70.0520.2--⨯=,所以五组频率依次为0.1,0.2,0.375,0.25,0.075,故0.11660.21680.3751700.251720.075174170x =⨯+⨯+⨯+⨯+⨯=,22222(170166)0.1(170168)0.2(170172)0.25(170174)0.075s =-⨯+-⨯+-⨯+-⨯4.6=;(2)由题知170μ=, 2.14σ==≈,(i )()()167.86174.282P X P X μσμσ<<=-<<+()()()222P X P X P X μσμσμσμσμσμσ-<<+--<<+=-<<++0.95440.68260.68260.81852-=+=;(ii )()()10.9544174.2820.02282P X P X μσ->=>+==, 故10人中至少有1人的身高在174.28cm 以上的概率:()1010110.022810.977210.790.21P =--=-≈-=.【点睛】本题考查了频率分布直方图的应用,考查了正态分布的应用,属于中档题. 25.(1)详见解析;(2)13. 【分析】(1)优先表示随机变量可能的取值,显然该事件服从超几何分布,由其概率计算公式分别求得对应概率即可列出分布列;(2)事件“红球个数多于白球个数” 可以分解为,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,再由计数原理和古典概型概率公式分别计算概率,最后由相互独立事件的概率计算方式求得答案. 【详解】(1)题意知X 的所有可能取值为0,1,2,3,且X 服从参数为10N =,3M =,3n = 的超几何分布,因此 ()()337310C C 0,1,2,3C k k P X k k -===. 所以 ()0337310C C 3570C 12024P X ====, ()1237310C C 63211C 12040P X ====,()2137310C C 2172C 12040P X ====,()3037310C C 13C 120P X ===.故 X 的分布列为 :(2)设“取出的3个球中红球个数多于白球个数”为事件A ,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A , 由于事件1A ,2A ,3A彼此互斥,且123A A A A =++, 而()12341310C C 3C 20P A ==,()()27240P A P X ===,()()313120P A P X ===, 所以取出的3个球中红球个数多于白球个数的概率为:()()()()123371120401203P A P A P A P A =++=++=. 答:取出的3个球中红球个数多于白球个数的概率为13. 【点睛】本题考查求超几何分布事件的分布列,还考查了相互独立事件的概率的计算,属于中档题. 26.(1)13;(2)15;(3)12.【分析】(1)将所有的基本事件一一列举出来,从中找出该事件所发生的基本事件,从而计算概率;(2)利用条件概率的公式即可计算结果; (3)与(2)解法相同. 【详解】(1)记4名男生为A ,B ,C ,D ,2名女生为a ,b , 从6名成员中挑选2名成员,有AB ,AC ,AD ,Aa ,Ab ,BC ,BD ,Ba ,Bb ,CD ,Ca ,Cb ,Da ,Db ,ab 共有15种情况,,记“男生甲被选中”为事件M ,不妨假设男生甲为A事件M 所包含的基本事件数为AB ,AC ,AD ,Aa ,Ab 共有5种,故()51153P M ==. (2)记“男生甲被选中”为事件M ,“女生乙被选中”为事件N , 不妨设女生乙为b , 则()115P MN =,又由(1)知()13P M =, 故()()()15P MN P N M P M ==. (3)记“挑选的2人一男一女”为事件S ,则()815P S =, “女生乙被选中”为事件N ,()415P SN =,故()() ()12 P SNP N SP S==.【点睛】本题考查了等可能事件的概率,列举法求古典概型的概率,条件概率的计算,属于中档题.。

(典型题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)

(典型题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)

一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05B .0.1C .0.15D .0.23.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭4.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知离散型随机变量X 的分布列如图:则均值E (X )与方差D (X )分别为( )A .1.4,0.2B .0.44,1.4C .1.4,0.44D .0.44,0.26.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .157.设一随机试验的结果只有A 和A ,且A 发生的概率为m ,令随机变量11A X A 发生发生⎧=⎨-⎩,则()D X =( )A .1B .(1)m m -C .4(1)m m -D .4(1)(21)m m m --8.三个元件123,,T T T 正常工作的概率分别为123,,234,且是相互独立的.如图,将23,T T 两个元件并联后再与1T 元件串联接入电路,则电路不发生故障的概率是( )A .1124B .2324C .14D .17329.已知在5件产品中混有2件次品,现需要通过逐一检测直至查出2件次品为止,每检测一件产品的费用是10元,则所需检测费的均值为( ) A .32元B .34元C .35元D .36元10.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( )A .18B .38C .58D .7811.若随机变量ξ满足(1)4E ξ-=,(1)4D ξ-=,则下列说法正确的是A .4,4E D ξξ=-=B .3,3E D ξξ=-=C .4,4ED ξξ=-=-D .3,4E D ξξ=-=12.设随机变量ξ的概率分布列为1()()3kP k a ξ==,其中0,1,2k =,那么a 的值为( ) A .35B .2713C .919D .913二、填空题13.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.14.退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在[20,80]内的600人进行调查,并按年龄层次绘制频率分布直方图,如图所示.若规定年龄分布在[60,80]内的人为“老年人”,将上述人口分布的频率视为该城市年龄段在[20,80]的人口分布的概率.从该城市年龄段在[20,80]内的市民中随机抽取3人,记抽到“老年人”的人数为X 则随机变量X 的数学期望为______.15.《史记·卷六十五·孙子吴起列传第五》中记载了“田忌赛马”的故事.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现规定每场比赛从双方的马匹中随机各选取一匹进行比试,若有优势的马一定获胜,且每场比赛相互独立,则采取三局两胜制齐王获胜的概率为________. 16.2017年5月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~ N ()2100,σ.(试卷满分为150分)统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中成绩不低于120分的学生人数约为__________.17.设离散型随机变量ξ可能取的值为1,2,3,()P k ak b ξ==+(1,2,3k =),若ξ的数学期望7()3E ξ=,则a b +=_____. 18.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为______. 19.若随机变量2~5,3X B ⎛⎫⎪⎝⎭,则()3D X =_______. 20.一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答).三、解答题21.某款游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次,若出现一次音乐获得1分,若出现两次音乐获得2分,若出现三次音乐获得5分,若没有出现音乐则扣15分(即获得15-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列. (2)玩三盘此游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的人发现,若干盘游戏后,与最初的得分相比,得分没有增加反而减少了.请你分析得分减少的原因.22.甲、乙两人各射击一次,击中目标的概率分别是12和25,假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间没有影响. (1)求甲射击5次,至少1次未击中目标的概率; (2)求两人各射击3次,甲恰好比乙多击中目标2次的概率23.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . ①利用该正态分布,求()187.8212.2P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.已知X 服从二项分布(),B n p ,利用①的结果,求()E X .15012.2≈若()2,Z N μσ~则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.24.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.25.湖北省从2021年开始将全面推行新高考制度,新高考“3+1+2”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为A ,B ,C ,D ,E 五个等级,确定各等级人数所占比例分别为15%,35%,35%,13%,2%,等级考试科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法......分别转换到[]86,100、[]71,85、[]56,70、[]41,55、[]30,40五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:而等比例转换法......是通过公式计算:2211Y Y T TY Y T T --=--,其中1Y 、2Y 分别表示原始分区间的最低分和最高分,1T 、2T 分别表示等级分区间的最低分和最高分,Y 表示原始分,T 表示转换分,当原始分为1Y 、2Y 时,等级分分别为1T 、2T ,假设小明同学的生物考试成绩信息如下表: 设小明转换后的等级成绩为T ,根据公式得:847585756971TT --=--,所以76.677T =≈(四舍五入取整),小明最终生物等级成绩为77分.已知某学校学生有60人选了政治,以期中考试成绩为原始成绩转换该学校选政治的学生的政治等级成绩,其中政治成绩获得A 等级的学生原始成绩统计如下表: (1)从政治成绩获得A 等级的学生中任取3名,求至少有2名同学的等级成绩不小于93分的概率;(2)从政治成绩获得A 等级的学生中任取4名,设4名学生中等级成绩不小于93分人数为ξ,求ξ的分布列和期望.26.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直接利用对立事件和独立事件的概率求解. 【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4, 所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p =⨯-⨯-+⨯-⨯- ,()()0.410.210.10.444+⨯-⨯-=.故选:A 【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.B解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.3.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==.故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.4.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.5.C解析:C 【解析】 【分析】根据离散型随机变量的分布列的性质,求得,再利用随机变量的均值和方差的公式,即可求解,得到答案. 【详解】由离散型随机变量的分布列的性质可得,解得,所以随机变量的均值为,方差为, 故选C . 【点睛】本题主要考查了离散型随机变量的分布列的性质,以及均值与方程的计算,其中解答中根据离散型随机变量的分布列的性质,求得的值,再利用均值和方差的公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.6.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为X1 2 3 4P+a b 2a b + 3a b + 4a b +()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.7.C解析:C 【分析】根据随机试验的结果只有A 和A ,P (A )=m ,使得随机变量11A X A ⎧=⎨-⎩发生发生,得到随机变量符合两点分布,根据两点分布的方差公式得到结果. 【详解】∵由题意知一随机试验的结果只有A 和A , 且P (A )=m ,随机变量11A X A ⎧=⎨-⎩发生发生∴X 服从两点分布,∴EX=1(1)(1)21m m m ⨯+-⨯-=-, ∴DX=4m (1-m ). 故选C . 【点睛】解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.8.A解析:A 【分析】若电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 【详解】记1T 正常工作为事件A 记2T 正常工作为事件B 记3T 正常工作为事件C 则()12P A =,()23P B =,()34P C = 电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 则23T T ,至少有一个正常工作,概率为()1231111113412P P BC ⎛⎫⎛⎫=-=--⨯-=⎪ ⎪⎝⎭⎝⎭则电路不发生故障的概率1111121224P =⨯= 故选A 【点睛】本题主要考查了概率知识及实际应用能力,考查了相互独立事件同时发生的概率的计算,关键是确定不发生故障时满足的条件.9.C解析:C【解析】 【分析】随机变量X 的可能取值为20,30,40,结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】X 的可能取值为20,30,40,()222521202010A P X A ====;()311232323562323306010A C C A P X A +⋅⋅+⨯⨯====; ()()()1334012030110105P X P X P X ==-=-==--=,数学期望2030403510105EX =⨯+⨯+⨯=, 即需检测费的均值为35,故选C. 【点睛】本题主要考查组合的应用、古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.10.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ==== 所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)k k n k n C p p --.其中p 为1次试验种A 发生得概率.11.D解析:D 【解析】分析:由题意结合随机变量的性质整理计算即可求得最终结果. 详解:随机变量ξ满足()14E ξ-=,()14D ξ-=, 则:()214,14E D ξξ-=-=, 据此可得:3,4E D ξξ=-=. 本题选择D 选项.点睛:本题主要考查期望的数学性质,方差的数学性质等知识,意在考查学生的转化能力和计算求解能力.12.D解析:D 【解析】分析:根据离散型随机变量分布列的性质,变量取各个量对应的概率和等于1,建立关于a 的等量关系式,最后求得结果.详解:根据分布列的性质可得,()()()0121110121333P P P a a a ξξξ⎛⎫⎛⎫⎛⎫=+=+==++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得913a =,故选D. 点睛:解决该题的关键是明确离散型随机变量的分布列的性质,从而找到关于参数a 所满足的等量关系式,最后求得结果.二、填空题13.【解析】所以【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值(3)根据分布列和期望方差公式求解注意: 解析:1712【解析】()11103412P X ==⨯=,()211351343412P X ==⨯+⨯=,()23623412P X ==⨯=,所以()1526171212E X ⨯+⨯==. 【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意:解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.14.6【分析】通过频率分布直方图求出年龄段在的频率即概率通过二项分布求出数学期望即可【详解】通过频率分布直方图得年龄段在的频率为即概率为抽到老年人的人数为服从二项分布即所以期望为故答案为:06【点睛】本解析:6 【分析】通过频率分布直方图求出年龄段在[]60,80的频率即概率,通过二项分布求出数学期望即可. 【详解】通过频率分布直方图得年龄段在[]60,80的频率为20.01100.2⨯⨯=,即概率为0.2, 抽到“老年人”的人数为X 服从二项分布,即()3,0.2X B ,所以期望为()30.20.6E X np ==⨯=, 故答案为:0.6. 【点睛】本题主要考查了频率分布直方图的应用,二项分布期望的求法,属于中档题.15.【分析】列出所有情况统计满足条件的情况得到齐王每次胜利的概率再根据独立事件计算得到答案【详解】设齐王的上中下等马为田忌的上中下等马为则共有9种情况其中齐王获胜的有6种情况故故答案为:【点睛】本题考查 解析:2027【分析】列出所有情况,统计满足条件的情况得到齐王每次胜利的概率123p =,再根据独立事件计算得到答案. 【详解】设齐王的上中下等马为ABC ,田忌的上中下等马为abc , 则共有,,,,,,,,Aa Ab Ac Ba Bb Bc Ca Cb Cc 9种情况, 其中齐王获胜的有,,,,,Aa Ab Ac Bb Bc Cc 6种情况,故16293p ==, 32232212033327p C ⎛⎫⎛⎫=+⋅⋅=⎪ ⎪⎝⎭⎝⎭.故答案为:2027. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.【分析】根据正态分布对称性知计算得到答案【详解】根据正态分布对称性知:故此次统考中成绩不低于120分的学生人数约为故答案为:【点睛】本题考查了正态分布意在考查学生对于正态分布性质的应用 解析:200根据正态分布对称性知()11208p X >=,计算得到答案. 【详解】根据正态分布对称性知:()()131120801248p X p X ⎛⎫>=<=⋅-= ⎪⎝⎭. 故此次统考中成绩不低于120分的学生人数约为116002008⨯=. 故答案为:200. 【点睛】本题考查了正态分布,意在考查学生对于正态分布性质的应用.17.【分析】要求的值就是要将与求出两个未知数建立出两个方程即可由概率之和为1得到一个方程由得到第二个方程建立方程组从而得到结果【详解】解:离散随机变量可能取的值为123()故的数学期望①而且②①②联立方解析:16【分析】要求+a b 的值,就是要将a 与b 求出。

(压轴题)高中数学高中数学选修2-3第一章《计数原理》检测题(有答案解析)(1)

(压轴题)高中数学高中数学选修2-3第一章《计数原理》检测题(有答案解析)(1)

