九年级数学下册《一元二次方程的应用》教案(一) 新人教版
人教版数学九年级下册教案【7篇】
人教版数学九年级下册教案【7篇】人教版数学九年级下册教案篇1一元二次方程1、定义:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。
①是整式方程;②未知数的次数是二次;③只含有一个未知数;④二次项系数不为零。
2、化为一元二次方程的一般形式:按降幂排列,二次项系数通常为正,右端为零。
3、一元二次方程的根:代入使方程成立。
4、一元二次方程的解法:①配方法:移项→二次项系数化为一→两边同时加上一次项系数的一半→配方→开方→写出方程的解。
②公式法:x=(-b±√b2-4ac)/2a,③因式分解法:右端为零,左端分解为两个因式的乘积。
5、一元二次方程的根的判别式①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根。
注意:应用的前提条件是:a≠0.6、一元二次方程根与系数的关系:x1+x2=-b/a,x1_x2=c/a.注意:应用的前提条件是:a≠0,△≥0.7、列方程解应用题:审题设元→列代数式、列方程→整理成一般形式→解方程→检验作答。
人教版数学九年级下册教案篇2一、锐角三角函数1.正弦:在rt△abc中,锐角∠a的对边a与斜边的比叫做∠a的正弦,记作sina,即sina=∠a的对边/斜边=a/c;2.余弦:在rt△abc中,锐角∠a的邻边b与斜边的比叫做∠a的余弦,记作cosa,即cosa=∠a的邻边/斜边=b/c;3.正切:在rt△abc中,锐角∠a的对边与邻边的比叫做∠a 的正切,记作tana,即tana=∠a的对边/∠a的邻边=a/b。
①tana是一个完整的符号,它表示∠a的正切,记号里习惯省去角的符号“∠”;②tana没有单位,它表示一个比值,即直角三角形中∠a的对边与邻边的比;③tana不表示“tan”乘以“a”;④tana的值越大,梯子越陡,∠a越大;∠a越大,梯子越陡,tana的值越大。
4.余切:定义:在rt△abc中,锐角∠a的邻边与对边的比叫做∠a的余切,记作cota,即cota=∠a的邻边/∠a的对边=b/a;5.一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思
初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思《二次函数与一元二次方程》教学设计【课题】九年级下册5.6《二次函数与一元二次方程》(第1课时)一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系。
因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。
2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
三、教学目标知识与技能:1.探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系2.能根据二次函数y=ax2+bx+c的系数,判断它的图象与x轴的位置关系3.应用二次函数和一元二次方程的关系解决相关问题过程与方法:经历探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系的过程,培养学生分析问题,解决问题的能力。
情感态度和价值观:使学生在数学应用增强自信心,在合作学习中增强集体责任感,加强学生数形结合思想的应用。
四、教学重难点重点:应用二次函数和一元二次方程的关系解决相关问题难点:理解二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0根的关系五、教法学法教法:类比探究法、归纳总结法、讲练结合法学法:合作探究法、小组讨论法六、教学内容与过程(一)、立体式复习检测(1)一次函数y=-3x+6的图象与x轴的交点(,)一元一次方程-3x+6=0的根为________(2)不解方程,判断方程x2-3x+3=0根的情况是________(3)解方程: x2-2x-3=0(4)(中考·白银)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是________【师生活动】:同桌提问判别式△与方程实数根的关系,然后请4位同学分别板书以上4个题目,其他同学在导学案完成以上题目。
一元二次方程的解法教案人教版
- 一元二次方程的定义和解法(直接开方法、因式分解法、求根公式法)
- 一元二次方程的解法检验
- 一元二次方程的应用
在教学过程中,我们通过实例讲解、小组讨论等教学方法,使学生能够更好地理解和掌握一元二次方程的解法。同时,通过实践活动,学生能够运用所学知识解决实际问题。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是……(详细解释概念)。它是……(解释其重要性或应用)。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了一元二次方程在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调直接开方法、因式分解法和求根公式法这三个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
学生可以通过阅读《数学年鉴》了解一元二次方程的历史背景和发展,对数学有更深的认识。
学生可以通过阅读《数学思维训练》和《一元二次方程的奇妙世界》提高自己的数学思维能力和对一元二次方程的理解。
学生可以观看与一元二次方程相关的视频资源,如数学讲座、教学视频等,从不同角度理解和掌握一元二次方程的解法。
