第七章 氧化还原反应电化学基础

合集下载

氧化还原反应、电化学

氧化还原反应、电化学

氧化还原反应、电化学知识归纳 2015.4.8一、 氧化还原反应失————升————氧—————还——————氧(被氧化) (做还原剂) (所得产物氧化产物)(发生氧化反应)得————降————还—————氧——————还(被还原) (做氧化剂) (所得产物还原产物) (发生还原反应)氧化剂具有氧化性,还原剂具有还原性氧化剂被还原,发生还原反应; 还原剂被氧化,发生氧化反应1、 利用氧化还原反应原理书写陌生方程式熟记常见的氧化剂及对应的还原产物、还原剂及对应的氧化产物氧化剂 KMnO 4 MnO 2 硝酸、 (H +、NO 3-) 浓硫酸 H 2O 2 O 2Cl 2 Fe 3+ HClO还原产物Mn 2+ NO 2 或NO SO 2 H 2O OH - Cl - Fe 2+ Cl - 还原剂 金属S 2- SO 32- SO 2I - Fe 2+ Br - H 2 C (有机物) H 2O 2氧化产物M n+ S SO 42- I 2 Fe 3+ Br 2 H + CO 2 O 22、建立氧化还原反应方程式的书写模型二、电化学(一)原电池1、原电池正负极的判断:① 、据电极材料:较活泼的电极材料——负极;较不活泼的电极材料——正极(一般规律)②、据电极发生的反应:失电子——负极;负——失——氧(氧化反应)得电子——正极;正——得——还(还原反应)③、根据电流方向或电子流向:电流(外电路),由正极流向负极;电子则由负极经内电路流向原电池的正极。

④ 、、据内电路离子的迁移方向:阳离子流向电池正极.阴离子流向原电池负极。

2、电极反应式的书写(1)根据总反应或者题目的提示,找出氧化剂、还原剂以及对应的产物(2)正极发生还原反应,氧化剂+ n e-==还原产物负极发生氧化反应,还原剂—n e-== 氧化产物(3)利用化合价升降守恒推出正确的转移电子数(4)反应式两端添加电解质中存在的离子,使反应式电荷守恒(5)利用元素守恒写出完整的电极反应式(二)、电解池1、电解池阴阳极的判断:① 、据电源的正负极判断:阳极——与电源的正极相连;阴极——与电源的负极相连②、据电极发生的反应:失电子——阳极;阳(极)——失——氧(氧化反应)得电子——阴极;阴(极)——得——还(还原反应)③、据内电路离子的迁移方向:阳离子流向电解池阴极.阴离子流向电解池阳极。

大学无机化学-第七章-氧化还原反应-电化学基础-课件

大学无机化学-第七章-氧化还原反应-电化学基础-课件
② 分别写出氧化剂被还原和还原剂被氧化的半反应 ③ 分别配平两个半反应方程式,等号两边的各
种元素的原子总数各自相等且电荷数相等 ④ 确定两半反应方程式得、失电子数目的最小公倍
数。将两个半反应方程式中各项分别乘以相应的 系数,使得、失电子数目相同。然后,将两者合 并,就得到了配平的氧化还原反应的离子方程式。 有时根据需要可将其改为分子方程式。
3Cl2 (g) + 6OH- = 5Cl- + ClO3- + 3H2O 3Cl2 (g) + 6NaOH = 5NaCl + NaClO3 + 3H2O
无机化学
§7.1 氧化还原反应的基本概念
例 4 配平方程式
Cr(OH)3 (s) + Br2 (l) + KOH
K2CrO4 + KBr
Cr(OH)3 (s) + Br2 (l)
电极组成:Pt , Cl2(p) | Cl- (a)
电极反应: Cl2 + 2e
2Cl-
无机化学
§7.2 电化学电池
3. 金属-金属难溶盐-阴离子电极
将金属表面涂有其金属难溶盐的固体,然后浸 入与该盐具有相同阴离子的溶液中构成的电极
电极组成:Ag ,AgCl(s)| Cl- (a) 电极反应:AgCl + e Ag + Cl电极组成:Hg ,Hg2Cl2(s)| Cl- (a) 电极反应:Hg2Cl2+2e 2Hg +2Cl-
无机化学
§7.1 氧化还原反应的基本概念
2-2 半反应法(离子—电子法) 配平原则 (1)反应过程中氧化剂得到的电子数等于还
原剂失去的电子数 (2)反应前后各元素的原子总数相等