一、选择题1.在10个形状大小均相同的球中有5个红球和5个白球,不放回地依次摸出2个球,设事件A 表示“第1次摸到的是红球”,事件B 表示“第2次摸到的是红球”,则()P B A ( ) A .49B .12C .110D .152.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .7104.随机变量X 的分布列如表所示,若1()3E X =,则(32)D X -=( )A .59B .53C .5D .75.已知离散型随机变量X 服从二项分布(),X B n p ,且2EX =,DX q =,则21p q+的最小值为( ) A .274B .92C .3D .46.已知随机变量X 服从正态分布()100,4N ,若()1040.1359P m X <<=,则m 等于 ( )[附:()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=] A .100B .101C .102D .D .1037.抛掷一枚均匀的硬币4次,则出现正面的次数多于反面的概率( )A .38B .12C .516D .7168.已知随机变量X 的分布列为P(X =i)=2ia(i =1,2,3,4),则P(2<X≤4)等于( ) A .910B .710 C .35D .129.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( ) A .18B .38C .58D .7810.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( ) A .67B .335C .1135D .0.1911.已知随机变量X 服从正态分布2(2,)N σ,(4)0.84P X ≤=,则(02)P X ≤≤=( ) A .0.64 B .0.16 C .0.32 D .0.34 12.已知随机变量X 的方差()D X m =,设32Y X =+,则()D Y =( )A .9mB .3mC .mD .32m +二、填空题13.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 14.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.15.某人乘车从A 地到B 地,所需时间(分钟)服从正态分布N (30,100),求此人在40分钟至50分钟到达目的地的概率为__________.参考数据:若2~(,)Z N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.16.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为___________ 17.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.18.一个碗中有10个筹码,其中5个都标有2元,5个都标有5元,某人从此碗中随机抽取3个筹码,若他获得的奖金数等于所抽3个筹码的钱数之和,则他获得奖金的期望为________.19.设随机变量ξ的分布列为P (ξ=k )=300-30012C?33kkk ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭(k=0,1,2,…,300),则E (ξ)=____.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“行让行人”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让行人”行为的统计数据:x 之间的回归直线方程ˆˆˆy bx a =+;(2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让行人”情况达到“理想状态”.试判断6月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起15天内需完成罚款缴纳,记录5月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为X ,若X 服从正态分布()~8,9X N ,求该月没能在 14天内缴纳人数. 参考公式:()()()112211ˆˆˆ,nniii ii i nniii i x x yyx y nxybay bx x x xnx====---===---∑∑∑∑()()()0.6826,220.9544,330.9974P ZP Z P Z μσμσμσμσμσμσ-<<+=-<<+=-<<+=22.网上订外卖已经成为人们日常生活中不可或缺的一部分. M 外卖平台(以下简称M 外卖)为了解其在全国各城市的业务发展情况,随机抽取了100个城市,调查了M 外卖在今年2月份的订单情况,并制成如下频率分布表.(1)由频率分布表可以认为,今年2月份M 外卖在全国各城市的订单数Z (单位:万件)近似地服从正态分布2(,)N μσ,其中μ为样本平均数(同一组数据用该区间的中点值作代表),σ为样本标准差,它的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记今年2月份M 外卖订单数Z 在区间(4.88,15.8]内的城市数为X ,求X 的数学期望(取整数);②M 外卖决定在该月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国2月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市开展营销活动,若每接一件外卖订单平均可获纯利润5元,但每件外卖订单平均需送出红包2元,则M 外卖在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?(2)现从全国开展M 外卖业务的所有城市中随机抽取100个城市,若抽到K 个城市的M 外卖订单数在区间(]12.16,19.44内的可能性最大,试求整数k 的值.参考数据:若随机变量X 服从正态分布2(,)N μσ,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,3309().973P X μσμσ-<≤+=.23.某射手每次射击击中目标的概率均为23,且各次射击的结果互不影响. (1)假设这名射手射击3次,求至少2次击中目标的概率;(2)假设这名射手射击3次,每次击中目标得10分,未击中目标得0分.在3次射击中,若有2次连续击中目标,而另外1次未击中目标,则额外加5分;若3次全部击中,则额外加10分.用随机变量ζ表示射手射击3次后的总得分,求ζ的分布列和数学期望. 24.某种工业机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金700元,在延保的两年内可免费维修2次,超过2次每次收取维修费200元;方案二:交纳延保金1000元,在延保的两年内可免费维修4次,超过4次每次收取维修费100元.某工厂准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,工厂选择哪种延保方案更合算? 25.某工厂计划建设至少3个,至多5个相同的生产线车间,以解决本地区公民对特供商品A 的未来需求.经过对先期样本的科学性调查显示,本地区每个月对商品A 的月需求量均在50万件及以上,其中需求量在50~ 100万件的频率为0.5,需求量在100~200万件的频率为0.3,不低于200万件的频率为0.2.用调查样本来估计总体,频率作为相应段的概率,并假设本地区在各个月对本特供商品A 的需求相互独立.(1)求在未来某连续4个月中,本地区至少有2个月对商品A 的月需求量低于100万件的概率.(2)该工厂希望尽可能在生产线车间建成后,车间能正常生产运行,但每月最多可正常生产的车间数受商品A 的需求量x 的限制,并有如下关系: 商品A 的月需求量x (万件) 50100x ≤< 100200x ≤<200x ≥车间最多正常运行个数345若一个车间正常运行,则该车间月净利润为1500万元,而一个车间未正常生产,则该车间生产线的月维护费(单位:万元)与月需求量有如下关系: 商品A 的月需求量x (万件)50100x ≤<100200x ≤<未正常生产的一个车间的月维护费(万元)500600试分析并回答该工厂应建设生产线车间多少个?使得商品A 的月利润为最大.26.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式2.63≈,若 ()2~,X N μσ,则①()0.6827P X μσμσ-<+=;② (22)0.9545P X μσμσ-<+=;③(33)0.9973P X μσμσ-<+=.(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设第一次摸出红球为事件A ,第二次摸出红球为事件B ,分别求出()P A ,()P AB ,利用条件概率公式求出答案.【详解】设第一次摸出红球为事件A ,第二次摸出红球为事件B , 则“第一次摸到红球”的概率为:()51102P A == “在第一次摸出红球,第二次也摸到红球”的概率是()5421099P AB ⨯==⨯ 由条件概率公式有()()()249192P AB P B A P A ===故选:A 【点睛】本题考查了概率的计算方法,主要是考查了条件概率,弄清楚事件之间的联系,正确运用公式,是解决本题的关键.属于中档题.2.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.3.B解析:B【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==,11155561116691()1216C C C P B C C C =-= ()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.4.C解析:C 【分析】 由1()3E X =,利用随机变量X 的分布列列出方程组,求出13a =,12b =,由此能求出()D X ,再由(32)9()D X D X -=,能求出结果.【详解】 1()3E X =∴由随机变量X 的分布列得:1161163a b b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩, 2221111115()(1)(0)(1)3633329D X ∴=--⨯+-⨯+-⨯=,5(32)9()959D X D X ∴-==⨯=故选:C . 【点睛】本题考查方差的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.B解析:B 【分析】根据二项分布的均值与方差公式,可得,p q 的等量关系.利用“1”的代换,结合基本不等式即可求得21p q+的最小值.【详解】离散型随机变量X 服从二项分布(),XB n p ,且2EX =,DX q =由二项分布的均值与方差公式可得()21npq np p =⎧⎨=-⎩, 化简可得22p q +=,即12qp +=由基本不等式化简可得21p q +221p q q p ⎛⎫=+ ⎪⎛⎫+ ⎪⎝⎝⎭⎭2525922q p p q ≥+=++= 即21p q +的最小值为92故选:B 【点睛】本题考查了二项分布的简单应用,均值与方差的求法,利用“1”的代换结合基本不等式求最值,属于中档题.6.C解析:C 【分析】 由()()0.1322259P X P X μσμσμσμσ-<<+--<<+=,再根据正态分布的对称性,即可求解. 【详解】由题意,知()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=, 则()()220.95440.682620.13592P X P X μσμσμσμσ-<<+--<<+-==,所以要使得()1040.1359P m X <<=,则102m =,故选C. 【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布的对称性,以及概率的计算方法是解答的关键,着重考查了运算与求解能力,属于基础题.7.C解析:C 【分析】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,由此能求出出现正面的次数多于反面的次数的概率. 【详解】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,∴出现正面的次数多于反面的次数的概率:4433441115()()22216p C C =+⋅=. 故选C . 【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率计算公式的合理运用.8.B解析:B 【分析】 由题意可得()1123412a+++=,即可求出a 的值,再利用互斥事件概率的加法公式可得 ()()()2434P X P P <≤=+,据此计算即可得到答案【详解】()()12342iP X i i a===,,,, ()1123412a∴+++= 解得5a =则()()()3472434101010P X P P <≤=+=+= 故选B 【点睛】本题是一道关于求概率的题目,解答本题的关键是熟练掌握离散型随机变量的分布列,属于基础题.9.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ====所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)kkn kn C p p --.其中p 为1次试验种A 发生得概率.10.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==, 由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D 【解析】∵随机变量ξ服从正态分布2(2,)N σ,2μ=,得对称轴是2x =,(4)0.84P ξ=≤, ∴(4)(0)0.16P P ξξ≥=<=,∴(02)0.50.160.34P ξ≤≤=-=,故选D .12.A解析:A 【解析】∵()D X m =,∴2()(32)3()D Y D X D X =+=9()D X =9m =,故选A .二、填空题13.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=.故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.14.【分析】设事件表示该选手能正确回答第轮的问题选手被淘汰考虑对立事件代入的值可得结果;【详解】记该选手能正确回答第轮的问题为事件则该选手被淘汰的概率:故答案为:【点睛】求复杂互斥事件概率的两种方法:( 解析:101125【分析】设事件(1,2,3)i A i =表示“该选手能正确回答第i 轮的问题”,选手被淘汰,考虑对立事件,代入123(),(),()P A P A P A 的值,可得结果; 【详解】记“该选手能正确回答第i 轮的问题”为事件(1,2,3)i A i =,则()()()123432,,555P A P A P A ===. 该选手被淘汰的概率:112123112123()()()()()()()P P A A A A A A P A P A A P A A A =++=++142433101555555125=+⨯+⨯⨯= 故答案为:101125【点睛】求复杂互斥事件概率的两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;(2)间接法:先求该事件的对立事件的概率,再由()1()P A P A =-求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.15.1359【分析】根据正态曲线的对称性求出概率即可;【详解】解:∵∴∴又∴∴∴∵∴因此此人在40分钟至50分钟到达目的地的概率是故答案为:【点睛】本题考查正态曲线的性质属于中档题解析:1359 【分析】根据正态曲线的对称性求出概率即可; 【详解】解:∵()0.6826P X μσμσ-<<+=,∴10.6826()2P X μσ->+=,∴()1P X μσ<+=-10.682610.6826222-=+.又(22)0.9544P X μσμσ-<<+=,∴10.9544(2)2P X μσ->+=,∴10.954410.9544(2)1222P X μσ-<+=-=+,∴(2)(2)P X P X μσμσμσ+<<+=<+-()P X μσ<+10.954410.6826()2222=+-+1(0.95440.6826)2=⨯-0.1359=. ∵30μ=,10σ=,∴(4050)0.1359P X <<=.因此,此人在40分钟至50分钟到达目的地的概率是0.1359. 故答案为:0.1359 【点睛】本题考查正态曲线的性质,属于中档题.16.3500【分析】设检测机器所需检测费为则的可能取值为200030004000分别求出相应的概率由此能求出所需检测费的均值【详解】设检测的机器的台数为则的所有可能取值为234所以所需的检测费用的均值为解析:3500 【分析】设检测机器所需检测费为X ,则X 的可能取值为2000,3000,4000,分别求出相应的概率,由此能求出所需检测费的均值. 【详解】设检测的机器的台数为X ,则X 的所有可能取值为2,3,4.1123223233522513133(2000),(3000),(4000)1101010105A C A A A P X P X P X A A +========--=所以所需的检测费用的均值为()133200030004000350010105E X =⨯+⨯+⨯=. 故答案为: 3500. 【点睛】本题考查离散型随机变量的分布列和均值,考查学生分析问题的能力,难度一般.17.【解析】试题分析:的可能取值是012345 0 1 2 3 4 5 考点:期望方差的计算解析:510,39【解析】试题分析:ξ的可能取值是0,1,2,3,4,5,12345.考点:期望、方差的计算.18.【解析】分析:先确定随机变量取法再分别求对应概率最后根据数学期望公式求期望详解:获得奖金数为随机变量ξ则ξ=691215所以ξ的分布列为:ξ 6 9 12 15 P E(ξ)=6×+9× 解析:212【解析】分析:先确定随机变量取法,再分别求对应概率,最后根据数学期望公式求期望. 详解:获得奖金数为随机变量ξ,则ξ=6,9,12,15,所以ξ的分布列为: ξ 691215P112 512 512 112E(ξ)=6×12+9×12+12×12+15×12=2. 点睛:本题考查数学期望公式,考查基本求解能力.19.【解析】分析:由二项分布的期望公式计算详解:由题意得ξ~B 所以E(ξ)=300=100点睛:本题考查二项分布的期望计算公式若则解析:【解析】分析:由二项分布的期望公式计算. 详解:由题意,得ξ~B 1300,3⎛⎫ ⎪⎝⎭,所以E (ξ)=30013⨯=100. 点睛:本题考查二项分布的期望计算公式.若(,)B n p ξ,则E np ξ=,(1)D np p ξ=-.20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)ˆ8124yx =-+;(2)达到“理想状态”;(3)2. 【分析】(1)请根据表中数据计算x 、y ,求出回归系数,写出回归直线方程;(2)利用回归方程计算6x =时ˆy的值,比较即可得出结论; (3)根据正态分布的性质,结合()2140.9544P X <<=即可得答案. 【详解】(1)请根据表中所给前5个月的数据,计算1(12345)35x =⨯++++=, 1(1201051008590)1005y =⨯++++=;12222221()()(2)20(1)5001(15)2(10)ˆ8(2)(1)012()nii i nii xx y y bxx ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆˆ100(8)3124ay bx =-=--⨯=; y ∴与x 之间的回归直线方程ˆ8124y x =-+;(2)由(1)知ˆ8124yx =-+,当6x =时,ˆ8612476y =-⨯+=; 且807645-=<,6∴月份该十字路口“礼让斑马线”情况达到“理想状态”;(3)因为X 服从正态分布()~8,9X N , 所以()2140.9544P X <<=, 该月没能在14天内缴纳人数为10.95449022-⨯=, 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nnii ii i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+. 22.(1)①5;②100万元;(2)48. 【分析】(1)①先由频率分布表求出样本平均数,得到()212.16,3.64ZN ,求出()4.8815.8P Z <≤,再由题意,得到()6,0.8186XB ,根据二项分布的期望公式,即可得出结果;②根据分层抽样,分别得出订单数在区间[)3,5和[)5,7的城市数,计算出不开展营销活动所得利润,以及开展营销活动所得利润,即可得出结果;(2)根据题意,由正态分布,先求出随机抽取1个城市的外卖订单数在区间(]12.16,19.44内的概率为0.47725P =,得到抽到K 个城市的M 外卖订单数在区间(]12.16,19.44内的概率为()()1001k kk P X k C P P ==-,为使其最大,列出不等式组求解,即可得出结果. 【详解】(1)①由频率分布表可得,样本平均数为40.0460.0680.1100.1μ=⨯+⨯+⨯+⨯120.3140.2160.1180.08200.0212.16+⨯+⨯+⨯+⨯+⨯=,所以()212.16,3.64ZN ,因此()()4.8815.82P Z P Z μσμσ<≤=-<≤+()()()111220.95450.68270.8186222P Z P Z μσμσμσμσ=-<≤++-<≤+=+=, 由题意,可得()6,0.8186XB ,所以X 的数学期望为()60.8186 4.91165E X =⨯=≈;②由分层抽样知,这100个城市中每月订单数在区间[)3,5内的有0.04100400.040.06⨯=+个,则每月订单数在区间[)5,7内的有0.06100600.040.06⨯=+个,若不开展营销活动,则一个月的利润为404560652600⨯⨯+⨯⨯=(万元), 若开展营销活动,则一个月的利润为()1009522700⨯⨯-=(万元),因此M 外卖在这100个城市中开展营销活动将比不开展营销活动每月多盈利100万元; (2)因为()()()112.1619.442222P Z P Z P Z μμσμσμσ<≤=<≤+=-<≤+ 0.47725=,即随机抽取1个城市的外卖订单数在区间(]12.16,19.44内的概率为0.47725P =, 则从全国开展M 外卖业务的所有城市中随机抽取100个城市,抽到K 个城市的M 外卖订单数在区间(]12.16,19.44内的概率为()()1001kk kP X k C P P ==-,为使若抽到K 个城市的M 外卖订单数在区间(]12.16,19.44内的可能性最大,只需()()()()1009911100100100101111001001111k k k k k k k k k k k k C P P C P P C P P C P P --++----⎧⋅⋅-≥⋅⋅-⎪⎨⋅⋅-≥⋅⋅-⎪⎩, 即()()11001001111001001111k k k k k k k k k k kk A A P P A A A A P P A A +++---⎧⋅-≥⋅⎪⎪⎨⎪⋅≥⋅-⎪⎩,即100111011k P P k k P P k -⎧-≥⋅⎪⎪+⎨-⎪⋅≥-⎪⎩,解得1011101P k P -≤≤, 则47.2022548.20225k ≤≤, 又k 为整数,所以48k =. 【点睛】关键点点睛:本题主要考查正态分布求指定区间的概率,考查由二项分布的概率计算公式求概率的最值,解题关键在于熟记正态分布的对称性,二项分布的概念以及二项分布的概率计算公式,考查学生的计算能力,属于中档题. 23.(1)2027;(2)分布列见解析,2209E ζ=. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题意可知,随机变量ζ的可能取值有0、10、20、25、40,计算出随机变量ζ在不同取值下的概率,可得出随机变量ζ的分布列,由此可求得随机变量ζ的数学期望值. 【详解】(1)设X 为射手3次射击击中目标的总次数,则23,3XB ⎛⎫⎪⎝⎭. 故()()()23233322220223133327P X P X P X C C ⎛⎫⎛⎫⎛⎫≥==+==⋅⋅-+⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,所求概率为2027; (2)由题意可知,ζ的所有可能取值为0、10、20、25、40, 用()1,2,3i A i =表示事件“第i 次击中目标”,则()()31100327P P X ζ⎛⎫===== ⎪⎝⎭,()()2132221011339P P X C ζ⎛⎫====⋅⋅-= ⎪⎝⎭,()()12321242033327P P A A A ζ===⨯⨯=,()()()82522027P P X P ζζ===-==, ()()328403=327P P X ζ⎛⎫==== ⎪⎝⎭.故ζ的分布列如下表所示:因此,随机变量的数学期望为1648822001020254027272727279E ζ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查利用独立重复试验的概率公式计算事件的概率,同时也考查了随机变量分布列与数学期望的求解,考查计算能力,属于中等题. 24.(1)详见解析;(2)选择延保方案一较合算. 【分析】(1)X 所有可能的取值为0,1,2,3,4,5,6,计算概率得到分布列. (2)分别计算所需费用的分布列,计算数学期望,比较大小得到答案. 【详解】 (1)0515010p ==;1202505p ==;2101505p ==;31535010p ==. X 所有可能的取值为0,1,2,3,4,5,6.111(0)1010100P X ==⨯=,122(1)210525P X ==⨯⨯=,22111(2)2555105P X ==⨯+⨯⨯=,131211(3)2210105550P X ==⨯⨯+⨯⨯=,11327(4)25510525P X ==⨯+⨯⨯=,133(5)251025P X ==⨯⨯=,339(6)1010100P X ==⨯=, ∴X 的分布列为:(2)选择延保方案一,所需费用1元的分布列为:17009001100130015001000100502525100EY =⨯+⨯+⨯+⨯+⨯=(元). 选择延保方案二,所需费用2Y 元的分布列为:2100011001200103010025100EY =⨯+⨯+⨯=(元). ∵12EY EY <,∴该工厂选择延保方案一较合算. 【点睛】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力. 25.(1)1116(2)4个 【分析】(1)由独立重复实验的概率公式结合题意计算即可得解;(2)按照建设3个车间、4个车间、5个车间讨论,分别求出对应的分布列和期望,比较期望大小即可得解. 【详解】(1)由题意每月需求量在50~ 100万件的概率为0.5,则由独立重复实验概率公式可得所求概率223142344441111111112222216P C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (2)(i )当建设3个车间时,由于需求量在50万件以上,此时的净利润Y 的分布列为:则(万元);(ii )当建设4个车间时,需求量50100x ≤<时,则有3个车间正常运行时,会有1个车间闲置,此时的净利润150035004000Y =⨯-=;需求量100x ≥时,则4个车间正常运行,此时的净利润150046000Y =⨯=; 则Y 的分布列为:则(万元)(iii )当建设5个车间时,需求量50100x ≤<时,则有3个车间正常运行时,会有2个车间闲置,此时的净利润1500350023500Y =⨯-⨯=; 需求量100200x ≤<时,则4个车间正常运行,会有1个车间闲置, 此时1500460015400Y =⨯-⨯=;需求量200x ≥时,则5个车间正常运行,此时的净利润150057500Y =⨯=; 则Y 的分布列为:则4870=(万元) 综上所述,要使该工厂商品A 的月利润为最大,应建设4个生产线车间. 【点睛】本题考查了独立重复实验概率公式的应用,考查了离散型随机变量期望的求解与应用,属于中档题.26.(1)17.4;(2)(i )14.77千元(ii )978位 【分析】(1)用每个小矩形的面积乘以该组中点值,再求和即可得到平均数; (2)(i )根据正态分布可得:0.6827()0.50.84142P X μσ>-=+≈即可得解;(ii )根据正态分布求出每个农民年收入不少于12.14千元的事件概率为0.9773,利用独立重复试验概率计算法则求得概率最大值的k 的取值即可得解. 【详解】(1)由频率分布直方图可得:120.04140.12160.28180.36200.1220.06240.0417.4x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=;(2)(i )由题()~17.4,6.92X N ,0.6827()0.50.84142P X μσ>-=+≈,所以17.4 2.6314.77μσ-=-=满足题意,即最低年收入大约14.77千元;(ii )0.9545(12.14)(2)0.50.97732P X P X μσ≥=≥-=+≈, 每个农民年收入不少于12.14千元的事件概率为0.9773,记这1000位农民中的年收入不少于12.14千元的人数为X ,()1000,0.9773X B 恰有k 位农民中的年收入不少于12.14千元的概率()()100010000.997310.9973k k k P X k C -==-()()()()10010.97731110.9773P X k k P X k k =-⨯=>=-⨯-得10010.9773978.2773k <⨯=, 所以当0978k ≤≤时,()()1P X k P X k =-<=,当9791000k ≤≤时,()()1P X k P X k =->=,所以这1000位农民中的年收入不少于12.14千元的人数最有可能是978位.【点睛】此题考查频率分布直方图求平均数,利用正态分布估计概率,结合独立重复试验计算概率公式求解具体问题,综合性强.。

