基于Buck变换器的双环开关调节系统的设计和仿真

合集下载

论文-Buck变换器双闭环控制仿真研究综述

论文-Buck变换器双闭环控制仿真研究综述

毕业设计(论文)说明书题目:Buck变换器双闭环控制仿真研究系名信息工程系专业自动化学号 6011XXXXXXX学生姓名 XXX指导教师 XXX2015年6月5日毕业设计(论文)任务书题目:Buck变换器双闭环控制仿真研究系名信息工程系专业自动化学号 6011XXXXXX学生姓名 XXX指导教师 XXX职称副教授2014年12月15日一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目的等。

)便携式电子产品的广泛应用,推动了开关电源技术的迅速发展。

因为开关电源具有体积小、重量轻以及功率密度和输出效率高等诸多优点,已经逐渐取代了传统的线性电源,随之成为电源芯片中的主流产品。

随着开关电源技术应用领域的扩大,对开关电源的要求也日益提高,高效率、高可靠性以及高功率密度成为趋势,这就对开关电源芯片设计提出了新的挑战。

其中对于非隔离的DC/DC开关电源,按照电路功能划分,有降压式(BUCK)、升压式(BOOST),还有升降压式(BUCK-BOOST)等。

其中品种最多,发展最快的当属降压式(BUCK)。

我国目前能源紧缺,而电源行业又是一个与能源消耗密切相关的行业,因此我们在设计DC/DC开关电源产品时,转换效率必须作为一个重要的指标加以考虑。

尤其是随着采用3.6 V锂离子电池作为电源的消费类电子产品市场不断扩大,且功能和性能变得更多和更高,对适用于这类产品的BUCK变换器的性能提出了更高的要求。

因此研究BUCK变换器的控制具有重要的理论和现实意义。

二、参考文献[1] 丘涛文. 开关电源的发展及技术趋势[J]. 电力标准化与技术经济,2008,17(6):58-60.[2] 张乃国. 一种脉冲频率调制型稳压电路的研究[J]. 电源世界,2007,10(4):21-23.[3] 刘树林,输出本质安全型Buck-Boost DC-DC变换器的分析与设计,中国电机工程学报,2008,28(3): 60-65.[4] 马丽梅,Buck-boost DC-DC变换器的控制,河北工业大学学报,2008,37(4) :101-105.[5] 刘树林,Buck-Boost变换器的能量传输模式及输出纹波电压分析,电子学报,2007,20(5) :838-843.[6] 彭力,新型大功率升降压型DC-DC变换器控制研究,船电技术,1999,3(1) :26-28.[7] 钟久明,Buck-Boost变换器的本质安全特性分析及优化设计西安科技大学硕士学位论文 2006.[8] 高飞,蒋赢,赵小妹等,一种新型Buck-Boost变换器,电力电子技术2010 22(4):50-52.[9] Xu Jianping,Yu Juebang.Equivalent circuit model of switches for SPICE simulation.IEEElectronics,Letters,1988,V ol.24,No.7,437-438.[10] Xu Jianping,Yu Juebang,Zeng H.SPICE simulation of switched DC-DC convert.IEEEInternational Symposium on Circuits and Systems,1991,V ol.24,No.5,3032-3026. [11] 王海鹏,王立志,王卓. 基于1394的数据传输电路[J]. 现代电子技术,2009,32(21):52-54.[12] 王久和. 电压型PWM整流器的非线性控制[M]. 第1版,北京: 机械工业出版社, 2008.[13] 师娅,唐威. 一种电流型PWM控制芯片的设计[J]. 微电子学与计算机,2007,24(8):145-148.三、设计(研究)内容和要求(包括设计或研究内容、主要指标与技术参数,并根据课题性质对学生提出具体要求。

Buck变换器双闭环控制仿真研究毕业论文

Buck变换器双闭环控制仿真研究毕业论文

Buck 变换器双闭环控制仿真研究毕业论文目 录第一章第一章 绪论绪论................................... 1 1.1 课题研究背景课题研究背景课题研究背景 ................................. 1 1.2 课题发展现状课题发展现状课题发展现状 ................................. 1 1.3 本文研究内容及结构本文研究内容及结构本文研究内容及结构 ........................... ........................... 3 第二章第二章 Buck Buck变换器基本原理 ...................... 4 2.1 Buck 变换器工作原理变换器工作原理 ........................... 4 2.2 Buck 变换器工作模态分析变换器工作模态分析 ....................... 4 2.3 Buck 变换器外特性变换器外特性............................. 7 第三章第三章 Buck Buck 变换器主电路设计变换器主电路设计.................. 9 3.1 占空比D ....................................... 9 3.2 滤波电感Lf ................................... 9 3.3 滤波电容Cf .................................. 11 3.4 开关管Q...................................... 11 3.5 续流二极管D (12)第四章第四章 Buck Buck 变换器双闭环控制变换器双闭环控制 ................. 13 .. (13)4.1电路双闭环控制结构电路双闭环控制结构 (13)4.2 电流内环设计电流内环设计 ................................. 13 4.3 电压外环设计电压外环设计 (15)第五章第五章 Buck Buck 变换器闭环系统的仿真变换器闭环系统的仿真 ............. 21 . (21)5.1 开环开环Buck 电路的建模及仿真电路的建模及仿真 ................... ................... 21 5.2 闭环闭环Buck 电路的建模及仿真电路的建模及仿真 ................... ................... 2222 5.3 PI 控制方法的仿真控制方法的仿真 ............................ 2323 5.4 PID 控制方法的仿真控制方法的仿真........................... 25 第六章第六章 总结与展望总结与展望............................ 25 参考文献参考文献........................................ 29 外文资料外文资料 中文译文中文译文 致谢致谢第一章第一章 绪论绪论1.1 1.1 课题研究背景课题研究背景随着电子技术的快速发展,电子设备的种类越来越多,电子设备与人们的工作、生活的关系也日益密切。

