1-数学实验课程简介

合集下载

《数学实验》课程简介

《数学实验》课程简介

《数学实验》课程简介课程名称:数学实验学时:32学分:2内容简介本课程是为经济管理学院各专业二年级学生设置的专业选修课程.数学实验课程内容涵盖了数学建模所涉及的常用方法和内容,主要围绕软件使用、数据的统计描述和分析、数值计算、最优化方法、统计分析、神经网络、灰色系统理论、模糊数学模型,几种现代算法和数学建模论文及数学建模竞赛等内容展开,模型求解利用MATLAB、L1NDO/LINGO、SPSS等软件实现,实用性较强,上述3种软件使用方便,各具特色,L1NDO/LINGO软件在解决规划和优化类问题比较简单,SPSS软件解决统计类问题功能丰富,操作方便;MATLAB软件是一种“全能”型软件,可以解决碰到的几乎所有的数学、工程、经济学等各领域的模型计算求解问题,它具有功能强大的库函数可供调用,这就大大简化了编程的巨大工作了,同时也降低了学生学习该门课程的难度.课程通过“方法—软件使用—软件结果的实际含义—实验案例”这种有效的模式,把各部分内容有机地组织起来,力求有效地引导学生充分感受、领悟和掌握“数学实验”的内涵.本课程教学以实际问题为载体,把数学知识、数学建模、数学软件和计算机应用有机的结合,强调学生的主体地位,在老师的引导下,学习查阅文献资料、分析问题、运用学到的数学知识和计算机技术,借助适当的软件分析、解决一些实际问题,并撰写论文或实验报告.本课程在解决问题的过程中适当引入相关的理论知识,使学生能够将学到的知识直接转化为解决问题的手段,有利于激发学生学习的积极性.本课程在教学中在教学中注重加强学生建模方法的训练、建模思维的培养,使学生在思维能力和创造性方面受到启迪,同时课程强调数学工具软件的应用,培养学生运用数学知识建立实际问题模型,解决实际问题的能力,对于开展创新教育与素质教育起着重要作用.主要参考书目:姜启源:《数学模型》,高等教育出版社,2011年版姜启源:《数学模型习题参考解答》,高等教育出版社,2011年版赵静,但琦:《数学建模及数学实验》,高等教育出版社(第三版),2008年版米尔斯切特:《数学建模方法与分析》刘来福译,机械工业出版社,2009年版杨启帆:《数学建模》,浙江大学出版社,2006年版曹旭东,李有文,张洪斌:《数学建模原理与方法》,高等教育出版社,2014年版余胜威:《MATLAB数学建模经典案例实战》,清华大学出版社,2015年版汪天飞:《数学建模与数学实验》,科学出版社,2013年版韩中庚:《数学建模竞赛--获奖论文精选与点评》,科学出版社,2013年版谢金星,薛毅:《优化建模LINDO/LINGO软件》,清华大学出版社,2005年版卓金武:《MATLAB在数学建模中的应用》,北京航空航天大学出版社,2011年版李尚志:《数学实验(第2版)》,高等教育出版社,2015年版傅鹂:《数学实验(第二版)》,科学出版社,2000年版Course Name:Mathematics Experimen Hours:32Credits:2 Course Description:Mathematical Modeling is designed to serve students majoring in Economic Science.Mathematics experiment is a scientific research approach ranging from the classical deductive method and the classical experiment is neither the mathematical application of the usual experiments nor experimental transplant in mathematics research.It is a unique mathematics learning and mathematics research method forming with the development of human thinking mathematical theory and computer and other modern scientific and technology.Mathematics experiment doesn't take mathematics as a transcendental logical system, but an"experimental science".It starting from issues,with the help of computer software and mathematical models,is the process for the students to solve the problems through their personal design and hands-on experience from the experiment in order to learn explore and discover mathematical laws,which is a basic mathematical idea and method of mathematic experiment.。

数学实验教学大纲

数学实验教学大纲

数学试验教学大纲[课程的定位和目的]数学试验是清华大学在数学教学体系和内容改革中为非数学类专业创立的课,是四门数学主干课程的最终一门,起着承上启下的作用,承上是使微积分、代数与几何、随机数学中的原理得以应用,方法得以实现,启下是为后续课、争论生课程中数学问题的建模和求解供给思路,激发同学进一步学习数学、应用数学的意识和力量。

课程对象主要是本科二年级学生。

数学试验是一门重组课程,它集数值计算、优化方法、数理统计、数学建模以及数学软件于一体,以“应用数学根本原理、了解主要数值算法、借助数学软件实现、培育数学建模力量”为根本要求。

数学试验课的目的是,在教师指导下以学生在计算机上自己动手、动眼、动脑为主,通过用数学软件编程做试验,学习解决实际问题常用的数学方法,并在此根底上分析、解决经过简化的实际问题,提高学数学、用数学的兴趣、意识、方法和力量,促成数学教学的良性循环。

[课程的根本内容和根本要求]依据课程的目的和学时的限制,从必要性和可行性动身,我们设计数学试验课内容的根本原则是:1.介绍一些最常用的解决实际问题的数学方法,包括数值计算、优化方法、数理统计的根本原理和主要算法,一般不讲定理的证明,根本不做笔头练习;2.选择一两个适宜的数学软件平台,如 MATLAB 和LINGO,根本上能够便利地实现上述内容的有效算法;3.用数学建模为线索贯穿整个课程,从建模初步练习开头,以建模综合练习完毕,对上述每一局部内容也尽量从实际问题引入,并落实于这些问题的解决;4.最主要的是细心安排学生的试验,每个试验的内容除了为把握数学方法设计的纯计算题目外,要有足够的、经过简化的实际题目。