人教版高中数学选修2-3单元检测试题及答案(第一章-计数原理)

人教版高中数学选修2-3单元检测试题及答案(第一章-计数原理)

人教版高中数学选修2-3单元检测试题.一、选择题1.由1、2、3三个数字构成的四位数有().A.81个B.64个C.12个D.14个2.集合{1,2,3,4,5,6}的真子集共有().A.5个B.6个C.63个D.64个3.5个人排成一排,其中甲在中间的排法种数有().A.5 B.120 C.24 D.44.从5个人中选1名组长和1名副组长,但甲不能当副组长,不同的选法总数是().A.20 B.16 C.10 D.65.已知n=3!+24!,则n的个位数为().A.7 B.6 C.8 D.36.假设200件产品中有3件次品,现在从中任取5件,至少有2件次品的抽法数有().A.C23C3198B.C23C3197+C33C2197C.C5200-C4197D.C5200-C13C41977.从6位男学生和3位女学生中选出4名代表,代表中必须有女学生,则不同的选法有().A.168 B.45 C.60 D.1118.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则与原排列顺序不同的改变方法共有().A.70种B.126种C.175种D.210种9.nxx⎪⎭⎫⎝⎛22+展开式中只有第六项二项式系数最大,则展开式中第2项系数是( ).A.18 B.20 C.22 D.2410.在8312⎪⎭⎫⎝⎛x-x的展开式中的常数项是( ).A.7 B.-7 C.28 D.-28二、填空题11.有四位学生报名参加三项不同的竞赛,(1)每位学生都只报了一项竞赛,则有种不同的报名方法;(2)每项竞赛只许有一位学生参加,则有种不同的参赛方法;(3)每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则有种不同的参赛方法.12.4名男生,4名女生排成一排,女生不排两端,则有种不同排法.13.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲不能从事翻译工作,则选派方案共有________种.14.已知92⎪⎪⎭⎫⎝⎛x-xa的展开式中,x3的系数为49,则常数的a值为.15.在二项式(1-2x)n的展开式中,偶数项的二项式系数之和为32,则展开式的第3项为.16.将4个颜色互不相同的球放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有种.三、解答题17.7人排成一排,在下列情况下,各有多少种不同排法:(1)甲不排头,也不排尾;(2)甲、乙、丙三人必须在一起;(3)甲、乙之间有且只有两人;(4)甲、乙、丙三人两两不相邻;(5)甲在乙的左边(不一定相邻).18.某厂有150名员工,工作日的中餐由厂食堂提供,每位员工可以在食堂提供的菜肴中任选2荤2素共4种不同的品种,现在食堂准备了5种不同的荤菜,若要能保证每位员工有不同选择,则食堂至少还需准备不同的素菜品种多少种?19.求(1+x)2(1-x)5的展开式中x3的系数.20.7个人到7个地方去旅游,一人一个地方,甲不去A地,乙不去B地,丙不去C地,丁不去D 地,共有多少种旅游方案?一、选择题 1.A解析:每位数都有3种可能取法,34.故选A . 2.C解析:26-1=63.故选C . 3.C解析:1×44A =24.故选C . 4.B解析:甲当副组长选法有14A 种,故符合题意的选法有25A -14A =16.故选B .5.B解析:由于24! 为从1开始至24的24个数连乘,在这24个数中有10,所以24!的个位数为0,又3!的个位数为6,所以3!+24! 的个位数为6.故选B .6.B解析:200件产品中有3件次品,197件正品.取5件,至少有2件次品,即3件正品2件次品或2件正品3件次品,抽法数有23C 3197C +33C 2197C .故选B .7.D解析:女生选1,2,3人,男生相应选3,2,1人,选法有13C 36C +23C 26C +1633C C =111.故选D .8.A解析:氨基酸有37C 种选法,选到的3种氨基酸与原排列顺序不同的排法有33A -1种,所以与原排列顺序不同的改变方法数共有37C (33A -1)=175.故选C .9.B解析:n =10,所求系数为110C ×2=20.故选B . 10.A解析:T r +1=34-88-838821-C =12C rr r r rr -r x x -x )(⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛,常数项时348r -=0,r =6,所以T 7=68C (-1)626-8=7.故选A .二、填空题11.(1)81.解析:4位学生每人都有3项竞赛可以选择,3×3×3×3=81. (2)64.解析:3项竞赛每项都有4位学生可以选择,4×4×4=64. (3)24.解析:4位学生选3人参加3项竞赛,34A =24. 12.8 640.解析:8个位置,先排女生不排两端有46A 种排法,再排男生有44A 种排法,所以最后排法有46A ·44A =8 640.13.300.解析:选到甲时3×35A ,不选甲时45A ,所以选派方案种数为:3×35A +45A =300.14.64.解析:T r +1=9-239-999C 1=2-C rr r r rr -r x a -x x a )(⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛,923-r =3, 则r =8,(-1)8a 9-82-819C =94,a =64. 15.60x 2.解析:∵偶数项的二项式系数之和为32,∴二项式系数之和为2n =64,∴n =6,T 3=26C (-2x )2=60x 2.16.10.解析:分两种情况:①1号盒放1个球,2号盒放3个球,有14A 种;②1号盒放2个球,2号盒放2个球,有24C 种. 14C +24C =10.三、解答题17.解:(1)甲有中间5个位置供选择,有15A 种排法,其余6人的排法有66A =720, ∴符合题意的排法共有6615A A =3 600种;(2)先排甲、乙、丙三人,有33A 种排法,再把该三人当成一个整体与另四人排,有55A 种排法, ∴符合题意的共有5533A A =720种排法;(3)排在甲、乙之间的2个人的选法有25A ,甲、乙可以交换有22A 种情况,把该四人当成一个整体与另三人排,有44A 种排法,∴符合题意的共有442225A A A =720种排法;(4)先排甲、乙、丙之外的四人,有44A 种排法,四人形成五个空位,甲、乙、丙三人插入这四人中间或两头,有35A 种排法,∴符合题意的共有4435A A =1 440种排法;(5)其余人先排,有57A =2 520种排法,剩余二位置甲、乙排法唯一,故共2 520种排法.18.解:设要准备素菜x 种,则225C C x ≥150,解得x ≥6,即至少要准备素菜6种. 19.解:(1+x )2的通项公式T r +1=r 2C ·x r,r ∈{0,1,2}.(1-x )5的通项公式T k +1=k 5C ·(-x )k =(-1)k k 5C x k , k ∈{0,1,2,3,4,5}.令k +r =3,则⎪⎩⎪⎨⎧2==1r k 或⎪⎩⎪⎨⎧12==r k 或⎪⎩⎪⎨⎧03==r k .从而x 3的系数为5 =C C +C -C 35251215-. 20.解:用间接法,先求不满足要求的方案数.(1)若甲、乙、丙、丁4人分别去A ,B ,C ,D ,而其余的人不限,选法有33A =6种.(2)若甲、乙、丙、丁中有3人去各自不能去的地方旅游,有34C 种,而4人中剩下1人去的地方是13C 种,其余的人有33A 种,所以共有331334A C C =72种.(3)若甲、乙、丙、丁4人中有2人去各自不能去的地方旅游,有24C 种,余下的5个人分赴5个不同的地方的方案有55A 种,但是其中又包括了有限制条件的四人中的两人(不妨设甲、乙两人)同时去各自不能去的地方共33A 种,和这两人中有一人去了自己不能去的地方有23313A A 种,所以共有24C (55A -33A -23313A A )=468种.(4)若甲、乙、丙、丁4人中只有1人去了自己不能去的地方旅游,有14C 种方案,而余下的六个人的旅游方案仍与(3)想法一致,共有14C [66A -23C (44A -33A )-13C (55A -33A -23313A A )]=1 728种.所以满足以上情况的不同旅游方案共有77A -(6+72+468+1 728)=2 766种.。

(完整版)高中数学选修2-3计数原理测试题(含答案)

(完整版)高中数学选修2-3计数原理测试题(含答案)
1 2 3 4 5 6 7 8 9 10
选择题
1.若 m 为正整数,则乘积 mm 1m 2m 20
()
A. Am20
B. Am21
C.
A 20 m 20
D.
A 21 m 20
2.若直线 Ax By 0 的系数 A, B 同时从 0,1,2,3,5,7 六个数字中取不同的值,则这些方程
表示不同的直线条数
均分成三堆的方法有 X 种,那么把六本不同的书分给甲、乙、丙三人每人 2 本
的分法就应 X A33 种,由(4)知,把六本不同的书分给甲、乙、丙三人,每

2
本的方法有
C62
C
2 4
C
2 2
种.
所以 X A33 C62C42C22
,则 X
C62C42C22 A33
15
(种)
21. 证:依题意,这些小组中女生人数分别是 Cn0,Cn1,Cn2,…,Cnn 个.对
为一堆,有 C33
种取法,故共有分法
C
1 6
C52
C33 =60 种.
(2)由(1)知.分成三堆的方法有
C
1 6
C52
C33 种,而每种分组方法仅对
应一种分配方法,故甲得一本,乙得二本,丙得三本的分法亦为
C
1 6
C52
C
3 3
=60
种.
(3)由(1)知,分成三堆的方法有
C
1 6
C52
C33 种,但每一种分组方法又
名,一共应进行 8× C42 =48,16 强队按程序进行淘汰赛决出前八名,应进行 8 场 比赛,再决出 4 强,应进行 4 场比赛,决出冠军、亚军、三、四名,应进行 4

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测题(答案解析)(1)

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测题(答案解析)(1)