基于Buck电路的双闭环控制系统设计的仿真研究

基于Buck电路的双闭环控制系统设计的仿真研究
进 行 仿 真 , 验 证 电压 电流 双 闭环 控 制 参 数 设 计 的可 行 性 。
2 . 1求 取 平 均 量 图1 B u c k 电路 结 构 拓 扑
工作状态 1 :如 图1 所示,当功率开关管v 导通 ,二极 管D截
1 设计 步 骤
( 1 ) 对B u c k 电路 的控 制 对 象进 行 建 模 。 ( 2 ) 设 计 电压 电流 双 闭环 控 制 的补 偿 网 络 。
性 、时 变等特点 ,为此本 文通过 基本建模法对 系统进行 交流小信号分析 ,用该 方法获得控制对 象的传递 函数 ,并利用补偿 网络 形成 电压电流双闭环控制 系统 ,通过MA T L A B 对控制方 法进行仿真 ,验证补偿 网络参数设计 的可行性 。
【 关键词 】 变换器;建模;交流小信号
至时 ,即在开 关周期 ( 0 ,d )时间 内,电感 电压 “ ( f ) 和 电容
电流 f c ( O 分别是 :
| ) =工
( f )
( f )
( 2 - 1 )
c o n v e r t e r ,a n d DC/ DC c o n v e r t e r i S n o n l i n e a r ,t i me . v a r y i n g c h a r a c t e r i s t i c s . I n t h i s P a D e r , we c n a t h r o u g h he t b a s i c mo d e l i n g me t h o d o f t h e
E L E C T R ONI C S W OR L D・ 技 术 交 流
基 于 Buck电 路 的 双 闭 环 控 制 系 统 设 计 的 仿 真 研 究

(完整word版)Buck变换器的设计与仿真

(完整word版)Buck变换器的设计与仿真

目录1 Buck变换器技术........................................................................................................................... - 1 -1.1 Buck变换器基本工作原理............................................................................................... - 1 -1.2 Buck变换器工作模态分析............................................................................................... - 2 -1。

3 Buck变化器外特性........................................................................................................ - 3 -2 Buck变换器参数设计.................................................................................................................. - 5 -2.1 Buck变换器性能指标....................................................................................................... - 5 -2。

2 Buck变换器主电路设计................................................................................................ - 5 -2.2。

毕设-Buck变换器双闭环控制仿真研究PPT

毕设-Buck变换器双闭环控制仿真研究PPT

开环Buck电路的建模及仿真
图1
开环Buck电路在MATLAB中模型
图1是开环Buck电路在Simulink中搭建的仿真模型,使用开 关器件是MOSFET。
图2
输出电压波形
图3
输出电流波形
对于图2、图3仿真波形,显然不满足设计要求,在对滤波电感、电容进行调 节时,可以发现这样的规律:电感越小,超调越大,越稳定;电容越小,超调越小, 纹波越大。因此,需要在稳定度,超调量,纹波电压之间进行折衷,对电感、电容 进行调节。因此需要对电路进行闭环调节,本设计采用PI和PID两种控制校正方式。
Lf
+
Cf
R Uo
-
-
Buck变换器可将不可控的直流输入变为可控的直流 输出,广泛应用于可调直流开关电源及直流电机驱动中。 其电路是由一个功率晶体管开关Q与负载串联构成的。驱 动信号Ub周期的控制功率晶体管Q的导通与截止,当晶体 管导通时,若忽略其饱和压降,输出电压Uo等于输入电 压;当晶体管截止时,若忽略晶体管的漏电流,输出电 出电压、电流波形知,各项指标都达到了较高的控制精度。
总结
虽然本文针对Buck变换器双闭 环控制仿真研究进行了相关的理论 分析和仿真研究,但由于本人水平 及经验的限制,本次设计还有很多 不到位的地方,值得我在今后的学 习研究中去完善。
谢谢 观看
图6
输出电流波形
PID控制方法的仿真设计
图7 加PID校正后仿真电路
本文采用凑试法确定PID调节参数 ,凑试法是通过闭环运行或模拟,观 察系统的响应曲线,然后根据各调节参数对系统响应的大致影响,反复凑试 参数,以达到满意的响应,从而确定PID的调节参数。增大比例系数一般将 加快系统的响应,这有利于减小静差。但过大的比例系数会使系统有较大的 超调,并产生振荡,使稳定性变坏。减小有利于加快系统响应,使超调量减 小,稳定性增加,但对于干扰信号的抑制能力将减弱。在凑试时,可参考以 上参数分析控制过程的影响趋势,对参数进行先比例,后积分,再微分的整 定步骤。其具体步骤如下: 首先整定比例部分。将比例系数由小调大,并观察相应的系统响应,直 至得到反应快、超调小的响应曲线。如果系统没有静差或静差小到允许的范 围之内,并且响应曲线已属满意,那么只需要用比例调节器即可,最优比例 系数可由此确定。当仅调节比例调节器参数,控制精度还达不到设计要求时, 则需加入积分环节。整定时,首先置积分常数为一个较小值,经第一步整定 得到的比例系数会略为增大,然后增大积分常数,使系统在保持良好动态性 能的情况下,静差得到消除。在此过程中,可根据响应曲线的好坏反复修改 比例系数和积分常数,直至得到满意的效果和相应的参数。应该指出,在整 定中参数的选定不是惟一的。事实上,比例、积分和微分三部分作用是相互 影响的。从应用角度来看,只要被控制过程的主要性能指标达到设计要求, 那么比例、积分和微分参数也就确定了。最终得到的一组较理想的参数为 P=2.2,I=88,D=0.001。