这样的内容设计既保证本科生学到比较广泛、有应用意义的数学学问,以及初步的分析、解决实际问题的思路与方法,又为那些要求把握更深入的数学理论和方法的学生,供给了很多实际背景,也刺激了他们再学习的愿望。

这样做还特别有利于争论型大学实行的“本硕贯穿”,数学试验课既为争论生的数学课〔如数值分析、数学规划、高等数值分析、高等统计等〕做了根本学问和实际背景的铺垫,又与这些课程在内容和要求上有较大的区分,形成明显的阶梯。

数学实验教学大纲

数学实验教学大纲

《数学实验》教学大纲课程名称:数学实验课程编号:09030007课程类别:专业基础必修课学时/学分:48/1.5开设学期:第4学期开设单位:数学与统计学院适用专业:数学与应用数学说明一、课程性质1.课程性质专业必修课2.课程说明数学实验是一门“实验科学”, 从理论或实际问题出发, 借助计算机, 通过学生亲自设计和动手, 体验解决问题的过程, 从实验中去学习、探索和发现数学规律. 一般来说, 数学实验课可以作为数学建模课的预备课程, 使学生可以更快地掌握数学建模的基本方法和技巧.学习本课程需要首先选修《数学软件计算机程序设计》选修课并了解简单的计算机应用知识, 还需要了解《数学分析》、《解析几何》、《高等代数》和《常微分方程》等课程的有关知识, 因此, 适宜于为本专业二年级以上学生开设.二、教学目标1. 能够熟练运用数学软件检验已学过的数学知识, 掌握运用数学软件作出图形的方法, 为所学知识提供直观模型, 从而加深对已有知识的理解;2. 能够利用数学软件编制计算机程序, 以解决实际问题, 为《数学建模》课程的学习打下基础;3. 在结合数学基础课的教学内容基础上, 进一步突出培养学生解决实际问题的能力;4. 学生在教师指导下完成一定难度的实际模型.三、学时分配表四、实验方法与要求建议在专业实验室进行实验教学,学生在课前应先预习实验内容.实验先由教师讲1个课时, 教师主要是提出问题, 适当介绍问题的背景, 介绍主要的实验原理和方法. 然后安排2个课时学生上机, 教师辅导, 要让学生自己动手去做, 去观察, 通过观察得出结论. 教师不宜花时间去作理论推导, 最好也不要预先告诉学生实验的结果, 实验结果让学生自己去观察得出.课后应独立完成作业, 以加深对教学内容的理解. 部分学生反应作业任务比较繁重, 主要的困难在于学生的计算机水平不够, 因此完成作业要花很多时间, 而实验所涉及到的数学知识难度并不大. 数学实验课几乎是逼迫学生重新拣起或现学现用计算机知识, 因此可酌情减少学生自主实验个数.成绩由实验报告及考试两部分组成, 考试采用上机实验和闭卷考试相结合的方式进行.五、考核方式及要求1. 考核方式:考试及实验报告.实验报告是实验成绩的重要依据.实验报告的评分的最基本标准是要自己动手, 要写上自己观察到的现象并进行分析. 实话实说, 不能造假, 哪怕观察到的现象与预计不一致, 或者与理论推导的结果不一致, 也不能在实验报告中说假话, 而应当分析其原因, 找出改进的办法, 重做实验, 重新得出结论. 对实验报告的更高的标准是创造性. 对于有创造性的报告, 要给以高分作为鼓励. 教师批改了实验报告之后, 要在下一次实验开始时, 对以前的实验中出现的优点和缺点进行评讲, 包括让学生参加讨论和演示.期末考试是实验成绩的主要依据, 采用全机试或机试加笔试的方式进行.2. 成绩评定:计分制:百分制.成绩构成:总成绩=平时考核(20%)+实验考核(30%)+期末考核(50%)本文实验一Matlab概述一、实验性质:实验类别:专业基础必修实验类型:验证型计划学时:12实验分组:3-4人为一组二、实验目的:1.Matlab软件简介;2.学习Matlab软件的基本命令;3.学习Matlab程序设计.三、实验的基本内容和要求:1.Matlab简介;2.Matlab的基本命令与基本函数;3.基本赋值与运算;4.Matlab程序设计.四、实验仪器设备及材料:五、实验操作要点:1.Matlab 的基本命令与基本函数; 2.Matlab 程序设计思想. 六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. Matlab 的基本命令是基础, 对基本常用命令必须要了解用法与用途;2. Matlab 程序设计是难点, 要求学生掌握编程的基本思想, 能完成简单程序即可, 要求不可过高, 在以后的教学中让学生逐步体会、加深理解;实验二 函数图形绘图一、实验性质: 实验类别:专业基础必修 实验类型:验证型 计划学时:3实验分组:3-4人为一组 二、实验目的:1.了解曲线的几种表示方法及作图, 空间曲线, 曲面作图; 2.学习、掌握MATLAB 软件有关命令. 三、实验的基本内容和要求:1. 以直角坐标方程sin ,cos y x y x ==表示的正、余弦曲线.2. 以参数方程cos ,sin ,[0,2]x t y t t π==∈表示的平面曲线(单位圆).3. 以参数方程0.20.2cos,sin ,,[0,20]22t t x e t y e t z t t ππ--===表示的空间曲线.4. 以极坐标方程(1cos ),1,[0,2]r a a ϕϕπ=+=∈表示的心脏线.5. 做出双曲抛物面:2244x y z =-的图形. 四、实验仪器设备及材料:五、实验操作要点: 1.一维函数的绘制, 2.各种曲线的实现方法, 3. 空间曲线、曲面作图. 六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. Matlab 函数图形绘制是Matlab 的基本功能之一, 要求掌握plot, mesh, surf, plot3等基本绘图命令;2. 教师讲解基本原理后, 安排学生自主上机验证.实验三 数列极限与生长模型一、实验性质: 实验类别:专业基础必修 实验类型:设计型 计划学时:3实验分组:3-4人为一组 二、实验目的:1. 了解函数极限的基本概念;2. 学习、掌握MATLAB 软件有关求函数极限的命令;3. 学会利用极限理论建立数学模型解决实际问题. 三、实验的基本内容和要求:1. 判断极限0011limcos ,limsin x x x x →→的存在性.2. 验证极限0sin lim1x xx→=. 3. 