矩形有关综合题
矩形的判定专项练习30题(有答案)ok
矩形的判定专项练习30题(有答案)ok1.在四边形ABCD中,AD∥BC,E、F为AB上两点,且△DAF≌△XXX。
证明:(1)∠A=90°;(2)四边形ABCD 是矩形。
2.平行四边形ABCD中,∠ABC,∠BCD的平分线BE、CF分别交AD于E、F,BE、CF交于点G,点H为BC的中点,GH的延长线交GB的平行线CM于点M。
证明:(1)∠BGC=90°;(2)四边形GBMC是矩形。
3.O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E。
问:(1)四边形OCDE是矩形吗?说明理由;(2)将菱形改为另一种四边形,其它条件都不变,能得出什么结论?根据改编后的题目画出图形,并说明理由。
4.△ABC中,AD⊥BC于D,点E、F分别是△ABC中AB、AC中点,什么条件下四边形AEDF是矩形?说明理由。
5.菱形ABCD的对角线AC、BD交于点O。
问:(1)用尺规作图的方法,作出△AOB平移后的△DEC,其中平移的方向为射线AD的方向,平移的距离为线段AD的长;(2)观察图形,判断四边形DOCE是什么特殊四边形,并证明。
6.平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN。
证明四边形NDMB为矩形。
7.点O是菱形ABCD对角线的交点,过点C作BD的平行线CE,过点D作AC的平行线DE,CE与DE相交于点E。
证明四边形OCED是矩形。
8.已知梯形ABCD中,AD∥BC,AB⊥BC,点E、F分别是边BC、CD的中点,直线EF交边AD的延长线于点M,连接BD。
证明:(1)四边形DBEM是平行四边形;(2)若BD=DC,证明四边形ABCM为矩形。
9.在△ABC中,点O是AC边上的中点,过点O的直线MN∥BC,且MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,点P是BC延长线上一点。
证明四边形AECF是矩形。
(完整版)矩形练习题及答案
矩形课后练习1、矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2、平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,AE⊥BD,垂足为E,∠DAE:∠BAE=1:2,试求∠CAE的度数.5、如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数.6、Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM 的最小值为.7、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,E是AB边的中点,F是AC边的中点,D是BC边上一动点,则△EFD的周长最小值是.8、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.9、(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.10、如图,以△ABC的各边向同侧作正△ABD,正△BCF,正△ACE.(1)求证:四边形AEFD是平行四边形;(2)当∠BAC=______时,四边形AEFD是矩形;(3)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.11、如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当∠A=12∠EOC时,连接BD、CE,求证:四边形BCED为矩形.12、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.13、如图,△ABC中,AB=AC,D是BC中点,F是AC中点,AN是△ABC的外角∠MAC的角平分线,延长DF交AN于点E.(1)判断四边形ABDE的形状,并说明理由;(2)问:线段CE与线段AD有什么关系?请说明你的理由.14、已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.15、如图,矩形纸片ABCD的宽AD=5,现将矩形纸片ABCD沿QG折叠,使点C落到点R的位置,点P是QG上的一点,PE⊥QR于E,PF⊥AB于F,求PE+PF.16、如图,已知,E是矩形ABCD边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F、G,你知道PF+PG与AB有什么关系吗?并证明你的结论.矩形课后练习参考答案题一: B .详解:A .内角和为360°矩形与平行四边形都具有,故此选项错误;B .对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C .对角相等矩形与平行四边形都具有,故此选项错误;D .相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B . 题二: B .详解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选B .题三: B .详解:A .矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B .矩形的对角线相等且互相平分,本选项正确;C .对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D .对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B .题四: C .详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C . 题五: 30°.详解:∵∠DAE :∠BAE =1:2,∠DAB =90°,∴∠DAE =30°,∠BAE =60°,∴∠DBA =90°-∠BAE =90°-60°=30°,∵OA =OB ,∴∠OAB =∠OBA =30°,∴∠CAE =∠BAE -∠OAB =60°-30°=30°.题六: 75°.详解:∵四边形ABCD 是矩形,DE 平分∠ADC ,∴∠CDE =∠CED = 45°,∴EC =DC ,又∵∠BDE =15°,∴∠CDO =60°,又∵矩形的对角线互相平分且相等,∴OD =OC ,∴△OCD 是等边三角形,∴∠DCO =60°,∠OCB =90°-∠DCO =30°,∵DE 平分∠ADC ,∠ECD =90°,∠CDE =∠CED = 45°,∴CD =CE =CO ,∴∠COE =∠CEO ;∴∠COE =(180°-30°)÷2=75°.题七: 65.详解:由题意知,四边形AFPE 是矩形,∵点M 是矩形对角线EF 的中点,则延长AM 应过点P ,∴当AP 为Rt △ABC 的斜边上的高时,即AP ⊥BC 时,AM 有最小值,此时AM =12AP ,由勾股定理知BC =22AB AC +=5,∵S △ABC =12AB •AC =12BC •AP ,∴AP =345⨯=125,∴AM =12AP =65. 题八: 1+13.详解:作点F 关于BC 的对称点G ,连接EG ,交BC 于D 点,D 点即为所求,∵E 是AB 边的中点,F 是AC 边的中点,∴EF 为△ABC 的中位线,∵BC =2,∴EF =12BC =12×2=1;∵EF 为△ABC 的中位线,∴EF ∥BC ,∴∠EFG =∠C =90°,又∵∠ABC =60°,BC =2,FG =AC =23,EG =22EF FG +=13,∴DE +FE +DF =EG +EF =1+13.题九: 见详解.详解:(1)BD =CD .理由:∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =CD ,∵AF =BD ,∴BD =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形. 题十: 见详解.详解:(1)∵△BCF 和△ACE 是等边三角形,∴AC =CE ,BC =CF ,∠ECA =∠BCF =60°,∴∠ECA -∠FCA =∠BCF -∠FCA ,即∠ACB =∠ECF ,∵在△ACB 和△ECF 中,AC =CE ,∠ACB =∠ECF ,BC =CF ,∴△ACB ≌△ECF (SAS),∴EF =AB ,∵三角形ABD 是等边三角形,∴AB =AD ,∴EF =AD =AB ,同理FD =AE =AC ,即EF =AD ,DF =AE ,∴四边形AEFD 是平行四边形;(2)当∠BAC =150°时,平行四边形AEFD 是矩形,理由:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠EAC =60°,∵∠BAC =150°,∴∠DAE =360°-60°-60°-150°=90°,∵由(1)知:四边形AEFD 是平行四边形,∴平行四边形AEFD 是矩形.(3)当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在,理由如下:∵∠DAB =∠EAC =60°,∠BAC =60°,∴∠DAE =60°+60°+60°=180°,∴D 、A 、E 三点共线,即边DA 、AE 在一条直线上,∴当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在.题十一: 见详解.详解:(1)∵在平行四边形ABCD 中,AD =BC ,AD ∥BC ,∴∠EDO =∠BCO ,∠DEO =∠CBO ,∵DE =AD ,∴DE =BC , 在△BOC 和△EOD 中,∠OBC =∠OED ,BC =DE ,∠OCB =∠ODE ,∴△BOC ≌△EOD (ASA);(2)∵DE =BC ,DE ∥BC ,∴四边形BCED 是平行四边形, 在平行四边形ABCD 中,AB ∥DC ,∴∠A =∠ODE ,∵∠A =12∠EOC ,∴∠ODE =12∠EOC , ∵∠ODE +∠OED =∠EOC ,∴∠ODE =∠OED ,∴OE =OD ,∵平行四边形BCED 中,CD =2OD ,B E =2OE ,∴CD =BE ,∴平行四边形BCED 为矩形.题十二:见详解.详解:矩形.理由:连接OM,∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM⊥MC,BM⊥MD,∴∠AMC=∠BMD=90°,∴OM=12BD,OM=12AC,∴BD=AC,∴四边形ABCD是矩形.题十三:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC 中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.题十四:见详解.详解:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD,∵点E、F分别是AB、CD的中点,∴AE=12 AB,CF=12CD.∴AE=CF,在△AED与△CBF中,AD=CB,∠4=∠C,AE=CF,∴△ADE≌△CBF(SAS),(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥BD,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∵AE=BE,∴AE=BE=DE,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB=90°,∴四边形AGBD是矩形.题十五:5.详解:把折叠的图展开,如图所示:EF=AD,∵AD=5,∴EF=5,∴PF+PE=5.题十六:PF+PG =AB.详解:PF+PG=AB.理由如下:连接PE,则S△BEP+S△DEP=S△BED,即12BE•PF+12DE•PG =12DE•AB.又∵BE=DE,∴12DE•PF+12DE•PG=12DE•AB,即12DE(PF+PG)=12DE•AB,∴PF+PG =AB.。
矩形的性质练习题及答案
矩形的性质练习题及答案
练题
1. 矩形是一种特殊的四边形,具有哪些特点?
2. 矩形的四边分别叫什么?
3. 矩形的对角线有什么特点?
4. 如何判断一个四边形是否为矩形?
5. 下列哪个形状不是矩形?
- (A) 正方形
- (B) 长方形
- (C) 梯形
- (D) 菱形
6. 一个矩形的长和宽分别为8cm和6cm,求他的面积和周长。
答案
1. 矩形具有以下特点:
- 四个角都是直角(90°)
- 两对相邻边相等
- 对角线相等
2. 矩形的四边分别叫:
- 上边(或上底)
- 下边(或下底)
- 左边(或左底)
- 右边(或右底)
3. 矩形的对角线有以下特点:
- 对角线长度相等
- 对角线互相垂直(成直角)
4. 判断一个四边形是否为矩形,需满足以下条件:- 四个角都是直角
- 两对相邻边相等
5. 下列哪个形状不是矩形?