一、选择题1.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481252.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2333.先后投掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“x y 、中有偶数,且x y ≠”,则概率()P B A =( ) A .13B .12C .14D .254.设随机变量X 服从正态分布()0,9N ,则()36P X <<=( )(附:若()2~,X N μσ,则()0.6826P X μσμσ-<<+≈,(2)0.9544P X μσμσ+<<+=)A .0.0456B .0.1359C .0.2718D .0.31745.随机变量X 的分布列如表所示,若1()3E X =,则(32)D X -=( )A .59B .53C .5D .76.某闯关游戏规则如下:在主办方预设的6个问题中,选手若能连续正确回答出两个问题,即停止答题,闯关成功,假设某选手正确回答每个问题的概率都是0.6,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就闯关成功的概率等于( ) A .0.064B .0.144C .0.216D .0.4327.已知19,3X B ⎛⎫~ ⎪⎝⎭,则()E X 、()D X 的值依次为( ).A .3,2B .2,3C .6,2D .2,68.已知随机变量X 服从正态分布()100,4N ,若()1040.1359P m X <<=,则m 等于 ( )[附:()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=] A .100B .101C .102D .D .1039.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是( ) A .0.72B .0.8C .89D .0.910.某学校高三模拟考试中数学成绩X 服从正态分布()75,121N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.参考数据:()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=) A .261 B .341C .477D .68311.在10个排球中有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为( ) A .542B .435C .1942D .82112.将3颗骰子各掷一次,记事件A 为“三个点数都不同”,事件B 为“至少出现一个1点”,则条件概率(A |B)P 和(|)P B A 分别为( ) A .160,291B .560,1891C .601,912D .911,2162二、填空题13.若有一个不透明的袋子内装有大小、质量相同的6个小球,其中红球有2个,白球有4个,每次取两个,取后放回,连续取三次,设随机变量ξ表示取出后都是白球的次数,则()E ξ=______ .14.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者贏得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立,甲在4局以内(含4局)赢得比赛的概率______.15.设在15个相同类型的产品中有2个是次品,每次任取1个,共取3次,并且每次取出后不放回,若以ξ表示取出次品的个数,则()E ξ=________. 16.已知某人每次投篮投中的概率均为13,计划投中3次则结束投篮,则此人恰好在第5次结束投篮的概率是__________. 17.小王做某个试验,成功的概率为23,失败的概率为13,成功一次得2分,失败一次得-1分,求100次独立重复试验的总得分的期望______.18.下列四个结论中,错误的序号是___________.①以直角坐标系中x 轴的正半轴为极轴的极坐标系中,曲线C 的方程为22sin()2804a πρρθ-++-=,若曲线C 上总存在a 的取值范围是()()3,11,3--⋃;②在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,这样的带状区域宽度越宽,说明模型拟合精度越高;③设随机变量~(2,),~(3,)B p B p ξη,若5(1)9P ξ≥=,则6(2)27P η≥=;④已知n 为满足1232727272727(3)S a C C C C a =++++⋅⋅⋅⋅⋅⋅+≥能被9整除的正数a 的最小值,则1()nx x-的展开式中,系数最大的项为第6项.19.在一个均匀小正方体的六个面中,三个面上标以数字0,两个面上标以数字1,一个面上标以数字2,将这个小正方体抛掷2次,则向上一面上的数字之积的均值是____. 20.已知随机变量2~(1,)N ξσ,且(1)0.1P ξ≤-=,(23)0.15P ξ≤≤=,则(02)P ξ≤≤=_______.三、解答题21.为加快推进我区城乡绿化步伐,植树节之际,决定组织开展职工义务植树活动,某单位一办公室现安排4个人去参加植树活动,该活动有甲、乙两个地点可供选择.约定:每个人通过掷一枚质地均匀的骰子决定自己去哪个地点植树,掷出点数为1或2的人去甲地,掷出点数大于2的人去乙地.(1)求这4个人中恰有2人去甲地的概率;(2)求这4个人中去甲地的人数大于去乙地的人数的概率;(3)用,X Y 分别表示这4个人中去甲、乙两地的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望()E ξ.22.因新冠疫情的影响,2020年春季开学延迟,老师采用线上教学.某校高中二年级年级组规定:学生每天线上学习时间3小时及以上为合格,3小时以下为不合格.现从1班,2班,3班随机抽取一些学生进行网上学习时间调查,3个班的人数分别为40人,32人,32人,再采用分层抽样的方法从这104人中抽取13人. (1)应从这3个班中分别抽取多少人?(2)若抽出的13人中有10人学习时间合格,3人学习时间不合格,现从这13人中随机抽取3人.(i )设X 表示事件“抽取的3人中既有学习时间合格的学生,又有学习时间不合格的学生”,求事件X 发生的概率.(ii )设Y 表示抽取的3人中学习时间合格的人数,求随机变量Y 的分布列和数学期望. 23.某射手每次射击击中目标的概率均为23,且各次射击的结果互不影响. (1)假设这名射手射击3次,求至少2次击中目标的概率;(2)假设这名射手射击3次,每次击中目标得10分,未击中目标得0分.在3次射击中,若有2次连续击中目标,而另外1次未击中目标,则额外加5分;若3次全部击中,则额外加10分.用随机变量ζ表示射手射击3次后的总得分,求ζ的分布列和数学期望. 24.某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为12,复审能通过的概率为310,各专家评审的结果相互独立.(1)求某应聘人员被录用的概率;(2)若4人应聘,设X 为被录用的人数,试求随机变量X 的分布列.25.越野汽车轮胎的质量是根据其正常使用的时间来衡量,使用时间越长,表明质量越好,且使用时间大于或等于6千小时的为优质品.现用A ,B 两种不同型号的汽车轮胎做试验,各随机抽取部分产品作为样本,得到试验结果的频率分布直方图如图所示,以上述试验结果中各组的频率作为相应的概率.(1)现从大量的A ,B 两种型号的轮胎中各随机抽取2件产品,求其中至少有3件是优质品的概率;(2)通过多年统计发现,A 型轮胎每件产品的利润y (单位:元)与其使用时间t (单位:千小时)的关系如下表: 使用时间t (单位:千小时) 5t < 56t ≤<6t ≥每件产品的利润y (单位:元)200-200400若从大量的A 型轮胎中随机抽取两件,其利润之和记为X (单位:元),求X 的分布列及数学期望.26.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.2.A解析:A 【分析】直接利用对立事件和独立事件的概率求解. 【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4, 所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p =⨯-⨯-+⨯-⨯- ,()()0.410.210.10.444+⨯-⨯-=.故选:A【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.3.A解析:A 【分析】根据题意有()))|(=(n AB P n A A B ,所以只须分析事件A 和事件AB 所包含的基本事件,即可根据公式求出结果. 【详解】解:事件A 中“x y +为偶数”,所以,x y 同奇同偶,共包含22318⨯=种基本事件;事件AB 同时发生,则,x y 都为偶数,且x y ≠,则包含236A =个基本事件;()()61=)13|=(8n AB n A P B A =. 故选:A. 【点睛】本题考查条件概率的应用,考查基本事件的求法,解题的关键是辨析条件概率,属于基础题.4.B解析:B 【分析】由随机变量X 符合正态分布()0,9N ,得0μ=,3σ=,则所求(36)P X <<,即为(2)P X μσμσ+<<+,根据3σ原则,以及正态曲线的对称性即可求值.【详解】因为随机变量X 符合正态分布()0,9N ,则0μ=,3σ=, 所以(36)(2)P X P X μσμσ<<=+<<+, 由()0.6826P X μσμσ-<<+≈,()220.9544P X μσμσ-<<+=,以及正态曲线的对称性,可知()00.3413P X μσ<<+≈,(02)0.4772P X μσ<<+=,则(36)0.47720.34130.1359P X <<=-=. 故选:B. 【点睛】本题考查了正态分布曲线的对称性,两个变量μ和σ的应用,3σ原则,属于中档题.5.C解析:C 【分析】由1()3E X =,利用随机变量X 的分布列列出方程组,求出13a =,12b =,由此能求出()D X ,再由(32)9()D X D X -=,能求出结果.【详解】 1()3E X =∴由随机变量X 的分布列得:1161163a b b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩, 2221111115()(1)(0)(1)3633329D X ∴=--⨯+-⨯+-⨯=,5(32)9()959D X D X ∴-==⨯=故选:C . 【点睛】本题考查方差的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.B解析:B 【分析】根据题意得到第2个问题不正确,第3、4个问题正确,计算概率得到答案. 【详解】选手恰好回答了4个问题就闯关成功,则第2个问题不正确,第3、4 个问题正确. 故0.60.40.60.60.40.40.60.60.144p =⨯⨯⨯+⨯⨯⨯=. 故选:B . 【点睛】本题考查了概率的计算,意在考查学生的应用能力.7.A解析:A 【分析】直接利用二项分布公式计算得到答案. 【详解】19,3X B ⎛⎫~ ⎪⎝⎭,则()=⨯=1933E X ,()1191233D X ⎛⎫=⨯⨯-= ⎪⎝⎭故选:A 【点睛】本题考查了二项分布,意在考查学生对于二项分布的理解.8.C解析:C 【分析】 由()()0.1322259P X P X μσμσμσμσ-<<+--<<+=,再根据正态分布的对称性,即可求解. 【详解】由题意,知()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=, 则()()220.95440.682620.13592P X P X μσμσμσμσ-<<+--<<+-==,所以要使得()1040.1359P m X <<=,则102m =,故选C. 【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布的对称性,以及概率的计算方法是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【分析】设一批种子的发芽率为事件A ,则()0.9P A =,出芽后的幼苗成活率为事件B ,则()|0.8P B A =,根据条件概率公式计算即可,【详解】设一批种子的发芽率为事件A ,则()0.9P A =, 出芽后的幼苗成活率为事件B ,则()|0.8P B A =,∴这粒种子能成长为幼苗的概率()()()|0.90.80.72P P AB P A P B A ===⨯=. 故选:A . 【点睛】本题主要考查了条件概率的问题,关键是分清是在什么条件下发生的,属于基础题.10.B解析:B 【解析】分析:正态总体的取值关于75x =对称,位于6486(,)之间的概率是0.6826,根据概率求出位于6486(,)这个范围中的个数,根据对称性除以2 得到要求的结果. 详解:正态总体的取值关于75x =对称,位于6486(,)之间的概率是(75117511)0.682?6P X -+=<<,则估计数学成绩在75分到86分之间的人数约为110000.682?63412⨯⨯≈人. 故选B .点睛:题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩X 关75X =于对称,利用对称写出要用的一段分数的频数,题目得解.11.A解析:A 【解析】分析:根据超几何分布,可知共有410C 种选择方法,符合正品数比次品数少的情况有两种,分别为0个正品4个次品,1个正品3个次品,分别求其概率即可. 详解:正品数比次品数少,有两种情况:0个正品4个次品,1个正品3个次品,由超几何分布的概率可知,当0个正品4个次品时444101210C P C ==当1个正品3个次品时136441024421035C C P C === 所以正品数比次品数少的概率为1452103542+= 所以选A点睛:本题考查了超几何分布在分布列中的应用,主要区分二项分布和超几何分布的不同.根据不同的情况求出各自的概率,属于简单题.12.C解析:C 【解析】根据条件概率的含义,()|P A B 其含义为在B 发生的情况下,A 发生的概率,即在“至少出现一个3点” 的情况下,“三个点数都不相同”的概率,因为“至少出现一个3 点”的情况数目为66655591⨯⨯-⨯⨯=,“三个点数都不相同”,则只有一个3点,共135460C ⨯⨯=种,()60|91P A B ∴=;()|P B A 其含义为在A 发生的情况下,B 发生的概率,即在“三个点数都不相同”的情况下,“至少出现一个3点”的概率,()601|=1202P B A ∴=,故选C. 二、填空题13.【分析】计算出从袋中随机抽取两个球都是白球的概率可知然后利用二项分布的期望公式可计算出的值【详解】从袋中随机抽取两个球都是白球的概率为由题意可知由二项分布的期望公式得故答案为:【点睛】本题考查二项分解析:65【分析】计算出从袋中随机抽取两个球都是白球的概率p ,可知()3,B p ξ,然后利用二项分布的期望公式可计算出()E ξ的值. 【详解】从袋中随机抽取两个球都是白球的概率为242625C p C ==,由题意可知,23,5B ξ⎛⎫⎪⎝⎭,由二项分布的期望公式得()26355E ξ=⨯=.故答案为:65. 【点睛】本题考查二项分布期望的计算,解题时要弄清随机变量满足的分布列类型,考查计算能力,属于中等题.14.【分析】设表示第k 局甲获胜表示第k 局乙获胜甲在4局以内(含4局)赢得比赛结果有:求出每种结果的概率相加即可求出结论;【详解】用A 表示甲在4局以内(含4局)赢得比赛表示第k 局甲获胜表示第k 局乙获胜则故解析:5681【分析】设k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”, 甲在4局以内(含4局)赢得比赛结果有:12A A ,123B A A ,1234A B A A ,求出每种结果的概率相加,即可求出结论; 【详解】用A 表示“甲在4局以内(含4局)赢得比赛”,k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”,则2()3k P A =,1()3k P B =,1,2,3,4,5k =. 121231234()()()()P A P A A P B A A P A B A A =++121231234()()()()()()()()()()=++P A P A P A P B P A P A P A P B P A P A22221.221256()33333381⎛⎫⎛⎫⎛⎫=+⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P A .故答案为:5681【点睛】本题考查事件的独立性的概念,审清题意,细心计算,属于中档题.15.【分析】根据题意可知取出次品的个数可能的值为012利用排列组合知识求出对应的概率从而得到分布列代入数学期望公式求解即可【详解】由题意知取出次品的个数可能的值为012所以可得的分布列为: 0 1 2解析:25. 【分析】根据题意可知,取出次品的个数ξ可能的值为0、1、2,利用排列组合知识求出对应的概率,从而得到分布列,代入数学期望公式求解即可. 【详解】由题意知,取出次品的个数ξ可能的值为0、1、2,∴()0321331522035C C P C ξ===,()1221331512135C C P C ξ===, ()212133151235C C P C ξ===, 所以可得ξ的分布列为:则()0123535355E ξ=⨯+⨯+⨯=. 故答案为:25【点睛】本题考查离散型随机变量的分布列和数学期望;考查运算求解能力;正确列出随机变量的分布列是求解本题的关键;属于中档题.16.【分析】第五次结束投篮则前四次有两次投中且第五次投中根据独立重复试验的知识处理即可【详解】解:依题意恰好在第五次结束投篮则前四次有两次投中且第五次投中所以概率为:故答案为:【点睛】本题考查独立重复试 解析:881【分析】第五次结束投篮,则前四次有两次投中,且第五次投中,根据独立重复试验的知识处理即可. 【详解】解:依题意,恰好在第五次结束投篮, 则前四次有两次投中,且第五次投中, 所以概率为:22241118()(1)33381p C =⨯⨯-⨯=.故答案为:881.【点睛】本题考查独立重复试验的知识,利用了二项分布求概率的公式.17.100【分析】计算得到答案【详解】设一次实验得分为根据题意:故100次独立重复试验的总得分的期望为故答案为:【点睛】本题考查了数学期望意在考查学生的计算能力和应用能力解析:100 【分析】 计算()2121133E X =⨯-⨯=,得到答案. 【详解】设一次实验得分为X ,根据题意:()2121133E X =⨯-⨯=, 故100次独立重复试验的总得分的期望为()100100E X =. 故答案为:100. 【点睛】本题考查了数学期望,意在考查学生的计算能力和应用能力.18.234【分析】对于①把极坐标方程化为直角坐标方程结合圆心与原点的距离关系可求;对于②带状区域宽度越宽说明模型拟合误差越大;对于③先利用求出然后再求;对于④先求出再利用二项式定理的通项公式求解系数最大解析:234 【分析】对于①,把极坐标方程化为直角坐标方程,结合圆心与原点的距离关系可求; 对于②,带状区域宽度越宽,说明模型拟合误差越大; 对于③,先利用5(1)9P ξ≥=求出p ,然后再求(2)P η≥; 对于④,先求出n ,再利用二项式定理的通项公式求解系数最大的项. 【详解】对于①,22sin()2804a πρρθ-++-=化为直角坐标方程为22()()8x a y a -+-=,半径为因为曲线C <,解得()()3,11,3a ∈--⋃,故①正确;对于②,带状区域宽度越宽,说明模型拟合误差越大,故②错误;对于③,122225(1)(1)9P C p p C p ξ≥=-+=,解得13p =;223333(2)(1)277P C p p C p η≥=-+=,故③错误;对于④,12327279272727272181S a C C C C a a =++++⋅⋅⋅⋅⋅⋅+=+-=+-, 而9909188999998(91)999C C C C =-=-++-,所以11n =,所以111()x x-的系数最大项为第7项,故④错误;综上可知②③④错误.【点睛】本题主要考查命题真假的判定,涉及知识点较多,知识跨度较大,属于知识拼盘,处理方法是逐一验证是否正确即可.19.【分析】结合题意分别计算出x=0124对应的概率列表计算期望即可【详解】列表x 0 1 2 4 P 所以【点睛】本道题考查了数学期望计算方法列表计算概率计算期望属于中等难度的题目解析:49【分析】结合题意,分别计算出x=0,1,2,4对应的概率,列表,计算期望,即可. 【详解】()332321322703636P x ⨯+⨯⨯+⨯⨯===,()2211369P x ⨯=== ()2212369P x ⨯===,()1436P x ==,列表所以01243699369EX =⨯+⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,列表,计算概率,计算期望,属于中等难度的题目.20.【解析】【分析】利用随机变量关于对称结合已知求出结果【详解】随机变量满足图象关于对称则故答案为【点睛】本题考查了正态分布由正态分布的对称性即可计算出结果 解析:0.5【解析】 【分析】利用随机变量()2~1N ξσ,,关于1x =对称,结合已知求出结果【详解】随机变量满足()2~1N ξσ,,∴图象关于1x =对称()10.1P ξ≤-=,()30.1P ξ∴≥=则()()()120.5?23?30.50.150.10.25P P P ξξξ≤≤=-≤≤-≥=--= ()020.5P ξ∴≤≤=故答案为0.5 【点睛】本题考查了正态分布,由正态分布的对称性即可计算出结果三、解答题21.(1)827;(2)19;(3)分布列答案见解析,数学期望:14881. 【分析】(1)参加甲游戏的概率P=13,设"这4个人中恰有k 人去参加甲游戏"为事件A k (k =0,1,2,3,4),可求这4个人中恰有2个人去参加甲游戏的概率()2P A ,计算即可得出结果; (2)由(1)可知求()()34P A P A +;(3)ξ的所有可能取值为0,2,4,写出其对应的概率和分布列. 【详解】依题意知,这4个人中每个人去甲地的概率为13,去乙地的概率为23.设“这4个人中恰有i 人去甲地”为事件0,1,2,3,4i A i =(),则4-412()()()33iiii P A C =.(1)这4个人中恰有2人去甲地的概率为22224128()()()3327P A C ==(2)设“这4个人中去甲地的人数大于去乙地的人数”为事件B ,则34B A A =⋃,由于3A 与4A 互斥,故3144443341211()()()3339PB P A PC C A =++==()()(). 所以这4个人中去甲地的人数大于去乙地的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于1A 与3A 互斥,0A 与4A 互斥,故28270PP A ξ===()(),1340812P P A P A ξ==+=()()(), 0417814P P A P A ξ==+=()()(). 所以ξ的分布列为:故1714827801818124Eξ=⨯+⨯+⨯=(). 【点睛】本小题主要考查古典概型及其概率计算公式、互斥事件、事件的相互独立性、离散型随机变量的分布列与数学期望等基础知识,考查运用概率知识解决简单实际问题的能力.应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,对二项分布的正确判读是解题的关键,属于一般难度题型. 22.(1)3个班中分别抽取5人,4人,4人;(2)(i )165286,(ii )分布列见解析,数学期望为330143【分析】(1)利用分层抽样的定义按比例进行抽取即可;(2)(i )“抽取的3人中既有学习时间合格的学生,又有学习时间不合格的学生”,包括“1人学习时间合格,2人学习时间不合格”“2人学习时间合格,1人学习时间不合格”,且这两个事件间是互斥的,从而可求出所求概率(ii )Y 的可能取值为0,1,2,3,分别求出相应的概率,从而可得随机变量Y 的分布列和数学期望 【详解】解:(1)由题意可知,3个班抽取的人数分别为:403232135,134,134104104104⨯=⨯=⨯=, 所以应从这3个班中分别抽取5人,4人,4人;(2)(i )“抽取的3人中既有学习时间合格的学生,又有学习时间不合格的学生”,包括“1人学习时间合格,2人学习时间不合格”“2人学习时间合格,1人学习时间不合格”,且这两个事件间是互斥的,所以1221103103331313165()286C C C C P X C C ⋅⋅=+= (ii )由题意可知,Y 的可能取值为0,1,2,3,则333131(0)286C P Y C ===,1210331330(1)286C C P Y C ===, 21103313135(2)286C C P Y C ===,310313120(3)286C P Y C ===,所以随机变量Y 的分布列为所以()0123286286286286143E Y =⨯+⨯+⨯+⨯= 【点睛】此题考查分层抽样,考查互斥事件的概率,考查离散型随机变量的分布列,考查计算能力,属于中档题 23.(1)2027;(2)分布列见解析,2209E ζ=. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题意可知,随机变量ζ的可能取值有0、10、20、25、40,计算出随机变量ζ在不同取值下的概率,可得出随机变量ζ的分布列,由此可求得随机变量ζ的数学期望值. 【详解】(1)设X 为射手3次射击击中目标的总次数,则23,3XB ⎛⎫⎪⎝⎭. 故()()()23233322220223133327P X P X P X C C ⎛⎫⎛⎫⎛⎫≥==+==⋅⋅-+⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以,所求概率为2027;(2)由题意可知,ζ的所有可能取值为0、10、20、25、40,用()1,2,3i A i =表示事件“第i 次击中目标”,则()()31100327P P X ζ⎛⎫===== ⎪⎝⎭,()()2132221011339P P X C ζ⎛⎫====⋅⋅-= ⎪⎝⎭, ()()12321242033327P P A A A ζ===⨯⨯=,()()()82522027P P X P ζζ===-==, ()()328403=327P P X ζ⎛⎫==== ⎪⎝⎭.故ζ的分布列如下表所示:因此,随机变量的数学期望为1648822001020254027272727279E ζ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查利用独立重复试验的概率公式计算事件的概率,同时也考查了随机变量分布列与数学期望的求解,考查计算能力,属于中等题. 24.(1)25;(2)分布列见解析. 【分析】(1)通过分析知所求的应聘人员被录用的情况包括两位专家都同意通过的情况和只有一位专家同意通过并通过复审的情况,所以分别求概率,利用独立事件的概率求解;(2)先求出每个人被录用的概率,再利用二项分布求出每种情况的概率,列出分布列,利用二项分布的期望公式计算数学期望. 【详解】设“两位专家都同意通过”为事件A ,“只有一位专家同意通过”为事件B ,“通过复审”为事件C .(1)设“某应聘人员被录用”为事件D ,则D A BC =+, ∵()111224P A =⨯=,()11121222P B ⎛⎫=⨯⨯-= ⎪⎝⎭,()310P C =,∴()()()()()25P D P A BC P A P B P C =+=+=. (2)根据题意,0,1,2,3,4X =,i A 表示“应聘的4人中恰有i 人被录用”.∵()0404238155625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()31142321655625P A C ⎛⎫=⨯⨯= ⎪⎝⎭, ()222242321655625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()3334239655625P A C ⎛⎫=⨯⨯=⎪⎝⎭, ()4444231655625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,∴X 的分布列为本题主要考查独立事件的概率,考查了离散型随机变量的分布列,考查学生的分析问题解决问题的能力、计算能力. 25.(1)625;(2)分布列见解析,360 【分析】(1)先根据直方图得到抽取一件A 和一件B 型轮胎为优质品的概率,再根据互斥事件的加法公式和独立事件的乘法公式可得结果;(2)据题意知,X 的可能取值为400-,0,200,400,600,800.根据概率公式求出X 的各个取值的概率,再写出分布列,根据数学期望公式求出数学期望即可. 【详解】(1)由直方图可知,从A 型号轮胎中随机抽取一件产品为优质品的概率()10.40.12P A =+=, 从B 型轮胎中随机抽取一件产品为优质品的概率()20.30.15P B =+=, 所以从A ,B 两种型号轮胎中各随机抽取2件产品,其中至少有3件是优质品的概率22222112222222221231121262552252525P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⨯⨯+⨯⨯⋅+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. (2)据题意知,X 的可能取值为400-,0,200,400,600,800.所以()2223940010100P X C ⎛⎫=-=⋅= ⎪⎝⎭,()12313010525P X C ==⨯⨯=, ()1231320010210P X C ==⨯⨯=,()22211400525P X C ⎛⎫==⋅= ⎪⎝⎭, ()12111600525P X C ==⨯⨯=,()2221180024P X C ⎛⎫==⋅= ⎪⎝⎭, 那么X 的分布列为则数学期望()11400020040060080036010025102554E X =-⨯+⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了根据直方图求概率,考查了互斥事件的加法公式和独立事件的乘法公式,考查了求离散型随机变量的分布列和数学期望,属于中档题. 26.(1)49;(2)分布列见解析,1(1)甲获胜的情况为3:1,3:2,2:1分别计算概率即可得解;(2)X 的所有可能取值是0,1,2,3,分别计算概率,写出分布列,计算数学期望. 【详解】(1)甲以3:1获胜的概率221211329P ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭, 甲以3:2获胜的概率22122212C 329P ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭, 甲以2:1获胜的概率213221113329P C ⎛⎫=⨯⨯⨯= ⎪⎝⎭, 则甲获胜的概率1231214.9999P P P P =++=++= (2)由题意可得X 的所有可能取值是0,1,2,3.3323232112233333333112112112(0)C C C C C C 323323323P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭311111722161262724⎛⎫⨯=+++=⎪⎝⎭; 33232333212133331121121121(2)C C C C 3233233232P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11115723618924=+++=; 33331121111(3)32322162724P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯=+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 75111(1)124242424P X ==---=. X 的分布列为故()0123 1.24242424E X =⨯+⨯+⨯+⨯= 【点睛】此题考查求解概率和分布列,根据分布列求解期望,关键在于准确求解概率.。