鼓励学生积极参与课后拓展,通过阅读、思考和实践,进一步提高自己的数学素养和解决问题的能力。
针对这些问题和不足,我计划在今后的教学中进行改进。例如,在讲解重点难点部分时,我可以通过更多实例和比较来帮助学生理解,或者通过分组教学,让学生有更多的机会进行实践操作。在实验操作环节,我可以在课堂上安排更多时间,让学生有更多的机会进行实验操作,提高他们对一元二次方程的理解。
课堂小结,当堂检测
1.课堂小结
2.拓展要求
鼓励学生在课后自主学习和拓展,可以结合课堂所学的知识点进行深入阅读和思考。学生在阅读过程中遇到疑问可以随时向老师提问,老师会提供必要的指导和帮助。
《一元二次方程》数学教案(优秀5篇)
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标:知识与技能目标:经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
《一元二次方程》数学教案(优秀5篇)
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
人教版九年级数学下册精品教案1 传播问题与一元二次方程
21.3实际问题与一元二次方程第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.第3课时几何图形与一元二次方程1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.2.继续探究实际问题中的数量关系,列出一元二次方程解应用题.3.通过探究体会列方程的实质,提高灵活处理问题的能力.一、情境导入如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,你能求出所截去小正方形的边长吗?二、合作探究探究点:用一元二次方程解决图形面积问题【类型一】利用面积构造一元二次方程模型用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=6解析:设一边长为x米,则另外一边长为(5-x)米,根据它的面积为6平方米,即可列出方程得:x(5-x)=6,故选择B.方法总结:理解题意,恰当的设未知数,把题中相关的量用未知数表示出来,用相等关系列出方程.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,求小正方形的边长.解析:设小正方形的边长为x cm,则长方体盒子底面的长、宽均可用含x的代数式表示,再根据面积,即可建立等量关系,列出方程.解:设小正方形的边长为x cm,则可得这个长方体盒子的底面的长是(80-2x)cm,宽是(60-2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面积,方程可列为(80-2x)(60-2x)=1500,整理得x2-70x+825=0,解得x1=55,x2=15.又60-2x>0,∴x=55(舍).∴小正方形的边长为15cm.方法总结:要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可.【类型二】整体法构造一元二次方程模型如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x米,根据题意可列出的方程为______________.解析:解法一:把两条道路平移到靠近矩形的一边上,用含x的代数式表示草坪的长为(22-x )米,宽为(17-x )米,根据草坪的面积为300平方米可列出方程(22-x )(17-x )=300.解法二:根据面积的和差可列方程:22×17-22x -17x +x 2=300.方法总结:解答与道路有关的面积问题,可以根据图形面积的和差关系,寻找相等关系建立方程求解;也可以用平移的方法,把道路平移构建特殊的图形,并利用面积建立方程求解.【类型三】利用一元二次方程解决动点问题如图所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解析:这是一道动态问题,可设出未知数,表示出PC 与CQ 的长,根据面积公式建立方程求解.解:(1)设x s 后,可使△PCQ 的面积为8cm 2,所以AP =x cm ,PC =(6-x )cm ,CQ =2x cm.则根据题意,得12·(6-x )·2x =8.整理,得x 2-6x +8=0,解这个方程,得x 1=2,x 2=4.所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半.则根据题意,得12(6-x )·2x =12×12×6×8.整理,得x 2-6x +12=0.由于此方程没有实数根,所以不存在使△PCQ 的面积等于△ABC 面积一半的时刻.三、板书设计与图形有关的问题是一元二次方程应用的常见题型,解决这类问题的关键是将不规则图形分割或补全成规则图形,找出各部分面积之间的关系,运用面积等计算公式列出方程;对图形进行分割或补全的原则:转化成为规则图形时越简单越直观越好.。
一元二次方程根的判别式的应用教学案