- (C) 梯形
6. 长为8cm,宽为6cm的矩形的面积和周长计算如下:
- 面积:8cm × 6cm = 48cm²
- 周长:2 × (8cm + 6cm) = 28cm
注意:矩形的面积单位为平方单位,周长单位为长度单位。
---
以上为矩形的性质练习题及答案。
了解矩形的特点和计算方法能够帮助我们更好地理解和应用矩形的性质。
如果还有其他问题,欢迎继续咨询。
矩形的性质与判定练习题
矩形的性质与判定练习题矩形是几何学中常见的形状之一,具有许多独特的性质和特点。
在本文中,我们将通过一些练习题来探讨和判定矩形的性质。
请阅读以下练习题并回答。
练习题一:判断矩形1. 给定四个点A(1, 1), B(5, 1), C(5, 4), D(1, 4),请判断这四个点能否构成一个矩形。
练习题二:矩形的性质1. 一条直线分割一个矩形,使其成为两个等面积的小矩形。
证明这条直线必定是通过矩形的中心点。
2. 如果一条直线沿着矩形的一条边切割,那么它将会切成两个全等的小矩形。
3. 证明:一个矩形的对角线相等。
练习题三:矩形的判定1. 给定四个点A(1, 1), B(5, 1), C(5, 4), D(1, 4),请判断这四个点能否构成一个正方形。
2. 如果一条矩形的两条对边相等且平行,则它必定是一个正方形。
练习题四:矩形的角度1. 一个矩形的四个内角的和是多少度?2. 证明:一个矩形的内角都是直角(90度)。
练习题五:矩形的边长关系1. 一个矩形的两条对边的长度分别是a和b,它的对角线的长度是多少?2. 如果一个矩形的一边的长度是a,另一条边的长度是b,那么它的面积是多少?练习题六:矩形的面积1. 已知一个矩形的长为5cm,宽为3cm,求它的面积。
2. 如果一个矩形的面积是24平方单位,且长比宽多2个单位,求矩形的长和宽。
根据上述练习题,我们可以通过判断和计算来了解矩形的性质和特点。
矩形具有对角线相等、相对边平行、内角为直角等特点,这些性质可以帮助我们对矩形进行判定和计算。
答案:练习题一:可以构成一个矩形;练习题二:1. 通过矩形的对角线可以证明;2. 正确;3. 通过矩形的对角线可以证明;练习题三:1. 不能构成一个正方形;2. 正确;练习题四:1. 360度;2. 通过矩形的对角线可以证明;练习题五:1. 对角线的长度可以通过勾股定理计算:√(a^2 + b^2);2. 面积可以通过长乘宽计算:a * b;练习题六:1. 面积等于长乘宽:5cm * 3cm = 15平方厘米;2. 设矩形的宽为x,则长为x+2,根据面积的计算公式得到:(x+2) * x = 24,解得x=4,所以矩形的长为6,宽为4。
(完整版)矩形练习题及答案
矩形课后练习1、矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2、平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,AE⊥BD,垂足为E,∠DAE:∠BAE=1:2,试求∠CAE的度数.5、如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数.6、Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM 的最小值为.7、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,E是AB边的中点,F是AC边的中点,D是BC边上一动点,则△EFD的周长最小值是.8、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.9、(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.10、如图,以△ABC的各边向同侧作正△ABD,正△BCF,正△ACE.(1)求证:四边形AEFD是平行四边形;(2)当∠BAC=______时,四边形AEFD是矩形;(3)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.11、如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当∠A=12∠EOC时,连接BD、CE,求证:四边形BCED为矩形.12、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.13、如图,△ABC中,AB=AC,D是BC中点,F是AC中点,AN是△ABC的外角∠MAC的角平分线,延长DF交AN于点E.(1)判断四边形ABDE的形状,并说明理由;(2)问:线段CE与线段AD有什么关系?请说明你的理由.14、已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.15、如图,矩形纸片ABCD的宽AD=5,现将矩形纸片ABCD沿QG折叠,使点C落到点R的位置,点P是QG上的一点,PE⊥QR于E,PF⊥AB于F,求PE+PF.16、如图,已知,E是矩形ABCD边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F、G,你知道PF+PG与AB有什么关系吗?并证明你的结论.矩形课后练习参考答案题一: B .详解:A .内角和为360°矩形与平行四边形都具有,故此选项错误;B .对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C .对角相等矩形与平行四边形都具有,故此选项错误;D .相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B . 题二: B .详解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选B .题三: B .详解:A .矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B .矩形的对角线相等且互相平分,本选项正确;C .对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D .对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B .题四: C .详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C . 题五: 30°.详解:∵∠DAE :∠BAE =1:2,∠DAB =90°,∴∠DAE =30°,∠BAE =60°,∴∠DBA =90°-∠BAE =90°-60°=30°,∵OA =OB ,∴∠OAB =∠OBA =30°,∴∠CAE =∠BAE -∠OAB =60°-30°=30°.题六: 75°.详解:∵四边形ABCD 是矩形,DE 平分∠ADC ,∴∠CDE =∠CED = 45°,∴EC =DC ,又∵∠BDE =15°,∴∠CDO =60°,又∵矩形的对角线互相平分且相等,∴OD =OC ,∴△OCD 是等边三角形,∴∠DCO =60°,∠OCB =90°-∠DCO =30°,∵DE 平分∠ADC ,∠ECD =90°,∠CDE =∠CED = 45°,∴CD =CE =CO ,∴∠COE =∠CEO ;∴∠COE =(180°-30°)÷2=75°.题七: 65.详解:由题意知,四边形AFPE 是矩形,∵点M 是矩形对角线EF 的中点,则延长AM 应过点P ,∴当AP 为Rt △ABC 的斜边上的高时,即AP ⊥BC 时,AM 有最小值,此时AM =12AP ,由勾股定理知BC =22AB AC +=5,∵S △ABC =12AB •AC =12BC •AP ,∴AP =345⨯=125,∴AM =12AP =65. 题八: 1+13.详解:作点F 关于BC 的对称点G ,连接EG ,交BC 于D 点,D 点即为所求,∵E 是AB 边的中点,F 是AC 边的中点,∴EF 为△ABC 的中位线,∵BC =2,∴EF =12BC =12×2=1;∵EF 为△ABC 的中位线,∴EF ∥BC ,∴∠EFG =∠C =90°,又∵∠ABC =60°,BC =2,FG =AC =23,EG =22EF FG +=13,∴DE +FE +DF =EG +EF =1+13.题九: 见详解.详解:(1)BD =CD .理由:∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =CD ,∵AF =BD ,∴BD =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形. 题十: 见详解.详解:(1)∵△BCF 和△ACE 是等边三角形,∴AC =CE ,BC =CF ,∠ECA =∠BCF =60°,∴∠ECA -∠FCA =∠BCF -∠FCA ,即∠ACB =∠ECF ,∵在△ACB 和△ECF 中,AC =CE ,∠ACB =∠ECF ,BC =CF ,∴△ACB ≌△ECF (SAS),∴EF =AB ,∵三角形ABD 是等边三角形,∴AB =AD ,∴EF =AD =AB ,同理FD =AE =AC ,即EF =AD ,DF =AE ,∴四边形AEFD 是平行四边形;(2)当∠BAC =150°时,平行四边形AEFD 是矩形,理由:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠EAC =60°,∵∠BAC =150°,∴∠DAE =360°-60°-60°-150°=90°,∵由(1)知:四边形AEFD 是平行四边形,∴平行四边形AEFD 是矩形.(3)当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在,理由如下:∵∠DAB =∠EAC =60°,∠BAC =60°,∴∠DAE =60°+60°+60°=180°,∴D 、A 、E 三点共线,即边DA 、AE 在一条直线上,∴当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在.题十一: 见详解.详解:(1)∵在平行四边形ABCD 中,AD =BC ,AD ∥BC ,∴∠EDO =∠BCO ,∠DEO =∠CBO ,∵DE =AD ,∴DE =BC , 在△BOC 和△EOD 中,∠OBC =∠OED ,BC =DE ,∠OCB =∠ODE ,∴△BOC ≌△EOD (ASA);(2)∵DE =BC ,DE ∥BC ,∴四边形BCED 是平行四边形, 在平行四边形ABCD 中,AB ∥DC ,∴∠A =∠ODE ,∵∠A =12∠EOC ,∴∠ODE =12∠EOC , ∵∠ODE +∠OED =∠EOC ,∴∠ODE =∠OED ,∴OE =OD ,∵平行四边形BCED 中,CD =2OD ,B E =2OE ,∴CD =BE ,∴平行四边形BCED 为矩形.题十二:见详解.详解:矩形.理由:连接OM,∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM⊥MC,BM⊥MD,∴∠AMC=∠BMD=90°,∴OM=12BD,OM=12AC,∴BD=AC,∴四边形ABCD是矩形.题十三:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC 中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.题十四:见详解.详解:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD,∵点E、F分别是AB、CD的中点,∴AE=12 AB,CF=12CD.∴AE=CF,在△AED与△CBF中,AD=CB,∠4=∠C,AE=CF,∴△ADE≌△CBF(SAS),(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥BD,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∵AE=BE,∴AE=BE=DE,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB=90°,∴四边形AGBD是矩形.题十五:5.详解:把折叠的图展开,如图所示:EF=AD,∵AD=5,∴EF=5,∴PF+PE=5.题十六:PF+PG =AB.详解:PF+PG=AB.理由如下:连接PE,则S△BEP+S△DEP=S△BED,即12BE•PF+12DE•PG =12DE•AB.又∵BE=DE,∴12DE•PF+12DE•PG=12DE•AB,即12DE(PF+PG)=12DE•AB,∴PF+PG =AB.。
备考2022年中考数学一轮复习-图形的性质_四边形_矩形的性质-综合题专训及答案
备考2022年中考数学一轮复习-图形的性质_四边形_矩形的性质-综合题专训及答案矩形的性质综合题专训1、(2019苏州.中考模拟) 如图1,在矩形A8CD中,BC>A8,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC 于点C.(1)求证:AB+AK=KD:(2)若KD=KG,BC=4- .①求KD的长度;②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S= 时,求m的值.△PMN2、(2019萧山.中考模拟) 如图,已知一张长方形纸片,AB=CD=a,AD=BC=b(a <b<2a).将这张纸片沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G.(1)在图中确定点F、点E和点G的位置;(2)连接AE,则∠EAB=;(3)用含有a、b的代数式表示线段DG的长.3、(2018信阳.中考模拟) 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–x+3交AB,BC于点M,N,反比例函数的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.4、(2018岳阳.中考模拟) 如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是直线x=﹣1.(1)求抛物线对应的函数关系式;(2)点N在线段OA上,点M在线段OB上,且OM=2ON,过点N作x轴的垂线交线段AB于点Q,交抛物线于点P.①当ON为何值时,四边形OMPN为矩形;②△AOQ能否为等腰三角形?若能,求出此时ON的值;若不能,请说明理由.5、(2017冷水滩.中考模拟) 如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:△AEF≌△DCE;(2)若CD=1,求BE的长.6、(2017城.中考模拟) 如图,矩形纸片ABCD(AD>AB)中,将它折叠,使点A与C重合,折痕EF交AD于E,交BC于F,交AC于O,连结AF、CE.(1)求证:四边形AFCE是菱形;(2)过E作EP⊥AD交AC于P,求证:AE2=AO•AP;(3)若AE=8,△ABF的面积为9,求AB+BF的值.7、(2011深圳.中考真卷) 如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.8、(2019港南.中考模拟) 已知长方形中,,点在边上,由往运动,速度为,运动时间为秒,将沿着翻折至,点对应点为,所在直线与边交与点,(1)如图,当时,求证:;(2)如图,当为何值时,点恰好落在边上;(3)如图,当时,求的长.9、(2018德阳.中考真卷) 如图点、分别是矩形的边、上一点,若,且,(1)求证:点为的中点;(2)延长与的延长线相交于点,连结,已知,求的值.10、(2017贵州.中考模拟) 如图,为了绿化小区,某物业公司要在形如五边形ABCDE 的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(1)求直线AB的解析式.