验证极限11lim(1)lim(1) 2.71828n x n x e n x →∞→∞+=+==.4. 求下列各极限.(1)nn n )11(lim -∞→;(2))122(lim n n n n ++-+∞→;(3)xx x 2cot lim 0→;(4)xx x m)(cos lim ∞→; (5)x x x 11lim3-+→.5. 生物种群的数量增长模型. 四、实验仪器设备及材料: 计算机及Matlab 软件 五、实验操作要点: 利用Matlab 计算极限 六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握limit 求极限命令;2. 教师讲解基本原理后, 安排学生上机绘图验证.3. 初步接触数学模型, 了解数学建模.实验四 导数与飞机安全降落问题一、实验性质: 实验类别:专业基础必修 实验类型:设计型 计划学时:3实验分组:3-4人为一组 二、实验目的:1. 了解函数导数的基本概念;2. 学习、掌握MATLAB 软件有关求函数导数的命令;3. 学会利用导数理论建立数学模型解决实际问题. 三、实验的基本内容和要求:1. 导数是函数的变化率, 几何意义是曲线在一点处的切线斜率.2. 导数的几何意义是曲线的切线斜率.3. 求一元函数的导数.(1) 的一阶导数.(2) 参数方程所确定的函数的导数.设参数方程()()x x ty y t=⎧⎨=⎩确定函数, 则的导数()()dy y tdx x t'='4. 求多元函数的偏导数.5. 求高阶导数或高阶偏导数.6. 求隐函数所确定函数的导数或偏导数7. 飞机安全降落问题四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:利用Matlab求函数的导数.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握diff求导数命令;2. 进一步接触数学模型, 了解数学建模. 课教师讲解原理后学生验证, 也可安排学生自己建立模型求解. 对于后者, 要求不必过高, 主要是让学生了解建模过程, 体会建模困难.实验五方程近似解的求法一、实验性质:实验类别:专业基础必修实验类型:设计型计划学时:3实验分组:3-4人为一组二、实验目的:1. 掌握求方程近似解的二分法、牛顿迭代法以及弦截法的算法原理, 会用MATLAB语言编程实现二分法.2. 学会使用Matlab中内部函数fzero()、fsolve()、roots()求解方程或方程组.三、实验的基本内容和要求:1. 二分法的原理及算法.2. 牛顿迭代法的原理及算法.3. 弦截法的原理及算法.4. 方程求解的Matlab命令四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:1.编出用二分法求方程近似解的程序并验证.2.编出用牛顿迭代法求方程近似解的程序并验证.3.编出用弦截法求方程近似解的程序并验证.4.用Matlab函数fzero()、fsolve()、roots()求解方程或方程组.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握fzero()、fsolve()、roots()等命令;2. 教师讲解基本原理后, 安排学生上机验证.3. 由于没有学习数值分析课程, 要求不能过高, 主要是体会迭代法的基本思想, 要求学生能理解基本思想, 简单编程即可.实验六定积分的近似计算一、实验性质:实验类别:专业基础必修实验类型:设计型计划学时:3实验分组:3-4人为一组二、实验目的:1.了解定积分计算的梯形法与抛物线法;2.会用Matlab语言编写求定积分近似值的程序;3.学会使用Matlab中的命令求定积分.三、实验的基本内容和要求:1. 梯形法的原理及算法.2. 抛物线法的原理及算法.3. 计算数值积分的Matlab命令.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:1. 编出用梯形法计算定积分的程序并验证.2. 编出用抛物线法法计算定积分的程序并验证.3. 用Matlab函数quad()、int(f) 计算数值积分.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握quad()、int()等命令;2. 教师讲解基本原理后, 安排学生上机验证. 主要是体会定积分基本思想:分割、近似、求和、取极限.实验七多元函数的极值问题一、实验性质:实验类别:专业基础必修实验类型:验证型计划学时:3实验分组:3-4人为一组二、实验目的:1.多元函数极值的求法;2.多元函数条件极值的求法;3.MATLAB软件有关的命令.三、实验的基本内容和要求:1. 多元函数极值的计算.2. 二元函数在区域D内的最大值和最小值的计算.3. 函数条件极值的求解.4. 用Matlab命令计算函数极值.MATLAB中主要用diff求函数的偏导数, 用jacobian求Jacobian矩阵. diff(f, x, n)求函数f关于自变量x的n阶导数. jacobian(f, x)求向量函数f关于自变量x(x 也为向量)的jacobian矩阵.使用Matlab命令fmin()、fmins()以及lp()来解决一些约束优化问题(线性规划问题).四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:多元函数极值的计算六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握jacobian(f, x)、fmin()、fmins()和lp()等命令;2. 教师讲解基本原理后, 安排学生上机验证.实验八重积分计算及照明问题一、实验性质:实验类别:专业基础必修实验类型:设计型计划学时:3实验分组:3-4人为一组二、实验目的:1.掌握用Matlab的有关函数计算重积分的方法;2.学会利用Matlab画图分析三重积分区域及投影区域;3.掌握用Matlab的有关函数计算曲线曲面积分的方法.三、实验的基本内容和要求:1. 二重积分的计算.2. 三重积分的计算.3. 重积分的实际应用举例---照明问题.