【人教B版】选修2-3数学:第1章《计数原理》基础测试(含解析)

【人教B版】选修2-3数学:第1章《计数原理》基础测试(含解析)

高中数学第一章计数原理知能基础测试新人教B版选修2-3时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种B.18种C.12种D.6种[答案] B[解析]因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种,进行排列共有C23A33=18种.故选B.2.已知C7n+1-C7n=C8n(n∈N*),则n等于( )A.14 B.12C.13 D.15[答案] A[解析]因为C8n+C7n=C8n+1,所以C7n+1=C8n+1.∴7+8=n+1,∴n=14,故选A.3.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是( )A.8 B.12C.16 D.24[答案] B[解析]∵A2n=n(n-1)=132.∴n=12.故选B.4.(1+x)7的展开式中x2的系数是( )A.42 B.35C.28 D.21[答案] D[解析]展开式中第r+1项为T r+1=C r7x r,T3=C27x2,∴x2的系数为C27=21.5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!)3C.(3!)4D.9![答案] C[解析]本题考查捆绑法排列问题.由于一家人坐在一起,可以将一家三口人看作一个整体,一家人坐法有3!种,三个家庭即(3!)3种,三个家庭又可全排列,因此共(3!)4种.注意排列中在一起可用捆绑法,即相邻问题.6.某校园有一椭圆型花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有( )A.48种B.36种C.30种D.24种[答案] A[解析]由于相邻两块不能种同一种颜色,故至少应当用三种颜色,故分两类.第一类,用4色有A44种,第二类,用3色有4A33种,故共有A44+4A33=48种.7.若多项式x2+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=( )A.9 B.10C.-9 D.-10[答案] D[解析]x10的系数为a10,∴a10=1,x9的系数为a9+C910·a10,∴a9+10=0,∴a9=-10.故应选D.另解:∵[(x+1)-1]2+[(x+1)-1]10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,显然a9=C110(-1)=-10.8.(2015·黑龙江省龙东南四校高二期末)从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A.48种B.36种C.18种D.12种[答案] B[解析] 分两种情况:(1)小张小赵去一人:C 12C 12A 33=24;(2)小张小赵都去:A 22A 23=12,故有36种,应选B.9.(2015·湖北理,3)已知(1+x )n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29[答案] D[解析] 由题意可得,二项式的展开式满足T r +1=C r n x r ,且有C 3n =C 7n ,因此n =10.令x =1,则(1+x )n =210,即展开式中所有项的二项式系数和为210;令x =-1,则(1+x )n=0,即展开式中奇数项的二项式系数与偶数项的二项式系数之差为0,因此奇数项的二项式系数和为12(210+0)=29.故本题正确答案为D.10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种[答案] B[解析] 由题意不同的放法共有C 13C 24=18种.11.(2015·四川理,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个[答案] B[解析] 据题意,万位上只能排4、5.若万位上排4,则有2×A 34个;若万位上排5,则有3×A 34个.所以共有2×A 34+3×A 34=5×24=120个.选B.12.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A .24对 B .30对 C .48对 D .60对[答案] C[解析] 解法1:先找出正方体一个面上的对角线与其余面对角线成60°角的对数,然后根据正方体六个面的特征计算总对数.如图,在正方体ABCD -A 1B 1C 1D 1中,与面对角线AC 成60°角的面对角线有B 1C 、BC 1、C 1D 、CD 1、A 1D 、AD 1、A 1B 、AB 1共8条,同理与BD 成60°角的面对角线也有8条,因此一个面上的对角线与其相邻4个面的对角线,共组成16对,又正方体共有6个面,所有共有16×6=96对.因为每对都被计算了两次(例如计算与AC 成60°角时,有AD 1,计算与AD 1成60°角时有AC ,故AD 1与AC 这一对被计算了2次),因此共有12×96=48对.解法2:间接法.正方体的面对角线共有12条,从中任取2条有C 212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C 212-6-12=48对.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.(2015·上海理,8)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选法有________种(用数值表示)[答案] 120[解析] 由题意得,去掉选5名教师情况即可:C 59-C 56=126-6=120.14.(2015·新课标Ⅱ,15)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[答案] 3[解析] 由已知得(1+x )4=1+4x +6x 2+4x 3+x 4,故(a +x )(1+x )4的展开式中x 的奇数次幂项分别为4ax,4ax 3,x,6x 3,x 5,其系数之和为4a +4a +1+6+1=32,解得a =3.15.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有________种(用数字作答).[答案] 264[解析] 由条件上午不测“握力”,则4名同学测四个项目,有A 44;下午不测“台阶”但不能与上午所测项目重复,如“立定”、“肺活量”中一种有3×3=9,故A44(2+9)=264种.16.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,能被3整除的数有________个.[答案]228[解析]一个数能被3整除的条件是它的各位上的数字之和能被3整除.根据这点,分为如下几数:(1)三位数各位上的数字是1,4,7或2,5,8这两种情况,这样的数有2A33=12(个).(2)三位数的各位上只含0,3,6,9中的一个,其他两位上的数则从(1,4,7)和(2,5,8)中各取1个,这样的数有C14C13C13A33=216(个),但要除去0在百位上的数,有C13C13A22=18(个),因而有216-18=198(个).(3)三位数的各位上的数字是0,3,6,9中的3个,但要去掉0在百位上的,这样应有3×3×2=18(个),综上所述,由0到9这10个数字所构成的无重复数字且能被3整除的3位数有12+198+18=228(个).三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)一个小组有10名同学,其中4名男生,6名女生,现从中选出3名代表,(1)其中至少有一名男生的选法有几种?(2)至多有1名男生的选法有几种?[解析](1)方法一:(直接法).第一类:3名代表中有1名男生,则选法种数为C14·C26=60(种);第二类:3名代表中有2名男生,则选法种数为C24·C16=36(种);第三类:3名代表中有3名男生,则选法种数为C34=4(种);故共有60+36+4=100(种).方法二:(间接法).从10名同学中选出3名同学的选法种数为C310种.其中不适合条件的有C36种.故共有C310-C36=100(种).(2)第一类:3名代表中有一名男生,则选法为C14C26=60(种);第二类:3名代表中无男生,则选法为C36=20(种);故共有60+20=80(种).18.(本题满分12分)从-1、0、1、2、3这5个数中选3个不同的数组成二次函数y =ax 2+bx +c (a ≠0)的系数.(1)开口向上的抛物线有多少条?(2)开口向上且不过原点的抛物线有多少条? [解析] (1)要使抛物线的开口向上,必须a >0, ∴C 13·A 24=36(条).(2)开口向上且不过原点的抛物线,必须a >0,c ≠0, ∴C 13·C 13·C 13=27(条).19.(本题满分12分)求(x -3x )9的展开式中的有理项. [解析] ∵T r +1=C r 9·(x 12)9-r ·(-x 13)r =(-1)r ·C r9·x 27-r 6,令27-r 6∈Z ,即4+3-r6∈Z ,且r ∈{0,1,2,…,9}. ∴r =3或r =9.当r =3时,27-r 6=4,T 4=(-1)3·C 39·x 4=-84x 4;当r =9时,27-r 6=3,T 10=(-1)9·C 99·x 3=-x 3.∴(x -3x )9的展开式中的有理项是:第4项,-84x 4和第10项,-x 3. 20.(本题满分12分)有4个不同的球,四个不同的盒子,把球全部放入盒内. (1)共有多少种放法?(2)恰有一个盒不放球,有多少种放法? (3)恰有一个盒内有2个球,有多少种放法?[解析] (1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有44=256(种).(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有C 24种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计算原理,共有放法:C 14·C 24·C 13·A 22=144(种).(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.21.(本题满分12分)(2015·北京高二质检)已知(3x 2+3x 2)n展开式中各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.[解析] 令x =1得展开式各项系数和为(1+3)n =4n, 又展开式二项式系数和为C 0n +C 1n +…+C n n =2n, 由题意有4n -2n=992.即(2n )2-2n -992=0,(2n -32)(2n+31)=0, 所以n =5.(1)因为n =5,所以展开式共6项,其中二项式系数最大项为第三、四两项,它们是T 3=C 25(3x 2)3·(3x 2)2=90x 6.T 4=C 35(3x 2)2(3x 2)3=270x 223. (2)设展开式中第k +1项的系数最大.又T k +1=C k 5(3x 2)5-k ·(3x 2)k =C k 53k x 10+4k 3,得⎩⎪⎨⎪⎧C k 5·3k ≥C k -15·3k -1C k 5·3k ≥C k +15·3k +1⇒⎩⎪⎨⎪⎧3k ≥16-k 15-k ≥3k +1⇒72≤k ≤92. 又因为k ∈Z ,所以k =4,所以展开式中第5项系数最大.T 5=C 4534x263=405x 263. 22.(本题满分14分)已知(1+2x )n展开式中,某一项的系数恰好是它的前一项系数的2倍,且等于它后一项系数的56,试求该展开式中二项式系数最大的项.[解析] T r +1=C rn (2x )r=2r·C rn ·x x2,它的前一项的系数为2r -1·C r -1n , 它的后一项的系数为2r +1·C r +1n ,根据题意有⎩⎪⎨⎪⎧2r·C rn =2·2r -1·C r -1n ,2r ·C r n =56·2r +1·C r +1n ,⎩⎪⎨⎪⎧2r -1=n ,8r +3=5n ,∴⎩⎪⎨⎪⎧n =7,r =4.∴展开式中二项式系数最大的项为第4项和第5项.3 2,T5=C47(2x)4=560x2.T4=C37(2x)3=280x。

(压轴题)高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)

(压轴题)高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)

