24.2.2_直线和圆的位置关系_同步测控优化训练(含答案) 2
24.2点、直线、圆与圆的位置关系 知识点+例题+练习(精品)
1.点和圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系.(2)两圆的公切线性质:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足O O2O1为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 604. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.O D C B A第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长.【中考连接】一、选择题1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.32.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335B. 635 C. 10 D. 5 4. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 26 5.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.B P A OC 第3题图 第6题图 第7题图 第8题图7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________. 8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=图象上,则阴影部分面积等于 . 14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______. 15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由.19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=.(1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的第10题图 第11题图 第12题图 第13题图 第18题图长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S △△时,求动点M 所经过的弧长.。
24.2.2 直线和圆的位置关系——相交、相切、相离
直线和圆有两个 直线和圆有唯一
公共点时,叫做 公共点时,叫做 直线和圆相交. 直线和圆相切.
这条直线叫做 圆的割线,公 共点叫直线和 圆的交点.
这条直线叫做圆 的切线,这个点 叫做切点.
直线和圆没有公 共点时,叫做直 线和圆相离.
直线与圆的位置关系判定定理
设点O到直 线的距离 为d,⊙O的 半径为r
ห้องสมุดไป่ตู้
总结
(1)直线和圆的位置关系的应用过程实质是一种数 形结合思想的转化过程,它始终是“数”:圆心 到直线的距离与圆的半径大小,与“形”:直线 和圆的位置关系之间的相互转化. (2)圆心到直线的距离通常用勾股定理与面积相等 法求出.
巩固练习2:
1.已知直线l与半径为r的⊙O相交,且点O到直线l的距 离为6,则r的取值范围是( )
0 d r 直线与O相交
d r 直线与O相切 d r 直线与O相离
例1.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4cm,
以点C为圆心,2cm为半径作圆,则⊙C与AB的位置关系是
( B)
A.相离
B.相切
C.相交 D.相切或相交
例2.如图,四边形ABCD中,∠A=∠B=90°,E为AB上 一点,且DE、CE分别平分∠ADC和∠BCD,判断以AB为直 径的圆与CD有怎样的位置关系?试证明你的结论.
直线与圆的位置关系性质定理
设点O到直 线的距离 为d,⊙O的 半径为r
直线与O相交 0 d r
直线与O相切 d r 直线与O相离 d r
例3.在Rt△ABC中,AC=3cm,BC=4cm,∠ACB=90°.若 以点C为圆心,r为半径的圆与直线AB不相离,求r的取值 范围.
新人教版九上24.2.2(1)直线和圆的位置关系
l
A
. B
lC
.
相离 0 d>r
相切 1 d=r
相交 2 d< r
公共点的个数
圆心到直线的距离 d 与半径 r的关系
公共点的名称 直线名称
切点
切线
交点
割线
思考:
在⊙O中,经过半径OA的 外端点A作直线l⊥OA, 直线l和⊙O有什么位置 关系?
3.在Rt△ABC中,∠B=90°,∠A的平分线交BC于 D,以D为圆心,DB长为半径作⊙D.试说明:AC A 是⊙D的切线.
F
E
B
D
C
1.定义法:和圆有且只有一个公共点的直线是圆的切线.
2.数量法(d=r):和圆心距离等于半径的直线是圆的切线.
3.判定定理:经过半径外端且垂直于这条半径的直线是
解决问题4: 已知⊙A的直径为6,点A的坐标为 相离 (-3,-4),则x轴与⊙A的位置关系是______, y轴 与⊙A的位置关系是______. y 相切
思考:
求圆心A到x轴、 y轴的距离各是多少?
4
B O x
A.(-3,-4) 3
C
小结: 直线与圆的位置关系判定方法:
图形 直线与圆的 位置关系
点击页面即可演示
回忆旧知
1.点和圆的位置关系有几种? (1)d<r (2)d=r (3)d>r 点在圆内 点在圆上 点 在圆外
2.“大漠孤烟直,________” 是唐朝诗人王维的 长河落日圆 诗句.它描述了黄昏日落时分塞外特有的景象. 如果我们把太阳看成一个圆,地平线看成一条 直线,那你能根据直线与圆的公共点的个数想 象一下,直线和圆的位置关系有几种?
(含答案)九年级数学人教版上册课时练第24章《24.2.2 直线和圆的位置关系》(2)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第24章圆24.2.2直线和圆的位置关系一、单选题1.已知⊙O 的半径为6,点O 到直线l 的距离为6,则直线l 与⊙O ()A .相离B .相交C .相切D .无法确定2.若O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是()A .相交B .相切C .相离D .无法确定3.如图,AB 是⊙O 的弦,PO ⊥OA 交AB 于点P ,过点B 的切线交OP 的延长线于点C ,若⊙O OP =1,则BC 的长为()A .2BC .52D 4.如图,点B ,D ,E 为⊙O 上的三个点,OC ⊥OB ,过点D 作⊙O 的切线,交OE 的延长线于点C ,连接BE ,DE .若∠OCD =30°,则∠BED 的度数为()A .10°B .15°C .20°D .25°5.如图,O 内切于Rt ABC △,点P 、点Q 分别在直角边BC 、斜边AB 上,PQ AB ^,且PQ 与O 相切,若2AC PQ =,则sin B Ð的值为()A .12B .35C .34D .456.如图,等腰ABC 内接于,O AB BC =,直线MN 是O 的切线,点C 是切点,OB 是半径,若36ACN Ð=°,则OBA Ð的度数为()A .14°B .18°C .36°D .54°7.如图,AB 是O 的切线,A 为切点,OB 交O 于点C ,若O 的半径长为1,AB =,则线段BC 的长是()A .1BC .2D 8.如图,在⊙O 中,AB 切⊙O 于点A ,连接OB 交⊙O 于点C ,过点A 作AD ∥OB 交⊙O 于点D ,连接CD .若∠OCD =20°,则∠B 为()A .30°B .40°C .45°D .50°二、填空题9.设⊙O 的半径为4cm ,直线L 上一点A 到圆心的距离为4cm ,则直线L 与⊙O 的位置关系是______.10.如图,直线AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,且AB ∥CD ,若OB =6cm ,OC =8cm ,则BE +CG 的长等于_____________11.如图,已知⊙O 的半径为1,点P 是⊙O 外一点,且OP =2.若PT 是⊙O 的切线,T 为切点,连接OT ,则PT =___.12.如图,BA 为O 的切线,切点为点A ,BO 交O 于点C ,点D 在O 上,连接CD ,36ABO Ð=°,则ADC Ð=______.13.如图,ABC 中,90BAC Ð=°,M 是BC 的中点,ABM 的内切圆与AB ,BM 分别相切于点D ,E ,连接DE .若∥DE AM ,则C Ð的大小为______.14.如图,AB 是⊙O 的直径,BC 是⊙O 的切线,点D 是AC 与⊙O 的交点,若36BAC Ð=°,则DBC Ð等于_________15.如图,AD ,AE ,BC 分别切⊙O 于点D ,E ,F ,若△ABC 的周长为48,则AD 的长是_______.16.如图,在⊙O 中,AB 切⊙O 于点A ,连接OB 交⊙O 于点C ,过点A 作AD ∥OB 交⊙O 于点D ,连接CD .若∠B =50°,则∠OCD 的度数等于___________.三、解答题17.如图,以ABC 的边BC 的长为直径作O ,交AC 于点D ,若A DBC Ð=Ð,求证:AB是O 的切线.18.如图,AB 、BC 、CD 分别与⊙O 切于E 、F 、G ,且AB ∥CD ,连接OB 、OC ,延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于N .(1)求证:MN 是⊙O 的切线;(2)当6cm OB =,8cm OC =时,求⊙O 的半径.19.如图,在⊙O 中,AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C .BD PD ^,垂足为D ,连接BC .(1)求证:BC 平分∠PBD ;(2)若4cm PA =,PC =,求⊙O 的半径.20.如图,AB为⊙O的直径,点C是AB右侧半圆上的一个动点,点D是AB左侧半圆的中点,DE是⊙O的切线,切点为D,连接CD交AB于点P,点Q为射线DE上一动点,连接AD,AC,BQ,PQ.(1)当PQ∥AD时,求证:△DPQ≌△PDA.(2)若⊙O的半径为2,请填空:①当四边形BPDQ为正方形时,DQ=;②当∠BAC=时,四边形ADQP为菱形.参考答案1.C2.A3.A4.B5.B6.B7.A8.D9.相切或相交10.10cm1112.27°13.30°14.36°15.2416.20°18.4.8cm19.2cm20.(2)①2;②22.5°。
24.2.2 直线和圆的位置关系2(旧版)--
直线与圆的位置关系
r d d r r d
相交
相切
圆 2 1 交 到 直 交 的 距 离 交 线 心
相离 相交 相切 相离
d<r d=r d>r
交 点 个 数
相交 相切 相离
思路? 思路?
解法1: 利用直线与圆的交点个数. 解法2: 利用圆心到直线距离d和 半径r间的关系.
小结:
1、直线与圆的三种位置关系, 两种判定方法; 2、直线与圆相切的应用
7.7 直线和圆的位置关系
请问: 请问:你知道直线 和圆的位置关系有 几种? 几种?
直线和圆的位置关系(动画)
O
A P
B
直线和圆的位置关系(动画)
A
B
P
直线与圆的位置关系
r d d r r d
直 线 和 圆 的 位 置
相交 相交 相切 相离
2 1 交 交 交
相切
直线 直线 交 (0 交 )
相离
练习及作业
练习:讨论并解答P90第1,2 题。 作业:P100第2、3题。
结束
例题讲解
例:在RT△ABC中,∠C=90°,AC=3cm, △ 中 = = , BC=4cm,以C为圆心,r为半径的圆与 为圆心, 为半径的圆与AB = , 为圆心 为半径的圆与 有怎样的位置关系?为什么? 有怎样的位置关系?为什么? (1)r=2cm;(2)r=2.4cm;(3) r=3cm. = ; = ; = 分析:要知道这些圆与 有怎样的位置关系 有怎样的位置关系, 分析:要知道这些圆与AB有怎样的位置关系, 首先要求出圆心C到 的距离是多少 的距离是多少。 首先要求出圆心 到AB的距离是多少。 注:圆心是一个点,圆心C到AB的距离就是 圆心是一个点,圆心 到 的距离就是 点到直线的距离。要过C作 的垂线。 点到直线的距离。要过 作AB的垂线。
24.2.2直线和圆的位置关系第2课时
例2 已知:△ABC 为等腰三角形,O 是底边 BC 的中点,腰 AB 与⊙O 相切于点 D. A 求证: AC 是⊙O 的切线.
证明:过点O作OE ⊥AC,垂 足为E,连接OD,OA ∵ ⊙O与AB相切与点D ∴ OD⊥AB. 又∵△ABC是等腰三角形,O 是底边BC的中点
D B
E
O
C
∴ AO是∠BAC的平分线 ∴ OE=OD,即OE是⊙O的半径
l1
A
O ·
l2
B
2.、如图7,AB为⊙O直径,PA、PC为⊙O的切线,A、C为切点,∠BAC=30° (1)求∠P大小。 (2)AB=2,求PA的长。
.O
A
l
切线的判定定理:
经过半径的外端并且垂直于这条 半径的直线是圆的切线.