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:二重积分、三重积分的计算六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握有关计算二重、三重积分的命令;2. 教师讲解基本原理后, 安排学生上机验证.3. 进一步了解用数学解决实际问题的过程——数学建模, 要求较前面要有一定的提高, 可考虑安排学生完成.实验九无穷级数与函数逼近一、实验性质:实验类别:专业基础必修实验类型:验证型计划学时:3实验分组:3-4人为一组二、实验目的:1.学会使用Matlab关于级数求和以及函数展开成幂级数的命令和方法;2.研究幂级数的部分和对函数的逼近以及进行函数值的近似计算;3.展示傅里叶级数对周期函数的逼近情况.三、实验的基本内容和要求:1.级数部分和与级数的和的计算.2.函数的幂级数展开.3.幂级数求和.4.傅里叶级数对周期函数的逼近四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:级数部分和的计算, 无穷级数和的计算, 展开成级数.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 学会使用Matlab关于级数求和以及函数展开成幂级数的命令和方法;2. 教师讲解基本原理后, 学生上机验证幂级数的部分和对函数的逼近程度.实验十人造卫星的运行轨道一、实验性质:实验类别:专业基础必修实验类型:设计型计划学时:3实验分组:3-4人为一组二、实验目的:1.会使用Matlab求一阶常微分方程的解析解和数值解;2.会使用Matlab求简单的常微分方程和高阶常微分方程的解析解和数值解;3.会用常微分方程(组)解决实际问题.三、实验的基本内容和要求:1. 常微分方程的解析解;2. 微分方程的数值解法;3. 解微分方程的MATLAB命令;MATLAB中主要用dsolve求符号解析解, ode45, ode23, ode15s求数值解.Matlab求解微分方程命令dsolve, 调用格式为:dsolve(‘微分方程’)给出微分方程的解析解, 表示为t的函数.dsolve(‘微分方程’, ‘初始条件’)给出微分方程初值问题的解, 表示为t的函数.dsolve(‘微分方程’, ‘变量x’)给出微分方程的解析解, 表示为x的函数.dsolve(‘微分方程’, ‘初始条件’, ‘变量x’)给出微分方程初值问题的解, 表示为x的函数.4.数学模型---人造卫星的轨道方程.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:求解常微分方程(组)的解析解和数值解.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 了解微分方程的数值解法的基本思想, 掌握求解微分方程解析解和数值解的基本命令;2. 这是一个综合性的实验, 旨在综合运用所学知识, 可安排给学生独立完成, 初步检测一学期的学习效果.实验十一线性代数的基本运算一、实验性质:实验类别:专业基础必修实验类型:验证型计划学时:3实验分组:3-4人为一组二、实验目的:1.用MATLAB求矩阵的转置、加、减、乘、逆等基本运算.2.用MATLAB求行列式.3.用MATLAB求线性方程组的解, 矩阵的特征值及特征向量.三、实验的基本内容和要求:1. 矩阵的转置、加、减、乘、逆等基本运算及MATLAB软件的有关命令;2. 学习行列式的基本概念, 克莱姆法则及MATLAB软件的有关命令;3. 用MATLAB求线性方程组的解, 矩阵的特征值及特征向量;4. 会解决一些简单的实际问题.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:矩阵的基本运算, 行列式, 求线性方程组的解, 矩阵的特征值及特征向量.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 了解线性方程组的解, 掌握求解线性方程的解得Matlab 基本命令;2. 结合前面的迭代法, 系统验证求解线性方程组的解法, 以及特征值与特征向量在其中的作用.实验十二综合实验一、实验性质:实验类别:专业基础必修实验类型:综合型计划学时:6实验分组:3-4人为一组二、实验目的:1.加深对极限、微分、积分等基本概念的理解;2.讨论微分学中的实际应用问题;3.掌握MATLAB软件中有关极限、级数、导数等命令;4.特殊矩阵的输入、矩阵基本分析、矩阵的基本变换;5.了解线性规划问题, 掌握MATLAB求解线性规划的命令.三、实验的基本内容和要求:1. MATLAB综合应用一:微积分问题的计算机求解---连续计息问题.2. MATLAB综合应用二:线性代数问题的计算机求解.3. MATLAB综合应用三:代数方程与最优化问题的计算机求解---最佳广告编排方案.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:微积分问题的计算机求解, 线性代数问题的计算机求解, 代数方程与最优化问题的计算机求解.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 复习总结学过的Matlab 命令, 加深对软件的认识与学习;2. 这是一个综合性的实验, 旨在综合运用所学知识, 可提前安排学生考虑三题中的一题(可酌情增加题目), 在数学实验室独立完成实验, 也可作为机试成绩.指导书与参考资料[1] 王向东, 戎海武, 文翰, 等. 数学实验[M]. 北京:高等教育出版社, 2004.[2] 冯有前, 袁修久, 李炳杰, 等. 数学实验[M]. 北京:国防工业出版社, 2008.[3]李尚志, , 陈发来, 吴耀华, 等. 数学实验[M]. 北京:高等教育出版社, 1999.[4]萧树铁, 姜启源, 何青, 等. 数学实验[M]. 北京:高等教育出版社, 2001.[5]李卫国. 高等数学实验. [M]. 北京:高等教育出版社;海德堡:斯普林格出版社, 2000.[6]张志涌, 杨祖樱, 等. Matlab教程R2010a[M]. 北京:北京航空航天大学出版社, 2010.执笔:李永武审核:朱睦正制(修)订时间:2011-10-10。