1.2 二次根式的性质(1)【要点预习】1.二次根式的性质:(1)2____(0)a =≥;(2)(__0)____(__0).a a a a ⎧=⎨-⎩【课前热身】1.填空:2= . 答案:22. = . 答案:43. ________= .答案:1 1【讲练互动】【例1】计算:(1) 33 3.⎤+⎦;解:(1) 原式=)233333+-.(2) 原式=((22220=---=.【黑色陷阱】注意2的区别,2表示a 的算术平方根的平方, 其运算结果为a ;a 2的算术平方根, 其结果由a 的符号决定, 当a 为正数时结果为a ;当a 为负数时结果为-a . 【变式训练】 1. 计算:(1) 2((2)2;(3)31.73-答案:(1) 4;(2)815;(3)19.【例2】(2008广州中考)如图,实数a、b在数轴上的位置,化简分析:根据图中数轴,可知-1<a<0<b<1,于是a a=-,b b=,a b b a-=-,于可化简原式.解:由题意得a<0<b, ∴原式=|a|-|b|-|a-b|=-a-b+(a-b)=-2b.号外面,可以先写成绝对值的形式,判断符号,然后化去绝对值.【变式训练】2. 2得…………………………………………………………( )A. 2B. -4x+4C. -2D. 4x-4答案:A【同步测控】基础自测1.下列算式错误的是…………………………………………………………………………( )6= B. 6- C. 2(6= D. 26=答案:D2.( )A.11 C.1±( D.答案:B3.= a-,则实数a在数轴上的对应点一定在……………………………………()A. 原点左侧 B. 原点右侧C. 原点或原点左侧D. 原点或原点右侧答案:C4. 当x>2答案:x-25.则此直角三角形的斜边长为 . 答案:36. 计算:(1) 2(;(2) 2-(3) .答案:(1)-6;(2)0.3;能力提升7. π的值是…………………………………………………………………( )A. 3.14-2πB. 3.14C. -3.14D. 无法确定解析:由于3.14<π 3.14 3.14ππ=-=-,所以原式=π-3.14-π=-3.14.答案:C8.已知0<a ,那么…………………………………………………………( )A. aB.a -C.a 3D.a 3-解析:由于a <0,故|a |=-a ,因此原式33a a ==-. 答案:D9.已知已知1x =+1y =222x xy y -+的值是 .解析:原式=(x -y )2=((22112⎡⎤+-+==⎣⎦.答案:210. 若化简|1-x |2x -5,则x 的取值范围是 . 解析:由题意得, 原式=(x -1)+(x -4)=2x -5, 故可知1-x ≤0且x -4≥0, 解得x ≥4. 答案:x ≥411. 已知a 、b 、c 为△ABC 分析:根据“三角形两边之和大于第三边”可得a+b >c ,b+c >a ,于是a b c a b c =+-=+-a b c b c a =--=+-,故可化简原式.解:∵a 、b 、c 为△ABC 的三边长,∴a+b >c , b+c >a . ∴原式=(a+b-c )+(b+c-a )=2b . 12. 阅读下面的文字后,回答问题.小王和小李解答题目:“先化简下式,再求值:a ,其中a =7时,得出了不同的答案.小王的解答是:原式=()11a a a +-=;小李的解答是:原式=()12127113a a a a =+-=-=⨯-=.(1)_____的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:___________.分析:由于a =7>111a a -=-,因此小王的解答错误.解:(1)小王;a . 创新应用13.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a 、b ,使a+b=m ,n ab =,使得22m +=,n b a =⋅,=)(b a >7m =,12n =,由于4+3=7,4312⨯=.即227+=2+解:这里m=13,n =42. ∵7+6=13,7×6=42,∴2213+=a+b >c , b+c >a .1.2 二次根式的性质(2)【要点预习】1.二次根式的性质2:________(0,0);a b=≥≥__0,__0).a b【课前热身】1.)A. B. C. D.答案:B2. 当0x<=___________.答案:-x3. =;=.答案:11 5 34. =_________.【讲练互动】【例1】化简:解:(1)原式=12×5=60. (2)原式=.(3)原式. (4)原式【绿色通道】对二次根式化简结果的要求:一是根号内不再含有开得尽方的因式;二是根号内不再含有分母. 二次根式化简的步骤:一是预备阶段,包括分解质因数,化带分数为假分数,处理好被开方数的符号,根号内分数的分子、分母同乘一个数,使分母变成一个完全平方数等;二是运用二次根式的性质的秩序:先运用积和商的自述平方根性质,的性质.【变式训练】1.化简:;答案:(1)40;(2)45;;【例2】先化简,再求出下面算式的近似值.(精确到0.01).解:(1)原式2.45=.(2)原式1.06=≈.(3)原式22.45≈.【黑色陷阱】第(1)题注意应化为正数后再化简;第(3)题根号内不是积的形式,注意要先分解因式,化成积的形式后再化简.【变式训练】2.先化简,再求出下列算式的近似值:(1)(结果保留三个有效数字);(2)(精确到0.01).答案:(1)0.110; 2.50.【例3】在44⨯的方格内画△ABC,使它的顶点都在格点上,三条边长分别为2,2的直角三角形CBA的斜边长;由于==因此可视作两条直角边长分别为3,1的直3,1的直角三角形的斜边长.解:化简后三角形的三边分别为ABC 如图所示. 【变式训练】3. 在44⨯的方格内画△ABC,使它的顶点都在格点上,三条边长分别为分析:由于===2,1的直角三3,2的直角三角形的斜边长.ABC 如图所示. 【同步测控】基础自测1.(2007潍坊中考)) A.10B.C.D.20答案:B2.的结果是………………………………………………………………( ) A.0.6 B.0.06 C.6.0± D.06.0± 答案:A3. 下列化简正确的是 ………………………………………………………………………( )959=⨯=45B.=7+24=31CBA22⨯=3623答案:C4. 等腰直角三角形的腰长为4,则斜边上的高线长为……………………………………()A.4 D.答案:B5.=a的取值范围是 .答案:a≥06. 