(2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数关系式.11、(2020锦江.中考模拟) 如图1,在矩形ABCD中,AB=1,对角线AC,BD相交于点O,∠COD=60°,点E是线段CD上一点,连接OE,将线段OE绕点O逆时针旋转60°得到线段OF,连接DF.(1)求证:DF=CE;(2)连接EF交OD于点P,求DP的最大值;(3)如图2,点E在射线CD上运动,连接AF,在点E的运动过程中,若AF=AB,求OF的长.12、(2020鹤岗.中考真卷) 如图,在平面直角坐标系中,矩形的边长是方程的根,连接,,并过点作,垂足为,动点P从点B以每秒2个单位长度的速度沿方向匀速运动到点D为止;点M沿线段以每秒个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(1)线段________;(2)连接和,求的面积s与运动时间的函数关系式;(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点P的坐标.13、(2020长春.中考真卷) (教材呈现)下图是华师版八年级下册数学教材第121页的部分内容.(1)(问题解决)如图①,已知矩形纸片,将矩形纸片沿过点的直线折叠,使点A落在边上,点A的对应点为,折痕为,点E在上.求证:四边形是正方形.(2)(规律探索)由(问题解决)可知,图①中的为等腰三角形.现将图①中的点沿向右平移至点处(点在点的左侧),如图②,折痕为,点在上,点P在上,那么还是等腰三角形吗?请说明理由.(3)(结论应用)在图②中,当时,将矩形纸片继续折叠如图③,使点C与点P重合,折痕为,点G在上.要使四边形为菱形,则________.14、(2019扬州.中考模拟) 如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF(1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.15、(2020温州.中考模拟) 如图,矩形ABCD中,AB=6,BC=6 ,动点P从点A出发,以每秒个单位长度的速度沿线段AD运动,动点Q从点D出发,以每秒2个单位长度的速度沿折线段D﹣O﹣C运动,已知P、Q同时开始移动,当动点P 到达D点时,P、Q同时停止运动.设运动时间为t秒.(1)当t=1秒时,求动点P、Q之间的距离;(2)若动点P、Q之间的距离为4个单位长度,求t的值;(3)若线段PQ的中点为M,在整个运动过程中;直接写出点M运动路径的长度________.矩形的性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-综合题专训及答案
备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-综合题专训及答案矩形的判定综合题专训1、(2016保定.中考模拟) 如图,在菱形ABCD中,P是对角线AC上任一点(不与A,C重合),连接BP,DP,过P作PE∥CD交AD于E,过P作PF∥AD交CD于F,连接EF.(1)求证:△ABP≌△ADP;(2)若BP=EF,求证:四边形EPFD是矩形.2、(2018宁波.中考模拟) 已知:如图,在▱ABCD中,DE平分∠ADB,交AB于E,BF 平分∠CBD,交CD于F.(1)求证:△ADE≌△CBF;(2)当AD与BD满足什么关系时,四边形DEBF是矩形?请说明理由.3、(2017莱西.中考模拟) 如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.4、(2017蒙阴.中考模拟) 已知:如图,在△A BC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:AD=CE;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.5、(2017日照.中考真卷) 如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.6、(2016潍坊.中考真卷) 正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.7、(2017潮南.中考模拟) △ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?8、(2016深圳.中考模拟) 如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=2 时,求sin∠A ED的值.9、(2017阜康.中考模拟) 如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4 ,tanα= ,求四边形OBEC的面积.10、(2018新疆维吾尔自治区.中考真卷) 如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.11、(2020湖州.中考模拟) 如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F 分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.12、(2020兰州.中考模拟) 在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C 点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.13、(2020开远.中考模拟) 如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC 的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.14、(2020昆明.中考真卷) 如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.15、(2021岑溪.中考模拟) 如图,抛物线交轴于点、,交轴于点,点的坐标为(3,0),点的坐标为(0,3),点与点关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点为抛物线对称轴上一动点,连接,以、为边作平行四边形,是否存在这样的点,使平行四边形是矩形?若存在,请求出点的坐标;(3)在(2)的结论下,求出的值.矩形的判定综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
矩形的性质和判定典型试题综合训练(含解析)完美打印版
矩形的性质和判定典型试题综合训练(含解析)一.选择题(共15小题)1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB3.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分4.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC5.下列图形是用矩形纸片来折出阴影部分为等腰三角形,其中正确的有()A.1个B.2个C.3个D.4个6.如图,EF过矩形ABCD对角线的交点O,且分别交AD、BC于点E、F已知AB=3,BC=4,则图中阴影部分的面积是()A.3 B.4 C.6 D.127.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S1与矩形QCNK的面积S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.S1=2S28.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S29.如图,矩形ABCD中,AB=12,BC=13,以B为圆心,BA为半径画弧,交BC于点E,以D为圆心,DA 为半径画弧,交BC于点F,则EF的长为()A.3 B.4 C.D.510.如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°11.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对12.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.513.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大B.减小C.不变D.先增大再减小14.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,点M、N分别是AE、PE的中点,则线段MN长为()A.2B.3 C.D.15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2二.填空题(共12小题)16.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.17.如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是.18.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH 是矩形.19.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE=.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.21.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.22.如图矩形ABCD中,AB=8cm,CB=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为cm2.23.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF 的最小值是.24.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为.25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是.26.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中一定成立的结论有(将正确结论的序号填在横线上)27.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=.三.解答题(共7小题)28.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.29.如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.30.如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.31.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.32.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.33.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC 的长及四边形AOFE的面积.34.已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是.矩形的性质和判定典型试题综合训练参考答案与试题解析一.选择题(共15小题)1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.3.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.4.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故选:B.5.下列图形是用矩形纸片来折出阴影部分为等腰三角形,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据等腰三角形的定义,即可一一判断.【解答】解:如图图1中,∵∠1=∠3,∠2=∠3,∴∠1=∠2,∴BA=BC,∴△ABC是等腰三角形.图3中,同法可证∠1=∠2,∴BA=BC,∴△ABC是等腰三角形.图4中,△ABC是等腰直角三角形,故选C.6.如图,EF过矩形ABCD对角线的交点O,且分别交AD、BC于点E、F已知AB=3,BC=4,则图中阴影部分的面积是()A.3 B.4 C.6 D.12【分析】由全等三角形的判定得到△OFB≌△OED,将阴影部分的面积转化为规则的几何图形的面积进行计算.【解答】解:在矩形ABCD中,OB=OD,∠FBO=∠EDO,∴在△OFB与△OED中,∴△FBO≌△EDO,∴S阴影部分=S△ABO=S矩形=×3×4=3.故选A.7.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S1与矩形QCNK的面积S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.S1=2S2【分析】根据矩形的性质,可知△ABD的面积等于△CDB的面积,△MBK的面积等于△QKB的面积,△PKD的面积等于△NDK的面积,再根据等量关系即可求解.【解答】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故选:B.8.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2【分析】由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=S矩形AEFC,即S1=S2,故选B.9.如图,矩形ABCD中,AB=12,BC=13,以B为圆心,BA为半径画弧,交BC于点E,以D为圆心,DA为半径画弧,交BC于点F,则EF的长为()A.3 B.4 C.D.5【分析】连接DF,在Rt△CDF中,求出CF,再求出CE即可解决问题.【解答】解:连接DF.∵四边形ABCD是矩形,∴AB=CD=BE=12,DA=BC=DF=13,∠C=90°,∴CF===5,∵EC=BC﹣BE=13﹣12=1,∴EF=CF﹣CE=4.故选B.10.如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°【分析】根据三角形内角和定理和等腰三角形两底角相等求出∠MCP,然后求出∠BCP,再根据等腰三角形两底角相等和三角形内角和定理求解即可.【解答】解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=BC,MP=MC,∵∠PMC=110°,∴∠MCP=(180°﹣∠PMC)=(180°﹣110°)=35°,在长方形ABCD中,∠BCD=90°,∴∠BCP=90°﹣∠MCP=90°﹣35°=55°,∴∠BCP=∠BPC=55°.故选C.11.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【分析】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【解答】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.12.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.5【分析】设FC′=x,则FD=9﹣x,根据矩形的性质结合BC=6、点C′为AD的中点,即可得出C′D的长度,在Rt△FC′D中,利用勾股定理即可找出关于x的一元一次方程,解之即可得出结论.