切线的判定定理:
经过半径的外端并且垂直于这条 半径的直线是圆的切线. 几何语言:
∵ OA⊥L (OA是半径)
∴ L是⊙O的切线
注意要满足的两个条件
1、判断: (1)过半径的外端的直线是圆的切线(×) (2)与半径垂直的的直线是圆的切线(×)
几何语言:∵L是⊙O的切线(A是切点) ∴OA⊥L
例1 如图,直线AB经过⊙O上的点C,并 且OA=OB, CA=CB,求证直线AB是⊙O的 切线.
证明:连接OC
O
∵ OA=OB ∴△OAB是等腰三角形
∵ CA=CB , ∴ OC⊥AB. ∴ AB是⊙O的切线.
A
C
B
辅助线:有交点先连圆心,再证垂直
24.2.2 直线和圆的位置关系
(第2课时)
知识回顾
直线与圆的 位置关系
相交
O r d l B
相切
O r d A
人教版 九年级上册数学 24.2---24.3复习题(含答案)
24.2 点和圆、直线和圆的位置关系一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A.与圆有公共点的直线B.垂直于圆的半径的直线C.到圆心的距离等于半径的直线D.经过圆的直径一端的直线2. 下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线3. 如图,P是⊙O外一点,OP交⊙O于点A,OA=AP.甲、乙两人想作一条经过点P且与⊙O相切的直线,其作法如下:甲:以点A为圆心,AP长为半径画弧,交⊙O于点B,则直线BP即为所求.乙:过点A作直线MN⊥OP,以点O为圆心,OP长为半径画弧,交射线AM于点B,连接OB,交⊙O于点C,直线CP即为所求.对于甲、乙两人的作法,下列判断正确的是()A.甲正确,乙错误B.乙正确,甲错误C.两人都正确D.两人都错误4. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定5. 如图,AB为⊙O的切线,切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6. 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A.DE=DO B.AB=ACC.CD=DB D.AC∥OD7.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 2020·黄石模拟如图,在平面直角坐标系中,A(-2,2),B(8,2),C(6,6),点P为△ABC的外接圆的圆心,将△ABC绕点O逆时针旋转90°,点P的对应点P′的坐标为()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)9. 如图,数轴上有A,B,C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外、⊙O内、⊙O上,则原点O的位置应该在()图A.点A与点B之间靠近点AB.点A与点B之间靠近点BC.点B与点C之间靠近点BD.点B与点C之间靠近点C10. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.8二、填空题(本大题共7道小题)11. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.12. 如图,∠APB=30°,⊙O的半径为1 cm,圆心O在直线PB上,OP=3 cm,若⊙O沿BP方向移动,当⊙O与直线PA相切时,圆心O移动的距离为__________.13. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.14. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次15. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).16.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连接PM ,以点P 为圆心,PM 长为半径作⊙P .当⊙P 与正方形ABCD 的边相切时,BP 的长为________.17. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共4道小题)18. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.19.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.20. 在Rt△ABC中,∠C=90°,AB=13,AC=5.(1)以点A为圆心,4为半径的⊙A与直线BC的位置关系是________;(2)以点B为圆心的⊙B与直线AC相交,求⊙B的半径r的取值范围;(3)以点C为圆心,R为半径的⊙C与直线AB相切,求R的值.21. 如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.求证:直线DM是⊙O的切线.人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】C[解析] 对于甲的作法:连接OB,如图①.∵OA=AP,∴OP为⊙A的直径,∴∠OBP=90°,即OB⊥PB,∴PB为⊙O的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN ⊥OP ,∴∠OAB =90°.在△OAB 和△OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.4. 【答案】B5. 【答案】D[解析] ∵AB 为⊙O 的切线,∴∠OAB =90°.∵∠ABO =36°,∴∠AOB =90°-∠ABO =54°. ∴∠ADC =12∠AOB =27°.故选D.6. 【答案】A7.【答案】D 【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B =20°,∴∠AOD =∠B +∠BDO =2∠B =2×20°=40°.8. 【答案】A9. 【答案】C[解析] 如图.10. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB 的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.二、填空题(本大题共7道小题)11. 【答案】3<r<5[解析] 连接BD.在Rt△ABD中,AB=4,AD=3,则BD=32+42=5.由题图可知3<r<5.12. 【答案】1 cm或5 cm[解析] 当⊙O与直线PA相切时,点O到直线PA的距离为1 cm.∵∠APB=30°,∴PO=2 cm,∴圆心O移动的距离为3-2=1(cm)或3+2=5(cm).13. 【答案】t=2或-1≤t<1[解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O到直线l的距离OC=1时,直线l与半圆O相切,设直线l与y轴交于点D,则OD=2,即t= 2.当直线过点A时,把A(-1,0)代入直线l的解析式,得t=y-x=1.当直线过点B时,把B(1,0)代入直线l的解析式,得t=y-x=-1.即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.14. 【答案】B[解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2.如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.15. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确. 补全⊙O ,延长CE 交⊙O 于点F . ∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵. 又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵, ∴∠CAP =∠ACP ,∴AP =CP . ∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°, ∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点, ∴点P 为Rt △ACQ 的外心,故③正确.16. 【答案】3或4 3 [解析] 如图①,当⊙P 与CD 边相切时,设PC =PM =x .在Rt △PBM 中,∵PM2=BM2+BP2,∴x2=42+(8-x)2,∴x=5,∴PC=5,∴BP=BC-PC=8-5=3.如图②,当⊙P与AD边相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形,∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,BP=82-42=4 3.综上所述,BP的长为3或4 3.17. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D.∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.19. 【答案】解:(1)证明:如图,连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A.又∵OA是⊙O的半径,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.20. 【答案】解:(1)∵AC⊥BC,而AC>4,∴以点A为圆心,4为半径的⊙A与直线BC相离.故答案为相离.(2)BC=AB2-AC2=12.∵BC⊥AC,∴当⊙B 的半径大于BC 的长时,以点B 为圆心的⊙B 与直线AC 相交,即r >12.(3)如图,过点C 作CD ⊥AB 于点D . ∵12CD ·AB =12AC ·BC ,∴CD =5×1213=6013.即当R =6013时,以点C 为圆心,R 为半径的⊙C 与直线AB 相切.21. 【答案】证明:如图,作直径DG ,连接BG .∵点E 是△ABC 的内心,∴AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠G =∠BAD ,∠BDM =∠DAC ,∴∠BDM =∠G .∵DG 为⊙O 的直径,∴∠GBD =90°,∴∠G +∠BDG =90°,∴∠BDM +∠BDG =90°,即∠MDG =90°.又∵OD 是⊙O 的半径,∴直线DM 是⊙O 的切线.24.3正多边形和圆一、选择题1.如图,四边形ABCD 是⊙O 的内接四边形,AB 为⊙0直径,点C 为劣弧BD 的中点,若∠DAB=40°,则∠ABC=( ).A .140°B .40°C .70°D .50° 2.如图,圆O 是△ABC 的外接圆,连接OA 、OC ,∠OAC =20°,则∠ABC 的度数为( )A .140°B .110°C .70°D .40° 3.如图,已知△ABC 为⊙O 的内接三角形,AB >AC .E 为BAC 的中点,过E 作EF ⊥AB 于F .若AF =1,AC =4,∠C =60°,则⊙O 的面积是( )A .8πB .10πC .12πD .18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD与等边△ACE,连接BE、CD,BE的延长线与CD交于点F,下列结论:(1)BE=CD ;(2)AF平分∠EAC ;(3)∠BFD=60°;(4)AF+FD=BF 其中正确的有()A.1个B.2个C.3个D.4个7.正方形ABCD中,对角线AC、BD交于O,Q为CD上任意一点,AQ交BD于M,过M作MN⊥AM交BC于N,连AN、QN.下列结论:①MA=MN;②∠AQD=∠AQN;③S△AQN=1 2 S五边形ABNQD;④QN是以A为圆心,以AB为半径的圆的切线.其中正确的结论有()A.①②③④B.只有①③④C.只有②③④D.只有①②8.如图,在菱形ABCD中,点P是BC边上一动点,连结AP,AP的垂直平分线交BD于点G,交AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是( )A.变大B.先变大后变小C.先变小后变大D.不变9.如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.755B.5C5D35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD 内接于⊙O,点E 是弧AB 上的一动点(不与点A 、B 重合),点F 是弧BC 上的一点,连接OE ,OF ,分别与交AB ,BC 于点G ,H ,且∠EOF=90°,连接GH ,有下列结论:①弧AE=弧BF ;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化;④△GBH 周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt △ABC 中,∠BAC =90°,BC =5,AB =3,点D 是线段BC 上一动点,连接AD ,以AD 为边作△ADE ∽△ABC ,点N 是AC 的中点,连接NE ,当线段NE 最短时,线段CD 的长为_____.14.如图,四边形ABCD 内接于⊙O ,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下列结论:①AM =MN ;②MP =12BD ;③BN +DQ =NQ ;④+AB BN BM为定值2.一定成立的是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD 是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD 内接于⊙O ,AB =AD ,则∠ACD ∠ACB (填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD 中,AB =BC =2,等边角∠ABC =120°,等补对角线BD 与等边垂直,求CD 的长.19. 定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC 中,AB=2,BC=52,AC=3,D 为平面内一点,以A 、B 、C 、D 四点为顶点构成的四边形为“完美四边形”,若DA ,DC 的长是关于x 的一元二次方程x 2-(m+3)x+14(5m 2-2m+13)=0(其中m 为常数)的两个根,求线段BD 的长度.(3)如图2,在“完美四边形”EFGH 中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH 面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C .①若86PA PB ==,,求AB 的长②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,2AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形;(2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 11312.①②④13.411014.6415.①②③④16.17.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4.19.(1)正方形、矩形;(2)3;(3)49.20.(1)略;(2)43π 21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)AP ≥(2)QAP ∠为定值,QAP ∠=30°;(3)14,0)Q ,24,0)Q ,3(0)Q -,4,0)Q。