化简:(1)162 ;(3) (4)答案:(1)(3)(4)6;7.直角三角形的两直角边长度的比为3∶2.解:设两直角边长分别为3x, 2x, 则由勾股定理得(3x)2+(2x)2=2, 13x2=520, x2=40.∵x>0, ∴x=∴两条直角边的长分别为能力提升8. (2007莱芜中考则x的取值范围是…………………………()A. x≥0B. x>0C. x≥1D. x>1解析:根据二次根据成立的意义,必须满足x≥0且x-1≥0,可解得x≥1.答案:C9.若等边三角形的边长是6,则它的高为…………………………………………………( )A.3B.C.D.解析:由勾股定理,得等边三角形的高答案:C10.(2007乌鲁木齐中考)的被开方数相同的概率是.==4个中有33 4 .答案:3 411.先化简,再用计算器求出各算式的近似值(结果保留4个有效数字):(1)(2)(3)答案:3.953;1.118;0.3953;0.3440.○12. 观察下列各式及其验证过程:验证:===.(1)按照上述两个等式及其验证过程的基本思路,猜想(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明. 解:(1),(2)创新应用13.在如图的4×4方格内画△ABC,使它的顶点都在格点上,且AB=BC=2,AC并求B点到AC的距离.DCBA分析:由于=2,2的直角三故可视作两条直角三角形边长分别为2,4的直角三角形的斜边长,因此△ABC可作出. 再利用面积法可求得B点到AC的距离.解:作BD⊥AC于D. AB=BC=2,AC=.∵S△ABC=12×2×2=2=12AC·BD, ∴BD=4AC===一元二次方程复习指南一、课程目标要求1.经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,了解一元二次方程及其相关概念.2.能灵活用直接开平方法、因式分解法、配方法、公式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想.3.会用一元二次方程模型解实际问题,并从中经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,更好地体会数学的价值.二、知识脉络简图三、重点知识回顾1,含有一个未知数,并且未知数的最高指数是2的整式方程,叫做一元二次方程. 注意一元二次方程就必须满足:①整式方程;②只含有一个未知数;③未知数的最高次数为2(未知数的指数为2,二次项的系数不为0).2,一元二次方程的一般形式是ax 2+bx +c =0(a ≠0),其中ax 2是二次项,bx 是一次项,c 是常数项,a 是二次项系数,b 是一次项系数,c 是常数.任何一个一元二次方程都可以通过整理转化成一般形式.由此,对于一个方程从形式上,应先将这个方程进行整理,看是否符合ax 2+bx +c =0(a ≠0)的一般形式.其中,尤其注意a ≠0的条件,有了a ≠0的条件,就能说明ax 2+bx +c =0是一元二次方程.若不能确定a ≠0,并且b ≠0,则需分类讨论:当a ≠0时,它是一元二次方程;当a =0时,它是一元一次方程.3,一元二次方程的根的定义可以当作性质定理使用,即若有实数m 是一元二次方程ax 2+bx +c =0(a ≠0)的根,则m 必然满足该方程,将m 代入该方程,便有am 2+bm +c =0(a ≠0);定义也可以当作判定定理使用,即若有数m 能使am 2+bm +c =0(a ≠0)成立,则m 一定是ax 2+bx +c =0的根.我们经常用定义法来解一些常规方法难以解决的问题,能收到事半功倍的效果.4,一元二次方程的解法有:直接开平方法、因式分解法、配方法和公式法.对于一般形式的一元二次方程ax 2+bx +c =0(a ≠0)的求根公式:x =2b a -±b 2-4ac ≥0). 注意一元二次方程如果有解,就有两个解(有时有两个相同的解).5.四种一元二次方程解法的适用范围(1)开平方法和因式分解法都只适用于一些特殊的方程.当方程的左边是含有未知数的完全平方式,而右边是一个非负数的形式时,应用开平方法.(2)当方程一边是0,而另一边适于因式分解时,可用因式分解法.(3)配方法和公式法适于任何有实数根的一元二次方程.当二次项系数是1且一次项系数是2的倍数时,可用配方法;当二次项系数不是2的倍数且不易用因式分解法时,可考虑用公式法.(4)公式法虽是“万能”的,但它总是“下策”,只有在迫不得已时才使用,而因式分解才是首选方法.(5)因为一元二次方程通过配方法然后开方即得公式法,所以开平方是基础,配方法是关键,公式法是重点,而因式分解是最快捷有效的方法.6,列一元二次方程解简单的实际应用问题的方法和步骤与列一元一次方程解应用题基本相同.简单地可分为:设、找、列、解、检、答等六个步骤.具体地就是:(1)设 弄清题意和题目中的数量关系,用字母(如x )表示题目中的一个未知数;(2)找 找到能够表示应用题全部含义的一个相等的关系;(3)列 根据这个相等的数量关系式,列出所需的代数式,从而列出方程;(4)解 解这个所列的分式方程,求出未知数的值;(5)检 检验;(6)答 写出答案(包括单位名称).这六个步骤关键是“列”,难点是“找”.四、思想方法导读1转化思想:如将一元二次方程转化为一次方程,转化的策略是降次,降次的途径是配方、开方和因式分解.2建模思想:弄清问题的实际背景,找出实际问题中相关数量之间的相等关系,并把这种关系“翻译”为一元二次方程.常见的实际问题有:增长率问题、面积问题、利润问题等.2配方法:配方法不仅可以用来解一元二次方程,而且也是解决其它数学问题的方法,如学习二次函数就少不了配方法.五、典型例题解析考点一:一元二次方程的有关概念例1(09荆门)关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( )(A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2.解析:因为该方程的二次项系数为字母,根据已知条件:只有一解(相同解算一解),考虑字母的适用范围,应将字母分0=a 和0≠a 两种情况分类讨论:解:(1)当0=a ,方程为一元一次方程 022=+-x 此时有实数根1=x ;(2)当0≠a ,方程为二次方程.由相同解算一解得:[]0)2(8)2(22=-=-+-=∆a a a ,解得2=a 此时方程有实数根1=x综合(1)、(2),选D评注:字母系数的取值范围问题是否要讨论,要看清题目的条件.一般设问方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。