【解答】解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选D.13.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大B.减小C.不变D.先增大再减小【分析】首先过A作AG⊥BD于G.利用面积法证明PE+PF=AG即可.【解答】解:如图,过A作AG⊥BD于G,则S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×(PE+PF),∵S△AOD=S△AOP+S△POD,四边形ABCD是矩形,∴OA=OD,∴PE+PF=AG,∴PE+PF的值是定值,故选C.14.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,点M、N分别是AE、PE的中点,则线段MN长为()A.2B.3 C.D.【分析】连接AP,根据矩形的性质求出AP的长度,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP,问题得解.【解答】解:连接AP,∵矩形ABCD中,AB=DC=4,P是CD边上的中点,∴DP=2,∴AP==2,连接AP,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP=.故选D.15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2【分析】根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.【解答】方法一:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===(cm2).故选:B.二.填空题(共12小题)16.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.17.如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是9.【分析】连接EO,延长EO交AB于H.只要证明四边形ADEO是平行四边形,推出OE=AD,再证明OH 是△ADB的中位线,可得OE=AD,延长即可求出EH解决问题.【解答】解:连接EO,延长EO交AB于H.∵DE∥OC,CE∥OD,∴四边形ODEC是平行四边形,∵四边形ABCD是矩形,∴OD=OC,∴四边形ODEC是菱形,∴OE⊥CD,∵AB∥CD,AD⊥CD,∴EH⊥AB,AD∥OE,∵OA∥DE,∴四边形ADEO是平行四边形,∴AD=OE=6,∵OH∥AD,OB=OD,∴BH=AH,∴OH=AD=3,∴EH=OH+OE=3+6=9,故答案为9.18.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证四边形EFGH是矩形.【分析】根据三角形的中位线平行于第三边,HG∥BD,EH∥AC,根据平行线的性质∠EHG=∠1,∠1=∠2,根据矩形的四个角都是直角,∠EFG=90°,所以∠2=90°,因此AC⊥BD.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.19.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE=5.【分析】首先证明AB=AE=CD=4,在Rt△CED中,根据CE=计算即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,BC=AD=7,∠D=90°,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴AB=AE=CD=4,在Rt△EDC中,CE===5.故答案为520.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是6.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.21.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD 的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.22.如图矩形ABCD中,AB=8cm,CB=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为10cm2.【分析】本题主要考查矩形的性质,找出题里面的等量关系求解即可.【解答】解:AB=8cm,CB=4cm,E是DC的中点,BF=BC,∴CE=4,CF=3.∴四边形DBFE的面积=8×4﹣8×4÷2﹣4×3÷2=10cm2.23.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF 的最小值是 2.4.【分析】根据已知得出四边形CEPF是矩形,得出EF=CP,要使EF最小,只要CP最小即可,根据垂线段最短得出即可.【解答】解:连接CP,如图所示:∵∠C=90°,PF⊥AC于F,PE⊥BC于E,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF是矩形,∴EF=CP,要使EF最小,只要CP最小即可,当CP⊥AB时,CP最小,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:×4×3=×5×CP,∴CP=2.4,即EF=2.4,故答案为:2.4.24.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为(2,4)或(3,4)或(8,4)或(2.5,4).【分析】分为三种情况:①OP=OD时,②DO=DP时,③OP=PD时,根据点B的坐标,根据勾股定理和等腰三角形的性质即可求出答案.【解答】解:∵B的坐标是(10,4),四边形OCBA是矩形,∴OC=AB=4,∵D为OA中点,∴OD=AD=5,∵P在BC上,∴P点的纵坐标是4,以O为圆心,以OD为半径作弧,交BC于P,如图1所示:此时OP=OD=5,由勾股定理得:CP=3,即P的坐标是(3,4);由勾股定理得:CP=3,即P的坐标是(3,4);以D为圆心,以OD为半径作弧,交BC于P、P′,如图2所示:此时DP=OD=DP′=5,由勾股定理得:DM=DN=3,即P的坐标是(2,4),P′的坐标是(8,4);③作OD的垂直平分线交BC于P,如图3所示:此时OP=DP,P的坐标是(2.5,4);故答案为:(2,4)或(3,4)或(8,4)或(2.5,4).25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.【分析】由把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∠EFB=60°,易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.26.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中一定成立的结论有①③④(将正确结论的序号填在横线上)【分析】①正确.只要证明BO=BC,OF=FO即可解决问题;②错误.可以证明△EOB≌△FCB,由此即可判断;③正确.只要证明△DEF是等边三角形即可.④正确.只要证明S△BCM=S△ACB,S△AOE=S△AOB=S即可;△ABC【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,OA=OC,∴OB=OA=OB,∵∠COB=60°,∴△BOC是等边三角形,∴∠OCB=60°,∴∠DCA=30°,∵FO=FC,BO=BC,∴BF垂直平分OC,故①正确,∴∠FBC=∠OBE=30°,∴∠FOC=∠FCO=30°,∴∠FOB=90°,∵CD∥AB,∴∠FCO=∠EAO,∵∠FOC=∠AOE,OA=OC,∴△FOC≌△EOA,∴OE=OF,∴BF=BE,∵∠BOE=∠BCF=90°,∠EBO=∠CBF,∴△EBO≌△FBC,故②错误,∵DF∥EB,DF=BE,∴四边形DEBF是平行四边形,∴∠EDF=∠FBE=60°,∵∠DFE=180°﹣∠CFO=60°,∴△EDF是等边三角形,∴DE=EF,故③正确,易知CM=AC,AE=CF=BF=BE,∴S△BCM=S△ACB,S△AOE=S△AOB=S△ABC,∴S△AOE:S△BCM=2:3.故④正确,故答案为①③④27.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF﹣∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.【解答】解:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,∵∠ACG=∠AGC,∴∠CAG=180°﹣∠ACG﹣∠AGC=180°﹣2×40°=100°,∴∠CAF=∠CAG+∠GAF=100°+20°=120°,∴∠BAC=∠CAF﹣∠BAF=120°﹣90°=30°,在Rt△ABC中,AC=2BC=2AD=2,由勾股定理,AB===.故答案为:.三.解答题(共7小题)28.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.【分析】(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.【解答】(1)证明:∵四边形ABDE是平行四边形,∴AB=DE,又∵AB=AC,∴DE=AC.∵AB=AC,D为BC中点,∴∠ADC=90°,又∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形AECD是平行四边形,又∴∠ADC=90°,∴四边形ADCE是矩形.(2)解:∵四边形ADCE是矩形,∴AO=EO,∵∠AOE=60°∴△AOE为等边三角形,∴AO=AE=2,∴AC=2OA=4.29.如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.【分析】(1)利用平行四边形的性质可得AD∥BC,结合条件可先证得四边形ADEC为平行四边形,结合AC⊥BC,可证得结论;(2)由直角三角形的性质可求得AB的长,在Rt△ABC中,由勾股定理可求得BC的长,再利用矩形的性质可求得AD的长,结合AC可求得矩形ADEC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵DE∥AC,∴四边形ADEC是平行四边形.又∵AC⊥BC,∴∠ACE=90°.∴四边形ADEC是矩形;(2)解:∵AC⊥BC,∴∠ACB=90°.∵M是AB的中点,∴AB=2CM=10.∵AC=8,∴BC==6.又∵四边形ABCD是平行四边形,∴BC=AD.又∵四边形ADEC是矩形,∴EC=AD.∴EC=BC=6.∴矩形ADEC的面积=6×8=48.30.如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.【分析】(1)可用三角形中位线定理求解,易知DG、EF分别是△ABC和△BOC的中位线,那么DG、EF 都平行且相等于BC,即DG与EF平行且相等,由此可证得四边形DEFG是平行四边形.(2)连接OA,则DE∥OA∥GF;若四边形DEFG是矩形,则DG和DE互相垂直;因此OA和BC也互相垂直,由此可判断出O点所处的位置.【解答】解:(1)四边形DEFG是平行四边形.理由如下:∵D、G分别是AB、AC的中点,∴DG是△ABC的中位线;∴DG∥BC,且DG=BC;同理可证:EF∥BC,且EF=BC;∴DG∥EF,且DG=EF;故四边形DEFG是平行四边形;(2)O在BC边的高上(且不与点A和垂足重合)理由如下:连接OA;∵把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.∴DE∥OA∥GF,EF∥BC,∵O点在BC边的高上,∴AO⊥BC,∴AO⊥EF,∵DE∥OA,∴DE⊥EF,∴四边形DEFG是矩形.31.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.32.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.【分析】(1)证出∠A=90°即可;(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=6﹣x,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,又∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL)),∴DQ=PQ,设AQ=x,则DQ=PQ=6﹣x在Rt△APQ中,AQ2+AP2=PQ2 ∴x2+22=(6﹣x)2,解得:x=∴AQ的长是.33.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC 的长及四边形AOFE的面积.【分析】(1)根据平行四边形判定得出平行四边形,再根据矩形判定推出即可;(2)分别求出AE、OH、CE、CF的长,再求出三角形AEC和三角形COF的面积,即可求出答案.【解答】(1)证明:∵CE∥AD且CE=AD,∴四边形ADCE是平行四边形,∵在△ABC中,AB=AC,AD平分∠BAC,∴AD⊥BC(等腰三角形三线合一性质),∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵△ABC是等边三角形,边长为4,∴AC=4,∠DAC=30°,∴∠ACE=30°,AE=2,CE=2,∵四边形ADCE为矩形,∴OC=OA=2,∵CF=CO,∴CF=2,过O作OH⊥CE于H,∴OH=OC=1,∴S四边形AOFE=S△AEC﹣S△COF=×2×2﹣×2×1=2﹣1.34.已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=20.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是20≤m<28.【分析】(1)利用勾股定理求出矩形对角线的长度,再利用三角形中位线的性质得出EH=BD,EF=AC,FG=BD,HG=AC,进而求出即可;(2)①利用轴对称图形的性质得出答案即可;②利用两点之间线段最短以及三角形三边关系得出m的取值范围即可.【解答】解:(1)如图2,连接AC,BD,∵在矩形ABCD中,AB=6,BC=8,∴AC=BD==10,∵E、F、G、H分别是AB、BC、CD、DA四边中点,∴EH,EF,FG,HG,分别是△ABD,△ABC,△BCD,△ACD的中位线,∴EH=BD,EF=AC,FG=BD,HG=AC,∴m=EF+FG+GH+HE=AC+BD=10+10=20;(2)①如图3所示(虚线可以不画),②由图形可知,四边形的周长即折线HM的长,由两点之间线段最短可知,折线HM≥20,即周长不小于20;又由题可知,四边形周长小于矩形ABCD的周长,即周长小于28,故20≤m<28.故答案为:20;20≤m<28.。
矩形综合测试题
矩形的性质与判定的练习题一、选择题(每小题3分,共21分)1.矩形具有一般平行四边形不具有的性质是…………………………………【 】 A. 对边相互平行 B. 对角线相等 C. 对角线相互平分 D. 对角相等2.下列说法中正确的是…………………………………………………………【 】 A.对角线相等的四边形是矩形 B.一对内角是直角的四边形是矩形 C.一组对边平行且相等,对角线相等的四边形是矩形 D.对角线相等且互相垂直的四边形是矩形3.如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BFA =30°,那么∠CEF等于…………………………………………【 】A. 20°B. 30°C. 45°D. 60°4.如图矩形ABCD 的对角线AC ,BD 相交于点O , 120AOB ∠=︒,AB=5,则AD 的长度是【 】A. B. C. 5 D. 105.如图,将一个边长分别为4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则折痕EF 的长是………………………………………………………………………………【 】A B .C D .6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC 。