一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12B .13C .512D .163.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.已知,a b 为实数,随机变量X ,Y 的分布列如下:若()(1)E Y P Y ==-,随机变量ξ满足XY ξ=,其中随机变量X ,Y 相互独立,则()E ξ取值范围的是( )A .3,14⎡⎤-⎢⎥⎣⎦B .1,018⎡⎤-⎢⎥⎣⎦C .1,118⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦5.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .7106.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .257.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =( )A . 0.4B .0.6C .0.1D .0.28.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( ) A .67B .335C .1135D .0.199.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b ==B .3,10a b ==C .5,6a b ==D .6,5a b ==10.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为0.6和P ,且甲、乙两人各射击一次得分之和为2的概率为0.45.假设甲、乙两人射击互不影响,则P 值为( ) A .0.8B .0.75C .0.6D .0.2511.已知随机变量X 的分布列如表,其中a ,b ,c 为等差数列,若1()3E X =,则()D X 等于( )X 1- 0 1PabcA .49B .59C .13D .2312.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 14.一只青蛙从数轴的原点出发,当投下的硬币正面向上时,它沿数轴的正方向跳动两个单位;当投下的硬币反面向上时,它沿数轴的负方向跳动一个单位,若青蛙跳动4次停止,设停止时青蛙在数轴上对应的坐标为随机变量X ,则()E X =______. 15.在一个袋中放入四种不同颜色的球,每种颜色的球各两个,这些球除颜色外完全相同.现玩一种游戏:游戏参与者从袋中一次性随机抽取4个球,若抽出的4个球恰含两种颜色,获得2元奖金;若抽出的4个球恰含四种颜色,获得1元奖金;其他情况游戏参与者交费1元.设某人参加一次这种游戏所获得奖金为X ,则()E X =________. 16.测量某一目标的距离时,所产生的随机误差X 服从正态分布()220,10N ,如果独立测量3次,至少一次测量误差在()0,30内的概率是__________.附参考数据:()0.68P X μδμδ-<≤+=,()220.95P X μδμδ-<≤+=,()330.99P X μδμδ-<≤+=,20.1850.03=,30.1850.006=,20.8150.66=,30.8150.541=.17.设平面上的动点P(1,y)的纵坐标y 等可能地取-用ξ表示点P 到坐标原点的距离,则随机变量ξ的数学期望Eξ=_________18.已知随机变量X 服从正态分布()2,1N . 若()130.6826P X ≤≤=,则()3P X >等于______________.19.甲、乙两人投篮命中的概率分别为p,q,他们各投2次,若p=12,且甲比乙投中次数多的概率为736,则q 的值为____. 20.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若命题:p “2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--<”;③设随机变量~(,)B n p ξ,且()2,()1E D ξξ==,则(1)p ξ==14;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上).三、解答题21.已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个.现从中随机取球,每次只取一球.()1若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;()2若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望.22.某市教育部门规定,高中学生三年在校期间必须参加不少于80小时的社区服务.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(2)从全市高中学生(人数很多)中任意选取3位学生,记X 为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量X 的分布列和数学期望EX .23.2019年以来,全国发生多起较大煤矿生产安全事故,事故给人民群众的财产和生命造成重大损失.尽管国务院安委办要求对事故责任人从严查处.但是有的煤矿企业领导人仍然不能够对安全生产引起足够重视.不久前,某煤矿发生瓦斯爆炸事故,作业区有若干矿工人员被困.若救援队从入口进入之后有1L ,2L 两条巷道通往作业区如下图所示,其中1L 巷道有1A ,2A ,3A 三个易堵塞点,且各易堵塞点被堵塞的概率都是12;2L 巷道有1B ,2B 两个易堵塞点,且1B ,2B 易堵塞点被堵塞的概率分别为14,35,不同易堵塞点被堵塞或不被堵塞互不影响.(1)求1L 巷道中的三个易堵塞点至少有两个被堵塞的概率;(2)若2L 巷道中两个易堵塞点被堵塞个数为X ,求X 的分布列及数学期望; (3)若1L 巷道中三个易堵塞点被堵塞的个数为Y ,求Y 的数学期望.24.在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了12个,乙同学猜对了8个,假设猜对每道灯谜都是等可能的,试求:(1)任选一道灯谜,恰有一个人猜对的概率;(2)任选一道灯谜,甲、乙都没有猜对的概率.25.甲,乙两人进行定点投篮活动,已知他们每投篮一次投中的概率分别是23和35,每次投篮相互独立互不影响.(Ⅰ)甲乙各投篮一次,记“至少有一人投中”为事件A,求事件A发生的概率;(Ⅱ)甲乙各投篮一次,记两人投中次数的和为X,求随机变量X的分布列及数学期望;(Ⅲ)甲投篮5次,投中次数为ξ,求ξ=2的概率和随机变量ξ的数学期望.26.超市为了防止转基因产品影响民众的身体健康,要求产品在进入超市前必须进行两轮转基因检测,只有两轮都合格才能销售,否则不能销售.已知某产品第一轮检测不合格的概率为14,第二轮检测不合格的概率为19,两轮检测是否合格相互没有影响.(1)求该产品不能销售的概率;(2)如果产品可以销售,则每件产品可获利50元;如果产品不能销售,则每件产品亏损60元.已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值()E X.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用对立事件和独立事件的概率求解.【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p=⨯-⨯-+⨯-⨯-,()()0.410.210.10.444+⨯-⨯-=.故选:A【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.B解析:B【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案. 【详解】记两个零件中恰好有一个一等品的事件为A , 即仅第一个实习生加工一等品为事件1A , 仅第二个实习生加工一等品为事件2A 两种情况, 则()()()125113164643P A P A P A =+=⨯+⨯=, 故选:B . 【点睛】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.B解析:B 【分析】由()(1)E Y P Y ==-及1a b c ++=,可知13b a =-,2c a =;又因为0,,1a b c ≤≤,可求出103a ≤≤;由题意知1()6E a ξ=-,从而可求出()E ξ取值范围.【详解】解:由()(1)E Y P Y ==-知,a c a -+= ,即2c a = ,又1a b c ++= ,所以13b a =-;因为0,,1a b c ≤≤ ,所以0131021a a ≤-≤⎧⎨≤≤⎩ ,解得103a ≤≤.又()1110366E X =-++=- ,且X ,Y 相互独立,XY ξ=,所以()()()11(),0618E E XY E X E Y a ξ⎡⎤===-∈-⎢⎥⎣⎦. 故选:B. 【点睛】本题考查了数学期望,考查了分布列的性质,考查了推理能力和计算能力.本题的关键是由条件求出a 的取值范围.5.B解析:B 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==,11155561116691()1216C C C P B C C C =-= ()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.6.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.7.A解析:A 【解析】 【分析】根据合格的情况列方程:()()2110.784p p p p p +-+-=,解方程求出结果. 【详解】由题意可得:()()2110.784p p p p p +-+-= 整理可得:()()22212330.784p p p p p pp -+-+=-+=解得:0.4p = 本题正确选项:A 【点睛】本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.8.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==, 由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.9.C解析:C 【解析】 分析:详解:由随机变量X 的分布列可知,m 10.20.8=-=, ∴()00.210.80.8E X =⨯+⨯=,()10.20.80.16D X =⨯⨯=,∴()()()()2b 10?4E Y aE X D Y a D X =+===, ∴20.8a b 10? 0.164a +==, ∴5,6a b == 故选C点睛:本题考查了随机变量的数学期望及其方差,考查了推理能力与计算能力,属于中档题.10.B解析:B 【解析】分析:由题意知甲、乙两人射击互不影响,则本题是一个相互独立事件同时发生的概率,根据题意可设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,由相互独立事件的概率公式可得,可得关于p 的方程,解方程即可得答案. 详解:设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B , 则“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则P (A )=35,P (A )=1﹣35=25,P (B )=P ,P (B )=1﹣P , 依题意得:35×(1﹣p )+25×p=920, 解可得,p=34, 故选:B .点睛:求相互独立事件同时发生的概率的方法主要有 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁或难以入手时,可从其对立事件入手计算.11.B解析:B 【详解】∵a ,b ,c 为等差数列,∴2b a c =+,∵1a b c ++=,1113E a c c a ξ=-⨯+⨯=-=,解得16a =,13b =,12c =,∴22215()()39DX E X EX a c ⎛⎫=-=+-= ⎪⎝⎭,故选B . 12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34,故选B .二、填空题13.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=. 故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.14.2【分析】列举出所有的可能出现的情况硬币4次都反面向上则青蛙停止时坐标为硬币3次反面向上而1次正面向上硬币2次反面向上而2次正面向上硬币1次反面向上而3次正面向上硬币4次都正面向上做出对应的坐标和概解析:2 【分析】列举出所有的可能出现的情况,硬币4次都反面向上,则青蛙停止时坐标为14x =-,硬币3次反面向上而1次正面向上,硬币2次反面向上而2次正面向上,硬币1次反面向上而3次正面向上,硬币4次都正面向上,做出对应的坐标和概率,算出期望. 【详解】所有可能出现的情况分别为硬币4次都反面向上,则青蛙停止时坐标为14x =-,此时概率1116p =; 硬币3次反面向上而1次正面向上,则青蛙停止时坐标为21x =-,此时概率33241141=22164p C ⎛⎫=⨯⨯= ⎪⎝⎭;硬币2次反面向上而2次正面向上,则青蛙停止时坐标为32x =,此时概率222341163=22168p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭硬币1次反面向上而3次正面向上,则青蛙停止时坐标为45x =,此时概率341141141=22164p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;硬币4次都正面向上,则青蛙停止时坐标为58x =,此时标率405411216p C ⎛⎫=⨯= ⎪⎝⎭.1122334455()2E X x p x p x p x p x p ∴=++++=故答案为:2 【点睛】本题考查离散型随机变量的分布列和期望,考查学生分析问题的能力和计算求解能力,难度一般.15.【分析】首先根据题意判断出的可取值有并利用概率公式求得对应的概率最后利用离散型随机变量的期望公式求得结果【详解】由已知1又所以故答案为:【点睛】该题考查的是有关离散型随机变量的期望的求解问题涉及到的 解析:27-【分析】首先根据题意,判断出X 的可取值有2,1,1-,并利用概率公式求得对应的概率,最后利用离散型随机变量的期望公式求得结果. 【详解】由已知2X =,1,1-, 又()22242486(2)70C CP X C ===,()441424816(1)70C C P X C ===,()22114224848(1)70C C CP X C =-==,所以12164827070707EX =+-=-, 故答案为:27-. 【点睛】该题考查的是有关离散型随机变量的期望的求解问题,涉及到的知识点有古典概型概率公式,离散型随机变量的期望公式,属于简单题目.16.994【分析】根据正态分布的性质求出在一次测量中误差在内的概率再求出测量3次每次测量误差均不在内的概率根据对立事件的性质可得结果【详解】由题意可知在一次测量中误差在内满足其概率为测量3次每次测量误差解析:994【分析】根据正态分布的性质求出在一次测量中误差在()0,30内的概率,再求出测量3次,每次测量误差均不在()0,30内的概率,根据对立事件的性质可得结果. 【详解】由题意可知在一次测量中误差在()0,30内满足2X μδμδ-<<+, 其概率为()()()111220.950.680.815222p p X p X μδμδμδμδ=-<≤++-<≤+=⨯+=, 测量3次,每次测量误差均不在()0,30内的概率为:()3310.8150.1850.006-==,∴独立测量3次,至少一次测量误差在()0,30内的概率是10.0060.994-=, 故答案为:0.994. 【点睛】本题主要考查正态分布概率的求法,n 次独立重复试验的模型,利用对立事件解决问题是解题的关键,属于中档题.17.【解析】由题意随机变量ξ的的值分别为321则随机变量ξ的分布列为:所以随机变量ξ的数学期望Eξ=点睛:数学期望是离散型随机变量中重要的数学概念反映随机变量取值的平均水平求解离散型随机变量的分布列数学 解析:115【解析】由题意,随机变量ξ的的值分别为3,2,1,则随机变量ξ的分布列为:所以随机变量ξ的数学期望Eξ=122111235555⨯+⨯+⨯=. 点睛:数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.18.【解析】试题分析:因为随机变量服从正态分布所以因为所以考点:正态分布解析:0.1587【解析】试题分析:因为随机变量X 服从正态分布()2,1N ,所以()()31P X >=P X <,因为()()()11331P X <+P ≤X ≤+P X >=,所以()()1310.68260.15872P X >=-=. 考点:正态分布.19.【分析】由题意根据甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投中2次乙投中1次或0次再由概率的加法公式即可列出方程求解答案【详解】甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投解析:23【分析】由题意,根据甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再由概率的加法公式,即可列出方程,求解答案. 【详解】甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次.由题意得p(1-p)·(1-q)2+p 2[(1-q)2+q(1-q)]=,解得q=或q=(舍). 【点睛】本题主要考查了相互独立事件的概率的计算,其中认真审题,根据甲比乙投中次数多的可能情形:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再根据概率的加法公式求解是解答的关键,着重考查了推理与运算能力.20.①③【分析】求出判断①利用存在量词命题否定形式判断②二项分布的期望与方差判断③;三角函数图象变换判断④【详解】解:①函数的一个对称中心为故①正确;②若命题:则命题的否定为:;所以②不正确;③设随机变解析:①③ 【分析】 求出5()012f π-=判断①,利用存在量词命题否定形式判断②,二项分布的期望与方差判断③;三角函数图象变换判断④. 【详解】 解:①5()4cos()0122f ππ-=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确;②若命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”;所以②不正确;③设随机变量~(,)B n p ξ,且()2E ξ=,()1D ξ=,可得2np =,(1)1np p -=,可得12p =,4n =则43111(1)12412p C ξ⎛⎫==-⋅= ⎪⎝⎭;所以③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()4y x π=+,不是sin(2)4y x π=+的图象,所以④不正确;故答案为:①③. 【点睛】本题考查命题的真假判断与应用,考查sin()y A x ωϕ=+型函数的图象和性质,命题的否定,期望与方差的求法,属于中档题.三、解答题21.(1);(2)随机变量X 的分布列见解析,期望为133. 【分析】(1)可从正面计算取得两次、三次、四次白球的概率和,也可以用1减去取得一次、两次白球的概率,而四次取球中每次是否取得白球相互独立,只需用组合数即可得到相应概率;(2)注意取出的球不放回,因此最多取5次白球就会被取完,故X =2,3,4,5,分别计算对应的概率,写出分布列,进而可求出期望. 【详解】(1)记随机变量ξ表示连续取球四次,取得白球的次数,则ξ~B (4,13) 则P (ξ>1)=1-P (ξ=0)-P (ξ=1)=1-00411344121211()()()()333327C C -=(2)随机变量X 的取值分别为2,3,4,5∴P (X =2)=2226115C C =,P (X =3)=11242612415C C C ⨯= P (X =4)=1224361135C C C ⨯=,P (X =5)=134244446635C C C C C += ∴随机变量X 的分布列为 X 2345P115 215 15 35∴随机变量X 的期望为:1313()23451515553E X =⨯+⨯+⨯+⨯= 考点:古典概型,相互独立事件,随机变量的分布列与期望 22.(1)25;(2)分布列见解析,65(1)由频率分布直方图可求出抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人,再根据古典概型概率公式可得结果; (2)由已知得随机变量X 的可能取值为0,1,2,3,X ~B (3,25),由此能求出随机变量X 的分布列和数学期望EX . 【详解】 (1)根据题意,参加社区服务在时间段[)90,95的学生人数为2000.06560⨯⨯=人; 参加社区服务在时间段[)95,100的学生人数为2000.02520⨯⨯=人;∴抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. ∴从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率为8022005P ==. (2)由(1)可知,从全市高中学生中任意选取1人,其参加社区服务时间不少于90小时的概率为25,X ~B (3,25),由已知得,随机变量X 的可能取值为0,1,2,3, 则()03032327055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()12132354155125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()21232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()333238355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 随机变量X 的分布列为:∴()2754368601231251251251255E X =⨯+⨯+⨯+⨯=. 【点睛】本题考查古典概型概率的求法,考查离散型随机变量二项分布的分布列和数学期望,属于中档题. 23.(1)12;(2)分布列见解析;期望为1720;(3)32. 【分析】(1)根据独立事件的概率公式计算,至少有两个被堵塞含两个被堵塞和三个被堵塞两种情形,分别计算相加可得;(2)X 的所有可能取值为0,1,2.,分别计算其概率得分布列,由期望公式得期望; (3)Y 的所有可能取值为0,1,2,3,计算出各概率,然后由期望公式计算期望.解:(1)据题设知,所求概率213233311112222p C C ⎛⎫⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12=. (2)X 的所有可能取值为0,1,2.133(0)114510P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,131311(1)11454520P X ⎛⎫⎛⎫==⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,133(2)4520P X ==⨯=, 所以随机变量X 的分布列为所以()01210202020E X =⨯+⨯+⨯=. (3)Y 的所有可能取值为0,1,2,3.303111(0)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,213113(1)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,223113(2)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,333111(3)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以13313()012388882E Y =⨯+⨯+⨯+⨯=. 【点睛】本题考查相互独立事件的概率公式,考查随机变量的概率分布列数学期望,考查了学生的数据处理能力,运算求解能力,属于中档题. 24.(1)1325.(2)625【分析】(1)设事件A 表示“甲猜对”,事件B 表示“乙猜对”,求出()p A ,()p B ,任选一道灯谜,恰有一个人猜对的概率为:()()()()()P AB AB P A P B P A P B +=+,由此能求出结果.(2)任选一道灯谜,甲、乙都没有猜对的概率为()()()P AB P A P B =,由此能求出结果. 【详解】(1)设事件A 表示“甲猜对”,事件B 表示“乙猜对”, 则P (A )123205==,P (B )82205==, ∴任选一道灯谜,恰有一个人猜对的概率为: P (A B AB +)=P (A )P (B )+P (A )P (B )32155⎛⎫=⨯-+ ⎪⎝⎭(135)213525⨯=.(2)任选一道灯谜,甲、乙都没有猜对的概率为: P (AB )=P (A )P (B )=(135)(125-)625=【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题. 25.(Ⅰ)1315;(Ⅱ)分布列见解析,1915;(Ⅲ)40243,103. 【分析】(Ⅰ)先求出甲乙两人都未投中的概率,再根据对立事件的概率进行计算即可; (Ⅱ)随机变量X 的可能取值为0,1,2,然后根据相互独立事件的概率逐一求出每个X 的取值,求得相应的概率,得出分布列,进而求出数学期望; (Ⅲ)随机变量2(5,)3B ξ,根据二项分布的性质求概率和数学期望即可.【详解】(Ⅰ)设甲投中为事件B ,乙投中为事件C ,则()()1235P B P C ==,, 所以()()()1213113515P A P B P C =-=-⨯=. (Ⅱ)随机变量X 的可能取值为0,1,2, 则122(0)3515P X ==⨯=, 22137(1)353515P X ==⨯+⨯=,232(2)355P X ==⨯=, 所以随机变量X 的分布列为所以数学期望()0121515515E X =⨯+⨯+⨯=. (Ⅲ)甲投篮5次,投中次数为ξ,可得随机变量2(5,)3B ξ,所以22352140()()33(243)2C P ξ==⋅⋅=, 所以随机变量ξ数学期望()210533E ξ=⨯=. 【点睛】本题考查独立事件的概率、相互独立事件的概率、离散型随机变量的分布列与数学期望,以及二项分布的数学期望计算,考查学生灵活运用知识的能力和运算能力. 26.(1)13;(2)分布列见解析,1533.【分析】(1)记“该产品不能销售”为事件A ,则1()1(191)(1)4P A =--⨯-,计算得到答案. (2)X 的取值为-240,-130,-20,90,200,计算概率得到分布列,计算均值得到答案. 【详解】(1)记“该产品不能销售”为事件A ,则11()1(1)(1)4193P A =--⨯-=, 所以该产品不能销售的概率为13. (2)依据题意的,X 的取值为-240,-130,-20,90,200,411(240)()381P X =-== ; 134128(130)()3381P X C =-==; 22241224(20)()()3381P X C =-== ;31341232(90)()()3381P X C ===;4216(200)()381P X ===.所以X 的分布列为:1()24013020902005381818181813E X =-⨯-⨯-⨯+⨯+⨯=. 【点睛】本题考查了概率的计算,分布列,均值,意在考查学生的计算能力和应用能力.。