氧化还原反应和电化学基础

氧化还原反应和电化学基础

8
⑷ 离子型化合物中,元素的氧化数等于该 ⑸ 离共子价所型带化的合电物荷中数,,共如用:电N子aC对I。偏向于电负性大 的原子 ,两原子的形式电荷数即为它们的氧化数, 如:HCI。 ⑹ 中性分子中,各元素原子氧化数的代数和为9 零。
S4O62- 4x+(-2)×6=-2 x=2.5 H5IO6 I:+7 ; S2O32- S:+2 例:求MnO4-中Mn的氧化值
2×3
0
+5
Zn+ HNO3
+2
+2
Zn(NO3)2+ NO + H2O
3 ×2
56
配系数
先配变价元素,再用观察法配平其 它元素原子的系数。
15
用氧化数表示氧化还原的状态 对于离子化合物的氧化还原反应来说,电 子是完全失去或完全得到的。但是,对于共价化 合物来说,在氧化还原反应中,有电子的偏移, 但还没有完全的失去或得到,因此用氧化数来表 示就更为合理。
16
例如:
H2+Cl2=2HCl 这个反应的生成物是共价化合物,氢原子的电子 没有完全失去,氯原子也没有完全得到电子,只是形成 的电子对偏离氢,偏向氯罢了。用氧化数的升降来表示 就是氯从0到-1,氢从0到+1。这样,氧化数的升高就是 氧化,氧化数的降低就是还原。在氧化还原反应里,一 种元素氧化数升高的数值总是跟另一种元素氧化数降低 的数值相等的。
11
一、氧化值的定义
在氧化还原反应中,电子转移引起某些原子的价 电子层结构发生变化,从而改变了这些原子的带电状 态。为了描述原子带电状态的改变,表明元素被氧化 的程度,提出了氧化态的概念。表示元素氧化态的的 数值称为元素的氧化值,又称氧化数。

第7章 氧化还原反应 电化学基础

第7章 氧化还原反应 电化学基础

第7章氧化还原反应电化学基础一、单选题1. 下列电对中,Eθ值最小的是:A: Ag+/Ag;B: AgCl/Ag;C: AgBr/Ag;D: AgI/Ag2. Eθ(Cu2+/Cu+)=0.158V,Eθ(Cu+/Cu)=0.522V,则反应2 Cu+Cu2+ + Cu的Kθ为:A: 6.93×10-7;B: 1.98×1012;C: 1.4×106; D: 4.8×10-133. 已知Eθ(Cl2/ Cl-)= +1.36V,在下列电极反应中标准电极电势为+1.36V 的电极反应是:A: Cl2+2e- = 2Cl- B: 2 Cl- - 2e- = Cl2C: 1/2 Cl2+e- = Cl- D: 都是4. 下列都是常见的氧化剂,其中氧化能力与溶液pH 值的大小无关的是:A: K2Cr2O7 B: PbO2C: O2 D: FeCl35. 下列电极反应中,有关离子浓度减小时,电极电势增大的是:A: Sn4+ + 2e- = Sn2+B: Cl2+2e- = 2Cl-C: Fe - 2e- = Fe2+ D: 2H+ + 2e- = H26. 为防止配制的SnCl2 溶液中Sn2+被完全氧化,最好的方法是:A: 加入Sn 粒B:. 加Fe 屑C: 通入H2D: 均可7. 反应Zn (s) + 2H+→ Zn 2++ H2 (g)的平衡常数是多少?A: 2×10-33 B: 1×10-13 C: 7×10-12 D: 5×10 26二、是非题(判断下列各项叙述是否正确,对的在括号中填“√”,错的填“×”)1. 在氧化还原反应中,如果两个电对的电极电势相差越大,反应就进行得越快2.由于Eθ(Cu+/Cu)= +0.52V , Eθ(I2/ I-)= +0.536V , 故Cu+ 和I2不能发生氧化还原反应。

氧化还原反应及电化学基础

氧化还原反应及电化学基础
1)单质中,元素的氧化数等于零。(N2 、H2 、O2 等) 2)离子化合物中,与元素的电荷数相一致。 NaCl CaF2
+1,-1 +2,-1
3) 共价化合物中,成键电子对偏向电负性大的元素。
O: -2 (H2O 等);-1 (H2O2); -0.5 (KO2 超氧化钾) H: +1 (一般情况);-1 (CaH2 、NaH)
原电池,在恒温、恒压下,体系自由能降低等于体系所作的最大电功,则:
1) 电池G电=动– 势WmaEx 和 G
③ 盐桥(琼脂 + 强电解质KCl, KNO3等,作用是补充电荷、 维持电荷平衡)
2)电极反应:
正极(Cu): 负极(Zn):
Cu2+ + 2e = Cu Zn- 2e = Zn2+
3)电池反应及电池符号: Zn + Cu2+ = Zn2+ + Cu
(-)Zn | Zn2+ (c1) || Cu2+ (c2) | Cu (+)
历 年代
氧化反应
还原反应
认 识
史 18世纪末
与氧化合
从氧化物夺取氧