数学实验与数学建模课程介绍

数学实验与数学建模课程介绍
目的
数学实验旨在培养学生的动手能 力、创新思维和解决问题的能力 ,加深对数学理论的理解和应用 。
数学实验的方法与步骤
方法
数学实验通常采用观察、猜想、验证 和归纳等方法,通过实验数据的分析 和处理,得出结论和规律。
步骤
数学实验的步骤包括问题分析、建立 数学模型、选择实验方法、进行实验 操作、记录实验数据、分析和解释实 验结果等。
数学实验的应用与案例
应用
数学实验在各个领域都有广泛的应用,如物理、化学、生物 、经济、工程等,可用于解决实际问题、探索未知领域和验 证科学假设。
案例
例如,在物理学中,通过数学实验模拟物体运动轨迹和力学 规律;在经济学中,通过数学实验模拟市场交易和价格形成 机制;在工程学中,通过数学实验优化设计方案和预测结构 稳定性等。
THANKS FOR WATCHING
感谢您的观看
讨论和项目实践等环节。
考核方式
采用平时成绩和期末考试相结合 的方式进行考核,平时成绩包括 实验报告、小组讨论和课堂表现 等方面,期末考试以闭卷形式进
行。
02 数学实验
数学实验的定义与目的
定义
数学实验是一种基于计算机技术 和数学软件,通过实际操作和观 察来探索和验证数学理论、解决 数学问题的方法。
03 数学建模
数学建模的定义与目的
定义
数学建模是指通过数学语言和工具,对实际问题进行抽象、简化,并建立数学 模型的过程。
目的
数学建模旨在利用数学方法解决实际问题,为决策提供科学依据,预测现象, 优化资源配置等。
数学建模的方法与步骤
方法
常用的数学建模方法包括解析法、几何法、图论法、概率统计法等。
对学生的期望与建议
01

全国普通高中数学课程标准(实验)介绍概要

全国普通高中数学课程标准(实验)介绍概要

内容处理—我国必修课程中的统计
现代社会是一个信息化的社会,根据所获取的 数据提取信息,做出合理的决策,是公民的必 备常识。统计与概率是以往我国数学教学中比 较薄弱的部分。必修课程以统计为主(统计16 课时,概率8课时),通过实例分析使学生掌 握随机抽样、样本估计总体、线性回归等最常 用的数据分析方法。这部分内容着重让学生体 会数理统计方法的作用及其思维特点。
A水平数学选修单元
力和运动的模型 AS选修 圆周运动的模型 刚体模型 微分方程模型 数据收集 AS选修 正态分布 AS选修 概率 AS选修 行为统计学 数据的概率模型 信息与编码 AS选修
A水平进一步的数学必修单元
复数 矩阵 AS必修 AS必修 AS必修 AS选修 AS选修
等差数列前n项和公式
• 是关于n的一个二次函数
n(a1 an ) n(n 1) 2 Sn na1 d An Bn 2 2 • 例2 等差数列 {an } ,S10 310, S20 1220 求 Sn
借助图像
• 例3 已知等差数列 {an } 中,a1 12, d 2 (1)求 Sn ,并画出 {Sn }(1 n 13)的图像 (2)分别求 {Sn }单调递增,单调递减的n的 取值范围,并求{Sn } 的最大(小)的项 {Sn } 有多少项大于0 ( 3)
12、13年级的基础课与能力课
• 基础课
– 十二年级:微积分;概率论/统计学 – 十三年级:微积分;解析几何;数学 基础(备择)
• 能力课
– 十二年级:微积分;概率论/统计学; 解析几何 – 十三年级:微积分;概率论/统计学; 解析几何
必修数学1
人教社A版 • 集合与函数概念

数学实验课程设计目的要求

数学实验课程设计目的要求

数学实验课程设计目的要求一、课程目标本节数学实验课程旨在通过实践活动,帮助学生掌握以下知识目标:1. 理解并运用所学的数学概念,如几何图形、概率统计等;2. 掌握基本的数学实验操作技能,如测量、计算、数据分析等。

技能目标包括:1. 能够运用数学实验方法解决实际问题;2. 能够通过小组合作,进行有效的沟通与协作。

情感态度价值观目标:培养学生对数学的兴趣和好奇心,提高他们探索问题的主动性和积极性。

针对课程性质,本节课注重实践性与探究性,结合学生的年级特点,如好奇心强、动手能力强,将课程目标分解为以下具体学习成果:1. 能够运用所学几何知识,设计并实施简单的数学实验;2. 能够运用概率统计知识,对实验数据进行合理的分析;3. 能够通过小组合作,完成实验任务,并提出自己的观点和结论;4. 在实验过程中,培养观察、分析、解决问题的能力,增强数学思维;5. 增进对数学学科的兴趣,形成积极的学习态度和价值观。

