11.3旋转对称图形与中心对称图形shao

合集下载

11.3旋转对称图形和中心对称图形作业设计

11.3旋转对称图形和中心对称图形作业设计
进一步加深学生对旋转 对称图形和旋转角概念 的理解.感受旋转对称 图形在生活中的应用.
(A)
(B)
(C)
(D)
课后作业— A组
3.如图,如果四边形CDEF旋转后能与正方形ABCD 重合,那么图形所在的平面可以作旋转中心的点 共有几个?分别进行说明,此时它的旋转角是几 度?(练习册P62/3)
A D E
M B C F
A
D
E
进一步加深学 生对旋转对称图形 和中心对称图形概 念的理解.复习巩 固旋转中心和旋转 角的概念,培养思 维的完整性,学习 分类讨论的数学方 法.
B
A
C
D
F
E
M B C F
课后作业—B组
1.如图,4张扑克牌放在桌上,现将其中的 某一张在原地旋转,发现旋转后在桌上看到 的牌中的图形和原先的一模一样.请问旋转 的是哪一张牌?( 练习册P63/3)
可以作为旋转中心的点有3个,它们是 点C、点D和线段CD的中点M.
以点C为旋转中心时,图形围绕点C, 逆时针旋转能与正方形ABCD重合. 以点D为旋转中心时,图形围绕点D 顺时针旋转能与正方形ABCD重合. 以M为旋转中心时,图形围绕点M顺时针 或逆时针旋转能与正方形ABCD重合 .
B A
C
D
F E
60°
120° 120° 120°
60°
60°
60° 60° 60°
引导学生进 一步理解旋 转对称图形 和中心对称 图形的区别 与联系.
两种图形都是把一个图形绕着一个定点旋转一个角度后, 与初始图形重合. 中心对称图形是旋转对称图形的特例. 当旋转角为180 °时,这个图形是中心对称图形.

课堂练习—B组 2.下列电子显示屏上的数字哪些是 中心对称图形?(补充) 解:数字 是中心对称图形

旋转对称和中心对称

旋转对称和中心对称

问题与讨论
下列图形是中心对称图形吗?
(1)
(2)
(3)
旋转图形(2) 旋转图形(4)
(4)
旋转图形(1) 旋转图形(3)
点击跳转
返回
旋转
返回
旋转返回Biblioteka 旋转返回旋转
都是中心对称图形
观察图形,并回答下面的问题: (1)哪些只是轴对称图形? (3)(4)(6) (2)哪些只是中心对称图形?(1)
(2)(5) (3)哪些既是轴对称图形,又是中心对称图形?
(1)
(2)
(3)
(4)
(5)
(6)
B
2.在①线段、 ②角、 ③等腰三角形、 ④等腰梯 形、⑤平行四边形、 ⑥矩形、 ⑦菱形、 ⑧正方形 ①②③④⑥⑦⑧⑨ 和⑨圆中,是轴对称图形的有 ______________,是 中心对称图形的有①⑤⑥⑦⑧⑨ ____________, 既是轴对称图形 又是中心对称图形的有____________. ①⑥⑦⑧⑨
中心对称图形: 如果把一个图形绕着一个定点旋转1800后, 与初始图形重合,那么这个图形叫做中心对称图形. 这个定点叫做对称中心。
边数为偶数的正多边形都是中心对称图形。
中心对称图形是特殊的旋转对称图形,它的旋转角只能是 180 而旋转对称图形的旋转角在00<
<360之间均可。
探究1:在一次游戏当中,小明将下面左图的四张扑克牌中的一 张旋转180O后,得到右图,小亮看完很快知道小明旋转了哪一张 扑克,你知道为什么吗?
旋转一定的角度可以和自身重合 (1)这些图形有什么共同的特征?
(2)这些图形的不同点在哪?分别绕旋转中心旋转多少度可以 和原图形重合? 第一个图形的旋转角度为120°或240 °,第二个图形 的旋转角度为72°或144°或216°或288°。后三个图形 的旋转角度都为180°,第二,三个是轴对称图形。