《一元二次方程的应用——增长率问题》教学设计
《一元二次方程的应用——增长率问题》教学设计《一元二次方程的应用——增长率问题》教学设计清水五中董小武教学目标:1、使学生学会用列一元二次方程的方法解决有关增长率的问题。
2、进一步培养学生转化实际问题为数学问题的能力和分析问题、解决问题的能力。
3、通过增长率问题的学习能抓住问题的关键,揭示它的规律性,展示解题简洁性的数学美。
教学准备:教学课件、学案教学重点:使学生学会用列一元二次方程的方法解决有关增长率的问题。
教学难点:提高学生转化实际问题为数学问题的能力以及分析问题、解决问题的能力。
教学过程:一、出示课题:《一元二次方程的应用——增长率问题》二、出示学习目标:1、使学生学会用列一元二次方程的方法解决有关增长率的问题。
2、进一步培养学生转化实际问题为数学问题的能力和分析问题、解决问题的能力。
3、通过增长率问题的学习能抓住问题的关键,揭示它的规律性,展示解题简洁性的数学美。
(请学生读一遍)三、(根据以前学过的知识解决下面的问题)请你评一评:小星的妈妈卖玩具,某天妈妈用每件10元的价格进了一批玩具,第二天以每件20元的价格标价,小星心里想:“妈妈若卖完这批玩具,那么财富增加了100%呢!”你认为有道理吗?你能写出增长率公式吗?[请同学们想一想,写出你的答案。
然后请同学回答,老师点评,并把增长率公式变形为:实际数=基数(1+增长率)]四、根据变形后的增长率公式做出下面的问题(在微机上解答,看谁答的又快又好)小星的妈妈又以每件20元的价格进了另一批玩具,决定在进价的基础上以增长50%的价格定价,让小星帮忙算一算该标价多少?你能帮小星算一算吗?五、[我们已经知道了增长率公式,请根据这个公式解决下面的问题,在微机上解答,答完后看看与实际情况是不是相符]一件商品10元,增长率是0,则这件商品的价格是多少?增长率是-0.3呢?若降低率是1呢?降低率是1.2呢?若降低率是-0.2呢?[讨论所得结果,发现结论:增长率>0 0<降低率<1]设计理念:通过以上几个简单的增长率问题的解答,让同学们掌握增长率基本公式,并知道增长率>0 ,0<降低率<1为以后的学习打好基础。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程.3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式.难点:求根公式的条件:b2 -4ac≥0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=0.2、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?三、互动探究:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.四、精讲点拨:例1、课本例题总结:其一般步骤是:(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.例2、解方程:(1)2x2-7x+3=0 (2) x2-7x-1=0(3) 2x2-9x+8=0 (4) 9x2+6x+1=0五、纠正反馈:做书上第P90练习。
数学教案一元二次方程的应用(6篇)
数学教案一元二次方程的应用(6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!数学教案一元二次方程的应用(6篇)在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。
九年级数学《一元二次方程》教案(5篇)
九年级数学《一元二次方程》教案(5篇)元二次方程教案篇一教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1、如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
(1)请写出方程ax2+bx+c=0的根(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
初中数学_《一元二次方程的应用—增长率》教学设计学情分析教材分析课后反思
教材分析一、教材的地位和作用一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位,其中一元二次方程的应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用。
本节课是一元二次方程的应用,它是研究现实世界数量关系和变化规律的重要数学模型。
从近几年的中考题来看,增长率问题多次出现,是考查的一个重点知识点。
(一)教学目标根据《数学课程标准》中对学生的总体目标与学段目标的要求,结合我对本节课的理解和分析,制定如下教学目标:a、知识与技能目标1.使学生会用列一元二次方程的方法解决有关增长率问题.2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识。