人教版 九年级上册数学 24.2 ---24.4随堂练含答案)
人教版九年级数学24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于()A.27°B.32°C.36°D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B在⊙A内,则实数a的取值范围是()A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是()A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是()A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.10. 已知在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则直线BC与⊙A的位置关系是________.11. 如图,菱形ABOC的边AB,AC分别与☉O相切于点D,E,若点D是AB的中点,则∠DOE=.12. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A 上,点________在⊙A外.13. (2019•河池)如图,PA、PB是O的切线,A、B为切点,∠OAB=38°,则∠P=__________ .14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与☉O相切于点D,∴OD⊥AB.∵D是AB的中点,∴OD是AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∴∠AOD=∠AOB=30°,同理∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为60°.112. 【答案】O B,D C[解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO =BO=CO=DO.设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x=22(负值已舍去),∴AO=22<1,AC=2>1,∴点O在⊙A内,点B,D在⊙A上,点C在⊙A外.13. 【答案】76【解析】∵PA PB 、是O 的切线,∴PA PB PA OA =⊥,, ∴90PAB PBA OAP ∠=∠∠=︒,,∴90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒, ∴180525276P ∠=︒-︒-︒=︒,故答案为:76.14.【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵B C 与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135°[解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD =12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.19. 【答案】解:(1)∵∠C=90°,AC=8,AB=10,∴在Rt△ABC中,由勾股定理,得BC=6,∴△BAP的面积S=12AP·BC=12×2×6=6.(2)连接OD,OE,OA.设⊙O的半径为r,则S△BAP=12AB·r+12AP·r=6r,∴6r=6,解得r=1.故⊙O的半径是1.24.3正多边形和圆一.选择题1.半径为R的圆内接正六边形边长为()A.R B.R C.R D.2R2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b =3cm,则螺帽边长a等于()A.cm B.2cm C.2cm D.cm3.如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个4.正六边形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对边5.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是()A.EM:AE=2:B.MN:EM=:C.AM:MN=:D.MN:DC=:26.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A.5 B.6 C.7 D.87.正六边形的边心距为,这个正六边形的面积为()A.B.C.D.128.第六届世界数学团体锦标赛于2015年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)9.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm 10.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°二.填空题11.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC是该圆内接正n边形的一边,则该正n边形的面积为.12.如图,圆O的周长是1cm,正五边形ABCDE的边长是4cm,圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,当回到出发点时,则圆O共滚动了周.13.如图,⊙O的半径为,以⊙O的内接正八边形的一边向⊙O内作正方形ABCD,则正方形ABCD的面积为.14.如图,A,B,C是⊙O上顺次三点,若AC,AB,BC分别是⊙O内接正三角形,正方形,正n边形的一边,则n=.15.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.三.解答题16.已知正方形的面积为2平方厘米,求它的半径长、边心距和边长.17.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为10;求图中阴影部分的面积.19.如图,正方形ABCD内接于⊙O,M为的中点,连接BM,CM.(1)求证:BM=CM;(2)求∠BOM的度数.参考答案与试题解析一.选择题1.【解答】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=R.故选:B.2.【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∴∠BCD=∠BAC=30°,由AC=3,得CD=1.5,Rt△ABD中,∵∠BAD=30°,∴AB=2BD=a,∴AD==a,即a=1.5,∴a=(cm),故选:A.3.【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形F ABOD都是平行四边形,共6个,故选:C.4.【解答】解:A、正六边形和菱形均具有,故不正确;B、正六边形和菱形均具有,故不正确;C、正六边形具有,而菱形不具有,故正确;D、正六边形和菱形均具有,故不正确;故选:C.5.【解答】证明:∵五边形ABCDE是正五边形,∴DE=AE=AB,∠AED=∠EAB=108°,∴∠ADE=∠AEM=36°,∴△AME∽△AED,∴,∴AE2=ADAM,∵AE=DE=DM,∴DM2=ADAM,设AE=DE=DM=2,∴22=AM(AM+2),∴AM=﹣1,(负值设去),∴EM=BN=AM=﹣1,AD=+1,∵BE=AD,∴MN=BE﹣ME﹣BN=3﹣,∴MN:CD=:2,故选:D.6.【解答】解:如图,圆心角为∠1,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.∴要完全拼成一个圆环还需要的正五边形个数是:10﹣3=7.故选:C.7.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA cos 30°,∴OA===2,∴这个正六边形的面积=6S=6××2×=6.△OAB故选:C.8.【解答】解:如图,∵它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形,∴AM=BM﹣AB=AD﹣AB=a﹣b,FN=EF+EN=EF+CF=c+d,∴内外两个正七边形的周长之和为7(a﹣b)+7(c+d)=7(a﹣b+c+d),故选:C.9.【解答】解:根据题意得:圆内接半径r为mm,如图所示:则OB=,∴BD=OB sin30°=×=(mm),则BC=2×=(cm),完全覆盖住的正六边形的边长最大为mm.故选:A.10.【解答】解:∵OA=AB=OB,∴△OAB是等边三角形,选项A正确,∴∠AOB=60°,∵OC⊥AB,∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,∴=12,∠BAC=∠BOC=15°,∴选项B、C正确,选项D错误,故选:D.二.填空题(共5小题)11.【解答】解:如图,连接OE,根据题意可知:AB⊥CD,AE=AO=EO,∴∠AOC=90°,∠AOE=60°,∴∠EOC=30°,∴EC是该圆内接正12边形的一边,∵△COE是顶角为30度的等腰三角形,作EG⊥OC于点G,∴EG=OE=,=12×OCEG=12×1×=3.∴正12边形的面积为:12S△COE故答案为:3.12.【解答】解:圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,∵圆O的周长是1cm,正五边形ABCDE的边长是4cm,∴圆在边上转了4×5=20圈,而圆从一边转到另一边时,圆心绕五边形的一个顶点旋转了五边形的一个外角的度数,∴圆绕五个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了21圈.故答案为:21.13.【解答】解:连接OA、OD,过A作AE⊥OD于E,如图所示:则∠AEO=∠AED=90°,∵∠AOD是正八边形的中心角,∴∠AOD==45°,∴△AOE是等腰直角三角形,∴AE=OE=OA=1,∴DE=OD﹣OE=﹣1,∴AD2=AE2+DE2=1+(﹣1)2=4﹣2,∴正方形ABCD的面积=AD2=4﹣2,故答案为:4﹣2.14.【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意得30°=,∴n=12,故答案为:12.15.【解答】解:连接P A,P A,∵正六边形OABCDE的外接圆心是P,∴∠OP A==60°,PO=P A,∴△POA是等边三角形,∴PO=P A=OA=6,过P作PH⊥OA于H,则∠OPH=∠OP A=30°,OH=OA=3,∴PH===3,∴P的坐标是(3,3),故答案为:(3,3).三.解答题(共4小题)16.【解答】解:∵正方形的面积为2,∴正方形的边长为AB=,边心距OC=AB=,对角线长为2,∴半径为1,∴正方形的半径为1,边心距为,边长为.17.【解答】解:延长P A到E,使AE=PC,连接BE,∵∠BAE+∠BAP=180°,∠BAP+∠PCB=180°,∴∠BAE=∠PCB,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴∠ABE=∠CBP,BE=BP,∴∠ABE+∠ABP=∠ABP+∠CBP=90°,∴△BEP是等腰直角三角形,∴P A+PC=PE=PB.即:=,∴为定值.18.【解答】解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣25)=100π﹣150.19.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为的中点,∴=,∴=,∴BM=CM;(2)解:连接OA、OB、OM,∵四边形ABCD是正方形,∴∠AOB=90°,∵M为的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.人教版九年级数学24.4 弧长和扇形面积一、选择题(本大题共10道小题)1. 2019·湖州已知圆锥的底面半径为5 cm,母线长为13 cm,则这个圆锥的侧面积是()A.60π cm2 B.65π cm2C.120π cm2 D.130π cm22. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2π B.4πC.12π D.24π3. 如图,用一张半径为24 cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计).如果圆锥形帽子的底面圆半径为10 cm,那么这张扇形纸板的面积是()A.240π cm2B.480π cm2C.1200π cm2D.2400π cm24. 在半径为6 cm的圆中,长为2π cm的弧所对的圆周角的度数为()A.30°B.45°C.60°D.90°5. 2019·唐山乐亭期末如图,圆锥的底面半径OB=6 cm,高OC=8 cm,则这个圆锥的侧面积是()A .30 cm 2B .60π cm 2C .30π cm 2D .48π cm 26. 如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5,那么所需扇形铁皮的圆心角应为( )A .288°B .144°C .216°D .120°7. 如图所示的扇形纸片半径为5 cm ,用它围成一个圆锥的侧面,该圆锥的高是4cm ,则该圆锥的底面周长是( ) A . 3π cm B . 4π cm C . 5π cm D . 6π cm8. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶99. 如图,一根5 m 长的绳子,一端拴在围墙墙脚的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A 在草地上的最大活动区域的面积是( )图A.1712π m2 B.176π m2 C.254π m2D.7712π m210. 已知一个圆心角为270°的扇形工件,未搬动前如图所示,A ,B 两点触地放置,搬动时,先将扇形以B 为圆心,作如图所示的无滑动旋转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,扇形工件所在圆的直径为6 m ,则圆心O 所经过的路线长是(结果用含π的式子表示)( )A .6π mB .8π mC .10π mD .12π m二、填空题(本大题共8道小题)11. 将母线长为6 cm ,底面半径为2 cm 的圆锥的侧面展开,得到如图所示的扇形OAB ,则图中阴影部分的面积为________ cm2.12. 