旋转对称图形的举例

旋转对称图形的举例

自然界
工程领域
自然界中存在着大量的旋转对称现象,如 雪花、花朵等,这些自然形态的美丽和和 谐都与旋转对称有关。
在机械工程、航空航天等领域中,旋转对 称图形的应用也十分广泛,如各种旋转机 械零件、飞机和火箭的旋翼等。
THANKS
感谢观看
抛物线形
总结词
抛物线形是一种特殊的曲线,它具有旋转对称性。
详细描述
抛物线形关于其对称轴具有旋转对称性。例如,将抛物线形绕其对称轴旋转180 度,能与原图形完全重合。
03
旋转对称图形的性质
对称轴的性质
对称轴唯一性
旋转对称图形只有一条对称轴,该对称轴是固定不动的。
对称轴稳定性
对称轴是旋转对称图形稳定性的基础,任何微小的旋转都会 导致图形的不变。
在自然界中,许多物体和现象都具有旋转对称的特性,例 如行星、卫星、花朵、雪花等。
旋转对称的特性在自然界中广泛存在,因为这种特性有助 于物体在空间中保持平衡和稳定,同时也有助于自然界的 美观和和谐。
05
结论
总结旋转对称图形的特点和性质
旋转对称图形的定义
旋转对称图形的性质
旋转对称图形是指通过旋转一定的角 度后,能够与自身重合的图形。
在自然界和日常生活中,许多物体都 具有旋转对称性,如花朵、行星等, 这种特性使得它们在视觉上更加美观 和和谐。
02
常见的旋转对称图形
正方形
总结词
正方形是一个四边等长且四个角 都是直角的平面图形,它具有旋 转对称性。
详细描述
正方形无论从哪个角度旋转,都 能与自身重合。例如,将正方形 绕其中心点旋转90度、180度或 270度,都能与原图形完全重合 。
图形变换不变性
在旋转对称图形进行旋转时, 其形状和大小不会发生改变。

轴对称图形中心对称图形的定义及性质

轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念轴对称图形的定义如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。

轴对称图形的性质1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

(对于一个图形来说)(2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

这条直线就是对称轴。

两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。

(对于两个图形来说)(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。

中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

中心对称的性质:①于中心对称的两个图形是全等形。

②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等.只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等.只是中心对称图形的有:平行四边形等.既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。