Buck_Boost变换器的设计及仿真

Buck_Boost变换器的设计及仿真

1 概述直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。

其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。

Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。

本文将对Buck/Boost升降压斩波电路进行详细的分析。

RVDRVDRVD 2 主电路拓扑和控制方式2.1 Buck/Boost 主电路的构成Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。

与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。

开关管也采用PWM 控制方式。

Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。

因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。

图2-1 Buck/Boost 主电路结构图电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。

(a )V 导通(b )V 关断,VD 续流图2-2 Buck/Boost 不同模态等效电路ttttt2.2 电感电流连续时的工作原理及基本关系电感电流连续工作时的工作主要波形见图2-3。

图2-3电感电流连续时的主要波形为了方便分析,假设电感、电容的值足够大,并且忽略电感的寄生电容。

电感电流连续工作时,Buck/Boost 变换器有V 导通和V 关断两种工作模态。

Buck_Boost变换器的设计及仿真

Buck_Boost变换器的设计及仿真

Buck_Boost变换器的设计及仿真Buck-Boost变换器是一种可以在同一电路内同时实现升压和降压的变换器。

这种变换器可以用于多种不同的应用,主要用于对电压进行放大和缩小,以达到正确的电压水平。

它总是能够将输入电压提高到所需的输出电压。

在本文中,将介绍Buck-Boost变换器的设计及其功能仿真工作。

Buck-Boost变换器的主要部件包括电感器,可变阻器,开关,振荡器和控制器。

电感器的设计是为了提供电流,形成负反馈环。

可变阻器的设计可以改变电路的过载,从而实现电流的调整。

开关的设计是为了实现升压和降压,允许电感器和可变阻器之间的能量交换。

振荡器的设计是为了控制电路内部的电流,以保证开关的实时响应。

通过控制器,可以实现输入和输出电压之间的转换,从而达到预期的电压水平。

为了对Buck-Boost变换器进行仿真,先进行输入,输出和负载之间的建模。

输入模型包括输入电压和要求的输出电压,其中输入电压可以在建模中任意调整。

负载建模通常是一个电阻和一个电容的组合。

输出模型则定义了电路的输出功率和输出电压水平。

接下来,可以对电感器和可变阻器进行建模。

由于电感器是一个电流源,故其建模需要考虑电流大小和电压偏移。

可变阻器建模则需要考虑其阻值和电压偏移。

最后,可以利用仿真软件进行仿真,探究Buck-Boost变换器的性能。

可以仿真该电路的输入和输出电压以及电流,从而分析改变输入电压对系统的影响。

此外,还可以分析负载的影响,比如负载变大时电路的输出能力会怎样受到影响。

这些仿真结果都能为设计者提供宝贵的启发,为确保电路的正常工作奠定基础。

Buck-Boost变化器是一种功能强大的电路,可以改变输入电压并生成预期的输出电压水平。

本文介绍了其设计原理和仿真过程,为设计者提供了宝贵的参考。

未来的研究将会探究更多的变换器类型,继续提高电路的性能和功效。

基于Buck变换器的双环开关调节系统的设计和仿真

基于Buck变换器的双环开关调节系统的设计和仿真

基于Buck变换器的双环开关调节系统的设计和仿真作者:夏伟薛勇杨杰来源:《电子世界》2013年第12期【摘要】Buck电路是一种降压斩波器,降压变换器输出电压平均值Vo等于占空比乘以输入电压Vin。

通常电感中的电流是否连续,取决于负载的大小,所以简单的BUCK电路输出的电压不稳定,一旦负载突变会造成严重后果。

加入闭环控制系统,输出电压经采样环节后和参考电压比较,同时在此基础上引入电流反馈,得到的误差信号送至控制器,控制器输出信号送至PWM环节和锯齿波时钟信号比较,改变占空比d即可调节开关变换器的输出电压,达到稳定电压的目的。

【关键词】Buck电路;闭环控制;PWM环节1.引言随着电力电子技术的迅速发展,高频开关电源变换器已广泛应用于计算机、电信、航空航天等领域。

其核心是电能形式的变换和控制,并通过电力电子电路实现其应用。

Buck变换器是开关电源变换器中最常见的一种,主要应用于低压大电流领域,有众多拓扑。

但简单的Buck电路输出电压不稳定且会受到负载和外部的干扰。

为了达到稳定输出电压的目的,在电压反馈的基础上引入电流反馈实现双环控制,获得较好的动态性能。

2.Buck变换电路控制系统的基本原理2.1 单闭环调节系统的设计和主电路模型具有电压控制的Buck变换器开关调节系统如图1所示,主电路为Buck变换电路[1],控制电路采用电压负反馈。