若AC=4,则四边形OCED 的周长为………………………………………………………………【 】 A.4 B.6 C.8 D.107.如图5,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为【 】A.98B.196C.280D.284二.填空题(每小题3分,共18分)8.一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为__________________.9.在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_________. 10.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2,BC =3.则图中阴影部分的面积为 .11.已知如图:矩形ABCD 的对角线AC ,BD 相交于点O ,60AOB ∠=︒,AB=4,则这个矩形的周长为________________。
矩形和平行四边形的综合练习题
矩形和平行四边形的综合练习题在几何学中,矩形和平行四边形是常见的图形。
它们具有多个重要的特征和性质,对于理解几何学有着重要的作用。
下面是一些关于矩形和平行四边形的综合练习题,希望能够帮助读者巩固对这两个图形的认识和理解。
练习题一:矩形的性质1. 一个矩形的两条对角线是否相等?为什么?2. 设一个矩形的长为8cm,宽为6cm,计算其面积和周长。
3. 如果一个矩形的周长为30cm,且它的宽为4cm,求其长度。
4. 在一个矩形中,如果两条相邻边的长度分别为10cm和6cm,求其对角线的长度。
练习题二:平行四边形的性质1. 平行四边形的对边是否相等?为什么?2. 设一个平行四边形的底边长为10cm,高为5cm,求其面积。
3. 如果一个平行四边形的面积为24cm²,底边长为6cm,求其高。
4. 在一个平行四边形中,如果两条相邻边的长度分别为8cm和12cm,求其对角线的长度。
练习题三:综合题1. 如果一个矩形的周长是24cm,且其中一条边的长度是6cm,求矩形的面积。
2. 在一个平行四边形中,两条对角线的长度分别为8cm和10cm,求其面积。
3. 一个矩形的长和宽分别为x和y,且它的面积为36cm²,求x和y 的值。
4. 在一个平行四边形中,两条对角线的长度分别为12cm和16cm,求其周长。
解答:练习题一:矩形的性质1. 一个矩形的两条对角线相等。
这是因为矩形的对边相等且平行,所以可以利用同位角的性质来证明两条对角线相等。
2. 矩形的面积可以通过长度和宽度的乘积来计算,即8cm * 6cm = 48cm²。
周长可以通过长度和宽度的两倍之和来计算,即(8cm + 6cm) *2 = 28cm。
3. 设矩形的长度为x,则周长为2x + 2 * 4cm = 30cm。
解这个方程可以得到x = 11cm。
4. 在一个矩形中,两条相邻边的长度分别为10cm和6cm。
可以使用勾股定理来计算对角线的长度,即√(10cm² + 6cm²) ≈ 11.66cm。
初三有关矩形的练习题
初三有关矩形的练习题矩形是我们数学学习中非常重要的一个几何形状。
熟练掌握矩形的性质和计算方法对我们解题非常有帮助。
下面是一些初三矩形相关的练习题,希望大家认真思考,加深对矩形的理解和运用。
1. 某矩形的长是12cm,宽是8cm,求它的周长和面积。
2. 已知一个矩形的周长是36cm,面积是40cm²,求它的长和宽。
3. 一个矩形的长和宽的比是5:2,若它的长是20cm,求它的宽和面积。
4. 设一个矩形的长是4a,宽是3a,求它的周长和面积。
5. 设一个矩形的周长是18cm,宽是a,求它的长和面积。
6. 某矩形的周长是56cm,宽是x + 5,长是x + 10,求它的长和宽。
7. 一个矩形的周长是72cm,长是x + 6,宽是x - 4,求它的长和宽。
解答:1. 周长的计算公式是:周长 = 2 × (长 + 宽) = 2 × (12 + 8) = 40cm面积的计算公式是:面积 = 长 ×宽 = 12 × 8 = 96cm²2. 设长为x,宽为y,则有2(x + y) = 36,xy = 40解方程组得x = 8,y = 5所以该矩形的长为8cm,宽为5cm。
3. 设比例系数为k,宽为2k,长为5k,且长为20cm,则有5k = 20解方程得k = 4所以宽为8cm,面积为8 × 20 = 160cm²。
4. 周长的计算公式是:周长 = 2 × (长 + 宽) = 2 × (4a + 3a) = 14a面积的计算公式是:面积 = 长 ×宽 = 4a × 3a = 12a²5. 设长为x,宽为a,则有2(x + a) = 18,xa = 面积解方程组得x = 9 - a,面积为a(9 - a) = 9a - a²6. 周长的计算公式是:周长 = 2 × (长 + 宽) = 2(x + 10 + x + 5) = 4x + 30宽为x + 10,长为x + 57. 周长的计算公式是:周长 = 2 × (长 + 宽) = 2(x + 6 + x - 4) = 4x + 4长为x + 6,宽为x - 4通过以上练习题,我们对矩形的周长和面积计算有了更深入的理解。
矩形性质综合练习题
矩形性质综合练习题矩形是我们学习几何学时经常遇到的一种形状。
它的特点是四个内角都是直角,对边相等,并且对角线相等。
在本文中,我们将通过几个综合练习题来巩固对矩形性质的理解。
练习题1:已知矩形ABCD的边长分别为10 cm和6 cm。
求矩形ABCD的对角线长度。
解答:根据矩形的性质,对角线相等。
所以,我们只需要计算其中一条对角线的长度即可。
设对角线AC为x cm。
根据勾股定理,可得:AC² = AB² + BC²= 10² + 6²= 100 + 36= 136因此,AC = √136 ≈ 11.66 cm。
练习题2:已知矩形EFGH的周长为32 cm,且其中一条边长为8 cm。
求矩形EFGH的面积。
解答:设矩形EFGH的长为x cm,宽为y cm。
根据周长的性质,我们可以得到方程2x + 2y = 32。
又已知其中一条边长为8 cm,所以可以得到另一个方程2x + y = 16。
解方程组,得x = 6,y = 4。
矩形EFGH的面积为6 cm × 4 cm = 24 cm²。
练习题3:已知矩形IJKL的长为12 cm,宽为8 cm。
求矩形IJKL的对角线长度。
解答:设对角线IK为x cm。
根据勾股定理,可得:IK² = IJ² + JK²= 12² + 8²= 144 + 64= 208因此,IK = √208 ≈ 14.42 cm。
练习题4:已知矩形MNOP的对角线长度为15 cm,且其中一条边长为9 cm。
求矩形MNOP的面积。
解答:设矩形MNOP的长为x cm,宽为y cm。
由题可得方程组:x² + y² = 15²x = 9将x = 9代入第一个方程,得到:9² + y² = 15²81 + y² = 225y² = 144因此,y = √144 = 12。
矩形的性质和判定典型解答题综合训练(含解析)印刷版
矩形的性质和判定解答题综合训练一.解答题(共20小题)1.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+).证明:S矩形NFGD=S△ABC,=,=.易知,S△ADC=S矩形EBMF.可得S矩形NFGD2.已知:如图,平行四边形ABCD各角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.3.如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则需给△ABC添加什么条件,为什么?4.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC 的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.5.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.6.如图,在▱ABCD中,点M、N分别为边AD、BC的中点,AE、CF分别是∠BAD、∠BCD的平分线.(1)求证:AE∥CF;(2)若AD=2AB,求证:四边形PQRS是矩形.7.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.8.如图所示,矩形ABCD中,AC与BD相交于点O,点P在AD上,PE⊥AC于点E,PF⊥BD于点F,AB=6cm,BC=8cm.(1)若点P为AD的中点,如图①,求出PE、PF的值;(2)若点P为AD上任意一点,如图②,求出PE+PF的值.9.如图,已知矩形ABCD,E是AB上一点.(1)如图1,若F是BC上一点,在AD,CD上分别截取DH=BF,DG=BE.求证:四边形EFGH 是平行四边形;(2)如图2,利用尺规分别在BC,CD,AD上确定点F,G,H,使得四边形EFGH是特殊的平行四边形.(提示:①保留作图痕迹,不写作法;②只需作出一种情况即可)10.如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F 分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.11.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AD与BE交于点O,点F、G分别是BO、AO的中点,联结DE、EG、GF、FD.(1)求证:FG∥DE;(2)若AC=BC,求证:四边形EDFG是矩形.12.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.13.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD=°时,四边形BECD是矩形.14.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.15.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.16.已知,在长方形ABCD中,AB=8,BC=6,点E,F分别是边AB,BC上的点,连接DE,DF,EF.(1)如图①,当CF=2BE=2时,试说明△DEF是直角三角形;(2)如图②,若点E是边AB的中点,DE平分∠ADF,求BF的长.17.已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.18.如图,在矩形ABCD中,AD=4,点M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:AE=DF;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,连接EG,GF,求证△GEF是等腰直角三角形.(提示:过点G作GH⊥AD于点H)19.在矩形ABCD中,AB=3,BC=4,E,F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为t秒,0≤t≤5.(1)AE=,EF=(2)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形.(3)在(2)条件下,当t为何值时,四边形EGFH为矩形.20.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)当t为何值时,△BPQ是等腰三角形?矩形的性质和判定解答题综合训练参考答案与试题解析一.解答题(共20小题)1.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(S△AEF+S△FCM).证明:S矩形NFGD=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC.易知,S△ADC=S矩形EBMF.可得S矩形NFGD【分析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(S△AEF+S△FCM).【解答】证明:S矩形NFGD=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,易知,S△ADC=S矩形EBMF.可得S矩形NFGD,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.故答案分别为S△AEF2.已知:如图,平行四边形ABCD各角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.【分析】由于四边形ABCD是平行四边形,那么AD∥BC,利用平行线的性质可得∠DAB+∠ABC=180°,而AH,BH分别平分∠DAB与∠ABC,则∠HAB=∠DAB,∠HBA=∠ABC,那么有∠HAB+∠HBA =90°,再利用三角形内角和定理可知∠H=90°,同理∠HEF=∠DEA=90°,利用三个内角等于90°的四边形是矩形,那么四边形EFGH是矩形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°,∵AH,BH分别平分∠DAB与∠ABC,∴∠HAB=∠DAB,∠HBA=∠ABC,∴∠HAB+∠HBA=(∠DAB+∠ABC)=×180°=90°,∴∠H=90°,同理∠HEF=∠F=90°,∴四边形EFGH是矩形.3.如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则需给△ABC添加什么条件,为什么?【分析】(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.【解答】(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB=EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:连接AD,BE.∵DB AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.4.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC 的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.【分析】(1)根据四边形的性质得到AB∥CD,求得∠MAB=∠NCD.根据全等三角形的判定定理得到结论;(2)连接EF,交AC于点O.根据全等三角形的性质得到EO=FO,AO=CO,于是得到结论.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴AC==5,∵E、F分别是AD、BC的中点,∴AE=BF,∴四边形ABFE是矩形,∴EF=AB=3,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.5.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.