如图所示,有一直径是2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC ,则: (1)AB 的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.13. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.14. 如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置.若AB=16 cm,则图中阴影部分的面积为________.15. 一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为________.16. 如图,在圆柱体内挖去一个与它不等高的圆锥,锥顶O到AD的距离为1,∠OCD=30°,OC=4,则挖去圆锥后剩余部分的表面积是________.17.如图在边长为3的正方形ABCD中,以点A为圆心,2为半径作圆弧EF,以点D为圆心,3为半径作圆弧AC.若图阴影部分的面积分别为S1,S2,则S1-S2=_____ ___.18. 如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形的边长为 6 cm,则该莱洛三角形的周长为________ cm.三、解答题(本大题共4道小题)19. 如图,C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).链接听P50例2归纳总结20. 如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°,(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21. 如图,点A,B,C,D均在圆上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.(1)求此圆的半径;(2)求图中阴影部分的面积.22. 如图,△ABC是正三角形,曲线CDEFG…叫做“正三角形的渐开线”,曲线的各部分为圆弧.(1)图已经有4段圆弧,请接着画出第5段圆弧GH.(2)设△ABC的边长为a,则第1段弧的长是________,第5段弧的长是________,前5段弧长的和(即曲线CDEFGH的长)是________.(3)类似地,有“正方形的渐开线”“正五边形的渐开线”……边长为a的正方形的渐开线的前5段弧长的和是________.(4)猜想:①边长为a的正n边形的前5段弧长的和是________;②边长为a的正n边形的前m段弧长的和是________.人教版九年级数学24.4 弧长和扇形面积课时训练-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] ∵r=5 cm,l=13 cm,∴S圆锥侧=πrl=π×5×13=65π(cm2).故选B.2. 【答案】C[解析] 根据扇形的面积公式,S=120×π×62360=12π.故选C.3. 【答案】A[解析] ∵扇形的弧长l =2·π·10=20π(cm),∴扇形的面积S =12lR =12×20π×24=240π(cm 2).4. 【答案】A [解析] 设长为2π cm 的弧所对的圆心角的度数为n°,则nπR180=2π,解得n =60.∴这条弧所对的圆心角是60°,即所对的圆周角是30°.故选A.5. 【答案】B6. 【答案】A[解析] 设所需扇形铁皮的圆心角为n °,圆锥底面圆的半径为4x ,则母线长为5x ,所以底面圆周长为2π×4x =8πx ,所以n180×π×5x =8πx ,解得n =288.7.【答案】D 【解析】如解图,由题意可知,OA =4 cm ,AB =5cm ,在Rt △AOB 中,利用勾股定理可求得OB =3 cm ,∴该圆锥的底面周长是6π cm.8. 【答案】D9. 【答案】D[解析] 如图,大扇形的圆心角是90°,半径是5 m ,∴其面积为90π×25360=25π4(m2);小扇形的圆心角是180°-120°=60°,半径是1 m ,则其面积为60π360=π6(m2),∴小羊A 在草地上的最大活动区域的面积为25π4+π6=7712π(m2).10. 【答案】A[解析] 如图,∠AOB =360°-270°=90°,则∠ABO =45°,则∠OBC =45°,点O 旋转的长度是2×45π×3180=32π(m),点O 移动的距离是270π×3180=92π(m),则圆心O 所经过的路线长是32π+92π=6π(m).二、填空题(本大题共8道小题)11. 【答案】(12π-93) [解析] 由题意知,扇形OAB 的弧长=圆锥的底面周长=2×2π=4π(cm),∴扇形的圆心角n =4π×180÷6π=120,即∠AOB =120°. 如图,过点C 作OC ⊥AB 于点C.∵OA =OB ,∠AOB =120°,∴∠OAB =∠OBA =30, ∴OC =12OA =3 cm , ∴AC =3 3 cm ,∴AB =2AC =2×3 3=6 3(cm), ∴S 阴影=S 扇形OAB -S △OAB =120π×62360-12×3×6 3=(12π-9 3)cm2.12. 【答案】(1)1(2)14 [解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r米.根据题意,得2πr=90·π·1 180,解得r=1 4.13. 【答案】2π-4[解析] 如图所示,由题意,得阴影部分的面积=2(S扇形OAB-S△OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.14. 【答案】32π cm2[解析] 由旋转的性质得∠BAB′=45°,四边形AB′C′D′≌四边形ABCD,则图中阴影部分的面积=四边形ABCD的面积+扇形ABB′的面积-四边形AB′C′D′的面积=扇形ABB′的面积=45π×162360=32π(cm2).15. 【答案】12π16. 【答案】(16+8 3)π[解析] ∵∠OCD=30°,∴∠OCB=60°.又∵OB=OC,∴△OBC是等边三角形,∴挖去的圆锥的高为2 3,底面圆的半径为2,∴圆柱的高为1+2 3,则挖去圆锥后该物体的表面积为(1+2 3)×4π+π×22+12×4π×4=(16+8 3)π.17. 【答案】13π4-9 [解析] ∵S 正方形ABCD =3×3=9,S 扇形DAC =9π4,S 扇形AEF =π,∴S 1-S 2=S 扇形AEF -(S 正方形ABCD -S 扇形DAC )=π-⎝ ⎛⎭⎪⎫9-9π4=13π4-9.18. 【答案】6π [解析] 以边长为半径画弧,这三段弧的半径为正三角形的边长,即6 cm ,圆心角为正三角形的内角度数,即60°,所以每段弧的长度为60·π·6180=2π(cm),所以该莱洛三角形的周长为2π×3=6π(cm).三、解答题(本大题共4道小题)19. 【答案】解:(1)连接OD ,OC ,如图.∵C ,D 是半圆O 上的三等分点,∴AD ︵=CD ︵=BC ︵,∴∠AOD =∠DOC =∠COB =60°,∴∠CAB =30°.∵DE ⊥AB ,∴∠AEF =90°,∴∠AFE =90°-30°=60°.(2)由(1)知∠AOD =60°.∵OA =OD ,AB =4,∴△OAD 是等边三角形,OA =OD =2.∵DE ⊥AO ,∴AE =OE =12OA =1,∴DE =OD2-OE2=3,∴S 阴影=S 扇形OAD -S △OAD =60×π×22360-12×2×3=23π- 3.20. 【答案】解:(1)证明:如图,连接OA.∵AD =AB ,∠D =30°,∴∠B =∠D =30°,∴∠DAB =120°.∵BC 是⊙O 的直径,∴∠BAC =90°,∴∠DAC =30°,∴∠BCA =60°.∵AO =CO ,∴△ACO 是等边三角形,∴∠CAO =60°,∴∠DAO =∠CAO +∠DAC =90°,即AD ⊥AO.又∵AO 是⊙O 的半径,∴直线AD 是⊙O 的切线.(2)由(1)知Rt △ADO 中,AO =2,∠D =30°,∴OD =2AO =4,∴AD =2 3,∴SRt △ADO =12×2 3×2=2 3.∵△ACO 是等边三角形,∴∠AOD =60°,∴S 扇形OAC =60π×22360=2π3,∴S 阴影=SRt △ADO -S 扇形OAC =2 3-2π3.21. 【答案】解:(1)∵AD ∥BC ,∠BAD =120°,∴∠ABC =60°,∠ADB =∠DBC.又∵BD 平分∠ABC ,∴∠ABD =∠DBC =∠ADB =30°,∴AB ︵=AD ︵=DC ︵,∠BCD =60°,∴AB =AD =DC ,∠BDC =90°,∴BC是圆的直径,BC=2DC,∴BC+32BC=15,解得BC=6,∴此圆的半径为3.(2)设BC的中点为O,由(1)可知点O为圆心,连接OA,OD. ∵∠ABD=30°,∴∠AOD=60°.根据“同底等高的三角形的面积相等”可得S△ABD=S△OAD,∴S阴影=S扇形OAD=60×π×32360=32π.22. 【答案】13π4解:(1)如图(2)23πa103πa10πa(3)15πa 2(4)①30nπa②m(m+1)nπa。
【新人教版九年级数学上册同步测试及答案全套27份】24.2.2 直线和圆的位置关系(第二课时)
24.2.2直线和圆的位置关系(第二课时)知识点1.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线. 2.切线的性质定理圆的切线垂直于经过切点的半径. 3.证明切线的方法(1)当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“连半径,证垂直”.(2)当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”. 一、选择题1.下列说法中,正确的是( ) A .垂直于半径的直线是圆的切线B .到圆心的距离等于直径的直线是圆的切线C .经过半径的端点且垂直于半径的直线是圆的切线D .经过半径的外端且垂直于这条半径的直线是圆的切线2.如图,AB 与⊙O 切于点B ,AO=6cm ,AB=4cm ,则⊙O 的半径为( )A ...3.在Rt △ABC 中,∠C=90°,AB=10,AC=6,以C 为圆心作⊙C 和AB 相切,则⊙C 的半径长为( )A .8B .4C .9.6D .4.84.坐标平面上有两圆1O e ,2O e ,其圆心坐标均为(3,-7).若1O e 与x 轴相切,2O e 与y 轴相切,则1O e 与2O e 的周长比是( )A .7∶3B .3∶7C .9∶49D .49∶95.如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm6.如图,半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,直径FG在AB上,若1,则△ABC的周长为()A.4+B.6 C.2+D. 47.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠AD8.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.90° B.60° C.45° D.30°二、填空题9.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=.10.如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB的延长线于点C.则∠ADC的度数是; AC的长是.11.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=4,则弦AC的长为____________.212.已知直线l 与⊙O ,AB 是⊙O 的直径,AD ⊥l 于点D .⑴如图①,当直线l 与⊙O 相切于点C 时,若∠DAC =30°,则∠BAC= ; ⑵如图②,当直线l 与⊙O 相交于点E 、F 时,若∠DAE =18°,则∠BAF= .13.如图,AB 是⊙O 的直径,PA 是⊙O 的切线,过点B 作BC ∥OP 交⊙O 于点C ,连结AC .若AB=2,BC 的长是 .14.如图,BC 为半⊙O 的直径,点D 是半圆上一点,过点D 作⊙O 的切线AD ,BA ⊥DA 于A ,BA 交半圆于E ,已知BC=10,AD=4,那么直线CE 与以点O 为圆心,52为半径的圆的位置关系是________.15.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM=MB=2cm ,QM=4cm .动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值__________________________________(单位:秒)三、解答题16.如图,直线AB切⊙O于点A,点C、D在⊙O上.试探求:(1)当AD为⊙O的直径时,如图①,∠D与∠CAB的大小关系如何?并说明理由.(2)当AD不为⊙O的直径时,如图②,∠D与∠CAB的大小关系同①一样吗?为什么?①②17.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,求证:DE是⊙O的切线.18.如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.19.如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.(1)直线FC与⊙O有何位置关系?并说明理由;(2)若OB=BG=2,求CD的长.20.如图,已知AB为半圆O的直径,直线MN切半圆于点C,AD⊥MN于点D,BE⊥MN于点E,BE交半圆于点F,AD=3 cm,BE=7 cm.(1)求⊙O的半径;(2)求线段DE的长.24.2.2直线和圆的位置关系(第二课时) 一、选择题1.D2.B3.D4.A5.C6.A7.C8.D二、填空题9.50°10.120 , 9cm11.12.30°;18°1314.相离15.t=2或3≤t≤7或t=8三、解答题16.解:(1)∠D=∠CAB,理由(略)(2)∠D=∠CAB 作直径AE,连接CE由(1)可知:∠E=∠CAB,而∠E=∠D,∴∠D=∠CAB17.证明:连接DO,∵点D是BC的中点∴CD=BD∵AB是直径∴∠ADC=∠A DB=90°∵AD=AD∴△ACD≌△ABD∴AC=AB,∠C=∠B∵OD=OB ∴∠B=∠ODB∴∠ODB=∠C,OD∥AC ∴∠ODE=∠CED∴ED是圆O的切线18.证明:连接OD,过点O作OE⊥AC于E点则∠OEC=90°∵AB切⊙O于D∴OD⊥AB∴∠ODB=90°∴∠ODB=∠OEC又∵O是BC的中点∴OB=OC∵AB=AC∴∠B=∠C∴△OBD≌△OCE∴OE=OD,即OE是⊙O的半径∴AC与⊙O相切19.解:(1)直线FC与⊙O相切.理由如下:连接OC∵OA=OC∴∠1=∠2由翻折得,∠1=∠3,∠F=∠AEC=90°∴∠2=∠3∴OC∥AF∴∠OCG=∠F=90°∴OC⊥FG∴直线FC与⊙O相切(2)∵直线GFC与⊙O相切∴OC⊥FG∵OC=OB=BGAF ===Q ∴∠G=30° ∴∠COG=60° ∴∠OCE=30° ∴OE=1 ∴∵直径AB 垂直于弦CD∴2CD CE ==20.解:(1)连结OC ∵MN 切半圆于点C ∴OC ⊥MN ∵AD ⊥MN ,BE ⊥MN ∴AD ∥OC ∥BE ∵OA=OB∴OC 为梯形ADEB 的中位线 ∴OC=12(AD +BE)=5 cm 所以⊙O 的半径为5 cm (2)连结AF∵AB 为半圆O 的直径 ∴∠AFB=90°.∴∠AFE=90° 又∠ADE=∠DEF=90° ∴四边形ADEF 为矩形 ∴DE=AF ,AD=EF=3 cm在Rt △ABF 中,BF=BE -EF=4 cm ,AB=2OC=10 cm ∴DE=cm .如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