在负反馈电路中,输出电压U经采样后与给定的参考电压U比较,得到误差信号Ue送至控制器,控制器输出信号Uc送至PWM环节,与PWM环节中的振荡器产生的锯齿波时钟信号比较,使比较器输出周期不变,脉冲宽度即占空比d受Uc调制的一系列脉冲信号,再通过驱动器将脉冲信号放大,控制变换器的功率开关器件的导通与关断。

由于电压和负载发生变化,或系统受到其他因素干扰使输出电压发生波动时,通过负反馈回路[2]可调节开关变换器的功率器件在一个开关周期内的导通时间,达到稳定输出电压的目的。

2.2 双环开关调节系统的设计为了克服单环系统在控制和环节上的延迟,在电压反馈的基础上引入电流反馈实现双环控制,可获得较好的动态性能。

Buck电路的闭环设计及仿真分析

Buck电路的闭环设计及仿真分析

Buck电路的闭环设计及仿真分析一、本文概述随着电力电子技术的飞速发展,电源转换技术已成为现代电子设备不可或缺的一部分。

其中,Buck电路作为一种基本的直流-直流(DC-DC)转换器,因其结构简单、效率高、调节范围宽等优点,在电子设备中得到了广泛应用。

然而,为了确保Buck电路在各种环境和负载条件下的稳定性和高效性,闭环设计显得尤为重要。

本文旨在探讨Buck电路的闭环设计方法,并通过仿真分析验证设计的有效性。

文章首先简要介绍了Buck电路的基本原理和应用背景,然后重点阐述了闭环设计的重要性及常用方法。

在闭环设计部分,文章详细分析了反馈网络的选取、控制策略的制定以及功率级和控制级的协同工作等问题。

同时,结合具体的设计实例,阐述了闭环设计在实际应用中的具体实现过程。

为了验证设计的有效性,文章采用了仿真分析的方法。

通过搭建基于MATLAB/Simulink的仿真模型,对设计的Buck闭环电路进行了全面的仿真分析。

仿真结果证明了闭环设计的有效性,同时也为实际电路的制作和调试提供了重要参考。

文章对闭环设计的Buck电路进行了总结,并指出了未来研究方向和潜在的应用前景。

通过本文的研究,旨在为从事电源转换技术研究和应用的工程师和学者提供有益的参考和启示。

二、Buck电路的基本原理Buck电路,也称为降压转换器,是一种基本的直流-直流(DC-DC)转换电路,其主要功能是将较高的直流电压降低到所需的较低直流电压。

其名称来源于电路中开关元件(如MOSFET或晶体管)的操作,类似于"bucking"(减少或抑制)输入电压。

Buck电路的基本构成包括一个开关(通常是MOSFET),一个电感(或称为线圈),一个二极管(也称为整流器或续流二极管),以及一个输出电容器。

在开关打开时,电流通过电感从输入源流向输出,此时电感储存能量。

当开关关闭时,电感释放其储存的能量,通过二极管向输出电容器和负载供电。

Buck电路的工作原理基于电感的电压-电流关系。

Buck-boost变换器建模及仿真

Buck-boost变换器建模及仿真

Buck-boost变换器建模及仿真Buck-boost 变换器建模及仿真1、Buck-boost 变换器平均开关模型利用平均开关网络法推导buck —boost 变换器的平均开关模型,Buck-boost 变换器电路图如图1所示,这里开关管的导通电阻为,二极管的前向导通压降为0.8v 。

gV )(t v图1 Buck-boost 变换器电路图中,虚线框内为开关网络,它是一个二端口网络,共有、、和四个变量,选定其中两个变量作为输入变量,则余下两个变量可以由输入变量表示出来。

在此,我们选择和作为输入变量。

接下来我们要求出这四个变量的在一个周期内的平均值,首先根据图1画出它们在一个周期内的波形图,如图2所示。

)(1t v s dT sT (1i sdT s)(1t i )(2t i )(1t v on R )(2t v )(1t i )(2t v图2 开关网络电压电流的曲线图根据图2,写出)(1t i 、)(2t i 、)(1t v 、)(2t v 在一个周期内平均值:(1)(2)(3)(4)由式(3)与(4)得(5)将公式(1)与(5)代入(3)中得(6)将公式(6)中两边的)(1t v 合并得到下面式子:(7)由(1)与(2)得(8)])([)()(')()()(211D T T on T V t v t d t d t i t d R t v s s s +><+><=><= ><)()()(')(12(2vD(2t i ss s T T t i t d t i ><=><)()()(1s s T T t i t d t i ><=><)()(')(2))()((')()()(11s s s T C D g on T T t V V V t d R t i t d t v ><-++><=>s +><+><+>=<><由式(7)(8)可以得到开关网络的平均开关模型,如图3所示:图3 平均开关模型把图1中的开关网络用图3所示的平均开关模型代替可得到图4所示的Buck-boost 变换器的开关模型电路。

Buck_Boost变换器的设计及仿真

Buck_Boost变换器的设计及仿真

1 概述直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。

其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。

Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。

本文将对Buck/Boost升降压斩波电路进行详细的分析。

RVDRVDRVD2 主电路拓扑和控制方式Buck/Boost 主电路的构成Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。