【分析】(1)根据矩形的性质得到AB∥CD,由平行线的性质得到∠DFO=∠BEO,根据全等三角形的性质得到DF=BE,于是得到四边形BEDF是平行四边形;(2)推出四边形BEDF是菱形,得到DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形,∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2,∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2,∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2﹣OD2=OE2,∴OE=,∴EF=2OE=.6.如图,在▱ABCD中,点M、N分别为边AD、BC的中点,AE、CF分别是∠BAD、∠BCD的平分线.(1)求证:AE∥CF;(2)若AD=2AB,求证:四边形PQRS是矩形.【分析】(1)只要证明四边形AECF是平行四边形即可解决问题;(2)首先证明四边形RSPQ是平行四边形,再证明∠QPS=90°即可;【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=CD,∴∠DAE=∠AEB,∵∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同法可证:CD=DF,∴AF=CE,∵AF∥EC,∴四边形AECF是平行四边形,∴AE∥CF.(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DM=AD,BN=BC,∴DM=BN,∴四边形BMDN是平行四边形,∴BM∥DN,∵AE∥CF,∴四边形RSPQ是平行四边形,∵AD=2AB,AM=DM,∴AM=AB,∵PA平分∠BAD,∴PA⊥BM,∴∠QPS=90°,∴四边形RSPQ是矩形.7.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出四边形AECD是平行四边形,再求出四边形AECD是矩形即可.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB∥DE,∴∠B=∠DEC,∴∠ACB=∠DEC,∴OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,BE=EC,∵△ABC平移得到△DEF,∴BE∥AD,BE=AD,∴AD∥EC,AD=EC,∴四边形AECD是平行四边形,∵AE⊥BC,∴四边形AECD是矩形.8.如图所示,矩形ABCD中,AC与BD相交于点O,点P在AD上,PE⊥AC于点E,PF⊥BD于点F,AB=6cm,BC=8cm.(1)若点P为AD的中点,如图①,求出PE、PF的值;(2)若点P为AD上任意一点,如图②,求出PE+PF的值.【分析】(1)由△PAE∽△CAD,可得=,即可求出PE,同法可得PF;(2)如图②中,设AC交BD于O,作AH⊥BD于H.连接OP.利用面积法证明PE+PF=AH,求出AH即可解决问题;【解答】解:(1)∵四边形ABCD是矩形,∴∠ABC=90°,BC=AD=8,AB=CD=6,∴AC=BD==10,∵P是AD中点,∴PA=PD=4,∵PE⊥AC,∴∠AEP=∠ADC=90°,∵∠PAE=∠DAC,∴△PAE∽△CAD,∴=,∴PE=,同法可得PF=.(2)如图②中,设AC交BD于O,作AH⊥BD于H.连接OP.=S△APO+S△OPD,∵四边形ABCD是矩形,∴OA=OD,∴S△AOD∴•OD•AH=•OA•PE+•OD•PF,∴PE+PF=AH,∵AH==,∴PE+PF=.9.如图,已知矩形ABCD,E是AB上一点.(1)如图1,若F是BC上一点,在AD,CD上分别截取DH=BF,DG=BE.求证:四边形EFGH 是平行四边形;(2)如图2,利用尺规分别在BC,CD,AD上确定点F,G,H,使得四边形EFGH是特殊的平行四边形.(提示:①保留作图痕迹,不写作法;②只需作出一种情况即可)【分析】(1)利用全等三角形的性质证明EH=FG,EG=FH即可解决问题;(2)根据菱形的判定作出图形即可.【解答】(1)证明:在AD,CD上分别截取DH=BF,DG=BE,∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠A=∠B=∠C=∠D=90°,∵DG=BE,DH=BF,∴△GDH≌△EBF.∴GH=EF.∵AD=BC,AB=CD,DH=BF,DG=BE,∴AD﹣DH=BC﹣BF,AB﹣BE=CD﹣DG.即AH=CF,AE=CG.∴△AEH≌△CGF.∴EH=GF.∴四边形EFGH是平行四边形.(2)作图如下:作法:作菱形(如图2)∴四边形EFGH就是所求作的特殊平行四边形.10.如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F 分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.【分析】(1)要说明四边形EFNM是矩形,有ME⊥CD.FN⊥CD条件,还缺ME=FN.过点E、F分别作AD、BC的垂线,垂足分别是G、H.利用角平分线上的点到角两边的距离相等可得结论.(2)利用平行四边形的性质,证明直角△DEA,并求出AD的长.利用全等证明△GEA≌△CNF,△DME≌△DGE从而得到DM=DG,AG=CN,再利用线段的和差关系,求出MN的长得结论.【解答】解:(1)证明:过点E、F分别作AD、BC的垂线,垂足分别是G、H.∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB∴EG=ME,EG=EM′,∴EG=ME=ME′=MM′同理可证:FH=NF=N′F=NN′∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′,∴ME=NF=EG=FH又∵MM′∥NN′,MM′⊥CD,∴四边形EFNM是矩形.(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵,∠2=∠DAB,∴∠3+∠2=90°在Rt△DEA,∵AE=4,DE=3,∴AD==5.∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,又∵∠2=∠DAB,∠5=∠DCB,∴∠2=∠5由(1)知GE=NF在Rt△GEA和Rt△CNF中,∴△GEA≌△CNF,∴AG=CN在Rt△DME和Rt△DGE中∵DE=DE,ME=EG,∴△DME≌△DGE,∴DG=DM∴DM+CN=DG+AG=AB=5,∴MN=CD﹣DM﹣CN=9﹣5=4.∵四边形EFNM是矩形.∴EF=MN=411.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AD与BE交于点O,点F、G分别是BO、AO的中点,联结DE、EG、GF、FD.(1)求证:FG∥DE;(2)若AC=BC,求证:四边形EDFG是矩形.【分析】(1)依据三角形的中位线定理可得到DE∥AB且DE=AB、FG∥AB且FG=AB,从而可证明FG∥DE;(2)首先证明四边形EDFG是平行四边形,然后再证明EF=DG,最后,依据矩形的判定定理进行证明即可.【解答】解:(1)∵AD、BE分别是边BC、AC上的中线,∴DE是△ABC的中位线,∴DE∥AB且DE=AB.∵点F、G分别是BO、AO的中点,∴FG是△OAB的中位线,∴FG∥AB且FG=AB.∴GF∥DE.(2)由(1)GF∥DE,GF=DE,∴四边形EDFG是平行四边形.∵AD、BE是BC、AC上的中线,∴CD=BC,CE=AC.又∵AC=BC,∴CD=CE.在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CAB=∠CBA.∵AC=BC,∴∠CAB=∠CBA,∴∠DAB=∠EBA,∴OB=OA.∵点F、G分别是OB、AO的中点,∴OF=OB,OG=OA,∴OF=OG,∴EF=DG,∴四边形EDFG是矩形.12.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.【分析】(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.13.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.【分析】(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;(2)由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.14.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,证出EG=CF,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.15.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.16.已知,在长方形ABCD中,AB=8,BC=6,点E,F分别是边AB,BC上的点,连接DE,DF,EF.(1)如图①,当CF=2BE=2时,试说明△DEF是直角三角形;(2)如图②,若点E是边AB的中点,DE平分∠ADF,求BF的长.【分析】(1)在Rt△ADE中,DE2=AE2+AD2=62+72=85,在Rt△DCF中,DF2=DC2+CF2=82+22=68,在Rt△BEF中,EF2=BE2+EF2=12+42=17,得出DF2+EF2=DE2,即可得出结论;BF==(2)作EH⊥DF于H,则∠A=∠DHE=90°,证明△AED≌△HED(AAS),得出DA=DH=6,EA =EH=4,得出EH=EB=4,证明Rt△EHF≌Rt△EBF(HL),得出BF=HF.设BF=x,则HF=x,CF=6﹣x,得出DF=DH+HF=6+x,在Rt△CDF中,由勾股定理得出方程,解方程即可.【解答】(1)证明;∵CF=2BE=2,∴BE=1,∴AE=AB﹣BE=7.∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,CD=AB=8,AD=BC=6,在Rt△ADE中,DE2=AE2+AD2=62+72=85,在Rt△DCF中,DF2=DC2+CF2=82+22=68,在Rt△BEF中,EF2=BE2+EF2=12+42=17,∴DF2+EF2=DE2,∴△DEF是直角三角形,且∠DFE=90°;(2)解:作EH⊥DF于H,则∠A=∠DHE=90°.∵DE平分∠ADF,∴∠ADE=∠HDE,在△AED和△HED中,,∴△AED≌△HED(AAS),∴DA=DH=6,EA=EH=4,∴EH=EB=4,在Rt△EHF和Rt△EBF中,,∴Rt△EHF≌Rt△EBF(HL),∴BF=HF.设BF=x,则HF=x,CF=6﹣x,∴DF=DH+HF=6+x,在Rt△CDF中,DC2+CF2=DF2,∴82+(6﹣x)2=(6+x)2,∴x=,即BF=.17.已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.【分析】(1)由AAS证明△ABE≌△CDF,即可得出结论;(2)由平行线的性质得出∠CBD=∠ADB=30°,由直角三角形的性质得出BE=AB,AE=AD,得出△ABE的面积=AB×AD=矩形ABCD的面积,由全等三角形的性质得出△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,由直角三角形的性质得出EG=BE=×AB=AB,得出△BCE的面积=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∴∠ABE=∠CDF,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF;(2)解:△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=矩形ABCD面积的.理由如下:∵AD∥BC,∴∠CBD=∠ADB=30°,∵∠ABC=90°,∴∠ABE=60°,∵AE⊥BD,∴∠BAE=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=矩形ABCD的面积,∵△ABE≌△CDF,∴△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.18.如图,在矩形ABCD中,AD=4,点M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:AE=DF;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,连接EG,GF,求证△GEF是等腰直角三角形.(提示:过点G作GH⊥AD于点H)【分析】(1)证明△AEM≌△DFM(AAS),即可得出结论;(2)过点G作GH⊥AD于H,通过条件可以证明△AEM≌△HMG,得出ME=MG,进而得出∠EGM =45°,再由(1)的结论可以得出∠EGF=90°,从而得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∴∠MDF=90°=∠A,∵点M 是AD的中点,∴AM=DM,在△AEM和△DFM中,,∴△AEM和△DFM(AAS),∴AE=DF;(2)证明:过点G作GH⊥AD于H,如图②,∵∠A=∠B=∠AHG=90°,∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形.∴GH=AB=2,∵M是AD的中点,∴AM=AD=2,∴AM=GH.∵MG⊥EF,∴∠GME=90°.∴∠AME+∠GMH=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠GMH.在△AEM和△HMG中,,∴△AEM≌△HMG(AAS).∴ME=MG.∴∠EGM=45°.由(1)得△AEM≌△DFM,∴ME=MF.∵MG⊥EF,∴GE=GF.∴∠EGF=2∠EGM=90°.∴△GEF是等腰直角三角形.19.在矩形ABCD中,AB=3,BC=4,E,F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为t秒,0≤t≤5.(1)AE=t,EF=5﹣2t或2t﹣5(2)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形.(3)在(2)条件下,当t为何值时,四边形EGFH为矩形.【分析】(1)由勾股定理求出AC=5,由题意得出AE=CF=t,即可得出EF=5﹣2t或2t﹣5,(2)由“两组对边分别相等的四边形是平行四边形”来判定;(3)由“对角线相等的平行四边形是矩形”判定四边形EGFH为矩形时t的取值.【解答】(1)解;∵四边形ABCD是矩形,∴∠B=90°,∴AC===5,由题意得:AE=CF=t,∴EF相遇前为:EF=AC﹣AE﹣CF=5﹣2t;EF相遇后为:EF=AE+CF﹣AC=2t﹣5;故答案为:t,5﹣2t或2t﹣5;(2)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴AC===5,∠GAF=∠HCE,∵G、H分别是AB、DC的中点,∴AG=BG,CH=DH,∴AG=CH,∵AE=CF,∴AF=CE,在△AFG与△CEH中,,∴△AFG≌△CEH(SAS),∴GF=HE,同理:GE=HF,∴四边形EGFH是平行四边形.(3)解:如图所示,连接GH,由(1)可知四边形EGFH是平行四边形∵点G、H分别是矩形ABCD的边AB、DC的中点,∴GH=BC=4,∴当EF=GH=4时,四边形EGFH是矩形,分两种情况:①AE=CF=t,EF=5﹣2t=4,解得:t=0.5.②AE=CF=t,EF=5﹣2(5﹣t)=4,解得:t=4.5即:当t为0.5秒或4.5时,四边形EGFH为矩形20.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=7时,两点停止运动;(2)当t为何值时,△BPQ是等腰三角形?【分析】(1)由矩形的性质得出AB+BC=BC+CD=14,即可得出答案;(2)分三种情况讨论:当0<t≤4时,若BP=BQ,则6﹣t=2t,得出t=2;当4<t≤6时,若PQ=BQ,则PB=2CQ,6﹣t=2(2t﹣8),得出t=;当6<t<7时,由题意可知不存在;即可得出答案.【解答】解:(1)∵四边形ABCD是矩形,∴CD=AB=6,BC=AD=8,∴AB+BC=BC+CD=14,∵14÷2=7,∴t=7;故答案为:7;(2)由题意得:AP=t,BQ=2t,分情况讨论:当0<t≤4时,若BP=BQ,则6﹣t=2t,∴t=2;当4<t≤6时,若PQ=BQ,则PB=2CQ,6﹣t=2(2t﹣8),∴t=;当6<t<7时,由题意可知不存在;综上所述,当t为2或时,△BPQ是等腰三角形.。