中心对称与旋转对称

中心对称与旋转对称

中心对称与旋转对称中心对称和旋转对称是几何学中常见的概念,它们在我们日常生活和各个领域中的应用非常广泛。

本文将从定义、特点以及实际应用等方面对中心对称和旋转对称进行探讨。

一、中心对称中心对称是指平面上的一个图形围绕一个点进行旋转180度后,仍能够与原来的图形完全重合。

中心对称具有如下特点:1. 对称中心:对于一个中心对称的图形,存在一个称为对称中心的点,该点与图形的每一个点都保持相等的距离。

图形中的任意一对对称点均位于对称中心的同一个直径上。

2. 对称轴:对称轴是通过对称中心和图形中任意一对对称点的直线。

对称轴上的任意一点到对称中心的距离与这个点的对称点到对称中心的距离相等。

3. 对称图形:中心对称图形是指具有中心对称性的图形,在进行180度旋转后能够与原来的图形完全重合。

中心对称在我们的日常生活中随处可见。

例如,花朵、雪花、蝴蝶等自然界中的许多图案都具有中心对称性。

此外,在建筑设计、艺术创作等领域中,中心对称也被广泛运用,以达到美观和平衡的效果。

二、旋转对称旋转对称是指平面上的一个图形按照某个点进行旋转一定角度后,可以与原来的图形完全重合。

旋转对称具有如下特点:1. 旋转中心:旋转对称图形的旋转中心是图形中心的一个点,通过该点进行旋转,使图形能够与原来的图形完全重合。

2. 旋转角度:旋转角度是指图形按照旋转中心进行旋转的角度,通常是90度、180度、270度等整数倍的角度。

3. 对称图形:具有旋转对称性的图形,在经过一次或多次旋转后,能够与原来的图形完全重合。

旋转对称在许多领域中都有广泛的应用。

例如,在几何学中,正多边形具有旋转对称性,同时也是中心对称的。

在艺术创作、标志设计等领域,旋转对称常被用于打造简洁而富有美感的图案。

总结:中心对称和旋转对称是几何学中非常重要的概念。

通过中心对称,我们可以实现图形的对称分布和平衡美感;通过旋转对称,我们可以创造出简洁而富有艺术感的图案。

在实际生活和各个领域中,中心对称和旋转对称都有着广泛的应用,丰富了我们的视觉体验。

轴对称图形与中心对称图形的认识

轴对称图形与中心对称图形的认识

中心对称图形练习题及解析
• 总结词:中心对称图形是可以通过旋转180度与自身重合的图 形。识别和区分中心对称图形有助于提高学生对几何图形的认 识。
中心对称图形练习题及解析
详细描述
1. 准备一些常见的中心对称图形,如圆形、正 方形、菱形等。
2. 让学生观察每个图形的特点,并尝试旋转图 形,观察是否能通过旋转180度与自身重合。
直线
被称为对称轴。
轴对称图形的性质
01
02
03
性质1
轴对称图形的两部分是全 等的。
性质2
轴对称图形的对应线段相 等,对应角相等。
性质3
轴对称图形的对称点所连 线段被对称轴垂直平分。
轴对称图形的分类
分类1:线段 定义:一条线段关于它的中垂线对称的图形叫做线段。
特点:线段的两个端点关于这条中垂线对称。
工程设计
在桥梁、车辆、船舶等工程设计中 ,轴对称性能够提高结构的稳定性 和安全性。
中心对称图形在生活中的应用
旋转对称
许多自然现象和物体表现出旋转 对称性,如地球的自转、雪花等

艺术品
中心对称在艺术品中也有广泛应 用,如旋转对称的雕塑、图案等

工业设计
在工业设计中,中心对称性可用 于提高产品的美观度和使用体验
中心对称图形练习题及解析
3. 让学生识别出哪些图形是中心对称的,并分析它们的对称 中心。
示例:在上述练习中,学生可以通过旋转圆形、正方形、菱 形等图形,观察它们是否可以通过旋转180度与自身重合, 从而识别出哪些是中心对称图形。同时,学生还可以进一步 分析每个图形的对称中心。
THANK YOU

轴对称图形与中心对称图形的艺术价值

11.3 旋转对称图形与中心对称图形-七年级数学上册(沪教版)

11.3 旋转对称图形与中心对称图形-七年级数学上册(沪教版)

例题5 如图,有一张纸片,纸片被分为一个矩形和一个 菱形,请你画一条直线把这张纸片分成面积相等的两部 分.
方法归纳:对于这种由两个中心对称图形组成的复合 图形,平分面积时,常用方法是找到它们的对称中心, 再过对称中心作直线.
当堂练习 1.下列四张扑克牌中,是中心对称图形的是( A )
A.
B.
C.
新课讲授
例题3 下列图形中哪些是中心对称图形?
(√1)
(√2)
(√3)
×(4)
方法总结:判断一个图形是不是中心对称图形,关键 是寻找对称中心,看这个图形能否绕某一点旋转 180° 后与原图形重合.
例题4
判断表中各图 形是否是中心 对称图形或轴 对称图形.
常见图形 线段
等边三角形 平行四边形
矩形 菱形 正方形
(2)最小旋转角度:最小旋转角=
360 基本图形数

(3)旋转角度:旋转角度是最小旋转角度的整数倍.
新课讲授
问题 将下面的图形绕 O 点旋转,你有什么发现?
A
O
B
O
(1)线段
(2)平行四边形
共同点:(1)都绕一点旋转了180°;
(2)都与原图形完全重合.
新课讲授
中心对称图形的定义 把一个图形绕某一个点旋转 180°,如果旋转后的
导入新课
观察 下列图形有哪些特征?
导入新课
如图11-13所示的五角星绕点0按逆时针方向旋转72°后与 初始五角星重合.
新课讲授
在平面内,如果一个图形绕着一个定点旋转一定大小的角a 后,能与原图形重合,那么这个图形叫做旋转对称图形,这 个定点叫做旋转对称中心,角a叫做旋转角.
旋转对称图形的旋转角度: (1)旋转角的范围:大于0°且小于360°;

轴对称图形和中心对称图形

轴对称图形和中心对称图形

轴对称图形在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symmetric),并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。

比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。

例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对轴对称图形2 示例称图形.圆有无数条对称轴,都是经过圆心的直线。