b、过程与方法目标通过自主探索、合作交流等活动,发展学生数学思维,培养学生合作学习意识,激发学生学习热情。
C、情感态度与价值观目标使学生认识到数学与生活紧密相连,数学活动充满着探索与创造,让他们在学习活动中培养合作协助精神,增强国情教育,从而使学生获得成功的体验,建立自信心,更加热爱数学、热爱生活。
(二)重点与难点根据本节课的教学内容和教学目标,结合新课标,我认为本节课的教学1、重点:学会用列方程的方法解决有关利用问题,培养学生运用一元二次方程分析和解决实际问题的能力,学习数学建模思想;2、难点:将同类题对比探究,培养学生分析、鉴别的能力。
二、教法与学法:1、学情与学法:初二学生,他们具有一定的认知能力,但搜集处理信息的能力有限,鉴于此,本案例从具体的问题情境中抽象出数学问题,建立数学关系式,获得合理的解答,通过自主探索和合作交流这样有意义的探索过程,理解并掌握相应的数学知识与技能,产生积极的情感体验,进而创造性地解决问题。
它具有明显的问题性、实践性、开放性和创造性等特点,能有效地发展学生的思维能力。
学生参与到整个教学活动中来,加强引导他们自主学习和自主探究的意识。
同时为学生进行探究学习与合作交流的提供充分的思维活动和空间,使他们在参与的过程中得到充足的体验和发展。
初中数学九年级《一元二次方程的应用——矩形面积问题》公开课教学设计
一元二次方程的应用-------矩形面积问题【教学目标】1.能用代数式表示相应的量;2.能理解所求结果的取舍;3.能建立一元二次方程模型解决简单的面积问题。
【任务分析】重点:建立一元二次方程模型解决简单的面积问题难点:建立一元二次方程模型解决简单的面积问题学生认知障碍预设:学生不会结合所给信息用代数式表示相应的量【教学过程】一、活动1:情景引入---邻居用铁丝网在天台围矩形养鸡场方案(3分钟)不靠墙一边靠墙两边靠墙学生说出解决方案,教师补充,引出课题,共同学习本节课目标。
【设计意图:学生初步体验一元二次方程在生活中的应用。
】二、活动2:课前检测(4分钟)2.用14米长的铁丝围成长方形,设AB 长x 米。
BC :____________________米 ____________________米 学生抢权,并口述答案;师生共同复习长方形周长及面积公式。
【设计意图:学生复习用代数式表示相应的量。
】三、活动3:探究(29分钟)例:在天台建一个矩形养鸡场,鸡场的一边靠墙(墙长5米),另三边用长10米铁丝围成。
鸡场的面积能达到12平方米吗?如果能,请你给出设计方案;如果不能,请说明理由。
【分析】:1.要给出设计方案即要知道哪些量?2.本题的等量关系是?3.该如何设? 小组讨论,学生练习,学生代表说出解决方案,教师点拨,展示规范的答题过程。
思考:若将结论改为:鸡场的面积能达到20平方米吗?该如何分析呢?鸡场CB D AC B DA小结:解决面积问题关键_______________________________学生小组合作,师生共同解决【设计意图:知识升华,让学生会解决一类问题。
】C .x (76-2x )=672;D . x (76-x )=672.2.如图,用长为18m 的铁丝,两面靠墙围成矩形的养鸡场.要围成养鸡场的面积为81m 2。
设养鸡场的宽为xm ,可列方程__________________学生练习,学生代表说出解决方案,教师点拨。
211《一元二次方程教案》(第1课时).doc
22. 1 一元二次方程第一课时一、 教学内容一元二次方程概念及一元二次方程一般式及有关概念. 二、 教学目标了解一元二次方程的概念;一般式a/+bx+c 二0 (aHO )及其派生的概念;应用一元二 次方程概念解决一些简单题H .1. 通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2. 一元二次方程的一般形式及其有关概念.3. 解决一些概念性的题目.4. 通过生活学习数学,并用数学解决生活中的问题來激发学生的学习热情. 三、 重难点关键1. 重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概 念解决问题.2. 难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概 念迁移到一元二次方程的概念.四、 教学过程 (一、)复习引入 学牛活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺•八寸,两隅相去适一 丈,问户高、广各儿何? ”人意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽 各是多少? 如果假设门的高为x 尺,那么,这个门的宽为 _________ 尺,根据题意,得 __________ 整理、化简,得: __________ ・问题(2)如图,一块四周镶冇宽度相等的花边的地毯, 毯中央的长方形图案的面积为18m2,求花边有多宽?设花边的宽为“ in ,那么地毯屮央长方形图案的 长为 m, 宽 为 _____________ m,根据题意, 得方程: ____________________________________ . 问题(3)观察下面等式:102+112+122=132+142你还能找到其他的五个连续整数,使前三个 数的平方和等于后两个数的平方和吗? 设五个连续整数中第一个为x,那么后四个___________________________________ ,根据题意, 得方程: ___________________________________________________________________ 老师点评并分析如何建立一元二次方程的数学模型,并整理. (二、)探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有儿个未知数?