矩形的性质专项练习30题(有答案)ok
矩形的性质专项练习30题(有答案)1.已知:如图,在矩形ABCD中,AF=DE,求证:BE=CF.2.如下图,已知矩形ABCD中,对角线AC、BD交于点O,作BE∥AC交DC的延长于点E.(1)请判断△DEB的形状,并说明理由;(2)若AD=8,DC=6,试△DEB的周长.3.如图,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O,以OB、OC为邻边作平行四边形OBB1C,求平行四边形OBB1C的面积.4.如图,已知在矩形ABCD中,AB=2,BC=4,四边形AFCE为菱形,求菱形的面积.5.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2cm(1)求证:△AOB是等边三角形;(2)求矩形ABCD的面积.6.如图,四边形ABCD是矩形,△EAD是等腰直角三角形,△EBC是等边三角形.已知AE=DE=2,求AB的长.7.如图,已知在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=3cm,BC=7cm.(1)求证:△AEF≌△DCE;(2)请你求出EF的长.8.如图,在矩形ABCD中,点E在AD上,CE平分∠BED.(1)△BEC是否为等腰三角形?为什么?(2)若AB=1,∠DCE=22.5°,求BC长.9.如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点.(1)试说明四边形AECG是平行四边形;(2)若矩形的一边AB的长为3cm,当BC的长为多少时,四边形AECG是菱形?10.已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求菱形AFCE的面积.11.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.12.如图,矩形ABCD的对角线交于点O,E是边AD的中点.(1)OE与AD垂直吗?说明理由;(2)若AC=10,OE=3,求AD的长度.13.如图,在矩形ABCD中,BM⊥AC,DN⊥AC,M、N是垂足.(1)求证:AN=CM;(2)如果AN=MN=2,求矩形ABCD的面积.14.如图,矩形ABCD中,角平分线AE交BC于点E,BE=5,CE=3.(1)求∠BAE的度数;(2)求△ADE的面积.15.如图,已知在矩形ABCD中,对角线AC、BD交于点O,CE=AE,F是AE的中点,AB=4,BC=8.求线段OF的长.16.如图,矩形纸片ABCD中,AB=8,AD=10,沿AE对折,点D恰好落在BC边上的F点处.17.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.18.已知:如图,矩形ABCD的对角线AC和BD相交于点O,AC=2AB.求证:∠AOD=120°.19.在矩形ABCD中,对角线AC,BD交于点O,AB=6cm,AC=8cm.(1)求BC的长;(2)画出△AOB沿射线AD方向平移所得的△DEC;(3)连接OE,写出OE与DC的关系?说明理由.20.如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?21.如图,矩形ABCD纸片,E是AB上的一点,且BE:EA=5:3,CE=15,把△BCE沿折痕EC向上翻折,若点B恰好与AD边上的点F重合,求AB、BC的长.22.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当△FCG的面积为1时,求DG的长;(3)当△FCG的面积最小时,求DG的长.23.设E,F分别在矩形ABCD边BC和CD上,△ABE、△ECF、△FDA的面积分别是a,b,c.求△AEF的面积S.24.如图,过矩形ABCD对角线AC的中点O作EF⊥AC,分别交AB、DC于E、F,点G为AE的中点,若∠AOG=30°,求证:OG=DC.25.如图,在矩形ABCD中,AB=6,AD=4,E是AD边上一点(点E与A、D不重合).BE的垂直平分线交AB 于M,交DC于N.(1)设AE=x,试把AM用含x的代数式表示出来;(2)设AE=x,四边形ADNM的面积为S.写出S关于x的函数关系式.(1)求∠COE的度数.(2)若AB=4,求OE的长.27.如图,在矩形ABCD中,AB=b,AD=a,过D和B作DE⊥AC,BF⊥AC,且AE=EF,试求a与b之间的关系.28.如图,设在矩形ABCD中,点O为矩形对角线的交点,∠BAD的平分线AE交BC于点E,交OB于点F,已知AD=3,AB=.(1)求证:△AOB为等边三角形;(2)求BF的长.29.如图,在等腰梯形ABCD中,AD∥BC,G是边AB上的一点,过点G作GE∥DC交BC边于点E,F是EC 的中点,连接GF并延长交DC的延长线于点H.求证:BG=CH.30.已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连接AF、CF.求证:(1)∠ADF=∠BCF;(2)AF⊥CF.参考答案:1.连接BF 、CE ,已知矩形ABCD ,∴AB=CD ,∠BAF=∠CDE=90°, 又AF=DE ,∴△AFB ≌△DEC , ∴BF=CE ,∠AFB=∠DEC , ∵矩形ABCD ,AD ∥BC ,∴∠CBF=∠AFB ,∠BCE=∠DEC , ∴∠CBF=∠BCE , BC=BC ,∴△BCF ≌△CBE , ∴BE=CF2.(1)△DEB 的形状为等腰三角形. 理由:∵矩形ABCD , ∴DC ∥AB ,AC=BD . ∵BE ∥AC ,∴四边形ABEC 为平行四边形. ∴AC=BE . ∴BE=BD .∴△DEB 的形状为等腰三角形. (2)∵AD=8,DC=6, ∴AC==10.∴BD=BE=10.∵BC ⊥DE , ∴CD=DE=6.∴△DEB 的周长=2(CD+BD )=2(6+10)=32 3.在Rt △ABC中,,∴,∵矩形ABCD 对角线相交于点O , ∴,∵四边形OBB 1C 是平行四边形, ∴.4.∵四边形AFCE 为菱形, ∴AF=CF=EC=AE ,∵四边形ABCD 是矩形, ∴∠B=90°,设AE=x ,则BE=BC ﹣EC=4﹣x ,∴x=,∴S 菱形AFCE =EC •AB=×2=5.∴菱形的面积为55.1)证明:在矩形ABCD 中,AO=BO , 又∠AOB=60°,∴△AOB 是等边三角形.(2)解:∵△AOB 是等边三角形 ∴OA=OB=AB=2(cm ), ∴BD=2OB=4cm , 在Rt △ABD ,(cm )∴S 矩形ABCD =2×2=4(cm 2),答:矩形ABCD 的面积是4cm 2.6.过点E 作EF ⊥BC ,交AD 于G ,垂足为F . ∵四边形ABCD 是矩形, ∴AD ∥BC , ∴EG ⊥AD .(1分)∵△EAC 是等腰直角三角形,EA=ED=2, ∴AG=GD ,AD=.∴EG==.(1分)∵EB=EC=BC=AD=2,∴BF=,(1分)∴EF=.(1分) ∴AB=GF=EF ﹣EG=7. (1)证明:在矩形ABCD 中,∠A=∠D=90°,∴∠ECD+∠CED=90°, ∵EF ⊥EC ,∴∠AEF+∠CED=90°, ∴∠ECD=∠AEF , 在△AEF 与△DCE 中,,∴△AEF ≌△DCE (AAS );∴AF=DE,∵DE=3cm,BC=7cm,∴AF=3cm,AE=AD﹣DE=BC﹣DE=7﹣3=4cm,在Rt△AEF中,EF===5.故答案为:58.(1)△BEC是等腰三角形,理由是:∵矩形ABCD,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠BED,∴∠DEC=∠CEB,∴∠CEB=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(2)解:∵矩形ABCD,∴∠A=∠D=90°,∵∠DCE=22.5°,∴∠DEB=2×(90°﹣22.5°)=135°,∴∠AEB=180°﹣∠DEB=45°,∴∠ABE=∠AEB=45°,∴AE=AB=1,由勾股定理得:BE=BC==,答:BC 的长是9.(1)由题意,得∠GAH=∠DAC,∠ECF=∠BCA,∵四边形ABCD为矩形,∴AD∥BC,∴∠DAC=∠BCA,∴∠GAH=∠ECF,∴AG∥CE,又∵AE∥CG∴四边形AECG是平行四边形;(2)∵四边形AECG是菱形,∴F、H重合,∴AC=2BC,在Rt△ABC中,设BC=x,则AC=2x,在Rt△ABC中AC2=AB2+BC2,即(2x)2=32+x2,解得x=,即线段BC 的长为cm.10.(1)∵四边形ABCD是矩形,∴AE∥FC,∴∠EAO=∠FCO,∵EF垂直平分AC,∴AO=CO,FE⊥AC,又∠AOE=∠COF,∴△AOE≌△COF,又∵FE⊥AC,∴平行四边形AFCE为菱形;(2)在Rt△ABC中,由AB=5,BC=12,根据勾股定理得:AC===13,又EF=6,∴菱形AFCE的面积S=AC•EF=×13×6=3911.(1)∵四边形ABCD为矩形,AE⊥BD,∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,∴∠ACB=∠ADB=∠2=∠1=30°,又AO=BO,∴△AOB为等边三角形,∴∠BOC=120°;(2)由(1)知,△DOC≌△AOB,∴△DOC为等边三角形,∴OD=OC=CD=OB=6,∴△DOC的周长=3×6=1812.(1)解:OE⊥AD,理由:∵四边形ABCD是矩形,∴AC=BD,AO=OC,DO=BO,∴AO=DO,又∵点E是AD的中点,∴OE⊥AD.(2)解:由(1)知OE⊥AD,AO=5,在Rt△AOE中,由勾股定理得:AE===4,∵E是边AD的中点,∴AD=2AE=8.答:AD的长度是813.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,又∵DN⊥AC,BM⊥AC,∴∠DNA=∠BMC,∴△DAN≌△BCM,∴AN=CM.(2)连接BD交AC于点O.∵AN=NM=2,∴AC=BD=6,又∵四边形ABCD是矩形,∴DN=,∴矩形ABCD的面积=,答:矩形ABCD的面积是12.14.(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵AE平分∠BAD,∴∠BAE=∠BAD=×90°=45°.(2)∵四边形ABCD是矩形,∴AD∥BC,∠BAD=∠B=90°,∴∠DAE=∠AEB∵∠BAE=∠DAE=45°,∴∠AEB=45°,∴∠BAE=∠AEB,∴AB=BE=5,∴BC=3+5=8=AD,∴S△ADE =AD×AB=×8×5=2015.∵四边形ABCD是矩形,∴∠ADC=90°,AD=BC=8,CD=AB=4.(1分)设DE=x,那么AE=CE=8﹣x,(1分)∵在Rt△DEC中,CE2=DE2+CD2,(1分)∴(8﹣x)2=x2+42,(1分)∴x=3.(1分)∴CE=8﹣x=5.(1分)∵四边形ABCD是矩形,∴O为AC中点.(1分)又∵F是AE 的中点,∴.16.(1)设BF=x,CE=y,则CF=10﹣x,EF=DE=8﹣y,在Rt△ABF中根据勾股定理可得x2+82=102,在Rt△CEF中根据勾股定理可得y2+(10﹣x)2=(8﹣y)2,解得x=6,y=3,即BF=6,CE=3;(2)△ABF 的面积为×8×6=24,△ADE 的面积为×10×5=25,∴四边形AFCE的面积为8×10﹣24﹣25=31,答:BF的长为6,CE的长度为3,四边形AFCE的面积为31∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在△GFE和△GCE中,,∴△GFE≌△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=18.∵四边形ABCD是矩形,∴∠ABC=90°(矩形的四个角都是直角),∵在Rt△ABC中,AC=2AB,∴∠ACB=30°,∵四边形ABCD是矩形,∴OB=OD=BD,OC=OA=AC,AC=BD,∴BO=CO,∴∠OBC=∠OCB=30°,∵∠OBC+∠OCB+∠BOC=180°,∴∠BOC=120°,∴∠AOD=∠BOC=120°19.(1)∵矩形ABCD,∴∠CBA=90°,AB=6cm,AC=8cm,由勾股定理:BC===2(cm),答:BC的长是2cm.(2)解:如图所示(3)答:OE与DC的关系是互相垂直平分.理由是:∵矩形ABCD,∴OA=OC,OD=OB,AC=BD,∴OD=OC=DE=CE,∴四边形ODEC是菱形,∴OE⊥CD,OG=EG,CG=DG,即OE与DC的关系是互相垂直平分20.∵四边形ABCD是矩形,∴AC=BD=13cm,∵△AOB、△BOC、△COD和△AOD四个三角形的周长和为86cm,∴OA+OB+AB+OB+OC+BC+OC+OD+DC+OD+OA+A D=86cm,∴AB+BC+CD+DA=86﹣2(AC+BD)=86﹣4×13=34(cm).答:矩形ABCD的周长等于34cm.21.∵四边形ABCD是矩形∴∠A=∠B=∠D=90°,BC=AD,AB=CD,∴∠AFE+∠AEF=90°(2分)∵F在AD上,∠EFC=90°,∴∠AFE+∠DFC=90°,∴∠AEF=∠DFC,∴△AEF∽△DFC,(3分)∴.(4分)∵BE:EA=5:3设BE=5k,AE=3k∴AB=DC=8k,由勾股定理得:AF=4k ,∴∴DF=6k∴BC=AD=10k(5分)在△EBC中,根据勾股定理得BE2+BC2=EC2∵CE=15,BE=5k,BC=10k∴∴k=3(6分)∴AB=8k=24,BC=10k=3022.∴HG=HE,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS)∴DG=AH=2(2)作FM⊥DC,M为垂足,连接GE,∵AB∥CD,∴∠AEG=∠MGE∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF.在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG.∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.因此S△FCG =GC=1,解得GC=1,DG=6.(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,又在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,x ≤,∴S△FCG 的最小值为,此时DG=23.