与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。

开关管也采用PWM 控制方式。

Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。

因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。

图2-1 Buck/Boost 主电路结构图电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。

(a )V 导通(b)V关断,VD续流图2-2 Buck/Boost不同模态等效电路ttttt电感电流连续时的工作原理及基本关系电感电流连续工作时的工作主要波形见图2-3。

图2-3电感电流连续时的主要波形为了方便分析,假设电感、电容的值足够大,并且忽略电感的寄生电容。

电感电流连续工作时,Buck/Boost 变换器有V 导通和V 关断两种工作模态。

Buck变换器的设计与仿真

Buck变换器的设计与仿真

Sa b er 仿真作业Buck 变换器的设计与仿真1Buck变换器技术 ..................................................................... -2 -1.1Buck变换器基本工作原理 ....................................................... -2 -1.2Buck变换器工作模态分析....................................................... -2 -1.3Buck变化器外特性............................................................. -3 -2Buck 变换器参数设计................................................................. -5 -2.1Buck变换器性能指标 ........................................................... -5 -2.2Buck变换器主电路设计......................................................... -5 -2.2.1占空比 D .................................................................... - 5 -2.2.2滤波电感Lf .................................................................. - 5 -2.2.3滤波电容Cf .................................................................. - 6 -2.2.4 开关管Q的选取........................................................ -7 -2.2.5续流二极管D的选取..................................................... -7 -3Buck变换器开环仿真................................................................. -7 -3.1Buck变换器仿真参数及指标 ..................................................... -7 -3.2Buck变换器开环仿真结果及分析................................................. -8 -4Buck变换器闭环控制的参数设计....................................................... -9 -4.1闭环控制原理................................................................. -9 -4.2Buck变换器的闭环电路参数设计................................................. -10 -4.2.1Gvd(s)的传递函数分析 ................................................... -10 -4.2.2补偿环节Gc(s)的设计 ................................................... -12 -4.2.3补偿环节参数设计...................................................... -14 - 5Buck变换器闭环仿真............................................................... -18 -5.1Buck 变换器闭环仿真参数及指标................................................. -18 -5.2Buck变换器闭环仿真电路原理图................................................. -19 -5.3Buck变换器的闭环仿真结果与分析............................................... -19 -6总结............................................................................. -21 -1 Buck变换器技术1.1 Buck变换器基本工作原理Buck电路是由一个功率晶体管开关Q与负载串联构成的,其电路如图功率晶体管Q的导通与截止,当晶体管导通时,若忽略其饱和压降,输出电压管截止时,若忽略晶体管的漏电流,输出电压为0。

BUCK电路闭环控制系统的MATLAB仿真

BUCK电路闭环控制系统的MATLAB仿真

BUCK电路闭环控制系统的MATLAB仿真BUCK电路闭环控制系统的MATLAB仿真BUCK电路闭环PID控制系统的MATLAB仿真⼀、课题简介BUCK电路是⼀种降压斩波器,降压变换器输出电压平均值Uo总是⼩于输⼊电压Ui。

⼀般电感中的电流是否连续,取决于开关频率、滤波电感L和电容C的数值。

简单的BUCK电路输出的电压不稳定,会受到负载和外部的⼲扰,当加⼊PID控制器,实现闭环控制。

可经过采样环节得到PWM调制波,再与基准电压进⾏⽐较,经过PID控制器得到反馈信号,与三⾓波进⾏⽐较,得到调制后的开关波形,将其作为开关信号,从⽽实现BUCK电路闭环PID控制系统。

⼆、BUCK变换器主电路参数设计2.1设计及内容及要求1、输⼊直流电压(VIN):15V2、输出电压(VO):5V3、输出电流(IN):10A4、输出电压纹波峰-峰值 Vpp ≤50mV5、锯齿波幅值Um=1.5V6、开关频率(fs):100kHz7、采样⽹络传函H(s)=0.38、BUCK 主电路⼆极管的通态压降VD=0.5V ,电感中的电阻压降VL=0.1V ,开关管导通压降VON=0.5V,滤波电容C 与电解电容RC 的乘积为 2.2主电路设计根据以上的对课题的分析设计主电路如下:F*Ωµ75图2-1 主电路图1、滤波电容的设计因为输出纹波电压只与电容的容量以及ESR 有关,rr rr C L N0.2V V R i I ==? (1)电解电容⽣产⼚商很少给出ESR ,但C 与R C 的乘积趋于常数,约为50~80µ*ΩF [3]。

在本课题中取为75µΩ*F ,由式(1)可得R C =25mΩ,C =3000µF 。

2、滤波电感设计开关管闭合与导通状态的基尔霍夫电压⽅程分别如式(2)、(3)所⽰:IN O L ON L ON /V V V V L i T ---=?(2)O L D L OFF /V V V L i T ++=? (3)off 1/on s T T f += (4)由上得:Lin o L D on V V V V L T i ---=? (5) 假设⼆极管的通态压降V D =0.5V ,电感中的电阻压降V L =0.1V ,开关管导通压降V ON =0.5V 。