数为 __________ 它的长为8m,宽为5m,如果地(2)按照整式中的多项式的规定,它们最高次数是儿次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x; (2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.-般地,任何一个关于x的一元•二次方程,经过整理,都能化成如下形式ax2+bx+c=0 (aHO).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0 (aHO)后,其屮ax'是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(阅读练习册P1例题)巩固练习1、下列方程中,一元二次方程冇( )个(1)/ = 3 (2)5酹=3(/・ 1) ⑶丄二/ (+)yz・ A2 =5 (5)5/ ・2x = 5(/ +2)(/ ・ 1)x 4A. 2B. 3 C・ 4 D. 5例1.将方程(8-2x) (5-2x)二18化成一元二次方程的一般形式,并写出其屮的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=O(8工0).因此,方程(8~2x) ( 5~2x)=18必须运用整式运算进行整理,包括去•括号、移项等.解:去扭号,得:40-16x-l 0X+4X2= 18移项,得:4x-26x+22=0其中二次项系数为4, 一次项系数为-26,常数项为22.(三、)巩固练习教材匕练习1、(四、)应用拓展例2.求证:关于x的方程(m2-8m+17) x2+2mx+l=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m収何值,该方程都是一元二次方程,只要证明m2-8m+17 H0即可. 证明:m2-8m+17= (m-4) 2+1•・• (m-4)空0・・・(m-4) 2+1>0, B|J (m-4) 2+1^0・・・不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1) 一元二次方程的概念;(2) 一元二次方程的一般形式ax'+bx+c二0 CaHO)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.练习册P H提升:(A组)2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x'+7二0 ②ax"+bx+c二0 ③(x-2) (x+5) =x2-l ④3x2-— =0XA. 1个B. 2个C. 3个D. 4个2.px2-3x+p2-q=0是关于x的一元二次方程,则().A. p=lB. p>0C. pHOD. p 为任意实数二、填空题1.____________________________________ 方程3x「3二2x+l的二次项系数为, 一次项系数为 ______________________________________________ ,常数项为2.一元二次方程的一般形式是__________ .3.关于x的方程(旷1) X2+3X=0是一元二次方程,则a的取值范围是 __________ .三、综合提高题1. a满足什么条件时,关于x的方程a (x2+x) =>/3x- (x+1)是一元二次方程?2.关于x的方程(2m2+m) x,,M+3x=6可能是一元二次方程吗?为什么?反思提高:。
初中数学初三数学下册《一元二次方程的根与系数关系》教案、教学设计
(1)已知一元二次方程ax^2 + bx + c = 0的两个根分别为α和β。请证明:若α + β为定值,当a > 0时,αβ的最大值为(b^2 - 4ac) / (4a)。
(2)已知抛物线y = ax^2 + bx + c与x轴的交点为(α,0)和(β,0)。请证明:当a > 0时,线段[α,β]的长度为2√[(α + β)^2 - 4αβ]。
3.学会运用韦达定理求解一元二次方程的根,并能解决实际问题中涉及一元二次方程根的计算问题。
4.能够运用一元二次方程的根与系数关系分析解决几何问题,提高学生的几何思维能力。
(二)过程与方法
在本章节的教学过程中,学生将通过以下过程与方法提高数学素养:
1.通过自主探究、合作学习等方式,发现一元二次方程根与系数之间的关系,培养学生的观察能力和逻辑思维能力。
3.重点:培养学生合作学习的意识和能力,通过小组讨论和互助学习,提高学生的问题解决能力。
难点:如何在小组合作中平衡学生的参与度,确保每个学生都能在合作中收获知识和技能。
(二)教学设想
1.引入:通过一个实际问题的情景引入,如设计一个与一元二次方程相关的实际情境,让学生感受到数学知识在解决现实问题中的应用,激发学生的学习兴趣。
(二)讲授新知
1.判别式的概念:讲解判别式的定义,引导学生理解判别式元二次方程的根与系数之间的关系,并总结规律。
3.韦达定理:介绍韦达定理,并用实例讲解其应用方法。
4.数形结合:利用几何图形,如抛物线与x轴的交点,形象地展示一元二次方程的根与系数关系。
二、学情分析
针对初三学生的年龄特点和认知水平,他们对一元二次方程已有一定的了解,具备了一定的数学基础。在此基础上,学生对本章节内容的掌握程度有以下特点:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元二次方程的应用》教案(一)
一、素质教育目标
(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.(三)德育渗透点:通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性.