(压轴题)高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(1)

(压轴题)高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(1)

一、选择题1.在10个形状大小均相同的球中有5个红球和5个白球,不放回地依次摸出2个球,设事件A 表示“第1次摸到的是红球”,事件B 表示“第2次摸到的是红球”,则()P B A ( ) A .49B .12C .110D .152.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .7103.随机变量X 的分布列如表所示,若1()3E X =,则(32)D X -=( )A .59B .53C .5D .74.某闯关游戏规则如下:在主办方预设的6个问题中,选手若能连续正确回答出两个问题,即停止答题,闯关成功,假设某选手正确回答每个问题的概率都是0.6,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就闯关成功的概率等于( ) A .0.064B .0.144C .0.216D .0.4325.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为ξ,则数学期望E ξ=( ) A .1B .45C .75D .26.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是( ) A .0.72B .0.8C .89D .0.97.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .158.设一随机试验的结果只有A 和A ,且A 发生的概率为m ,令随机变量11A X A 发生发生⎧=⎨-⎩,则()D X =( )A .1B .(1)m m -C .4(1)m m -D .4(1)(21)m m m --9.设随机变量ξ的概率分布列为1()()3kP k a ξ==,其中0,1,2k =,那么a 的值为( )A .35B .2713C .919D .91310.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落A 袋中的概率为( ).A .18B .14C .38D .3411.已知随机变量X 服从正态分布2(2,)N σ,(4)0.84P X ≤=,则(02)P X ≤≤=( ) A .0.64B .0.16C .0.32D .0.3412.设随机变量X 的分布列为()()1,2,32iP X i i a===,则()2P X ≥= ( ) A .16B .56 C .13D .23二、填空题13.已知随机变量ξ服从正态分布()21,N σ,若(3)0.0442P ξ>=,则(13)P ξ≤≤=________.14.小王做某个试验,成功的概率为23,失败的概率为13,成功一次得2分,失败一次得-1分,求100次独立重复试验的总得分的期望______.15.一批排球中正品有m 个,次品有n 个,()10m n m n +=≥,从这批排球中每次随机 取一个,有放回地抽取10次,X 表示抽到的次品个数若 2.1DX =,从这批排球中随机一次取两个,则至少有一个次品的概率p =___________ 16.已知随机变量服从正态分布()22,N σ,若(0)0.16P X ≤=,则(24)P X <≤=________.17.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望EX 等于__________(结果用最简分数表示).18.某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过对本地养鱼场年利润率的调研,其结果是:年利润亏损10%的概率为0.2,年利润获利30%的概率为0.4,年利润获利50%的概率为0.4,对远洋捕捞队的调研结果是:年利润获利为60%的概率为0.7,持平的概率为0.2,年利润亏损20%的可能性为0.1. 为确保本地的鲜鱼供应,市政府要求该公司对远洋捕捞队的投资不得高于本地养鱼场的投资的2倍.根据调研数据,该公司如何分配投资金额,明年两个项目的利润之和最大值为_________千万. 19.设随机变量X 服从正态分布()0,1N ,如果()10.8413P X ≤=,则()10P X -<<= ________.20.一个碗中有10个筹码,其中5个都标有2元,5个都标有5元,某人从此碗中随机抽取3个筹码,若他获得的奖金数等于所抽3个筹码的钱数之和,则他获得奖金的期望为________.三、解答题21.甲、乙两人组成“明日之星队”参加“疫情防控与生命健康”趣味知识竞赛. 每轮竞赛由甲、乙各答一道题目,已知甲每轮答对的概率为34,乙每轮答对的概率为45.在每轮答题中,甲和乙答对与否互不影响,各轮结果也互不影响. (1)求甲在两轮答题中,答对一道题目的概率; (2)求“明日之星队”在两轮答题中,答对三道题目的概率.22.为加快推进我区城乡绿化步伐,植树节之际,决定组织开展职工义务植树活动,某单位一办公室现安排4个人去参加植树活动,该活动有甲、乙两个地点可供选择.约定:每个人通过掷一枚质地均匀的骰子决定自己去哪个地点植树,掷出点数为1或2的人去甲地,掷出点数大于2的人去乙地.(1)求这4个人中恰有2人去甲地的概率;(2)求这4个人中去甲地的人数大于去乙地的人数的概率;(3)用,X Y 分别表示这4个人中去甲、乙两地的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望()E ξ.23.某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金8600元,在延保的两年内可免费维修3次,超过3次后的每次收取维修费a元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次后的每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了100台这种机器超过质保期后延保两年内维修的次数,得如表:以这100台机器维修次数的频率代替1台机器维修次数发生的概率.记X表示这2台机器超过质保期后延保的两年内共需维修的次数且P(X=0)=0.01.(1)求实数m,n的值;(2)求X的分布列;(3)以所需延保金及维修费用之和的期望值为决策依据,该医院选择哪种延保方案更合算?24.2020年4月9日起,使用青岛地铁APP钱包支付扫码乘车可享受乘坐地铁阶梯折扣优惠、公交乘车优惠与换乘优惠政策,青岛地铁APP将在原有微信、支付宝、银联三种支付方式的基础上,新增钱包支付方式,乘车累计优惠最高到7折.根据相关优惠政策,同一乘车码或同一NFC—HCE乘坐地铁,一个自然月内,从第一笔消费开始享受单程票价9折优惠;累计消费满100元及以上,每笔消费享受单程票价8折优惠;累计消费满200元及以上,每笔消费享受单程票价7折优惠;累计消费达到300元及以上,恢复9折优惠,月底清零,下一自然月重新累计.其中,补交超时费、更新及APP自助补出站等涉及的金额不参加累计.(1)若甲乘客2020年3月份乘坐地铁上下班的总费用为200元,请估计2020年5月份甲乘客乘坐地铁上下班的总费用(结果精确到0.01);(2)乘坐青岛地铁的购票方式一般有三种方式,一是通过自动售票机购票,二是购买专用的乘车卡支付,三是使用青岛地铁APP钱包支付扫码.现随机调查了100名乘客,得到如下列联表:(3)在(2)的条件下,利用分层抽样的方法从青年人中随机抽取10人,再从这10人中随机抽取3人,记这3人中使用青岛地铁APP乘车的人数为X,求X分布列和数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.25.抛掷一枚质地均匀的硬币2次,记正面朝上的次数为X . (1)求随机变量X 的分布列;(2)若随机变量21Y X =+,求随机变量Y 均值、方差.26.为了解某市高三学生身高情况,对全市高三学生进行了测量,经分析,全市高三学生身高X (单位:cm )服从正态分布()2160,N σ,已知()1500.2P X <=,()1800.03P X ≥=.(1)现从该市高三学生中随机抽取一名学生,求该学生身高在区间[)170,180的概率; (2)现从该市高三学生中随机抽取三名学生,记抽到的三名学生身高在区间[)150,170的人数为ξ,求随机变量ξ的分布列和均值()E ξ.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设第一次摸出红球为事件A ,第二次摸出红球为事件B ,分别求出()P A ,()P AB ,利用条件概率公式求出答案.【详解】设第一次摸出红球为事件A ,第二次摸出红球为事件B , 则“第一次摸到红球”的概率为:()51102P A == “在第一次摸出红球,第二次也摸到红球”的概率是()5421099P AB ⨯==⨯由条件概率公式有()()()249192P AB P B A P A === 故选:A 【点睛】本题考查了概率的计算方法,主要是考查了条件概率,弄清楚事件之间的联系,正确运用公式,是解决本题的关键.属于中档题.2.B解析:B 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==,11155561116691()1216C C C P B C C C =-=()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.3.C解析:C 【分析】 由1()3E X =,利用随机变量X 的分布列列出方程组,求出13a =,12b =,由此能求出()D X ,再由(32)9()D X D X -=,能求出结果.【详解】 1()3E X =∴由随机变量X 的分布列得:1161163a b b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩, 2221111115()(1)(0)(1)3633329D X ∴=--⨯+-⨯+-⨯=,5(32)9()959D X D X ∴-==⨯=故选:C .本题考查方差的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.B解析:B【分析】根据题意得到第2个问题不正确,第3、4个问题正确,计算概率得到答案.【详解】选手恰好回答了4个问题就闯关成功,则第2个问题不正确,第3、4 个问题正确.故0.60.40.60.60.40.40.60.60.144p=⨯⨯⨯+⨯⨯⨯=.故选:B.【点睛】本题考查了概率的计算,意在考查学生的应用能力.5.A解析:A【解析】【分析】随机变量随机ξ的所有可能的取值为0,1,2.分别求出其对应的概率,列出分布列,求期望即可.【详解】随机变量ξ的所有可能的取值为0,1,2,P(ξ=0)30423615C CC==,()214236315C CPCξ===, ()124236125C CPCξ===,所有随机变量ξ的分布列为:所以ξ的期望()0121555Eξ=⨯+⨯+⨯= ,故选A.【点睛】本题考查了离散型随机变量的期望,属于中档题.6.A解析:A【分析】设一批种子的发芽率为事件A,则()0.9P A=,出芽后的幼苗成活率为事件B,则()|0.8P B A=,根据条件概率公式计算即可,设一批种子的发芽率为事件A ,则()0.9P A =, 出芽后的幼苗成活率为事件B ,则()|0.8P B A =,∴这粒种子能成长为幼苗的概率()()()|0.90.80.72P P AB P A P B A ===⨯=. 故选:A . 【点睛】本题主要考查了条件概率的问题,关键是分清是在什么条件下发生的,属于基础题.7.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.8.C解析:C 【分析】根据随机试验的结果只有A 和A ,P (A )=m ,使得随机变量11A X A ⎧=⎨-⎩发生发生,得到随机变量符合两点分布,根据两点分布的方差公式得到结果. 【详解】∵由题意知一随机试验的结果只有A 和A ,且P (A )=m ,随机变量11A X A ⎧=⎨-⎩发生发生∴X 服从两点分布,∴EX=1(1)(1)21m m m ⨯+-⨯-=-,∴DX=4m (1-m ). 故选C . 【点睛】解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.9.D解析:D 【解析】分析:根据离散型随机变量分布列的性质,变量取各个量对应的概率和等于1,建立关于a 的等量关系式,最后求得结果.详解:根据分布列的性质可得,()()()0121110121333P P P a a a ξξξ⎛⎫⎛⎫⎛⎫=+=+==++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得913a =,故选D. 点睛:解决该题的关键是明确离散型随机变量的分布列的性质,从而找到关于参数a 所满足的等量关系式,最后求得结果.10.D解析:D 【解析】由于小球每次遇到黑色障碍物时,有一次向左和两次向右或两次向左和一次向右下落时,小球将落入A 袋,所以22123311113()C 1C 122224P A ⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅-+⋅⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选D .11.D解析:D 【解析】∵随机变量ξ服从正态分布2(2,)N σ,2μ=,得对称轴是2x =,(4)0.84P ξ=≤, ∴(4)(0)0.16P P ξξ≥=<=,∴(02)0.50.160.34P ξ≤≤=-=,故选D .12.B解析:B 【解析】 由概率和为1,可知1231222a a a++=,解得3a =,()P X 2≥=235(2)(3)666P X P X =+==+=选B. 二、填空题13.4558【分析】随机变量服从正态分布根据对称性可求得的值再根据概率的基本性质可求得【详解】因为所以故所以故答案为:04558【点睛】本题考查了正态分布曲线的对称性属于基础题解析:4558 【分析】随机变量ξ服从正态分布()21,N σ,(3)0.0442P ξ>=,根据对称性可求得(1)P ξ<-的值,再根据概率的基本性质,可求得(13)P ξ≤≤. 【详解】因为(3)0.0442P ξ>=, 所以(1)0.0442P ξ<-=,故(13)1(3)(1)0.9116P P P ξξξ-≤≤=->-<-=. 所以(13)0.4558P ξ≤≤=. 故答案为:0.4558. 【点睛】本题考查了正态分布曲线的对称性,属于基础题.14.100【分析】计算得到答案【详解】设一次实验得分为根据题意:故100次独立重复试验的总得分的期望为故答案为:【点睛】本题考查了数学期望意在考查学生的计算能力和应用能力解析:100 【分析】 计算()2121133E X =⨯-⨯=,得到答案. 【详解】设一次实验得分为X ,根据题意:()2121133E X =⨯-⨯=, 故100次独立重复试验的总得分的期望为()100100E X =. 故答案为:100. 【点睛】本题考查了数学期望,意在考查学生的计算能力和应用能力.15.【分析】由题意知随机变量根据方差求得的值再计算所求的概率值【详解】由题意知随机变量则方差又则解得所求的概率为故答案为【点睛】本题主要考查二项分布方差的计算考查古典概型的概率的计算意在考查学生对这些知解析:815【分析】由题意知随机变量~(10,)10nX ,根据方差DX 求得n 的值,再计算所求的概率值. 【详解】由题意知,随机变量~(10,)10nX , 则方差10(1) 2.11010n nDX =⨯⨯-=, 又m n ,则5n ,∴解得3n =,∴所求的概率为112373210815C C C p C +==. 故答案为815【点睛】本题主要考查二项分布方差的计算,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.【分析】根据正态分布对称性求解【详解】【点睛】本题考查正态分布考查综合分析求解能力属中档题 解析:0.34【分析】根据正态分布对称性求解. 【详解】()()()[]111240412010.320.34.222P X P X P X ⎡⎤<≤=<≤=-≤=-=⎣⎦ 【点睛】本题考查正态分布,考查综合分析求解能力,属中档题17.【解析】X 的可能取值为012P(X =0)==P(X =1)==P(X =2)==∴E(X)=×0+×1+×2= 解析:47【解析】X 的可能取值为0,1,2,P(X =0)=2527C C =1021,P(X =1)=115227C C C =1021, P(X =2)=2227C C =121,∴E(X)=1021×0+1021×1+121×2=47.18.2【解析】【分析】先求出本地养鱼场平均年利润远洋捕捞队平均平均年利润再利用线性规划求明年两个项目的利润之和最大值【详解】设本地养鱼场平均年利润远洋捕捞队平均平均年利润设本地养鱼场投千万元远洋捕捞队投解析:2 【解析】 【分析】先求出本地养鱼场平均年利润1ξ,远洋捕捞队平均平均年利润2ξ,再利用线性规划求明年两个项目的利润之和最大值. 【详解】设本地养鱼场平均年利润1ξ,远洋捕捞队平均平均年利润2ξ10.10.20.30.40.50.40.3E ξ=-⨯+⨯+⨯=, 20.60.700.20.20.10.4E ξ=⨯+⨯-⨯=设本地养鱼场投x 千万元,远洋捕捞队投y 千万元,则利润之和0.30.4z x y =+620,0x y y xx y +≤⎧⎪≤⎨⎪≥≥⎩,如图,当目标函数经过点(2,4)B 时利润最大0.320.44 2.2z =⨯+⨯=千万元.【点睛】(1)本题主要考查线性规划和随机变量的期望,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.(2) 解答线性规划时,要加强理解,不是纵截距最小,z 就最小,要看函数的解析式,如:2y x z =-,直线的纵截距为z -,所以纵截距z -最小时,z 最大.19.【分析】根据随机变量符合正态分布和正态分布的曲线关于对称得到一对对称区间的概率之间的关系即可求得结果【详解】随机变量服从正态分布曲线关于直线对称故答案为【点睛】本题主要考查的知识点是正态分布解题的关 解析:0.3413【分析】根据随机变量符合正态分布和正态分布的曲线关于0x =对称,得到一对对称区间的概率之间的关系,即可求得结果 【详解】随机变量X 服从正态分布()01N ,∴曲线关于直线0x =对称()10.8413P X ≤=()()1010.50.3413P X P X ∴-<<=≤-=故答案为0.3413 【点睛】本题主要考查的知识点是正态分布,解题的关键是正态分布和正态分布的曲线关于0x =对称,属于基础题.20.【解析】分析:先确定随机变量取法再分别求对应概率最后根据数学期望公式求期望详解:获得奖金数为随机变量ξ则ξ=691215所以ξ的分布列为:ξ 6 9 12 15 P E(ξ)=6×+9× 解析:212【解析】分析:先确定随机变量取法,再分别求对应概率,最后根据数学期望公式求期望. 详解:获得奖金数为随机变量ξ,则ξ=6,9,12,15,所以ξ的分布列为:E(ξ)=6×12+9×12+12×12+15×12=2. 点睛:本题考查数学期望公式,考查基本求解能力.三、解答题21.(1)38;(2)2150【分析】(1)两轮中答对一道题的情形为:第一种情况:甲第一轮答对1题,第二轮答错1题; 第二种情况:甲第一轮答错1题,第二轮答对1题; 然后,根据以上情况,列式求解即可 (2)答对三道题目的情况有:第一种情况:甲答对2道题,乙答对1道题; 第二种情况:甲答对1道题,乙答对2道题; 然后,根据以上情况,列式求解即可 【详解】(1)设0A 表示甲每轮答错1道题目的事件,1A 表示甲每轮答对1道题目的事件,则01()4P A =,13()4P A =,两轮中答对一道题的情况为,甲第一轮答对1题,第二轮答错1题和甲第一轮答错1题,第二轮答对1题,故概率为01103()()()()8P P A P A P A P A =+=; (2)设2A 表示甲答对0B 表示乙每轮答错1道题目的事件,1B 表示乙每轮答对1道题目的事件,则01()5P B =,14()5P B =,“明日之星队”在两轮答题中,答对三道题目的情况有: 第一种情况:甲答对2道题,乙答对1道题:11101101()()()()()()()()P A P A P B P B P A P A P B P B +22341314945545550⎛⎫⎛⎫=⋅⋅+⋅⋅= ⎪ ⎪⎝⎭⎝⎭第二种情况:甲答对1道题,乙答对2道题:01111011()()()()()()()()P A P A P B P B P A P A P B P B +22134314644544525⎛⎫⎛⎫=⋅⋅+⋅⋅= ⎪ ⎪⎝⎭⎝⎭ 所以,“明日之星队”在两轮答题中,答对三道题目的概率为9621502550+= 【点睛】解题关键在于把情况进行分类,通过分情况再列相关式子求解即可,难度属于中档题 22.(1)827;(2)19;(3)分布列答案见解析,数学期望:14881. 