二、教学内容本节课教学内容紧密结合课程目标,选取以下内容进行组织:1. 几何图形的测量与计算:根据教材中关于几何图形的章节,学习三角形、矩形、圆的周长和面积的计算方法,并通过实验进行实际操作。

2. 概率统计的应用:结合教材中概率统计的章节,引导学生利用实验数据进行分析,探究事件发生的可能性,学习简单的概率计算方法。

3. 数据收集与处理:依据教材内容,教授学生如何收集数据、整理数据,并进行基本的统计分析。

具体教学大纲如下:第一课时:几何图形的测量与计算- 学习三角形、矩形、圆的周长和面积公式;- 实践操作:分组进行测量,计算不同几何图形的周长和面积。

第二课时:概率统计的应用- 学习事件发生的可能性计算;- 实践操作:设计简单的概率实验,收集数据,进行概率计算。

第三课时:数据收集与处理- 学习数据收集、整理的方法;- 实践操作:分组进行数据收集,运用统计方法对数据进行分析。

教学内容确保科学性和系统性,注重理论与实践相结合,使学生在掌握知识的同时,提高解决问题的能力。

普通高中数学课程标准新版

普通高中数学课程标准新版

普通高中数学课程标准(实验)解读人民教育出版社章建跃zhangjy@一、数学课程的性质、地位和作用二、课程的十大理念•1.构建共同基础,提供发展平台•2.提供多样课程,适应个性选择•3.倡导积极主动、勇于探索的学习方式•4.注重提高学生的数学思维能力•6.与时俱进地认识“双基”•7.强调本质,注意适度形式化•8.体现数学的文化价值•10.建立合理、科学的评价体系三、课程目标•总目标:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

•具体目标:• 1.获得“双基”。

• 2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

• 3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

• 4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

• 5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

• 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,进一步树立辩证唯物主义和历史唯物主义世界观。

四、课程结构•必修课程5个模块,各36课时•数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数);•数学2:立体几何初步、平面解析几何初步;•数学3:算法初步、统计、概率;•数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换;•数学5:解三角形、数列、不等式。

•必选模块(各36课时)•系列1:文科必选•选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用;•选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。

•系列2:理科必选•选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何;•选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入;•选修2-3:计数原理、统计案例、概率。

《数学实验》课程介绍

《数学实验》课程介绍

《数学实验》课程简介数学实验是以数值计算、优化方法、数理统计、数学建模以及最基本的数学软件(如MATLAB)为主要内容,在基本数学知识和数学的应用之间架起一座桥梁。

通过“引例→知识→软件→范例→实验(实践)”的教学过程,以实际问题为载体,把数学建模、数学知识、数学软件和计算机应用有机地结合,强调学生的主体地位,在教师的引导下,学习查阅文献资料、用学到的数学知识和计算机技术,借助适当的数学软件,分析、解决一些经过简化的实际问题,并撰写实验报告或论文,经受全方位的锻炼。

它使学生能够体验利用计算机及数学软件解决实际问题的全过程。

《数学实验》教学章节第1章如何用数学解决实际问题§1.1 什么是数学模型§1.2 数学模型的分类§1.3 数学建模的基本方法和步骤第2章飞机如何定价—方程求解§2.1竞争中的飞机制造业§2.2 飞机的定价策略§2.3方程数值求解方法§2.4飞机的最优价格§2.5操练 油价如何影响船速第3章收敛与混沌—迭代§3.1不动点与迭代§3.2图示迭代数列§3.3分歧与混沌§3.4二元函数迭代§3.5操练—迭代与分形第4章种群数量的状态转移模型—微分方程§4.1 人口问题§4.2 微分方程的数值解法§4.3 微分方程图解法§4.4 MATLAB软件求解§4.5 微分方程的应用§4.6操练—盐水的混合问题第5章水塔用水量的估计—插值§5.1 水塔用水量问题§5.2 插值算法§5.3 水塔用水量的计算§5.4 二维插值的应用§5.6操练—确定地球与金星之间的距离第6章医用薄膜渗透率的确定—数据拟合§6.1 医用薄膜的渗透率§6.2 确定医用薄膜渗透率的数学模型§6.3 一元最小二乘法简介§6.4 用曲线拟合方法确定医用薄膜渗透率§6.5 简介曲面拟合§6.6 操练−Malthus人口指数增长模型第7章怎样让医院的服务工作做得更好—回归分析§7.1 一份有趣的社会调查§7.2 如何定量分析病人与医院之间的关系?§7.3 回归分析§7.4 病人对医院的评价如何?§7.5简介非线性回归分析§7.6操练—某类员工的年薪与哪些因素有关?第8章海港系统卸载货物的计算机模拟§8.1 港海系统的卸载货物问题§8.2 海港系统的卸载货物过程分析§8.3 蒙特卡洛模拟思想§8.4 海港系统卸载货物的模拟§8.5 连续系统的计算机模拟§8.6 操练−怎样才能使设备的使用寿命延长?第9章如何在简约的世界里收益最大—线性规划§9.1 华尔街公司的投资选择§9.2 组合投资决策§9.3 线性规划—在平直世界中获取最大利益§9.4 用线性规划软件求解组合投资问题§9.5 如果决策变量只能取整数怎么办?§9.6 操练−动物饲料配置的讲究第10章世界本复杂,如何做得最好—非线性规划§10.1 公交公司的调控策略§10.2 营业额最大化§10.3 非线性规划—在复杂的世界里做得最好§10.4 用非线性规划软件求解最大营业额问题§10.5 山有多少峰,哪里是最高峰?§10.6 操练−“一张白纸好画最美的图”第11章如何表示二元关系?—图的模型及矩阵表示§11.1 如何排课使占用的时间段数最少?§11.2 一种直观形象的表示工具——图§11.3 图的矩阵表示方法§11.4 操练−城市交通的可达性度量问题第12章如何连接通讯站使费用最少?—最小生成树.§12.1 美国AT&T的网络设计算法攻关§12.2 最小生成树—最经济的连接方式§12.3 最小生成树算法§12.4 用最小生成树解决通讯网络的优化设计问题§12.5 怎样使线网费用进一步降低?§12.6 操练−如何设计海底管道网第13章如何实现汽车的自主导航—最短路径§13.1 卫星定位汽车自动导航系统§13.2 汽车导航系统如何为你选择最佳路线§13.3 最短路径问题和算法的类型§13.4 最短路径算法§13.5 Dijkstra算法的MATLAB程序§13.6 从天安门到天坛的最短行车路线§13.7 如何快速求任意两顶点之间的最短路径?§13.8 操练−新建公路的线路设计及其合理性论证附录A:MATLAB软件简介§A.1 概述§A.2 MATLAB环境§A.3 数值运算§A.4 图形功能§A.5 符号运算§A.6 程序设计——M文件的编写§A.7 操练。