基于BUCK变换器开关电源设计

基于BUCK变换器开关电源设计

基于BUCK变换器开关电源设计一、引言开关电源是一种常见的电源系统,其主要由开关电路、滤波电路和稳压电路组成。

其中,开关电路是关键部分,负责将输入电源的直流电压转换为需要的电压形式。

BUCK变换器是开关电源中常用的一种变换器类型,在工业和电子设备中广泛应用。

本文将介绍基于BUCK变换器的开关电源设计的详细步骤和注意事项。

二、BUCK变换器的原理BUCK变换器是一种降压变换器,其工作原理是通过开关管控制输入电源的导通和断开,从而通过电感和电容的锁相环作用,实现输出电压的稳定调节。

具体工作步骤如下:1.开关管导通状态:当开关管导通时,输入电源与电感形成回路,电感里的能量被储存在磁场中,同时电容开始充电。

2.开关管断开状态:当开关管断开时,电感的磁场崩溃,释放能量,使得电流通过二极管回路,电容开始放电。

通过这种开关过程,BUCK变换器可以将输入电源的直流电压降低,达到需要的输出电压。

三、基于BUCK变换器的开关电源设计步骤1.确定输入电源和输出电压要求:根据具体应用需求,确定所需要的输入电压和输出电压,以及电流要求。

2.计算开关管的参数:根据输出电压和电流要求,计算开关管的额定电流和功率,选择合适的开关管类型。

3.计算电感和电容的参数:根据输入电压、输出电压和电流要求,计算出合适的电感和电容参数。

选择合适的电感和电容类型,并进行热稳定计算。

4.设计开关频率:根据应用需求和电路参数,选择合适的开关频率,以达到较高的功率转换效率。

5.设计控制电路:根据选择的开关频率和开关管类型,设计合适的控制电路,实现开关管的正常工作,如脉宽调制控制、开关管的驱动电路等。

6.选择滤波电路:根据输出电压的纹波和稳压要求,选择合适的滤波电路进行设计,如低通滤波器、电容滤波器等。

7.PCB布局和散热设计:根据电路参数和设计要求,进行PCB布局和散热设计,确保电路能够正常工作并具有较高的稳定性和可靠性。

四、注意事项1.在设计过程中,需根据电路参数和工作条件选择合适的元件,如开关管、电感、电容等。

双闭环控制的Buck变换器实验教学仿真

双闭环控制的Buck变换器实验教学仿真

在地方院校要积极向应用技术型高校转型的决策引导下[1],我校作为一所红色文化底蕴深厚的师范类本科院校,也通过新增设像电气工程及其自动化这样的多个工科专业来服务地方经济的高速发展。

电力电子技术是电气工程及其自动化专业的一门实践性、应用性很强的工程技术类专业课[2-3],我校由于受师资队伍与实验条件的限制,学生很难在学习周期内找到理论在实践运用中的联系。

鉴于此,以双闭环控制的Buck 变换器系统为研究对象,紧扣工程实际案例,通过数学建模、工程计算与仿真验证把整个教学活动先后分为了三个环节。

数学建模旨在培养学生掌握工程案例的分析方法,工程计算旨在培养学生掌握工程案例的设计方法,仿真验证旨在培养学生掌握工程案例的验证方法。

可见,整个教学模式将培养学生的工程意识贯穿始终,不仅走出了理论教学与实践脱节的困境,还能在一定程度上激发学生的学习兴趣。

1数学建模双闭环控制的Buck 变换器系统如图1所示,它主要由功率级与控制级两个部分组成。

其中,功率级电路为Buck 变换器,由开关管S 、二极管D 、滤波电感与滤波电容组成。

控制级包括电压PI 控制器(s )、电流PI 控制器(s )与PWM 调制器,通过生成占空比来实现对功率级的控制。

收稿日期:2021-01-07基金项目:遵义市科技局基金项目(HZ 字[2020]22号);遵义师范学院学术新苗培养及创新探索项目(XM [2020]1号-03)作者简介:阎昌国,男,贵州遵义人,遵义师范学院工学院讲师,硕士。

研究方向:电力电子技术控制及应用。

双闭环控制的Buck 变换器实验教学仿真阎昌国,李伟,李青,安玉(遵义师范学院工学院,贵州遵义563006)摘要:针对应用型地方院校电力电子技术课程实验教学条件不足易造成学生理论与实践脱节的问题,以双闭环控制的Buck变换器系统为研究对象,分析了Buck 变换器的工作原理,得到了系统完整的数学模型。