要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。

大写字母A、B、C、D、E、H等等性质编辑1.对称轴是一条直线。

2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

4.如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。

5.图形对称。

定理定理1:关于某条直线对称的两个图形是全等形。

定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

生活作用1、为了美观。

比如天安门,对称就显的美观漂亮。

2、保持平衡。

比如飞机的两翼。

3、特殊工作的需要。

比如五角星,剪纸。

对称方法编辑方法1、找出所给图形的关键点。

2、找出图形关键点到对称轴的距离。

3、找关键点的对称点。

4、按照所给图形的顺序连接各点。

画法1、找出图形的一对对称点。

2、连接对称点。

3、过这条线段的中点作这条线段的垂线。

区别区分这两个概念要注意:轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合。

轴对称图形和中心对称图形

轴对称图形和中心对称图形

轴对称图形在平面内;如果一个图形沿一条直线;直线两旁的部分能够完全;这样的图形叫做图形axial symmetric figure;这条直线叫做axis of symmetric;并且对称轴用点画线表示;这时;我们也说这个图形关于这条直线对称..比如圆、正方形、等腰三角形、等边三角形、等腰梯形等..定理2:如果两个图形关于某条直线对称;那么对称轴是对应点连线的..定理3:两个图形关于某条直线对称;如果对称轴和某两条对称的延长线相交;那么交点在对称轴上..定理3的:如果两个图形的连线被同一条直线垂直平分;那么这两个图形关于这条直线对称..生活作用1、为了美观..比如;对称就显的美观漂亮..2、保持平衡..比如的两翼..3、特殊工作的需要..比如五角星;剪纸..对称方法方法1、找出所给图形的关键点..2、找出图形关键点到的距离..3、找关键点的对称点..4、按照所给图形的顺序连接各点..画法1、找出图形的一对对称点..2、连接对称点..3、过这条线段的中点作这条线段的垂线..区别区分这两个概念要注意:轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合;关键抓两点:一是沿某直线折叠;二是两部分互相重合;是图形绕某一点旋转180°后与原来的图形重合;关键也是抓两点:一是绕某一点旋转;二是与原图形重合..实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置;观察有无变化;没变的是中心对称图形..现将小学课本中常见的图形归类如下:既是轴对称图形又是中心对称图形的有:;;;等..只是轴对称图形的有:;;;;等等..只是图形的有:..既不是图形又不是有:;非等..一个图形既轴对称又中心对称一定有两条或两条以上的对称轴中心对称图形:在平面内;把一个图形绕着某个点旋转180°;如果旋转后的图形与另一个图形重合;那么就说明这两个图形的形状关于这个点成中心对称Central of symmetry graph;这个点叫做它的对称中心Center of symmetry;180°后重合的两个点叫做corresponding points..:在平面内;把一个图形绕着某个点旋转180°;如果旋转后的图形能与原来的图形重合;那么这个图形叫做中心对称图形;这个点叫做它的对称中心.性质①中心平分中心对称图形内通过该点的任意且使中心对称图形的面积被平分..②成的两个图形全等..③成中心对称的两个图形上每一对所连成的线段都被对称中心平分..区分:中心对称是两个图形间的位置关系;而中心对称图形是一种具有独特特征的图形..常见常见的中心对称图形有:;矩形;;;;;边数为偶数的等..例如:正偶数边形是中心对称图形正奇数边形不是中心对称图形※正六角形是中心对称图形;不是中心对称图形;不是中心对称图形;的图像是以原点为对称中心的中心对称图形..