数学实验基础课程设计

数学实验基础课程设计

数学实验基础课程设计一、课程简介数学实验基础课程设计是一门针对本科数学专业学生的基础课程,旨在通过实验的方式加深学生对数学理论的理解,提高数学实际应用能力,培养其科学思维和创新精神。

本课程涵盖了数学实验设计的基本概念、实验方法、实验技能等方面的内容,可以为学生日后的专业发展打下基础。

二、课程目标1.帮助学生熟悉数学实验的基本概念,了解实验的重要性和作用。

2.培养学生的实验技能,提高实验设计能力和解决问题的能力。

3.培养学生的科学思维,能够将学过的理论知识应用于实际问题中。

4.培养学生的创新精神,激发学生的创造潜力,提高其创新能力和创造能力。

三、课程内容1. 基本概念本课程包括实验设计的基本概念,实验的基本原理和方法,以及实验结果的统计、分析和处理方法。

其中,实验设计是本课程的重点内容,包括实验题目的选定、实验方案的设计、实验数据的采集和处理等方面的内容。

2. 实验方法本课程主要介绍数学实验的常用方法,如数值模拟、实测和观察、实验仿真等方法。

同时,本课程也会引入一些新兴的实验方法,如机器学习、人工智能等,希望能够引导学生跟上时代步伐,拓展创新思路。

3. 实验技能本课程的实验技能包括实验仪器的操作和维护,实验数据的采集和处理,实验结果的分析和评估,以及实验报告的撰写和演示等方面的技能。

通过课堂上的讲解和实际操作,学生将能够掌握这些实验技能。

4. 实验应用本课程注重实验的应用价值,介绍数学实验在科学研究和工程应用中的重要性和作用,激发学生的兴趣和潜力,培养其实际应用数学知识的能力。

四、实验项目本课程共有五个实验项目,包括:1.曲线拟合实验2.数值求解实验3.线性规划实验4.随机模拟实验5.数据挖掘实验学生将自主选题和自主组队进行实验项目的研究和实施。

同时,学生也需要撰写实验报告和进行实验成果的演示。

五、课程评估课程评估分为两个部分,学生的实验成果占60%的权重,学生的实验报告和演示占40%的权重。

实验成果主要考察学生在实验操作中的技能和实际应用能力,实验报告和演示主要考察学生的科学思维和表达能力。

初中数学试验课程设计

初中数学试验课程设计

初中数学试验课程设计一、课程目标知识目标:1. 让学生掌握初中数学的核心概念,如代数、几何、统计等,并能够运用到实际情境中。

2. 通过课程学习,使学生能够熟练运用数学公式、定理和性质,解决相应年级的数学问题。

3. 培养学生对数学问题的分析、综合和创新能力,提高数学思维水平。

技能目标:1. 培养学生运用数学知识解决实际问题的能力,提高问题解决技巧。

2. 通过小组讨论、实验操作等教学活动,提高学生的合作、沟通和动手操作能力。

3. 培养学生运用数学软件、教具等辅助工具进行探究学习的能力。

情感态度价值观目标:1. 培养学生对数学学科的兴趣和热情,激发学习积极性。

2. 培养学生勇于探究、敢于质疑的精神,形成积极向上的学习态度。

3. 通过数学实验课程,使学生认识到数学在生活中的重要作用,提高数学素养。

课程性质:本课程为初中数学实验课程,注重理论与实践相结合,强调学生动手操作和探究学习。

学生特点:初中生正处于青春期,思维活跃,好奇心强,具有一定的合作和探究能力。

教学要求:教师应关注学生的个体差异,因材施教,采用多样化的教学手段,激发学生的学习兴趣和积极性。

同时,注重培养学生的数学思维和解决问题的能力,提高数学素养。

通过分解课程目标为具体的学习成果,为后续的教学设计和评估提供依据。

二、教学内容本课程以人教版初中数学教材为基础,结合课程目标,选择以下教学内容:1. 代数部分:- 一元一次方程、不等式的解法及应用- 函数的概念、性质、图像及简单应用- 多项式及其运算、因式分解2. 几何部分:- 平面几何图形的性质、分类及判定- 直线、射线、线段的性质及位置关系- 三角形的性质、分类及判定3. 统计与概率部分:- 数据的收集、整理、描述和分析- 概率的基本概念、计算方法及应用- 统计图表的制作及分析教学大纲安排如下:第一周:一元一次方程、不等式的解法及应用第二周:函数的概念、性质、图像及简单应用第三周:多项式及其运算、因式分解第四周:平面几何图形的性质、分类及判定第五周:直线、射线、线段的性质及位置关系第六周:三角形的性质、分类及判定第七周:数据的收集、整理、描述和分析第八周:概率的基本概念、计算方法及应用第九周:统计图表的制作及分析教学内容确保科学性和系统性,注重理论与实践相结合,以培养学生的数学素养为目标。