基于该模型,立足工程实际案例,设计了系统参数,并搭建仿真模型进行了验证。

buck电路matlab双闭环控制

buck电路matlab双闭环控制

buck电路matlab双闭环控制
Buck电路是一种常见的DC-DC转换器,其主要作用是将高电压的直流电源转换为低电压的直流电源。

在实际应用中,Buck电路的控制非常重要,因为它可以影响电路的输出电压和电流等参数。

为了实现更加精确的控制,双闭环控制方法被广泛应用于Buck电路中。

Matlab是一种常用的数学软件,它可以用于模拟和分析电路的性能。

在Buck电路的双闭环控制中,Matlab可以用于设计和优化控制器,以实现更加精确的控制。

双闭环控制是一种控制方法,它包括内环和外环两个控制回路。

内环控制器用于控制电路的输出电流,而外环控制器用于控制电路的输出电压。

这种控制方法可以提高电路的稳定性和响应速度,从而实现更加精确的控制。

在Buck电路的双闭环控制中,内环控制器通常采用PID控制器,而外环控制器则可以采用PI控制器。

这些控制器可以通过Matlab 进行设计和优化,以实现更加精确的控制。

在Matlab中,可以使用Simulink工具箱来模拟Buck电路的双闭环控制。

Simulink提供了各种电路元件和控制器模块,可以方便地进行电路建模和仿真。

通过Simulink,可以对Buck电路的控制器进行参数调整和优化,以实现更加精确的控制。

Buck电路的双闭环控制是一种重要的控制方法,可以提高电路的
稳定性和响应速度。

Matlab是一种常用的数学软件,可以用于设计和优化控制器,以实现更加精确的控制。

通过Simulink工具箱,可以方便地进行电路建模和仿真,从而实现更加精确的控制。

Buck电路的软开关设计和仿真本科毕业论文

Buck电路的软开关设计和仿真本科毕业论文

重庆大学本科学生毕业设计(论文)Buck电路的软开关设计和仿真摘要在当今节能型社会中,如何提高电源的效率成为电源技术研究的重点。

早期的开关电源均采用硬开关技术,在开通或关断过程中伴随着较大的损耗,并且开关频率越高,开关损耗就越大。

而高频化是减小开关电源体积的重要途径,但是硬开关电源中高频化必然带来电源效率的降低,因此硬开关电源不能适应高频化的发展趋势。

这样采用软开关技术的电源应运而生,它是解决高频化和提高电源效率二者矛盾的有效手段。

本文对采用N沟道增强型MOSFET作开关器件的Buck电路进行了软开关的设计和仿真。

用到的方案是准谐振充放电模式,使MOSFET漏源极两端的电压能在栅极触发脉冲到来前变为零,使开关管能进行零电压开通。

这样就能有效地实现Buck电路的软开关,提高电路的效率。

最后利用Saber仿真软件,对设计的软开关控制策略进行了仿真验证,结果与预期相符合。

在得到此方案的顺利运行后,考虑到输出支路电感电流存在反向的问题,使得输出电流纹波较大,又运用叠加原理的思路,设计了另一方案,从而有效地避免了输出电流反向的问题。

关键词:降压变换器,软开关,Saber仿真ABSTRACTIn today's energy-saving type society, how to improve the efficiency of power supply becomes an important aspect of power technology research. In early power supply research times hard switching technology was adopted. The switching-on or switching-off process accompanied with great loss, and the higher switching the frequency is, the greater the switching loss is. The high operating frequency is an important way to reduce the volume, so the hard switching technology doesn't suit it. Then the soft switching technology appears. It is a good method to solve the high operating frequency and improving the efficiency problem.This article presents a soft switching method of the Buck converter which uses the N channel enhancement type MOSFET as the switch and the simulation. The design is quasi resonant charging and discharging mode which makes the D-S voltage become zero before the gate trigger pulse come, so the MOSFET can operate in a zero voltage turn-on mode. In this way, it can effectively realize the soft switching of Buck converter and improve the efficiency of the circuit. Finally I use the saber software to do the simulation and receive the expected result. After that, considering the reverse slip output inductor current problem which makes the output current ripple large, I present another method which can avoid the problem.Key words:Buck converter, soft switching, saber simulation目录摘要 (I)ABSTRACT.................................................. I I 1 绪论. (1)1.1 研究背景 (1)1.2 研究的目的及意义 (1)1.3 研究的主要内容 (2)2 Buck电路软开关电路设计及原理分析 (3)2.1 Buck电路软开关设计方案 (3)2.2 原理分析 (5)2.3 参数计算与设置 (9)3 Saber仿真验证 (10)3.1 Saber仿真软件的组成 (10)3.2 Saber仿真软件的特征 (10)3.3 Saber的分析功能 ................................................................................ 错误!未定义书签。

BUCK系统的双环控制器设计

BUCK系统的双环控制器设计

图(如图 11 黑线所示)与工程中选用的补偿网络有很大的区别。工程中的使用的调节网络在中频
段缺少-40dB 下降的一个频段,这样会导致穿越频率过高,造成系统的不稳定,所以要对现有的调
节网络加以改进。
由于调节器的波特图过于复杂,其传递函数可以写成式(8)。可以看出在工程中必须用二级电
路是无法实来实现补偿,而且二级调节网络仍为单极点单零点网络。
(9) (10)
一级的调节网络需要选择一些无源网络,这样做可以充分利用电路中的寄生参数,不会引入有源元
件如运算放大器,造成电路的复杂,因此将补偿网络选择滞后网络如图 16(左)。
G1 (s)
=
bTs + 1 Ts +1
(11)
其中 b
=
R4 R3 + R4
,T
=
( R3
+
R4 )C3
一般情况下,二级的调节网络在工程中使用驱动芯片内部的运算放大器,因此选择补偿网络如图
得补偿网络中零极点的数值。若假定功率环的截止频率为 fc = 2.5kHz ,则
ωz2
= ωp2
= ω p1
=
ωc aβ
= 100rad
/ s,ωz1
= ωc a
= 200rad
/s
(13)
由于本文的论文的篇幅有限,在此省略了电阻与电容的具体数值的选取与参数合理性的验证。
读者可以根据实际情况而定,重新选取调解网络,方法参照第二节的内容。
(2)
为了得出电流开环传递函数的波特图,可以假设采样电阻 Rs = 0.07Ω ,载波的峰值VM = 5V
电流环开环截止频率 fc' = 1kHz 。其中
ωc' = 2π fc' = 2000π (rad / s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Buck变换器的双环开关调节系统的设计和仿真
作者:夏伟薛勇杨杰
来源:《电子世界》2013年第12期
【摘要】Buck电路是一种降压斩波器,降压变换器输出电压平均值Vo等于占空比乘以输入电压Vin。