中心对称的两个图形中的对应线段平行相等初中定义中心对称图形在平面内;把一个图形绕着某个点旋转180°;如果旋转后的图形能与原来的图形重合;那么这个图形叫做中心对称图形;这个点叫做它的.旋转前后图形上能够重合的点叫做对称点.1、理解中心对称的定义要抓住以下三个要素:1有一个对称中心——点.2图形绕中心旋转180°.3旋转后两图形重合.2、中心对称的性质连接中心对称图形上每一对对称点的线段都经过对称中心;且被对称中心平分.3、中心对称在平面内;把一个图形绕某一定点旋转180°;如果它能够与另一个图形重合;那么就说这两个图形关于这个点成中心对称;这个点叫做对称中心;旋转后两个图形上能够重合的点叫做关于对称中心的对称点.如图;△ABC绕着点O旋转180°;和△A′B′C′能够完全重合;则这两个三角形关于点O对称;点O叫对称中心;A与A′;B与B′;C与C′叫关于O的对称点.注意:1中心对称是指两个图形的关系;成中心对称的两个图形只有一个对称中心;并且一个图形上的所有点关于对称中心的对称点都在另一个图形上;反过来;另一个图形上的所有点关于这个中心的对称点都在这个图形上;2中心对称与中心对称图形之间的关系区别:①中心对称是指两个图形的关系;中心对称图形是指具有某种性质的图形.②成中心对称的两个图形的对称点分别在两个图形上;中心对称图形的对称点在一个图形上.联系:若把中心对称图形的两部分看成两个图形;则它们成中心对称;若把中心对称的两个图形看成一个整体;那么这个整体也就是中心对称图形.4、中心对称的特征及识别方法1关于中心对称的两个图形;对称点所连线段都经过对称中心;而且被对称中心所平分;2关于中心对称的两个图形是全等形;3如果两个图形的对应点连成的线段都经过某一点;并且被该点平分;那么这两个图形关于这点成中心对称;4中心对称的特征揭示了其图形的特征. 如上图所示;如果△ABC与△A′B′C′关于点O成中心对称;则:①A;O;A′;B;O;B′;C;O;C′均三点共线;且OA=OA′;OB=OB′;OC=OC′;②△ABC≌△A′B′C′;5如果已知△ABC与△A′B′C′关于某点成中心对称;则点O必为AA′、BB′、CC′的中点;且它们是同一点;故也可以连结AA′、BB′;则其交点即为对称中心.5、关于原点对称的点的坐标两个点关于原点对称时;它们的坐标符号相反;即点Px;y关于原点的对称点为P′-x;-y.理解关于原点对称的点的坐标的特征时;要结合图形理解记忆;要善于将点的位置关系转化为点的坐标的数量关系或将点的坐标的数量关系转化为点的位置关系.典型例题讲解例1、下列说法:①成中心对称的两个图形形状一样;大小一样;②成中心对称的两个图形必须重合;③形状一样;大小一样的两个图形成中心对称;④旋转后能够重合的两个图形成中心对称.其中说法正确的个数是BA. 0个B. 1个C. 2个D. 3个解析:要注意能重合与必须重合;旋转与旋转180°的区别.由成中心对称的性质知;成中心对称的两个图形必定能重合;故①正确;成中心对称的两个图形能重合;但是绕中心旋转180°后能重合;未旋转时它们不是必须重合;故②错误;形状一样;大小一样的两个图形不一定处在成中心对称的位置;由中心对称的判定知;能重合的两个图形不一定成中心对称;故③错误;成中心对称的两个图形旋转后能重合;关键是要旋转180°后能重合;并非旋转任意角度就重合;故④错误.说法正确的个数只有1个;故选B.例2、如图所示;请在网格中画出四边形A′B′C′D′;使它与原四边形ABCD关于点O成中心对称.思路:寻找A、B、C、D关于中心O的对称点A′、B′、C′、D′;如A点对称点画法:①连结OA;②延长AO至A′;使OA′=OA;A′即为所求.画法:1连结OA;并延长AO;2在AO延长线上截取OA′=OA;得A的对称点A′;用刻度尺或圆规截取;不能估计3依次画出B、C、D关于点O′的对称点B′、C′、D′;连结A′B′;B′C′;C′D′;D′A′.如图所示;得四边形A′B′C′D′为所求的四边形.总结:1由中心对称图形性质:对应点与中心连线在一条直线上;并且被对称中心平分;因此画图时;将A与O连结并延长一倍即可得到A′;2网格上对应点也可以通过数单位长度来确定对应点.3一个图形既轴对称又中心对称一定有两1条或两条以上的对称轴。