设AB=x1,BE=x2,EC=x3,CF=x4,则FD=x1﹣x4,AD=x2+x3,由题意得x1•x2=2a,x3•x4=2b,(x1﹣x4)×(x2+x3)=2c,即x2•x3﹣x2•x4=2(b+c﹣a),又x1x2x3x4=4ab代入x2x4=x1x3﹣2(b+c﹣a)得关于x1x3的一元二次方程,即(x1x3)2﹣2(b+c﹣a)x1x3﹣4ab=0解之得x1x3=(b+c﹣a)+又S矩形=x1(x2+x3)=2a+(b+c﹣a)+=(a+b+c)+∴S△AEF=S矩形﹣S△ABE﹣S△CEF﹣S△ADF=(a+b+c)+﹣a﹣b﹣c=∴△AOE是直角三角形∴OG=AG=GE,∴∠BAC=∠AOG=30°,∠AEO=60°,∠GOE=∠AOE ﹣∠AOG=60°,∴△OEG是正三角形,∴OG=OE=GE,∴∠ABO=∠BAC=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴∠BOE=∠AOB﹣90°=30°,∴△OEB是等腰三角形,∴OE=EB,∴OG=AG=GE=EB=OE,∴OG=AB=DC.25.(1)连接ME.∵MN是BE的垂直平分线,∴BM=ME=6﹣AM,在△AME中,∠A=90°,由勾股定理得:AM2+AE2=ME2,AM2+x2=(6﹣AM)2,AM=3﹣x.(2)连接ME,NE,NB,设AM=a,DN=b,NC=6﹣b,因MN垂直平分BE,则ME=MB=6﹣a,NE=NB,所以由勾股定理得AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2即a2+x2=(6﹣a)2,b2+(4﹣x)2=42+(6﹣b)2,解得a=3﹣x2,b=x2+x+3,所以四边形ADNM的面积为S=×(a+b)×4=2x+12,即S关于x的函数关系为S=2x+12(0<x<2),答:S关于x的函数关系式是S=2x+1226.(1)∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°;∴EC=DC,又∵∠ADB=30°,∴∠CDO=60°;又∵因为矩形的对角线互相平分,∴OD=OC;∴△OCD是等边三角形;∴∠DCO=60°,∠OCB=90°﹣∠DCO=30°;∵DE平分∠ADC,∠ECD=90°,∠CDE=∠CED=45°,∴CD=CE=CO,∴∠COE=∠CEO;∴∠COE=(180°﹣30°)÷2=75°;(2)过O作OF⊥BC于F,∵AO=CO,∴BF=CF,∴OF=AB=2,∵∠ADB=30°,AB=4,∴AC=8,∴BC==4,∴BF=CF=2,∵CD=CE=4,∴EF=CE﹣CF=4﹣2,在Rt△OFE中,OE==4.27.:a与b的关系是b=a,理由是:∵矩形ABCD,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF,∴AE=CF,∵AE=EF,∴AE=EF=CF,∵矩形ABCD,∴∠ABC=90°=∠BFC,∴∠BCF+∠CBF=90°,∠ABF+∠CBF=90°,∴∠ABF=∠BCF,∵∠AFB=∠CFB=90°,∴△ABF∽△BCF,∴==,矩形的性质专项练习--11设AE=EF=CF=c,则BF2=AF•CF=2c2,∴BF=c,∵AB=b,BC=a,∴==,∴b=a,即a与b之间的关系是b= a28.(1)证明:在Rt△ABD中,BD===2,∵矩形ABCD,∴OA=OB=BD=,∴△AOB为等边三角形;(2)解:∵AE是∠BAD的平分线,∴∠BAE=45°,∴△ABE是等腰直角三角形,△BEO是等腰三角形,又∠EBO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)÷2=75°,在△BOC中∠COE=180°﹣30°×2﹣75°=45°,所以,在△BEF和△COE 中,∴△BEF≌△COE(ASA),∴BF=CE,又CE=BC﹣BE=3﹣,∴BF=3﹣.29.在△GEF和△HCF中,∵GE∥DC,∴∠GEF=∠HCF,∵F是EC的中点,∴FE=FC,而∠GFE=∠CFH(对顶角相等),∴△GEF≌△HCF,∴GE=HC,四边形ABCD为等腰梯形,∴∠B=∠DCB,∵GE∥DC,∴∠GEB=∠DCB,(2分)∴∠GEB=∠B,∴GB=GE=HC,∴BG=CH30.(1)在矩形ABCD中,∵AD=BC,∠ADC=∠BCD=90°,∴∠DCE=90°,在Rt△DCE中,∵F为DE中点,∴DF=CF,∴∠FDC=∠DCF,∴∠ADC+∠CDF=∠BCD+∠DCF,即∠ADF=∠BCF;(2)连接BF,∵BE=BD,F为DE的中点,∴BF⊥DE,∴∠BFD=90°,即∠BFA+∠AFD=90°,在△AFD和△BFC 中,∴△ADF≌△BCF,∴∠AFD=∠BFC,∵∠AFD+∠BFA=90°,∴∠BFC+∠BFA=90°,即∠AFC=90°,∴AF⊥FC.矩形的性质专项练习--12。
矩形性质练习题
矩形性质练习题矩形性质练习题矩形是我们生活中常见的几何形状之一,它具有一些独特的性质和特点。
在学习矩形的相关知识时,练习题是非常重要的一部分,它可以帮助我们巩固所学的知识,提高解题能力。
下面,我们就来解答一些关于矩形性质的练习题。
1. 设矩形ABCD的长为6cm,宽为4cm,求其周长和面积。
解析:矩形的周长等于长和宽的两倍之和,面积等于长乘以宽。
所以,矩形ABCD的周长为2 × (6 + 4) = 20cm,面积为6 × 4 = 24cm²。
2. 若矩形的周长为30cm,且长是宽的2倍,求矩形的长和宽。
解析:设矩形的长为2x,宽为x,则周长为2 × (2x + x) = 6x。
根据题意,6x = 30,解得x = 5。
所以,矩形的长为2 × 5 = 10cm,宽为5cm。
3. 设矩形的面积是12cm²,若长为宽的3倍,求矩形的长和宽。
解析:设矩形的长为3x,宽为x,则面积为3x × x = 12。
解得x = 2。
所以,矩形的长为3 × 2 = 6cm,宽为2cm。
4. 矩形ABCD的长为8cm,宽为x cm,若其面积是24cm²,求x的值。
解析:根据题意,8 × x = 24。
解得x = 3。
所以,矩形的宽为3cm。
5. 若矩形的长和宽都是整数,且长比宽大2cm,周长为20cm,求矩形的长和宽。
解析:设矩形的宽为x cm,则长为x + 2 cm。
根据题意,2 × (x + x + 2) = 20。
解得x = 3。
所以,矩形的长为3 + 2 = 5cm,宽为3cm。
通过以上练习题,我们可以发现矩形的性质和特点。
首先,矩形的周长等于长和宽的两倍之和,这是矩形的基本性质。
其次,矩形的面积等于长乘以宽,这也是矩形的基本性质之一。
此外,矩形的长和宽可以通过周长或面积的已知条件来求解。
在解题过程中,我们可以运用代数方程的知识,通过设未知数、列方程和解方程的方法来求解矩形的长和宽。
(完整版)22.3矩形的性质常考题(含详细的答案解析)
22.3矩形的性质常考题一、选择题(共28小题)1、一个长方形在平面直角坐标系中三个顶点的坐标为(- 1,-1) , (- 1, 2), (3, - 1),则第四个顶点的坐标为 ( )A 、(2, 2)B 、(3, 2)C (3, 3)D 、(2, 3)2、( 2007?临沂)如图,矩形ABCD 中,AB=1, AD=2, M 是CD 的中点,点P 在矩形的边上沿 A?B?C?M 运动,则厶APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的()A 、1.6B 2.5C 3D 、3.44、 一次数学课上,老师请同学们在一张长为 18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A 、50B 50 或 40C 50 或 40 或 30D 、50 或 30 或 20 5、 菱形具有而矩形不具有性质是()A 、对角线相等B 、对角线互相平分C 对角线互相垂直D 、对角线平分且相等6、 (2009?绥化)在矩形 ABCD 中,AB=1, AD= 一 _;, AF 平分/ DAB ,过C 点作CE! BD 于E ,延长 AF 、EC 交于点H,3、(2009?济南)如图,矩形 ABCD 中,AB=3, BC=5.过对角线交点 O 作OE 丄AC 交AD 于E ,贝U AE 的长是(下列结论中:①AF=FH ;②BO=BF ;③CA=CH ;④BE=3ED .正确的是()9、(2007?潍坊)如图,矩形 ABCD 的周长为20cm ,两条对角线相交于 O 点,过点O 作AC 的垂线EF,分别交AD , BC 于E ,F 点,连接CE 则厶CDE 的周长为()B 8cm D 、10cm如图,在矩形 ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,则图中全等的直A 、6对B 5对C 4对D 、3对11、(2006?宿迁)如图,将矩形 ABCD 沿 AE 折叠,若/ BAD' =30 °则/ AED'等于()C ①②④ 7、(2009?长如图, D 、②③④矩形ABCD 的两条对角线相交于点 O , / AOB=60°, AB=2,则矩形的对角线 AC 的长是( )C 2:,定不相等的是(A 、5cm C 、9cm 10、(2007?陕西)13、 (2006?大兴安岭)如图,在矩形 ABCD 中,EF// AB , GH// BC, EF 、GH 的交点P 在BD 上,图中面积相等的四边D 、55 °如图,在宽为 20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地•根据 )C 60 ° 12、 (2006?恩施州) 的坐标分别是(2,A 、 (1, 1)C (1,- 2) B 45 °D 、75 °矩形ABCD 中的顶点A 、B 、C D 按顺时针方向排列,若在平面直角坐标系内, 0 )、(0, 0),且A 、C 两点关于x 轴对称,则C 点对应的坐标是()B 、(1 , - 1)-.:':)B 、D 两点对应D 、C 75 ° 15、(2005?泸州)图中数据,计算耕地的面积为(A 、600m 2 C 550m 2 16、(2005?福州) ABCD 的面积的(B 、551m 2 D 、500m 2如图,EF 过矩形ABCD 对角线的交点 O ,且分别交AB CD 于E 、F ,那么阴影部分的面积是矩形 )143|17、( 2004?绍兴)如图,一张矩形纸片沿 AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠, 再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形),则/ OCD 等于()/ CED =60。
关于矩形的练习题
关于矩形的练习题
问题一
假设有一个矩形,其宽度为6米,长度为10米。
求该矩形的面积和周长。
答:矩形的面积可以通过宽度乘以长度来计算,因此该矩形的面积为 6米 * 10米 = 60平方米。
矩形的周长可以通过将宽度和长度相加,然后乘以2来计算,因此该矩形的周长为 (6米 + 10米) * 2 = 32米。
问题二
假设根据已知条件求矩形的宽度和长度。
已知矩形的面积为200平方米,其宽度比长度少4米。
求矩形的宽度和长度。
答:设矩形的长度为 x 米,则矩形的宽度为 (x - 4) 米。
根据矩形的面积公式,有 (x - 4) 米 * x 米 = 200平方米。
将等式化简为 x^2 - 4x - 200 = 0。
通过解这个二次方程,可以得到 x 的值。
具体计算过程请参考
一元二次方程求解方法。
问题三
假设有一个矩形,其周长为36米。
如果将它的长度增加2米,宽度减少3米,新的矩形的面积是多少?
答:设原矩形的长度为 x 米,宽度为 y 米。
根据题目中的条件,有 2x + 2y = 36 米。
将等式化简为 x + y = 18 米。
在新的矩形中,长度为 (x + 2) 米,宽度为 (y - 3) 米。
新矩形的面积可以通过 (x + 2) 米 * (y - 3) 米来计算。
将 x + y = 18 代入上述公式,可以得到新矩形的面积。
以上是关于矩形的练习题的解答。
希望能帮助到你!。
矩形面积综合计算题
矩形面积综合计算题
本题目涉及矩形的面积计算,通过综合计算多个矩形面积来求解。
题目描述
假设有n个矩形,每个矩形的长度和宽度分别是L1, W1,L2, W2,...,Ln, Wn。
请计算这n个矩形的面积之和。
解题思路
要计算n个矩形的面积之和,只需要将每个矩形的面积都计算出来,然后将它们相加即可。
矩形的面积可以通过长度和宽度相乘来计算,即面积 = 长度 ×宽度。
具体步骤如下:
1. 遍历每个矩形
2. 对于每个矩形,计算其面积,面积 = 长度 ×宽度
3. 将每个矩形的面积相加,得到总面积
代码示例
下面是一个示例代码,用于计算n个矩形的面积之和:
// 定义矩形的数量和长度、宽度
int n = 3;
int[] lengths = {2, 3, 4};
int[] widths = {5, 6, 7};
// 计算矩形的面积之和
int totalArea = 0;
for (int i = 0; i < n; i++) {
int area = lengths[i] * widths[i];
totalArea += area;
}
// 输出结果
System.out.println("总面积:" + totalArea);
总结
通过以上步骤,我们可以计算出n个矩形的面积之和。
这个方法可以应用于任意数量的矩形,只需要提供每个矩形的长度和宽度即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、如图,在矩形ABCD 中,AB=2,AD=4,点E,F 同时从点A 出发,点E 以每秒32
个单位的速度沿A -D -A 的方向运动,点F 以每秒1个单位的速度沿A -B -C 的方向运动,当有一个点到达终点时,另一个点也停止运动,设E,F 两点运动的时间为x(秒)(x >0)
(1) 点E 运动的时间是___________秒;
(2) 是否存在x 的值,使ΔAEF 的面积为2个平方单位,说明理由;
(3) 当x 为何值时,EF 将矩形ABCD 的面积二等分。
二、如图,在矩形ABCD 中,AB=4,AD=2,点P,Q 同时从点A 出发,点P 以每秒2个单位的速度沿A-B-C-D 的方向运动,点Q 以每秒一个单位的速度沿A-D-C 的方向运动,当P,Q 两点相遇时,它们同时停止运动,设P,Q 两点运动时间为x (秒),三角形APQ 的面积为S (平方单位)(1)点P,Q 从出发到相遇所用的时间是多少(2)S 与X 之间的函数关系(3)当S=7/2时,求x 的值
(4)当△AQP 为锐角三角形时,求x 的取值范围
B
C D E
F A B
C D Q P
三、如图,在矩形ABCD中,AB=12,AD=10.点Q从点D出发沿DA以每秒1个单位长度的速度向点A匀速运动;点P从点A出发沿AB以每秒2个单位长度的速度向点B匀速运动.伴随P、Q的运动,直线EF保持垂直平分PQ于点F,交射线DC于点E.点P、Q同时出发,当点P到达B点时停止运动,点Q也随之停止.设点P运动时间为t秒(t>0),△APQ的面积为S.
(1)求S和t之间的函数关系式;
(2)t为何值时,直线EF经过点A?
(3)t为何值时,EF∥AC?
(4)EF能平分矩形ABCD的面积吗?如果能,
请求出此时t的值,如果不能,请说明理由.
四、如图,在矩形ABCD中,AB=3,AD=4.点E从点D以每秒1个单位长的速度向点C 运动,点F从点C以每秒2个单位长的速度向点B运动,当一个点运动到终点时,另一个点立即停止运动.设点E、F运动的时间为t.
(1)当t为何值时,EF∥BD
(2)设△AEF的面积为S(cm²),求S与t的函数关系式
(3)如果BD与AE、AF分别交于点G、H.是否存在t的值,使得点G、H三等分BD?如果存在,求出t的值;如果不存在,请说明理由
5、如图,四边形ABCD为矩形,AB=4,AD=3,动点M从D点出发,以1个单位/秒的速度沿DA向终点A运动,同时动点N从A点出发,以2个单位/秒的速度沿AB向终点B运动.当其中一点到达终点时,运动结束.过点N作NP⊥AB,交AC于点P1连结MP.已知动点运动了x秒.
(1)请直接写出PN的长;(用含x的代数式表示)
(2)试求△MPA的面积S与时间x秒的函数关系式,写出自变量x的取值范围,并求出S 的最大值;
(3)在这个运动过程中,△MPA能否为一个等腰三角形.若能,求出所有x的对应值;若不能,请说明理由.。