通常电感中的电流是否连续,取决于负载的大小,所以简单的BUCK电路输出的电压不稳定,一旦负载突变会造成严重后果。

加入闭环控制系统,输出电压经采样环节后和参考电压比较,同时在此基础上引入电流反馈,得到的误差信号送至控制器,控制器输出信号送至PWM环节和锯齿波时钟信号比较,改变占空比d即可调节开关变换器的输出电压,达到稳定电压的目的。

【关键词】Buck电路;闭环控制;PWM环节
1.引言
随着电力电子技术的迅速发展,高频开关电源变换器已广泛应用于计算机、电信、航空航天等领域。

其核心是电能形式的变换和控制,并通过电力电子电路实现其应用。

Buck变换器是开关电源变换器中最常见的一种,主要应用于低压大电流领域,有众多拓扑。

但简单的Buck电路输出电压不稳定且会受到负载和外部的干扰。

为了达到稳定输出电压的目的,在电压反馈的基础上引入电流反馈实现双环控制,获得较好的动态性能。

2.Buck变换电路控制系统的基本原理
2.1 单闭环调节系统的设计和主电路模型
具有电压控制的Buck变换器开关调节系统如图1所示,主电路为Buck变换电路[1],控制电路采用电压负反馈。

在负反馈电路中,输出电压U经采样后与给定的参考电压U比较,得到误差信号Ue送至控制器,控制器输出信号Uc送至PWM环节,与PWM环节中的振荡器产生的锯齿波时钟信号比较,使比较器输出周期不变,脉冲宽度即占空比d受Uc调制的一系列脉冲信号,再通过驱动器将脉冲信号放大,控制变换器的功率开关器件的导通与关断。

由于电压和负载发生变化,或系统受到其他因素干扰使输出电压发生波动时,通过负反馈回路[2]可调节开关变换器的功率器件在一个开关周期内的导通时间,达到稳定输出电压的目的。

2.2 双环开关调节系统的设计
为了克服单环系统在控制和环节上的延迟,在电压反馈的基础上引入电流反馈实现双环控制,可获得较好的动态性能。

双环开关调节系统[3]框图如图2所示。

电流控制环是由开关变换
器﹑电流采样器I/V、电流控制器和开关控制器组成。

电流采样器的作用是将主电路的电感电流iL或功率开关管的电流或整流二极管的电感电流变换为电压信号URs。

BU是电压控制器,其作用是将输出电压U与参考电压Uref相比较产生误差电压信号UCP,为电流控制环提供控制信号。

BC是电流控制器,其作用是将电流采样器[4]的输出电压URs与参考电压UCP相比较产生控制电压UCA,并作用于开关控制器,讲模拟量调制为脉冲量d(t),电流控制环和电压控制器组成了电压控制环。

电流控制环是内环,实现电流自动调节;电压控制环是外环,实现电压自动调节。

3.Buck变换电路控制系统的建模与仿真
3.1 控制回路建模与参数设置
(1)控制系统采用电压、电流双闭环结构。

为了使系统响应时间比较短,并尽可能减小误差,外环电压控制器选用PI控制器。

这里Kp和Ki分别为比例常数和积分常数,其值分别设置为1.6和16,采用饱和控制模块限幅值为2.5。

电流内环采用电流比较脉冲环节,即把电压控制器输出的电流与反馈电流进行比较产生脉冲信号输出,用于控制全控器件IGBT,滞环宽度设为2.5。

(2)Buck变换电路主回路的建模及参数设置。

图3为由IGBT组成的Buck变换电路仿真模型,主电路由直流电源、全控器件IGBT、续流动二极管、输出滤波电感及负载组成。

参数分别设置R=50Ω,L=2e-3H,C=2e-6F,电源电压为100V。

3.2 Buck变换电路控制系统的仿真
利用Simulink中SimPowerSystems功能模块,打开仿真窗口,选择ode23tb算法,相对误差设置为1e-3,为了与开环电路性能进行比较,图4给出了定值50V,仿真时间为0.002s控制仿真结果,负载两端输出电压波形如图4所示。

4.结语
详细介绍了Buck变换电路控制系统的基本原理,探讨了采用Buck变换器的双环开关调节系统的原理和控制策略。

对Buck变换电路控制系统建模,仿真结果表明Buck电路电压反馈的基础上引入电流反馈实现双环控制,可获得较好的动态性能。

参考文献
[1]王兆安,黄俊.电力电子技术[M].机械工业出版社,2008.
[2]冯巧玲,吴娟,邱道尹.自动控制原理[M].北京航空航天大学出版社,2004.
[3]张兴.高等电力电子技术[M].机械工业出版社,2011.
作者简介:
夏伟(1988—),男,湖北鄂州人,现就读于武汉纺织大学机械工程与自动化学院,主要研究电力电子技术。

薛勇(1966—),男,武汉纺织大学机械工程与自动化学院副教授,硕士生导师。

杨杰,男,湖北鄂州人,现就读于武汉纺织大学机械工程与自动化学院。

相关文档
最新文档