轴对称图形和中心对称图形

轴对称图形和中心对称图形

轴对称图形和中心对称图形The latest revision on November 22, 2020轴对称图形在平面内,如果一个图形沿一条直线,直线两旁的部分能够完全,这样的图形叫做图形(axial symmetric figure),这条直线叫做(axis of symmetric),并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。

比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。

例如、、、和和都是轴对轴对称图形2 示例称图形.圆有无数条对称轴,都是经过圆心的直线。

要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中。

大写字母A、B、C、D、E、H等等性质1.对称轴是一条直线。

2.在轴对称图形中,对称轴两侧的到对称轴两侧的距离相等。

3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

4.如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。

5.图形对称。

定理定理1:关于某条直线对称的两个图形是。

定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的。

定理3:两个图形关于某条直线对称,如果对称轴和某两条对称的延长线相交,那么交点在对称轴上。

定理3的:如果两个图形的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

生活作用1、为了美观。

比如,对称就显的美观漂亮。

2、保持平衡。

比如的两翼。

3、特殊工作的需要。

比如五角星,剪纸。

对称方法方法1、找出所给图形的关键点。

2、找出图形关键点到的距离。

3、找关键点的对称点。

4、按照所给图形的顺序连接各点。

画法1、找出图形的一对对称点。

2、连接对称点。

3、过这条线段的中点作这条线段的垂线。

区别区分这两个概念要注意:轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合。

旋转对称图形和中心对称图形

旋转对称图形和中心对称图形

§11.3旋转对称图形与中心对称图形
教学目标:
1.在探究旋转对称图形和中心对称图形的概念过程中,感受从一般到特殊的研究问题方法.2.理解旋转对称图形和中心对称图形的区别和联系.
3.感受旋转对称图形和中心对称图形在生活中的应用,体会数学的价值.
教学重点和难点:
探究旋转对称图形和中心对称图形的概念形成过程.
二、新知探索
师:我们把具有这个特征的图形叫做旋
转对称图形.
问:你能说出什么是旋转对称图形吗?
师生共同总结:
归纳:请比较旋转对称图形和中心对称图形的异同.
练习:课本P102第2、3题
三、拓展应用
1.在一次游戏当中,小明将下面图(1)的四张扑克牌中的一张旋转180o后,得到图(2),小亮看完,很快知道小明旋转了哪一张扑克,你知道为什么吗?
图(1)
(2)
.如图是由两个等边三角形拼成的图形.
这个图形是不是旋转对称图形
是中心对称图形?若是指出对称中心.若三角形ACD旋转后能与三角形
重合.那么图形所在的平面上可以作为
哪些
称图形,

形?
图形(2)是旋转对称图形,
也是中心对称图形.它的旋
转中心是对角线的交点O
图形(3)是旋转对称图形,
也是中心对称图形.它的旋
转中心是对角线的交点O
图形(4)是旋转对称图形,
但不是中心对称图形.它的
解答
答:这个图形是旋转对称图
形,最小的旋转角是120︒.旋转对称图形和旋转角
3.如图,如果四边形CDEF
ABCD重合,那么图
2.画一个旋转角是的旋转对称图形.。

什么是中心对称图形和轴对称图形

什么是中心对称图形和轴对称图形

几何部分一直都是数学学习的重点,一些图形是考试的常考问题。

那么,什么是什么是中心对称图形?什么是轴对称图形?
中心对称图形
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

需要注意中心对称和中心对称图形不是一个概念。

中心对称是在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称
轴对称图形
数学术语,定义为平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。

直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。

比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。

中心对称图形和轴对称图形区别
轴对称图形关键抓两点:一是沿某直线折叠,二是两部分互相重合;
中心对称图形关键也是抓两点:一是绕某一点旋转,二是与原图形重合。

实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。

常见的图形归类
既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等。

只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等。

只是中心对称图形的有:平行四边形。

既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。

以上就是一些中心对称图形与轴对称图形的相关信息,供大家参考。

旋转对称图形知识点总结

旋转对称图形知识点总结

旋转对称图形知识点总结旋转对称是指图形绕一个中心点旋转一定角度后与原始图形完全重合的性质。

在数学中,旋转对称是一种重要的对称性质,对于几何学、图形学和艺术设计等领域都具有重要的意义。

本文将从基本概念、性质、应用等方面对旋转对称进行总结和讨论。

一、基本概念1.1 旋转对称的定义旋转对称是指一个图形绕一个中心点旋转一定角度后与原始图形完全重合的性质。

通常情况下,我们称绕一个中心点旋转的角度为旋转角,而将旋转的中心点称为旋转中心。

如果一个图形绕某一点旋转180°后与原始图形完全重合,那么这个图形就是旋转对称的。

1.2 旋转对称的表示方法在数学中,我们通常用旋转矩阵来表示旋转对称。

以二维平面上的点P(x,y)为例,假设点P关于原点旋转角度为θ后的新坐标为P'(x',y'),那么P到P'的旋转过程可以表示为以下等式:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,cosθ和sinθ分别表示旋转角度θ的余弦和正弦值。