2020年人教版九年级数学上册24.2.2《直线和圆的位置关系》课后练习(含答案)
2020年人教版九年级数学上册24.2.2《直线和圆的位置关系》课后练习知识点 1 直线与圆的位置关系的判定1.如图,直线l与⊙O有三种位置关系:(1)图①中直线l与⊙O________,有________个公共点,这条直线叫做圆的________;(2)图②中直线l与⊙O________,有________个公共点,这条直线叫做圆的________;(3)图③中直线l与⊙O________,________公共点.2.已知半径为5的圆,其圆心到一条直线的距离是3,则此直线和圆的位置关系为( ) A.相离 B.相切 C.相交 D.无法确定3.如图,已知点A,B在半径为1的⊙O上,∠AOB=60°,延长OB至点C,过点C作直线OA的垂线,记为l,则下列说法正确的是( )A.当BC=0.5时,l与⊙O相离B.当BC=2时,l与⊙O相切C.当BC=1时,l与⊙O相交D.当BC≠1时,l与⊙O不相切4.在平面直角坐标系中,以点(3,2)为圆心,3为半径的圆,一定( )A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交5.如图,在矩形ABCD中,AB=6,BC=4,⊙O是以AB为直径的圆,则直线DC与⊙O的位置关系是________.6.在Rt△ABC中,∠A=30°,直角边AC=6 cm,以点C为圆心,3 cm为半径作圆,则⊙C 与AB的位置关系是________.知识点 2 直线与圆的位置关系的应用7.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( ) A.r<6 B.r=6 C.r>6 D.r≥68.⊙O的半径为R,点O到直线l的距离为d,R,d是关于x的方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为________.9.如图所示,已知Rt△ABC的斜边AB=8 cm,AC=4 cm.(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?(2)分别以点C为圆心,2 cm和4 cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?10.已知⊙O 的半径为7 cm ,圆心O 到直线l 的距离为6.5 cm ,则直线l 与⊙O 的交点个数为( )A .0B .1C .2D .无法确定11.如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( )A .1B .1或5C .3D .512.如图,⊙O 的半径OC=5 cm ,直线l ⊥OC ,垂足为H ,且l 交⊙O 于A ,B 两点,AB=8 cm ,若l 沿OC 所在直线平移后与⊙O 相切,则平移的距离是( )A .1 cmB .2 cmC .8 cmD .2 cm 或8 cm13.在Rt △ABC 中,∠C=90°,AC=5,BC=12,若以点C 为圆心,r 为半径所作的圆与斜边AB 只有一个公共点,则r 的取值范围是______________________________.14.如图,已知⊙P 的半径为2,圆心P 在抛物线y=12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______________.15.如图,在Rt △ABC 中,∠C=90°,∠B=60°,若AO=x cm ,⊙O 的半径为1 cm ,当x 在什么范围内取值时,直线AC 与⊙O 相离、相切、相交?16.如图所示,P 为正比例函数y=32x 的图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y).(1)求当⊙P 与直线x=2相切时,点P 的坐标;(2)请直接写出当⊙P 与直线x=2相交、相离时,x 的取值范围.17.如图,有两条公路OM ,ON 相交成30°角,沿公路OM 方向离O 点80米处有一所学校A ,当重型运输卡车P 沿公路ON 方向行驶时,在以点P 为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大.已知重型运输卡车P 沿公路ON 方向行驶的速度为18千米/时.(1)求对学校A 的噪声影响最大时,卡车P 与学校A 的距离;(2)求卡车P 沿公路ON 方向行驶一次给学校A 带来噪声影响的时间.参考答案1.(1)相交 两 割线 (2)相切 一 切线(3)相离 没有2.C3.D [解析] 若BC ≠1,则OC=OB +BC ≠2.∵∠AOB=60°,∴∠ACO=30°,∴点O 到直线l 的距离=12OC ≠1, ∴l 与⊙O 不相切,故D 正确.4.C 5.相离6.相切 [解析] 如图,过点C 作CD ⊥AB 于点D.∵∠A=30°,AC=6 cm ,∴CD=3 cm. ∵CD=3 cm=r ,∴⊙C 与AB 相切.7.C [解析] ∵直线l 与⊙O 相交,∴圆心O 到直线l 的距离d <r ,即r >d=6.故选C.8.4 [解析] ∵R ,d 是关于x 的方程x 2-4x +m=0的两根,且直线l 与⊙O 相切,∴d=R ,∴方程有两个相等的实数根,∴Δ=b 2-4ac=16-4m=0,解得m=4.故答案为4.9.解:(1)如图所示,过点C 作CD ⊥AB ,垂足为D.在Rt △ABC 中,BC=82-42=4 3(cm),所以CD=4 3×48=2 3(cm). 因此,当半径为2 3 cm 时,直线AB 与⊙C 相切.(2)由(1)可知,圆心C 到直线AB 的距离d=2 3 cm ,所以当r=2 cm 时,d >r ,⊙C 与直线AB 相离;当r=4 cm 时,d <r ,⊙C 与直线AB 相交.10.C [解析] ∵⊙O 的半径为7 cm ,圆心O 到直线l 的距离为6.5 cm ,7 cm >6.5 cm ,∴直线l 与⊙O 相交,∴直线l 与⊙O 有两个交点.故选C.11.B [解析] 根据题意和图形可判断出⊙P 与x 轴的两个交点坐标,如图所示.∵点P 的坐标为(-3,0),⊙P 的半径为2,∴点A 的坐标为(-5,0),点C 的坐标为(-1,0).当圆心到y 轴的距离为2时,⊙P 与y 轴相切,也就是当点A 或点C 与点O 重合时,⊙P 与y 轴相切.当点C 与点O 重合时,点P 的坐标为(-2,0),此时点P 沿x 轴正方向平移了1个单位长度;当点A 与点O 重合时,点P 的坐标为(2,0),此时点P 沿x 轴正方向平移了5个单位长度.故选B.12.D [解析] 连接OB.∵AB ⊥OC ,∴AH=BH ,∴BH=12AB=12×8=4(cm).在Rt △BOH 中,OB=OC=5 cm ,∴OH=OB 2-BH 2=52-42=3(cm).∵直线l 通过平移与⊙O 相切,∴直线l 垂直于过点C 的直径,垂足为直径的两个端点,∴当直线l 向下平移时,平移的距离=5-3=2(cm);当直线l 向上平移时,平移的距离=5+3=8(cm).13.5<r ≤12或r=6013[解析] 根据勾股定理求得直角三角形的斜边长=52+122=13.当圆和斜边相切时,半径即为斜边上的高,等于6013; 当圆和斜边相交,且只有一个交点在斜边上时,可以让圆的半径大于短直角边而不大于长直角边,即5<r ≤12.14.(6,2)或(-6,2) [解析] 依题意,可设P(x ,2)或P(x ,-2).①当点P 的坐标是(x ,2)时,将其代入y=12x 2-1,得2=12x 2-1,解得x=±6, 此时P(6,2)或(-6,2);②当点P 的坐标是(x ,-2)时,将其代入y=12x 2-1,得-2=12x 2-1,即-1=12x 2, 此时方程无实数根.综上所述,符合条件的点P 的坐标是(6,2)或(-6,2).15.解:作OD ⊥AC 于点D.∵∠C=90°,∠B=60°,∴∠A=30°.∵AO=x cm ,∴OD=12x cm. (1)若⊙O 与直线AC 相离,则有OD>r ,即12x >1,解得x >2; (2)若⊙O 与直线AC 相切,则有OD=r ,即12x=1,解得x=2; (3)若⊙O 与直线AC 相交,则有OD<r ,即12x <1,解得x <2,∴0<x<2. 综上可知:当x >2时,直线AC 与⊙O 相离;当x=2时,直线AC 与⊙O 相切;当0<x <2时,直线AC 与⊙O 相交.16.解:(1)过点P 作直线x=2的垂线,垂足为A.当点P 在直线x=2的右侧时,AP=x -2=3,∴x=5,此时y=32×5=152,∴P ⎝⎛⎭⎪⎫5,152; 当点P 在直线x=2的左侧时,AP=2-x=3,∴x=-1,此时y=32×(-1)=-32, ∴P ⎝⎛⎭⎪⎫-1,-32. 综上所述,当⊙P 与直线x=2相切时,点P 的坐标为⎝⎛⎭⎪⎫5,152或⎝ ⎛⎭⎪⎫-1,-32. (2)当-1<x <5时,⊙P 与直线x=2相交;当x <-1或x >5时,⊙P 与直线x=2相离.17.解:(1)过点A 作ON 的垂线段,交ON 于点P ,如图①.在Rt △AOP 中,∠APO=90°,∠POA=30°,OA=80米,所以AP=12OA=80×12=40(米),即对学校A 的噪声影响最大时,卡车P 与学校A 的距离是40米.(2)以点A 为圆心,50米长为半径画弧,交ON 于点D ,E ,连接AD ,AE ,如图②.在Rt △ADP 中,∠APD=90°,AP=40米,AD=50米,所以DP=AD 2-AP 2=502-402=30(米).同理可得EP=30米,所以DE=60米.又因为18千米/时=5米/秒,605=12(秒), 所以卡车P 沿公路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.。
24.2.2 直线和圆的位置关系(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)
24.2.2 直线和圆的位置关系(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十四章“圆”24.2.2 直线和圆的位置关系(第一课时),内容包括:直线和圆的位置关系.2.内容解析本节课是在学生已经学习了点和圆的位置关系后,对直线和圆的位置关系进行探索.为后续学习切线判断定理打好基础.直线与圆的位置关系从两个方面去刻画:一是通过再现海上日出的过程中,探索直线与圆的公共点的个数,将直线与圆的位置分为相交、相切、相离三种情况;二是通过比较直线与圆心的距离与半径,对直线与圆的位置进行分类,二者之间相互对应,相互联系.基于以上分析,确定本节课的教学重点是:探索直线和圆的位置关系.二、目标和目标解析1.目标1)理解直线和圆的三种位置关系.2)经历类比探索点和圆位置关系的过程,探索直线和圆的位置关系,体会类比思想,分类思想以及数形结合思想.2.目标解析达成目标1)的标志是:会根据交点个数及数量关系判断直线和圆的位置关系会运用它解决一些实际问题.达成目标2)的标志是:经历类比探索点和圆位置关系的过程,探索直线和圆的位置关系.三、教学问题诊断分析在研究直线和圆的位置关系中,学生不容易想到去类比探索点和圆位置关系的过程,探索直线和圆的位置关系.此外,在对直线和圆的位置关系进行分类时,需要学生具备运动的观点和一定的分类标准,部分学生可能也会存在困难.本节课的教学难点是:类比点和圆的位置关系的过程,探索直线和圆的位置关系.四、教学过程设计(一)复习巩固【提问】点和圆的位置关系有几种?用数量关系如何来判断呢?师生活动:教师提出问题,学生根据所学知识回答.【设计意图】通过回顾点和圆的位置关系,为本节课探究直线和圆的位置关系打好基础.(二)探究新知[诗词欣赏]晓日天际霞光入水中,水中天际一时红。
直须日观三更后,首送金乌上碧空。
【问题一】古诗前两句的意思是什么?师生活动:教师提出问题,学生根据所学知识回答.【问题二】如果从数学的角度来分析,把水面当作一直线,太阳当作一个圆,请同学们利用手中的纸片圆和笔,再现海上日出过程?师生活动:教师提出问题,学生根据所学知识回答.教师通过多媒体展示海上日出过程,加深学生理解.【问题三】再现海上日出过程中,你认为直线和圆有几种位置关系吗?分类依据是什么?师生活动:教师提出问题,学生认真观察后得出答案.教师根据情况适当提示学生通过观察圆与直线的公共点的数量判断直线和圆的位置关系.【问题四】通过预习,你能根据直线与圆之间公共点个数下定义吗?师生活动:教师提出问题,学生根据所学知识回答.教师通过多媒体给出答案:1)直线与圆没有公共点,称为直线与圆相离。
人教版九年级数学上学海风暴同步练24.2.2直线和圆的位置关系(含答案)
人教版九年级数学上学海风暴同步练24.2.2直线和圆的地点关系(含答案)基础导练1.如图, PA 切⊙ O 于点 A, PO 交⊙ O 于点 B,若 PA= 6, OP= 8,则⊙ O 的半径是 ()A .4B.2 7C.5D.10第1题图第2题图2.如图, PA,PB 是⊙ O 的两条切线,切点是 A,B.假如 OP= 4,OA= 2,那么∠ AOB= (A .90°B.100°C.110°D. 120°3.直线 AB 与⊙ O 相切于 B 点, C 是⊙ O 与 OA 的交点,点 D 是⊙ O 上的动点 (D 与 B、C 重合 ),若∠ A= 40°,则∠ BDC 的度数是 ().A.25 °或 155 °B.50 °或 155 °C.25 °或 130 °D.50 °或 130 °)不能力提高4.如图,⊙ O 是△ ABC 的内切圆,与AB, BC, CA 分别切于点D, E, F ,∠ DOE = 120 °,∠EOF = 110°,则∠ A= ______,∠ B= ______,∠ C= ______.5.如下图,EB, EC 是⊙ O 的两条切线, B, C 是切点, A, D 是⊙ O 上两点,假如∠E = 46°,∠ DCF = 32°,求∠ A 的度数.参照答案1.B2.D3.A4.50 ° 60°70°5.解:∵EB,EC是⊙ O 的两条切线,∴EB= EC.∴∠ ECB=∠EBC.又∠ E= 46°,而∠ E+∠ EBC+∠ ECB= 180°,∠ ECB= 67°.又∠ DCF +∠ ECB +∠ DCB= 180°,∴∠ BCD = 180°-67°- 32°= 81°.又∠ A+∠ BCD= 180°,∴∠ A= 180°-81°= 99°.。
24.2.2 第1课时 直线和圆的位置关系 初中数学人教版九年级上册课件
2.已知⊙O的半径为5 cm,圆心O与直线AB的距离为d,根据条
件填写d的范围:
(1)若AB和⊙O相离,则 d > 5 cm
;
(2)若AB和⊙O相切,则 d = 5 cm
;
(3)若AB和⊙O相交,则 0 cm≤d < 5 cm .