【分析】(1)参加甲游戏的概率P=13,设"这4个人中恰有k 人去参加甲游戏"为事件A k (k =0,1,2,3,4),可求这4个人中恰有2个人去参加甲游戏的概率()2P A ,计算即可得出结果; (2)由(1)可知求()()34P A P A +;(3)ξ的所有可能取值为0,2,4,写出其对应的概率和分布列. 【详解】依题意知,这4个人中每个人去甲地的概率为13,去乙地的概率为23.设“这4个人中恰有i 人去甲地”为事件0,1,2,3,4i A i =(),则4-412()()()33iiii P A C =.(1)这4个人中恰有2人去甲地的概率为22224128()()()3327P A C ==(2)设“这4个人中去甲地的人数大于去乙地的人数”为事件B ,则34B A A =⋃,由于3A 与4A 互斥,故3144443341211()()()3339PB P A PC C A =++==()()().所以这4个人中去甲地的人数大于去乙地的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于1A 与3A互斥,0A 与4A 互斥, 故28270PP A ξ===()(),1340812P P A P A ξ==+=()()(), 0417814P P A P A ξ==+=()()(). 所以ξ的分布列为:故1714827801818124Eξ=⨯+⨯+⨯=(). 【点睛】本小题主要考查古典概型及其概率计算公式、互斥事件、事件的相互独立性、离散型随机变量的分布列与数学期望等基础知识,考查运用概率知识解决简单实际问题的能力.应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,对二项分布的正确判读是解题的关键,属于一般难度题型. 23.(1)10m =,40=;(2)分布列见解析;(3)1500a <元时,方案一合算,1500a >时,方案二合算,1500a =时,两种方案一样.【分析】(1)由(0)P X =可得m ,再得出n 的值,(2)X 的可能值为0,1,2,3,4,5,6,分别求得概率,得概率分布列, (3)由期望公式得出期望.可得两种方案的总费用,比较后可得结论. 【详解】(1)由2(0)0.01100m P X ⎛⎫=== ⎪⎝⎭,解得10m =,∴10010104040n =---=; (2)依题意X 的可能值为0,1,2,3,4,5,6,由题意一台机器维修次数为n ,概率为1(0)10P n ==,1(1)10P n ==,2(2)5P n ==,2(3)5P n ==, 1(0)100P X ==, 111(1)2101050P X ==⨯⨯=,12119(2)21051010100P X ==⨯⨯+⨯=, 12124(3)2210510525P X ==⨯⨯+⨯⨯=, 12226(4)21055525P X ==⨯⨯+⨯= 228(5)25525P X ==⨯⨯=,224(6)5525P x ==⨯=,X 的分布列如下:(2)由(1)方案一维修费用期望值为2325252525a a a a +⨯+⨯= 方案一总费用为134860025y a =+(元), 方案二维修费用期望值为84100020006402525⨯+⨯= 方案二总费用为21000064010640y =+=(元).3486001064025a +=,1500a =,1500a <时,12y y <,1500a >时,12y y >, ∴1500a <元时,方案一合算,1500a >时,方案二合算,1500a =时,两种方案一样. 【点睛】本题考查随机变量的概率分布列,考查了随机变量的数学期望,用样本估算总体.考查了学生的数据处理能力,运算求解能力.24.(1)171.11元;(2)有95%的把握认为乘坐青岛地铁的购票方式与年龄有关;(3)分布列见解析,数学期望为125. 【分析】(1)根据分段函数求得甲乘客的总费用.(2)先根据列联表求得2K ,经比较表格得出结论.(3)先写出X 的可能值,利用超几何分布分别求得其概率,列出分布列,利用期望公式求得其数学期望. 【详解】解:(1)2020年5月份甲乘客乘坐地铁上下班的总费用估计为1001002000.8171.110.9⎛⎫+-⨯= ⎪⎝⎭元.(2)由()2210040203010 4.762 3.84150507030K ⨯⨯-⨯=≈>⨯⨯⨯,故有95%的把握认为乘坐青岛地铁的购票方式与年龄有关.(3)这10人中使用青岛地铁APP 乘车的青年人数为8人,使用自动售票机购票或购买专用的乘车卡支付的青年人数为2人,则X 的取值为1,2,3所以()1282310C C 11C 15P X ===,()2182310C C 72C 15P X ===,()38310C 73C 15P X ===. 所以随机变量X 的分布列为故()1231515155E X =⨯+⨯+⨯=. 【点睛】本题主要考查独立性检验及超几何分布及其数学期望,意在考查学生的数据分析的学科素养及数学运算的学科素养,属中档题.25.(1)分布列见解析;(2)()3E Y =,()2D Y = 【分析】(1)根据抛掷一枚质地均匀的硬币2次,则正面朝上的次数X 可能取值为0,1,2,然后利用独立重复实验求出相应的概率列出分布列.(2)根据(1)利用期望与方差公式求得随机变量X 的期望与方差,然后由()()()2121E Y E X E X =+=+,()()()214D Y D X D X =+=求解.【详解】随机变量X 的取值可以为0,1,2.211(0)24P X ⎛⎫=== ⎪⎝⎭;()212111C 22P X ⎛⎫==⨯=⎪⎝⎭;22211(2)C 24P X ⎛⎫==⨯=⎪⎝⎭;.因此,随机变量X 的分布列为:(2)由(1)知1110121424EX =⨯+⨯+⨯=.()()()22211110111214242DX =-⨯+-⨯+-⨯=.∴()()()21213E Y E X E X =+=+=, ∴()()()2142D Y D X D X =+==. 【点睛】本题主要考查离散型随机变量的分布列及期望与方差,还考查了运算求解的能力,属于中档题.26.(1)0.17(2)详见解析 【分析】(1)根据正态分布曲线的对称性和条件先求出()160170P X ≤<,可求然后()170180P X ≤<得值.(2)先求出()1501700.6P X ≤<=,从而得到ξ服从二项分布()3,0.6B ,得出分布列和期望. 【详解】(1)由全市高三学生身高X 服从()2160,N σ,()1500.2P X <=,得()()1601701501600.50.20.3P X P X ≤<=≤<=-=. 因为()1800.03P X ≥=,所以()1701800.50.30.030.17P X ≤<=--=.故从该市高三学生中随机抽取一名学生,该学生身高在区间[)170,180的概率为0.17. (2)因为()()()150170150160160170P X P X P X ≤<=≤<+≤<0.30.30.6=+=,ξ服从二项分布()3,0.6B ,所以()()3010.60.064P ξ==-=,()()2130.610.60.288P ξ==⨯⨯-=,()()2230.610.60.432P ξ==⨯⨯-=, ()330.60.216P ξ===.所以ξ的分布列为所以30.6 1.8E =⨯=.【点睛】本题考查利用正态分布求概率和二项分布问题,将实际问题转化为二项分布问题时本题的难点,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修2-3第一章《计数原理》测试题B卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是( )A.9 B.14 C.15 D.212.将1,2,3,4,5,6,7,8,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为( )3 4A.4 B3.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 ( )A.12种B.18种C.24种D.36种4.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( ) A.36种B.42种C.48种D.54种5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为 ( )A.24 B.18 C.12 D.66. 如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有( )A.288种B.264种C.240种D.168种7.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( )A.10种B.15种 C.20种D.30种8.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一.每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 ( )A .152B .126C .90D .54 9.在⎝⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-4010.(x +a x)(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40二、填空题(每小题6分, 共24分)11.将数字1,2,3,4,5按第一行2个数,第二行3个数的形式随机排列,设a i (i =1,2)表示第i 行中最小的数,则满足a 1>a 2的所有排列的个数是________.(用数字作答)12. 形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.13. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法种数是________.14.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.三、解答题(共计76分).15.(本题满分12分)方程x 2m +y 2n=1表示焦点在y 轴上的椭圆,其中m ∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?16.(本题满分12分)有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加) (1)每人恰好参加一项,每项人数不限; (2)每项限报一人,且每人至多参加一项; (3)每项限报一人,但每人参加的项目不限.17.(本题满分12分)某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?18.(本题满分12分)已知(a 2+1)n展开式中各项系数之和等于⎝⎛⎭⎪⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n展开式的二项式系数最大的项的系数等于54,求a 的值.19.(本题满分14分)从7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种?(1)A,B必须当选;(2)A,B必不当选;(3)A,B不全当选;(4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任.20.(本题满分14分)已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值;(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.高中数学选修2-3第一章《计数原理》测试题B卷答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)1. 【答案】B【解析】当x=2时,x≠y,点的个数为1×7=7(个);当x≠2时,x=y,点的个数为7×1=7(个),则共有14个点,故选B.2. 【答案】B【解析】如图所示,根据题意,1,2,9三个数字的位置是确定的,余下的数中,5只能在a,c位置,8只能在b,d位置,依(a,b,c,d)顺序,具体有(5,8,6,7),(5,6,7,8),(5,7,6,8),(6,7,5,8),(6,8,5,7),(7,8,5,6),合计6种.3. 【答案】A【解析】先排第一列,因为每列的字母互不相同,因此共有A33种不同的排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12(种)不同的排列方法.4. 【答案】 B【解析】分两类,第一类:甲排在第一位时,丙排在最后一位,中间4个节目无限制条件,有A44种排法;第二类:甲排在第二位时,从甲、乙、丙之外的3个节目中选1个节目排在第一位有C13种排法,其他3个节目有A33种排法,故有C13A33种排法.依分类加法计数原理,知共有A44+C13A33=42(种)编排方案.5. 【答案】B【解析】根据所选偶数为0和2分类讨论求解.当选0时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,剩余1个数字排在首位,共有C23C12=6(种)方法;当选2时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,其余2个数字全排列,共有C23C12A22=12(种)方法.依分类加法计数原理知共有6+12=18(个)奇数.6. 【答案】 B【解析】分两类:第一类,涂三种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F有2种方法,故有A34×2=48(种)方法;第二类,涂四种颜色,先涂点A ,D ,E 有A 34种方法,再涂点B ,C ,F 有3C 13种方法,故共有A 34·3C 13=216(种)方法.由分类加法计数原理,共有48+216=264(种)不同的涂法. 7. 【答案】C【解析】由题意知比赛场数至少为3场,至多为5场. 当为3场时,情况为甲或乙连赢3场,共2种.当为4场时,若甲赢,则前3场中甲赢2场,最后一场甲赢,共有C 23=3(种)情况;同理,若乙赢也有3种情况.共有6种情况.当为5场时,前4场,甲、乙各赢2场,最后1场胜出的人赢,共有2C 24=12(种)情况. 由上综合知,共有20种情况. 8. 【答案】B【解析】考虑特殊元素(位置)优先安排法.第一类:在丙、丁、戊中任选一位担任司机工作时有C 13C 24A 33=108. 第二类:在丙、丁、戊中任选两位担任司机工作时,有C 23A 33=18, ∴不同安排方案的种数是108+18=126. 9. 【答案】 D【解析】因为T r +1=C r5(2x 2)5-r⎝ ⎛⎭⎪⎫-1x r =C r 525-r x 10-2r(-1)r x -r =C r 525-r(-1)r x 10-3r,所以10-3r =1,所以r =3, 所以x 的系数为C 3525-3(-1)3=-40.10. 【答案】 D【解析】令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此(x +1x )(2x -1x )5展开式中的常数项即为(2x -1x )5展开式中1x的系数与x 的系数的和.(2x -1x)5展开式的通项为T r +1=C r 5(2x )5-r ·(-1)r ·x -r =C r 525-r x 5-2r ·(-1)r.令5-2r =1,得2r =4,即r =2,因此(2x -1x)5展开式中x 的系数为C 2525-2(-1)2=80.令5-2r =-1,得2r =6,即r =3,因此(2x -1x )5展开式中1x的系数为C 3525-3·(-1)3=-40.所以(x +1x )(2x -1x)5展开式中的常数项为80-40=40.二、填空题(每小题6分, 共24分) 11. 【答案】72【解析】依题意数字1必在第二行,其余数字的位置不限,共有A 24A 33=72个.12. 【答案】16【解析】由题意可得,十位和千位只能是4、5或者3、5.若十位和千位排4、5,则其他位置任意排1、2、3,则这样的数有A22A33=12(个);若十位和千位排5、3,这时4只能排在5的一边且不能和其他数字相邻,1、2在其余位置上任意排列,则这样的数有A22A22=4(个),综上,共有16个.13. 【答案】288【解析】记三名男生为甲、乙、丙,三名女生为a、b、c,先排男生,若甲在两端有4种排法,然后3位女生去插空,排法如ab甲丙c乙共有4A23A12A13种,若男生甲排在中间,有两种排法,然后女生去插空,排法如ab乙甲c丙共有2A23A24种排法.根据分类加法计数原理共有4A23A12A13+2A23A24=288(种)不同排法.14. 【答案】10【解析】将f(x)=x5进行转化,利用二项式定理求解.f(x)=x5=(1+x-1)5,它的通项为T r+1=C r5(1+x)5-r·(-1)r,T3=C25(1+x)3(-1)2=10(1+x)3,∴a3=10.三、解答题(共计76分).15. 【解析】以m的值为标准分类,分为五类.第一类:m=1时,使n>m,n有6种选择;L L L2分第二类:m=2时,使n>m,n有5种选择;L L L4分第三类:m=3时,使n>m,n有4种选择;L L L6分第四类:m=4时,使n>m,n有3种选择;L L L8分第五类:m=5时,使n>m,n有2种选择.L L L10分∴共有6+5+4+3+2=20种方法,即有20个符合题意的椭圆.L L L12分16. 【解析】(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).L L L4分(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).L L L8分(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).L L L12分17. 【解析】用1、2、3、4、5、6表示广告的播放顺序,则完成这件事有三类方法.第一类:宣传广告与公益广告的播放顺序是2、4、6.分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.L L L 4分第二类:宣传广告与公益广告的播放顺序是1、4、6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.L L L 6分第三类:宣传广告与公益广告的播放顺序是1、3、6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.L L L 8分由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.L L L 12分18. 【解析】由⎝⎛⎭⎪⎫165x 2+1x 5,得T r +1=C r5⎝ ⎛⎭⎪⎫165x 25-r ⎝ ⎛⎭⎪⎫1x r =⎝ ⎛⎭⎪⎫1655-r ·C r 5·x 20-5r 2.令T r +1为常数项,则20-5r =0,∴r =4,∴常数项T 5=C 45×165=16. L L L 6分又(a 2+1)n 展开式的各项系数之和等于2n. 由题意得2n=16,∴n =4.由二项式系数的性质知,(a 2+1)4展开式中二项式系数最大的项是中间项T 3, ∴C 24a 4=54,∴a =± 3.L L L 12分19.【解析】(1)由于A ,B 必须当选,那么从剩下的10人中选取3人即可, ∴有C 310=120(种).L L L 2分(2)从除去的A ,B 两人的10人中选5人即可,∴有C 510=252(种).L L L 4分 (3)全部选法有C 512种,A ,B 全当选有C 310种, 故A ,B 不全当选有C 512-C 310=672种.L L L 6分(4)注意到“至少有2名女生”的反面是只有一名女生或没有女生,故可用间接法进行, ∴有C 512-C 15·C 47-C 57=596(种).L L L 9分 (5)分三步进行:第一步:选1男1女分别担任两个职务为C 17·C 15; 第二步:选2男1女补足5人有C 26·C 14种; 第三步:为这3人安排工作有A 33.由分步乘法计数原理共有:C 17·C 15·C 26·C 14·A 33=12 600(种).L L L 14分 20. 【解析】(1)由已知C 1m +2C 1n =11,∴m +2n =11,x 2的系数为C 2m +22C 2n =(1)2m m -+2n (n -1) =m 2-m2+(11-m )⎝⎛⎭⎪⎫11-m 2-1=⎝ ⎛⎭⎪⎫m -2142+35116.∵m ∈N *,∴m =5时,x 2的系数取得最小值22,此时n =3. L L L 7分(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.设这时f(x)的展开式为f(x)=a0+a1x+a2x2+…+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=-1,a0-a1+a2-a3+a4-a5=-1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30. L L L14分。

相关文档
最新文档