通过这样的表示方法,我们可以很方便地计算出点P经过旋转后的新坐标。

二、性质2.1 旋转对称的性质旋转对称具有以下一些重要的性质:(1)旋转对称是一种刚体运动,旋转后的图形与原始图形完全重合,保持了图形的形状和大小不变。

(2)有些图形具有多个旋转对称轴,比如正方形具有四个旋转对称轴,而正六边形具有六个旋转对称轴。

(3)任意两个旋转对称轴相互垂直。

如果一个图形具有多个旋转对称轴,那么它们之间的夹角是相等的。

2.2 旋转对称的性质应用旋转对称的性质在几何学、图形学和艺术设计等领域都具有广泛的应用。

其中一些最常见的应用包括:(1)在制作对称图案时,人们常常利用旋转对称的性质来设计各种各样美观的图案和装饰。

(2)在计算机图形学中,旋转对称的性质常常用来进行图形的变换和处理,比如旋转图形和生成对称图案等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

360 6
C 从A点转到B点,所得图形与初始 图形重合,此时旋转角为60°,
O
旋转对称图形
下图是否为旋转对称图形,如果是,请指出旋转中心 和旋转角的度数.
A
O
B
从A点转到B点,旋转角为180°,
旋转对称图形
下图是否为旋转对称图形,如果是,请指出旋转中心 和旋转角的度数.
B
A
从A点转到B点,旋转角为180°,
360 4
最小旋转角的度数90°
D
O
1、从A点转到B点,所得的图形与 初始图形重合,此时旋转角为 90°, B
C
2、从A点转到C点,所得的图形与 初始图形重合,此时旋转角为180°, 3、从A点转到D点,所得的图形与 初始图形重合,此时旋转角为270°.
旋转对称图形
下图是否为旋转对称图形,如果是,请指出旋转中心 和旋转角的度数. A O B
这个定点叫做旋转对称中心
旋转的角度叫做旋转角(旋转角 0 360 ).
探究新知
为什么旋转对称图形的旋转角要小于360°?
一个图形绕着任意一点旋转360 °后 都能与初始图形重合.
旋转对称图形
举出生活中旋转对称图形的实例
旋转对称图形
下图是否为旋转对称图形,如果是,请指出旋转中心 和旋转角的度数. A
练习:书P102/1
新知探究
绕着旋转中 绕着旋转中 心旋转60°、 绕着旋转中 心旋转90°、 120°、 心旋转 180°、后 180°后能 180°、 能与自身重 240°后能与 与自身重合 。 合。 自身重合 。
绕着旋转中 心旋转 180°后能 与自身重合 。
新知探究
如果把一个图形绕着一个定点旋转180°后,与初 始图形重合,那么这个图形叫做中心对称图形, 这个点叫做对称中心.
四、自主小结
1、旋转对称图形 2、中心对称图形
图形 的旋 转
旋转 ,与初 始图形重合
特例 中心 对称 图形
旋转对 旋转180°,与 称图形 初始图形重合
中心对称图形是旋转对称图形 旋转对称图形不一定是中心对称图形
如图,已知正方形ABCD和正方形OPQR,△OPR逆时针旋 转后能与△OBC重合,已知∠BOR=55°.则旋转中心 是 点O ,旋转角为 35° 度.
360 3
1、从A点转到B点,所得的图形与 初始图形重合,此时旋转角为120°, C
2、从A点转到C点,所得的图形与 初始图形重合,此时旋转角为240°, 最小旋转角的度数 120°
旋转对称图形
下图是否为旋转对称图形,如果是,请指出旋转中心 和旋转角的度数. A F 300° 240° E D 最小旋转角的度数60° B 120° 180°
A O P B R Q C D
旋转对称图形 中心对称图形
旋转对称图形 中心对称图形
练习:书P102/2,3
应用新知
下面的扑克牌中,哪些牌面是中心对称图形?

×


×是中心对称 图形?
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
旋转 ,与初 始图形重合
图形 的旋 转 0 360
旋转对 称图形
旋转180°,与 初始图形重合
特例 中心 对称 图形 对称中心
旋转对称中心
巩固新知
下列图形是不是旋转对称图形和中心对称图形?
等边三角形
正方形
等腰梯形
旋转对称图形
旋转对称图形 中心对称图形
o
正五边形 正六边形 圆
旋转对称图形
复习
C
A
如图,△A1B1C1是由△ABC绕点O顺时针旋转得到的。 请找出旋转角? ∠AOA1=∠BOB1= ∠C0C1 旋转角大小相等
B
O A1
B1
C1
11.3 旋转对称图形 与中心对称图形
探究新知
这些图形绕着中心旋转后有什么特征?
(4) (3) (1) (2) 这些图形绕着一个定点旋转一个角度后,都能 与初始图形重合, 这种图形叫做旋转对称图形。
相关文档
最新文档