典例精析
例1 在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,
以C为圆心,r为半径的圆与AB有怎样的位置关系?
为什么?
(1) r=2 cm;(2) r=2.4 cm; (3) r=3 cm.
B
分析:要了解AB与⊙C的位置关系,只要知
道圆心C到AB的距离d与r的关系.已知r,只 4
需求出C到AB的距离d. C
D A
3
解:过C作CD⊥AB,垂足为D.
在△ABC中,
dD
(2) 当r=2.4 cm时,有d=r, 因此⊙C和AB相切.
(3) 当r=3 cm时,有d<r, 因此⊙C和AB相交.
d D
dD
变式题:
1.在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,
以C为圆心画圆,当半径r为何值时,圆C与直线
AB没有公共点?
B
解:当0 cm<r<2.4 cm或r>4cm
A. r < 5 B. r > 5 C. r = 5 D. r ≥ 5
3. ☉O的最大弦长为8,若圆心O到直线l的距离为d=5,
则直线l与☉O ( C )
A. 相交
B.相切
C. 相离
D.以上三种情况都有可能
4. ☉O的半径为5,直线l上的一点到圆心O的距离是5,
则直线l与☉O的位置关系是( A )
24.2.2直线和圆的位置关系(第3课时)
由BD+CD=BC可得
(9-x) +(13-x)=14.
解得 x=4. 因此 AF=4cm,
BD=5 cm, CE=9 cm. B F
A E O
·
D C
练习 ``
1.如图, △ABC中,∠ABC=50°,∠ACB=75°,点O是内心, 求∠BOC的度数.
1 解 :∠BOC=180°- (∠ABC + ∠ACB) 2
24.2.2 直线和圆的位置关系 (第3课时)
湖城学校 杨贤
活动一 创设情境,导入新知
切线长: 经过圆外一点作圆的切线,这点和切点之 间的线段长,叫做这点到圆的切线长.
A P
O·
活动2 探究新知,挖掘内涵
如图纸上有一⊙O,PA为⊙O的切线,沿着直线PO将纸对折 ,设圆 上与点A重合的点为B,这时,OB是⊙O的一条半径吗? 利用图形的轴对称性,说明图中的PA与PB,∠APO与∠BPO的关系?
1 =180°- (50°+75°) 2
=117.5°
B
A
O
·
C
2.△ABC的内切圆半径为r, △ABC的周长为l,求△ABC的 面积.(提示:设内心为O,连接OA、OB、OC.)
解:
设AB = c,BC = a,AC = b.
则
1 S AOB cr S 2
ABC
1 BOC ar S 2
BOC
下图是一张三角形的铁皮,如何在它的上面截下一块圆形的 用料,并且使圆的面积尽可能大呢?
A A
l
B C B
·
C
假设符合条件的圆已经作出,那么它应当与三角形的三边都相 切,这个圆的圆心到三角形各边的距离都等于半径,如何找到圆心?
人教版数学九年级上册:24.2.2 直线和圆的位置关系 教案(附答案)
24.2.2 直线和圆的位置关系第1课时 直线和圆的位置关系教学目标1.理解掌握同一平面内的直线与圆的三种位置关系.2.理解记忆割线、切线、切点等概念.3.能根据圆心到直线的距离d 与半径r 的大小关系,准确判断出直线与圆的位置关系. 预习反馈阅读教材P95~96,完成下列知识探究.1.直线和圆有两个公共点时,直线和圆相交,这条直线叫做圆的割线.2.直线和圆只有一个公共点时,直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.3.直线和圆没有公共点时,直线和圆相离.4.设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则有:直线l 和⊙O 相交⇔d <r ;直线l 和⊙O 相切⇔d =r ;直线l 和⊙O 相离⇔d >r .例题讲解例1 在Rt △ABC 中,∠C =90°,AB =4 cm ,BC =2 cm ,以C 为圆心,r 为半径的圆与AB 有何种位置关系?请你写出判断过程.(1)r =1.5 cm ;(2)r = 3 cm ;(3)r =2 cm.【解答】 过点C 作CD ⊥AB ,垂足为D.∵AB =4 cm ,BC =2 cm ,∴AC =2 3 cm.又∵S △ABC =12AB ·CD =12BC ·AC ,∴CD =BC ·AC AB = 3 cm. (1)r =1.5 cm 时,相离;(2)r = 3 cm 时,相切;(3)r =2 cm 时,相交.【跟踪训练1】 在Rt △ABC 中,∠C =90°,AC =3 cm ,BC =4 cm ,以C 为圆心,r 为半径作圆.当r 满足0<r<125__cm 时,⊙C 与直线AB 相离;当r 满足r =125__cm 时,⊙C 与直线AB 相切;当r 满足r>125__cm 时,⊙C 与直线AB 相交. 【跟踪训练2】 已知⊙O 的半径为5 cm ,圆心O 到直线a 的距离为3 cm ,则⊙O 与直线a 的位置关系是相交.直线a 与⊙O 的公共点个数是2.例2 已知⊙O 的半径是3 cm ,直线l 上有一点P 到O 的距离为3 cm ,试确定直线l 和⊙O 的位置关系.【解答】 相交或相切.【跟踪训练2】 如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,若以C 为圆心,r 为半径的圆与斜边AB 只有一个公共点,则r 的取值范围是多少?【点拨】 分相切和相交两类讨论.解:r =2.4或3<r ≤4.巩固训练1.已知⊙O 的半径为5,直线l 是⊙O 的切线,则点O 到直线l 的距离是(C)A .2.5B .3C .5D .102.已知OA平分∠BOC,P是OA上任意的一点.若以点P为圆心的圆与OC相离,则⊙P 与OB的位置关系是(B)A.相切B.相离C.相交 D.相离或相切3.在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则BC与⊙A的位置关系是(C)A.相交 B.相离C.相切 D.不确定4.已知∠AOB=30°,M为OB上的一点,且OM=5 cm,以M为圆心,r为半径的圆与直线OA有怎样的位置关系?为什么?(1)r=2 cm;(2)r=4 cm;(3)r=2.5 cm.解:圆心M到OA的距离d=0.5OM=0.5×5=2.5(cm).(1)r=2 cm时,d>r,直线OA与⊙M相离;(2)r=4 cm时,d<r,直线OA与⊙M相交;(3)r=2.5 cm时,d=r,直线OA与⊙M相切.第2课时切线的判定和性质教学目标1.探索并掌握切线与过切点的半径之间的位置关系.2.能判定一条直线是否为圆的切线;会过圆上一点画圆的切线.3.会运用圆的切线的性质与判定来解决相关问题.预习反馈阅读教材P97~98,完成下列问题.1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2.切线的性质:①切线和圆只有一个公共点;②切线到圆心的距离等于半径;③圆的切线垂直于过切点的半径.3.当已知一条直线是某圆的切线时,切点的位置是确定的,辅助线常常是连接圆心和切点,得到半径,那么半径垂直于切线.例题讲解例(教材P98例1)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,求证:AC是⊙O的切线.【解答】证明:过点O作OE⊥AC,垂足为E,连接OD,OA.∵⊙O与AB相切于点D,∴OD⊥AB.又△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线.∴OE=OD,即OE是⊙O的半径.这样,AC经过⊙O的半径OE的外端E,并且垂直于半径OE,所以AC与⊙O相切.【方法归纳】在解决有关圆的切线问题时,常常需要作过切点的半径.【跟踪训练】 如图,AB 为⊙O 的直径,点E 在⊙O 上,C 为BE ︵的中点,过点C 作直线CD ⊥AE 于D ,连接AC.试判断直线CD 与⊙O 的位置关系,并说明理由.解:直线CD 与⊙O 相切,理由:连接OC.∵C 为BE ︵的中点,∴BC ︵=CE ︵.∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA.∴∠DAC =∠OCA.∴OC ∥AD.∵AD ⊥CD ,∴OC ⊥CD.又∵OC 为⊙O 的半径,∴CD 是⊙O 的切线.巩固训练1.在正方形ABCD 中,点P 是对角线AC 上的任意一点(不包含端点),以P 为圆心的圆与AB 相切,则AD 与⊙P 的位置关系是(B)A .相离B .相切C .相交D .不能确定2.如图,A ,B 是⊙O 上的两点,AC 是过点A 的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于60°时,AC 才能成为⊙O 的切线.第2题图 第3题图3.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C.若∠A =25°,则∠D =40°.4.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E ,过点D 作DF ⊥AB ,垂足为F ,连接DE.求证:直线DF 与⊙O 相切.证明:连接OD.∵AB =AC ,∴∠B =∠C.∵OD =OC ,∴∠ODC =∠C.∴∠ODC =∠B.∴OD ∥AB.∵DF ⊥AB ,∴OD ⊥DF.又∵点D 在⊙O 上,∴直线DF与⊙O相切.课堂小结1.有圆的切线时,常常连接圆心和切点得切线垂直于半径;2.“连半径证垂直”与“作垂直证半径”——判定直线与圆相切.①当直线与圆有公共点时,只需“连半径、证垂直”即可;②当已知条件中没有指出圆与直线有公共点时,常运用“d=r”进行判断,辅助线的作法是过圆心作已知直线的垂线,证明垂线段的长等于半径.第3课时切线长定理教学目标1.理解并掌握切线长定理,能熟练运用所学定理来解答问题.2.了解三角形的内切圆及内心的特点,会画三角形的内切圆.预习反馈阅读教材P99~100,完成下列知识探究.1.经过圆外一点作圆的切线,这点和切点之间线段的长叫做这点到圆的切线长.图中的切线长为PA,PB.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,图中相等的线段有PA,PB,这一点和圆心的连线平分两条切线的夹角,图中相等的角为∠APO=∠BPO.3.与三角形各边都相切的圆叫做三角形的内切圆.4.三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,它到三边的距离相等.例题讲解例(教材P100例2)如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=9,BC=14,CA=13.求AF,BD,CE的长.【解答】设AF=x,则AE=x,CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC,可得(13-x)+(9-x)=14.解得x=4.因此AF=4,BD=5,CE=9.【跟踪训练】如图,已知⊙O是Rt△ABC(∠C=90°)的内切圆,切点分别为D,E,F.(1)求证:四边形ODCE 是正方形;(2)设BC =a ,AC =b ,AB =c ,求⊙O 的半径r.解:(1)证明:∵BC ,AC 分别与⊙O 相切于D ,E ,∴∠ODC =∠OEC =∠C =90°.∴四边形ODCE 为矩形.又∵OE =OD ,∴矩形ODCE 是正方形.(2)由(1)得CD =CE =r ,∴a +b =BD +AE +2r =BF +AF +2r =c +2r ,解得r =a +b -c 2. 巩固训练1.如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,则△ABC 的内切圆半径r =2.第1题图 第2题图 第3题图2.如图,AD ,DC ,BC 都与⊙O 相切,且AD ∥BC ,则∠DOC =90°.3.如图,点O 为△ABC 的外心,点I 为△ABC 的内心.若∠BOC =140°,则∠BIC =125°.4.如图,△ABC 切⊙O 于D ,E ,F 三点,内切圆⊙O 的半径为1,∠C =60°,AB =5,则△ABC 的周长为课堂小结1.切线长定理. 2.三角形的内切圆及内心. 3.直角三角形内切圆半径公式.。