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.2.教学难点:根据数与数字关系找等量关系.
三、教学步骤
(一)明确目标
初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用——有关数字方面的问题.(二)整体感知:
本小节是“一元一次方程的应用”的继续和发展.由于能用一元一次方程(或一次方程组)解的应用题,一般都可以用算术方法解,而需用一元二次方程来解的应用题,一般说是不能用算术方法来解的,所以,讲解本小节可以使学生认识到用代数方法解应用题的优越性与必要性.
从列方程解应用题的方法来说,列出的一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意、作出正确的答案.列出一元二次方程解应用问题,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;其数量关系也比可以用一元一次方程解决的问题复杂的多.
通过本节课的学习,渗透设未知数、列方程的代数方法,领略知识从实践中来到实践中去.
例1是已知两个连续奇数求这两个数的问题,讲清这个问题的关键是搞清楚“两连续奇数”的意义,能用代数式分别表示出两个连续奇数,问题就可以解决,启发学生用不同的方法去解,并加以对比,从而开拓思路.
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答.
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).2.例1 两个连续奇数的积是323,求这两个数.
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法).设较小的奇数为x,则另一奇数为x+2,设较小的奇数为x-1,则另一奇数为x+1;设较小的奇数为2x-1,则另一个奇数2x+1.
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.
解法(一)
设较小奇数为x,另一个为x+2,
据题意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解这个方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:这两个奇数是17,19或者-19,-17.
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1.
据题意,得(x-1)(x+1)=323.
整理后,得x2=324.
解这个方程,得x1=18,x2=-18.
当x=18时,18-1=17,18+1=19.
当x=-18时,-18-1=-19,-18+1=-17.
答:两个奇数分别为17,19;或者-19,-17.
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1.
据题意,得(2x-1)(2x+1)=323.
整理后,得4x2= 324.
解得,2x=18,或2x=-18.
当2x=18时,2x-1=18-1=17;2x+1=18+1=19.
当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17
答:两个奇数分别为17,19;-19,-17.
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.
练习
1.两个连续整数的积是210,求这两个数.
2.三个连续奇数的和是321,求这三个数.
3.已知两个数的和是12,积为23,求这两个数.
学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.
分析:数与数字的关系是:
两位数=十位数字×10+个位数字.
三位数=百位数字×100+十位数字×10+个位数字.
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.
据题意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24.
答:这个两位数是24.
以上分析,解答,教师引导,板书,学生回答,体会,评价.
注意:在求得解之后,要进行实际题意的检验.
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.
教师引导,启发,学生笔答,板书,评价,体会.
(四)总结,扩展
1.列一元二次方程解应用题,步骤与以前列方程解应用题一样,其中审题是解决问题的基础,找等量关系列方程是关键,恰当灵活地设元直接影响着列方程与解法的难易,它可以为正确合理的答案提供有利的条件.方程的解必须进行实际题意的检验.
2.奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.
数与数字的关系
两位数=(十位数字×10)+个位数字.
三位数=(百位数字×100)+(十位数字×10)+个位数字.
……
3.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.
四、布置作业
教材P.42中A1、2、
五、课后记
从列方程解应用题的方法来说,列出的一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意、作出正确的答案.列出一元二次方程解应用问题,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;其数量关系也比可以用一元一次方程解决的问题复杂的多.通过本节课的学习,渗透设未知数、列方程的代数方法,领略知识从实践中来到实践中去.。