课件:数学实验课程简介与要求

课件:数学实验课程简介与要求
转置、计算行列式和本征值,此版本软件分发出大约两 三百份
☆ 1984年,杰克·李特、克里夫·莫勒尔和斯蒂夫·班格 尔特合作成立了MathWorks公司,正式把MATLAB推向市场
☆到20世纪90年代,MATLAB已成为国际控制界的标准计算软件。
MATLAB 1.0 1984 MATALB 2 1986 MATLAB 3 1987 MATLAB 3.5 1990 MATLAB 4 1992 MATLAB 4.2c R7 1994 MATLAB 5.0 R8 1996 MATLAB 5.1 R9 1997 MATLAB 5.1.1 R9.1 1997 MATLAB 5.2 R10 1998 MATLAB 5.2.1 R10.1 1998 MATLAB 5.3 R11 1999 MATLAB 5.3.1 R11.1 1999 MATLAB 6.0 R12 2000 MATLAB 6.1 R12.1 2001 MATLAB 6.5 R13 2002 MATLAB 6.5.1 R13SP1 2003 MATLAB 6.5.2 R13SP2 2003 MATLAB 7 R14 2004
数学实验课程简介
1988年,美国Rossciacr技术学院正式引入 数学实验课。
1989年,美国的Mount Holyke College数学系集 体编写了第一本专门教材《数学实验室》
20世纪末,我国大学开始开设数学实验课程,以建 立模型和用数学方法及软件求解模型为主 要内容。
何谓数学实验 ☆ 对数学进行折腾 ☆ 连蒙带猜找规律 ☆ 从问题出发,自己动手,借助计算机, 进行视觉的、数值的、符号的折腾 ☆ 尝试数学的探索、发现和应用
MATLAB 7.0.1 R14SP1 2004 MATLAB 7.0.4 R14SP2 2005 MATLAB 7.1 R14SP3 2005 MATLAB 7.2 R2006a 2006 MATLAB 7.3 R2006b 2006 MATLAB 7.4 R2007a 2007 MATLAB 7.5 R2007b 2007 MATLAB 7.6 R2008a 2008 MATLAB 7.7 R2008b 2008 MATLAB 7.8 R2009a 2009.3.6 MATLAB 7.9 R2009b 2009.9.4 MATLAB 7.10 R2010a 2010年3月 MATLAB 7.11 R2010b 2010年9月 MATLAB 7.12 R2011a 2011年3月 MATLAB 7.13 R2011b 2011年9月 MATLAB 7.14 R2012a 2012年3月
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
☆激发求知欲的“开胃汤”,而非提供数学 知识的“大餐”
二、教学形式
1.一个实验(一次理论课+一次实验课)。每个 实验围绕解决一个或几个问题来展开,教学生 使用若干种方法来解决问题,在解决问题中学 习和熟悉一些方法,自己观察结果,得出结论。 上机时间由学生自己操作,并写出实验报告。
2.实验报告的格式,可以参考电子教案,要有 问题描述,实验过程,观察到的现象等,并 对结果进行分析与讨论。 3.本课程不设专门的考试。评定成绩的依据是 平时的实验报告和考勤。
•警告: 如有抄袭,抄与被抄者都没有成绩! 五、上机地点:4104,4105
六、参考教材
《数学实验》(第二版) 李尚志 陈发来 张韵华 吴耀华 著 MATLAB书 电子教案下载 邮箱:liuxl@
数学实验课程简介
一、何谓数学实验 ☆ 在现代教育理论指导下,旨在引导学生 借助数学软件理解抽象的数学理论,自主 探索和研究数学问题以及数学的应用问题 的实践过程。
☆ 自己动手,自己借助于计算机去“折腾” 数学
数学实验课程简介
☆ 学习、观察、探索、发现和应用 ☆ 连蒙带猜找规律 ☆ 从问题出发,自己动手,借助计算机, 进行视觉的、数值的、手和探索的兴趣
三、实验报告格式 1.实验内容
把问题提出来,描述清楚
2. 实验过程
方法分析、代码、实现过程、所得结论
3. 总结分析
对结论的合理性、方法的有效性等,作一定的分析
四、实验报告提交事项
•提交电子版:liuxl@ •文件名格式:信息1班-成绩单序号-张三
•宿舍长收齐本宿舍的发给学习委员,学 习委员以班级为单位在下次上课前的周 日晚上8点统一提交给老师信箱。
数学实验课程简介
数学实验是什么?
数学实验有什么用?
数学实验怎么做?
数学实验课程简介
sin x 例1:y 的图形?特别在原点是什么样子? x
Matlab代码: x=[-20*pi:20*pi]; plot(x,sin(x)./x)
数学实验课程简介
例2:核试验
“假的核试验”:在超级计算机上,超
大规模计算,超大规模仿真,在屏幕上 看一看核爆炸是什么样子,威力多大。
相关文档
最新文档