24.2.2直线和圆的位置关系
直线和圆的位置关系教学内容:直线和圆的位置关系教学目标:1、使学生掌握直线和圆的三种位置关系的定义及其判定方法和性质;2、通过直线和圆的位置关系的探究,向学生渗透类比、分类、数形结合的思想,培养学生观察、分析和发现问题的能力;3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.教学重点:直线与圆的三种位置关系教学难点:直线和圆的三种位置关系的性质和判定的正确运用教学过程:一、类比联想,提出问题1.前面已经研究了点和圆的位置关系,请学生回忆,点和圆有几种位置关系?它们的数量特征分别是什么?2.如果把点换成一条直线,直线和圆又有哪几种位置关系呢?(板书课题)二、根据图形运动变化,发现规律、传授新知1.尝试活动让学生在纸上画一个圆,把直尺边缘看成一条直线,任意移动直尺,观察有几种位置关系.2.电脑演示在学生尝试活动的基础上,教师演示图:一个已知圆O与一条直线l发生相对运动的情况.将圆向上逐步运动,让学生观察,把观察到的情况说出来.(1)相交;直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3)相离:直线和圆没有公共点时,叫做直线和圆相离.给出以上定义后,教师强调:(1)直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.(2)直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?学生回答后,教师总结并板书:如果⊙O的半径为r,圆心O到直线l的距离为d,那么这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.以上三个命题的正确性是通过观察得到的,可鼓励程度好的学生课后对它们加以证明.三、例题分析,课堂练习例在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米;(2)r=2.4厘米;(3)r=3厘米.让学生自己作出回答,教师板书解题过程,并画出相应的图形.练习1 填空在Rt△ABC中,∠C=90°,AC=3,AB=5,若以C为圆心,r为半径作圆,那么:(1)当直线AB与⊙C相离时,r的取值范围是______;(2)当直线AB与⊙C相切时,r的取值范围是______;(3)当直线AB与⊙C相交时,r的取值范围是______.练习2如图7-101,已知∠AOB=30°,M为OB上一点,且OM= 5厘米,以M为圆心、以r为半径的圆与直线OA有怎样的位置关系?为什么?(1)r=2厘米;(2)r=4厘米;(3)r=2.51 厘米.四、课堂小结问:这节课学习了哪些具体内容?用到了哪些数学思想方法?应注意什么问题?在学生回答的基础上教师归纳:1.出示直线与圆的位置关系表.2.本节课类比点和圆的位置关系,从运动变化的观点来研究直线和圆的位置关系;利用了分类的思想把直线和圆的位置关系分为三类来讨论;用了数形结合的思想,通过d和r这两个数量之间的关系来研究直线和圆的位置关系.3.学习时应注意弄清直线与圆的位置关系的性质与判定使用的区别与联系.五、作业:课本106页“练习”中的2和110页中的2。
2422_直线和圆的位置关系_同步测控优化训练(含答案)2.docx
一、1.已知RtAABC 的斜边AB=6 cm,直角边AC=3 cm.(l )以C 为圆心,2 cm 长为半径的圆和AB 的位置关系是 ________ :(2)以C 为圆心,4 cm 长为半径的圆和AB 的位置关系是 ________ ; (3)如果以C 为圆心的鬪和AB 相切,贝怦径长为________ 2三角形的内心是三角形 ________________ 的交点.3Q0的半径r=5 cm,点P 在直线1上,若OP=5 cm,则直线1与©0的位置关系是()A.相离B.相切C.和交D.相切或相交4. 设。
0的半径为3,点0到直线1的距离为d,若直线1与(DO 至少有一个公共点,则d 应满足的条件是()A.d=3B.d<3C.d<3D.d>31. 如图24-2-2-1,已知ZAOB=30o,M 为0A 边上一点,以M 为圆心、2 cm 为半径作OM.若点M 在0A 边上运动贝J 当 0M= ______________ cm 时,OM 与0B 相切.图 24-2-2-12.00的半径为R,直线1和冇公共点,若関心到直线1的距离是d,则d 与R 的大小关系是()A.d>RB.d<RC.d>RD.d<R3.在RtAABC 中,ZC=90°, AB=10, AC=6,以C 为圆心作OC 和AB 相切,则OC 的半径长为()A.8B.4C.9.6D.4.84.00内最长弦长为m,肓线1与OO 相离,设点O 到1的距离为d,则d 与m 的关系是()■■ ■ m , m A.d=mB.d>mC.d>—D.d< —2 25. 以三角形的一边长为直径的圆切三角形的另一边,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.如图24-2-2-2, PA 、PB 是00的两条切线,切点是A 、B.如果0P=4, PA=23,那么ZAOB 等于()A.90°B.1000C.110°D.120°7. 已知在RtAABC 中,ZABC=90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.2.2 直线和圆的位置关系一、1.已知Rt △ABC 的斜边AB=6 cm,直角边AC=3 cm.(1)以C 为圆心,2 cm 长为半径的圆和AB 的位置关系是_________;(2)以C 为圆心,4 cm 长为半径的圆和AB 的位置关系是_________;(3)如果以C 为圆心的圆和AB 相切,则半径长为_________.2.三角形的内心是三角形_______________的交点.3.⊙O 的半径r=5 cm ,点P 在直线l 上,若OP=5 cm ,则直线l 与⊙O 的位置关系是( )A.相离B.相切C.相交D.相切或相交4.设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 应满足的条件是( )A.d=3B.d≤3C.d <3D.d >3 二、1.如图24-2-2-1,已知∠AOB=30°,M 为OA 边上一点,以M 为圆心、2 cm 为半径作⊙M.若点M 在OA 边上运动,则当OM=_______________ cm 时,⊙M 与OB 相切.图24-2-2-12.⊙O 的半径为R ,直线l 和⊙O 有公共点,若圆心到直线l 的距离是d ,则d 与R 的大小关系是( )A.d >RB.d <RC.d≥RD.d≤R3.在Rt △ABC 中,∠C=90°,AB=10,AC=6,以C 为圆心作⊙C 和AB 相切,则⊙C 的半径长为( )A.8B.4C.9.6D.4.84.⊙O 内最长弦长为m ,直线l 与⊙O 相离,设点O 到l 的距离为d ,则d 与m 的关系是( )A.d=mB.d >mC.d >2m D.d <2m5.以三角形的一边长为直径的圆切三角形的另一边,则该三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.如图24-2-2-2,PA 、PB 是⊙O 的两条切线,切点是A 、B.如果OP=4,PA=23,那么∠AOB 等于( )图24-2-2-2A.90°B.100°C.110°D.120°7.已知在Rt △ABC 中,∠ABC=90°,D 是AC 的中点,⊙O 经过A 、D 、B 三点,CB 的延长线交⊙O 于点E(如图24-2-2-3(1)).在满足上述条件的情况下,当∠CAB 的大小变化时,图形也随着改变(如图24-2-2-3(2)),在这个变化过程中,有些线段总保持着相等的关系.图24-2-2-3观察上述图形,连结图24-2-2-3(2)中已标明字母的某两点,得到一条新线段,证明它与线段CE 相等; 连结_____________________________. 求证:____________=CE. 证明:8.如图24-2-2-4,延长⊙O 的半径OA 到B,使OA=AB,DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线,垂足为点C.求证:∠ACB=31∠OAC.图24-2-2-4三、1.如图24-2-2-5,已知同心圆O ,大圆的弦AB=CD ,且AB 是小圆的切线,切点为E.求证:CD 是小圆的切线.图24-2-2-52.如图24-2-2-6,是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA 、PB 分别相切于点A 、B ,不倒翁的鼻尖正好是圆心O ,若∠OAB=25°,求∠APB 的度数.3.已知如图24-2-2-7所示,在梯形ABCD中,AD∥BC,∠D=90°,AD+BC=AB,以AB为直径作⊙O,求证:⊙O 和CD相切.4.如图24-2-2-8所示,已知AB为⊙O的直径,C、D是直径AB同侧圆周上两点,且CD=BD,过D作DE⊥AC于点E,求证:DE是⊙O的切线.5.如图24-2-2-9,已知正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点,P不运动到M和C,以AB为直径作⊙O,过点P作⊙O的切线交AD于点F,切点为E.求四边形CDFP的周长.6.如图24-2-2-10所示,已知AB为半圆O的直径,直线MN切半圆于点C,AD⊥MN于点D,BE⊥MN于点E,BE 交半圆于点F,AD=3 cm,BE=7 cm,(1)求⊙O的半径;(2)求线段DE的长.7.如图24-2-2-11,已知⊙A 与⊙B 外切于点P,BC 切⊙A 于点C,⊙A 与⊙B 的内公切线PD 交AC 于点D,交BC 于点M.(1)求证:CD=PB;(2)如果DN ∥BC,求证:DN 是⊙B 的切线.8.在直角坐标系中,⊙O 1经过坐标原点O ,分别与x 轴正半轴、y 轴正半轴交于点A 、B.(1)如图24-2-2-12,过点A 作⊙O 1的切线与y 轴交于点C ,点O 到直线AB 的距离为512,BC AC =53,求直线AC 的解析式;(2)若⊙O 1经过点M(2,2),设△BOA 的内切圆的直径为d ,试判断d+AB 的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.图24-2-2-12参考答案一、课前预习(5分钟训练)1.已知Rt△ABC的斜边AB=6 cm,直角边AC=3 cm.(1)以C为圆心,2 cm长为半径的圆和AB的位置关系是_________;(2)以C为圆心,4 cm长为半径的圆和AB的位置关系是_________;(3)如果以C为圆心的圆和AB相切,则半径长为_________.思路解析:由勾股定理知此直角三角形斜边上的高是233cm,因此当圆与AB相切时,半径为233cm.答案:(1)相离(2)相交(3)233cm2.三角形的内心是三角形_______________的交点.思路解析:由三角形的内心即内切圆圆心到三角形三边相等.答案:三个内角平分线3.⊙O的半径r=5 cm,点P在直线l上,若OP=5 cm,则直线l与⊙O的位置关系是( )A.相离B.相切C.相交D.相切或相交思路解析:点P也可能不是切点,而是直线与圆的交点.答案:D4.设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d应满足的条件是( )A.d=3B.d≤3C.d<3D.d>3思路解析:直线l可能和圆相交或相切. 答案:B二、课中强化(10分钟训练)1.如图24-2-2-1,已知∠AOB=30°,M为OA边上一点,以M为圆心、2 cm为半径作⊙M.若点M在OA边上运动,则当OM= cm时,⊙M与OB相切.图24-2-2-1思路解析:根据切线的定义,可得OM=2×2=4. 答案:42.⊙O 的半径为R ,直线l 和⊙O 有公共点,若圆心到直线l 的距离是d ,则d 与R 的大小关系是( )A.d >RB.d <RC.d≥RD.d≤R 思路解析:直线l 与⊙O 有公共点,则l 与直线相切或相交,所以d≤R. 答案:D3.在Rt △ABC 中,∠C=90°,AB=10,AC=6,以C 为圆心作⊙C 和AB 相切,则⊙C 的半径长为( )A.8B.4C.9.6D.4.8 思路解析:作CD ⊥AB 于D ,则CD 为⊙C 的半径,BC=22AC AB -=22610-=8,由面积相等,得AB·CD=AC·BC. ∴CD=1086⨯=4.8. 答案:D4.⊙O 内最长弦长为m ,直线l 与⊙O 相离,设点O 到l 的距离为d ,则d 与m 的关系是( )A.d=mB.d >mC.d >2mD.d <2m 思路解析:最长弦即为直径,所以⊙O 的半径为2m ,故d >2m.答案:C5.以三角形的一边长为直径的圆切三角形的另一边,则该三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形 思路解析:直径边必垂直于相切边. 答案:B6.如图24-2-2-2,PA 、PB 是⊙O 的两条切线,切点是A 、B.如果OP=4,PA=23,那么∠AOB 等于( )图24-2-2-2A.90°B.100°C.110°D.120° 思路解析:∵PA 、PB 是⊙O 的两条切线,切点是A 、B, ∴PA ⊥OA ,PB ⊥OB.∠APO=∠BPO.∵OP =4,PA=23,∴OA=2.∴∠APO=∠BPO=30°,即∠APB=60°.∴∠AOB=120°. 答案:D7.已知在Rt △ABC 中,∠ABC=90°,D 是AC 的中点,⊙O 经过A 、D 、B 三点,CB 的延长线交⊙O 于点E(如图24-2-2-3(1)).在满足上述条件的情况下,当∠CAB 的大小变化时,图形也随着改变(如图24-2-2-3(2)),在这个变化过程中,有些线段总保持着相等的关系.图24-2-2-3观察上述图形,连结图24-2-2-3(2)中已标明字母的某两点,得到一条新线段,证明它与线段CE 相等; 连结_____________________________. 求证:____________=CE. 证明:思路分析:由切线的性质定理和三角形中位线定理和线段垂直平分线性质定理来解决. 答案:AE AE证法一:如图,连结OD,∵∠ABC =90°,CB 的延长线交⊙O 于点E, ∴∠ABE =90°. ∴AE 是⊙O 的直径.∵D 是AC 的中点,O 是AE 的中点,∴OD=21CE. ∵OD=21AE,∴AE =CE.证法二:如图,连结BD,在Rt △ABC 中,∠ABC =90°,∵D 是AC 的中点,∴AD =CD =BD.∴∠1=∠2. ∵四边形AEBD 内接于⊙O, ∴∠1=∠DAE.∴∠2=∠DAE.∴AE =CE. 证法三:如图,连结DE,同证法一,得AE 是⊙O 的直径, ∴∠ADE =90°. ∵D 是AC 的中点,∴DE 是线段AC 的垂直平分线.∴AE =CE.8.如图24-2-2-4,延长⊙O 的半径OA 到B,使OA=AB,DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线,垂足为点C.求证:∠ACB=31∠OAC.图24-2-2-4证明:连结OE 、AE,并过点A 作AF ⊥DE 于点F,∵DE 是圆的一条切线,E 是切点,∴OE ⊥DC. 又∵BC ⊥DE,∴OE ∥AF ∥BC. ∴∠1=∠ACB,∠2=∠3.∵OA=OE,∴∠4=∠3.∴∠4=∠2.又∵点A 是OB 的中点,∴点F 是EC 的中点. ∴AE=AC.∴∠1=∠2. ∴∠4=∠2=∠1,即∠ACB=31∠OAC. 三、课后巩固(30分钟训练)1.如图24-2-2-5,已知同心圆O ,大圆的弦AB=CD ,且AB 是小圆的切线,切点为E.求证:CD 是小圆的切线.图24-2-2-5思路分析:证切线的两种方法是:①作半径,证垂直;②作垂直,证半径.本题属于②,前一个例题属于①. 证明:连结OE ,作OF ⊥CD 于F. ∵AB 切小圆于E ,∴OE ⊥AB.∵OF ⊥CD ,AB=CD ,∴OE=OF.∴CD 是小圆O 的切线.2.如图24-2-2-6,是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA 、PB 分别相切于点A 、B ,不倒翁的鼻尖正好是圆心O ,若∠OAB=25°,求∠APB 的度数.图24-2-2-6思路分析:由切线的性质定理和等腰三角形“三线合一”定理解决. 解法一:∵PA 、PB 切⊙O 于A 、B , ∴PA=PB.∴OA ⊥PA. ∵∠OAB=25°,∴∠PAB=65°. ∴∠APB=180-65°×2=50°.解法二:连结OB ,如图(1). ∵PA 、PB 切⊙O 于A 、B , ∴OA ⊥PA ,OB ⊥AB. ∴∠OAP+∠OBP=180°. ∴∠APB+∠AOB=180°.∵OA=OB ,∴∠OAB=∠OBA=25°. ∴∠AOB=130°.∴∠APB=50°. 解法三:连结OP 交AB 于C ,如图(2). ∵PA 、PB 切⊙O 于A 、B , ∴OA ⊥PA ,OP ⊥AB.OP 平分∠APB ,∴∠APC=∠OAB=25°. ∴∠APB=50°.3.已知如图24-2-2-7所示,在梯形ABCD 中,AD ∥BC ,∠D=90°,AD +BC=AB ,以AB 为直径作⊙O ,求证:⊙O 和CD 相切.图24-2-2-7思路分析:要证⊙O 与CD 相切,只需证明圆心O 到CD 的距离等于半径OA(或OB 或21AB)即可,即在不知道圆与直线是否有公共点的情况下通常过圆心作直线的垂线段,然后证垂线段的长等于半径(“作垂直,证半径”),这是证直线与圆相切的方法之一.证明:过O 作OE ⊥CD 于点E. ∵OE ⊥CD ,∴∠OEC=90°.∵∠D=90°,∴∠OEC=∠D.∴AD ∥OE. ∵AD ∥BC ,∴AD ∥BC ∥OE.[来源:] ∵OA=OB,∴CE=DE.∴OE=21 (AD+BC). ∵AD +BC=AB , ∴OE=21AB. ∴⊙O 与CD 相切.4.如图24-2-2-8所示,已知AB 为⊙O 的直径,C 、D 是直径AB 同侧圆周上两点,且CD=BD ,过D 作DE ⊥AC 于点E ,求证:DE 是⊙O 的切线.图24-2-2-8思路分析:要证DE 是⊙O 的切线,根据切线的判定定理,连结OD ,只须证明OD ⊥DE 即可,即“作半径,证垂直”这是证明圆的切线的另一方法.证明:连结OD 、AD.∵弧CD=弧BD ,∴∠1=∠2.∵OA=OD ,∴∠2=∠3.∴∠1=∠3.∴AE ∥OD.∵AE ⊥DE ,∴OD ⊥DE.∴DE 是⊙O 的切线.5.如图24-2-2-9,已知正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点,P 不运动到M 和C,以AB 为直径作⊙O ,过点P 作⊙O 的切线交AD 于点F,切点为E.求四边形CDFP 的周长.图24-2-2-9思路分析:从圆外一点引圆的两条切线,可证切线长相等,则可将四边形CDFP的周长转化为正方形边长的3倍.解:∵四边形ABCD是正方形,∴∠A=∠B=90°.∴AF、BP都是⊙O的切线.又∵PF是⊙O的切线,∴FE=FA,PE=PB.∴四边形CDFP的周长为AD+DC+CB=2×3=6.6.如图24-2-2-10所示,已知AB为半圆O的直径,直线MN切半圆于点C,AD⊥MN于点D,BE⊥MN于点E,BE交半圆于点F,AD=3 cm,BE=7 cm,(1)求⊙O的半径;(2)求线段DE的长.图24-2-2-10思路分析:(1)连结OC,证OC为梯形中位线.在解有关圆的切线问题时,常常需要作出过切点的半径.(2)连结AF,证四边形ADEF为矩形,从而得到AD=EF,DE=AF,然后在Rt△ABF中运用勾股定理,求AF的长.解:(1)连结OC.∵MN切半圆于点C,∴OC⊥MN.∵AD⊥MN,BE⊥MN,∴AD∥OC∥BE.∵OA=OB,∴OC 为梯形ADEB 的中位线.∴OC=21(AD +BE)=5 cm. 所以⊙O 的半径为5 cm.(2)连结AF.∵AB 为半圆O 的直径,∴∠AFB=90°.∴∠AFE=90°.又∠ADE=∠DEF=90°,∴四边形ADEF 为矩形. ∴DE=AF ,AD=EF=3 cm.在Rt △ABF 中,BF=BE -EF=4 cm ,AB=2OC=10 cm.由勾股定理,得AF=22BF AB -=22410-=221(cm),∴DE=221 cm.7.如图24-2-2-11,已知⊙A 与⊙B 外切于点P,BC 切⊙A 于点C,⊙A 与⊙B 的内公切线PD 交AC 于点D,交BC 于点M.(1)求证:CD=PB;(2)如果DN ∥BC,求证:DN 是⊙B 的切线.图24-2-2-11思路分析:证线段相等,一般先证两三角形全等.证圆的切线可以先作垂直,后证半径长即可.证明:(1)∵BC 切⊙A 于点C,DP 切⊙A 于点P,∴∠DCM=∠BPM=90°,MC=MP.∵∠DMC=∠BMP,∴△DCM ≌△BPM.∴CD=PB.(2)过点B 作BH ⊥DN,垂足为点H.∵HD ∥BC,BC ⊥CD,∴HD ⊥CD.∴∠BCD=∠CDH=∠BHD=90°.∴四边形BCDH 是矩形.∴BH=CD.∵CD=PB,∴BH=PB.∴DN 是⊙B 的切线.8.在直角坐标系中,⊙O 1经过坐标原点O ,分别与x 轴正半轴、y 轴正半轴交于点A 、B.(1)如图24-2-2-12,过点A 作⊙O 1的切线与y 轴交于点C ,点O 到直线AB 的距离为512,BC AC =53,求直线AC 的解析式;(2)若⊙O 1经过点M(2,2),设△BOA 的内切圆的直径为d ,试判断d+AB 的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.图24-2-2-12思路分析:由切线的性质和勾股定理可求出A 、C 两点的坐标,这样直线AC 的解析式可求.解:(1)如图,过O 作OG ⊥AB 于G ,则OG=512, 设OA=3k(k>0),∵∠AOB=90°,BC AC =53, ∴AB=5k,OB=4k.∵OA·OB=AB·OG=2S △AOB ,∴3k×4k=5×512. ∴k=1.∴OA=3,OB=4,AB=5.∴A (3,0).∵∠AOB=90°,∴AB 是⊙O 1的直径.∵AC 切⊙O 1于A ,∴BA ⊥AC.∴∠BAC=90°.。