发 19世纪中 化合价升高
化合价降低
断 深
展 20世纪初
失去电子
得到电子

例如: Fe + Cu2+ = Fe2+ + Cu 称为全(总)反应
电子转移
氧化
Fe - 2e
Fe2+
(氧化)半反应
Cu2+ + 2e 还原 Cu (还原)半反应
2)标准电极电势的测定
将待测的标准电极与标准氢电极组成原电池,在 25ºC下,用检流计确定

无机化学第七章+氧化还原反应

无机化学第七章+氧化还原反应
电池符号:(-) Al |Al3+ (aq) ‖ Zn2+ (aq) | Zn (+)
三、电对的电极电势、电池的电动势及其测量
M
-
Mn
“金属-金属离子电极”
当金属 M 与其盐 Mn+ 溶液接触时,有两种 过程可能发生:
Ms Mn(aq) ne 溶解
Mn (aq) ne Ms
中各元素氧化数的代数和等于该离子所带电荷数。
氧化数与化合价的区别与联系:二者有时相等,有时不等。
例题 7-1: 确定下列化合物中S原子的氧化数:
(a) H2SO4;(b) Na2S2O3;(c) K2S2O8;(d) SO32 ;
(e)
S4O
2 6

Solution
设题给化合物中 S原子的氧化数依次为 x1, x2, x3, x4和x5, 根据上述有关规则可得:
10 HClO3 + 3 P4 + 18 H2O = 10 HCl + 12 H3PO4
这里介绍一种配平 H+、OH- 和H2O 的方法供参考:
酸性介质: 多 n个O,加 2n个H+,另一边 加 n个 H2O
碱性介质: 多 n个 O,加 n个 H2O,另一边 加 2n个 OH–
中性介质: 左边多 n个 O,加 n个 H2O,右边加 2n个 OH – 右边多 n个 O,加 2n个 H+,左边加 n个 H2O
双电层之间的电势差就是M-M+电极的电极电势,即
金属高出溶液的电势差,用符号 M n /M 表示。
标准电极电势: Mn/M
是指标准电极的电势. 凡是符合标准态条件的 电极都是标准电极:
• 所有的气体分压均为1×105Pa • 溶液中所有物质的活度均为1mol·L-1 • 所有纯液体和固体均为纯净物质

氧化还原反应中的电化学

氧化还原反应中的电化学

氧化还原反应中的电化学氧化还原反应是化学反应中非常重要的一类反应,其中电化学是研究和应用氧化还原反应的重要分支。

本文将重点探讨氧化还原反应中的电化学原理、应用以及相关实验技术。

一、电化学基础电化学是研究电荷传递和电流的性质与变化的学科,它与化学反应密切相关。

氧化还原反应中的电化学可以通过观察和控制电子的转移和离子的迁移来实现。

在电化学中,通过两个电极之间的电子流和离子流来实现电荷转移。

在氧化还原反应中,氧化剂接受电子并发生还原,而还原剂失去电子并发生氧化。

这个过程中,氧化剂和还原剂通过电子的转移,来传递电荷并发生化学反应。

这一过程可以通过电池或电解槽实现。

二、电化学反应类型根据氧化还原反应的不同特点,电化学反应可以分为两种类型:电解和电池。

1. 电解反应电解是通过外加电流来促使非自发性反应发生的过程。

在电解过程中,通过外部电源提供电流,使得化学反应在电解槽中发生。

这种电化学反应对于一些化学分析、合成和电镀等领域非常重要。

2. 电池反应电池是将化学反应中释放的化学能转化为电能的装置。

电池反应是自发性的反应,可以通过将氧化剂和还原剂分离并通过导线连接来产生电流。

根据电池反应类型的不同,电池可以分为原电池和电解池。

原电池内部的反应是自发的,产生电能;而电解池通过外部电源来推动非自发的电化学反应。

三、电化学实验技术在研究和应用氧化还原反应中的电化学,各种实验技术被广泛应用。

1. 极化曲线极化曲线是评估电化学电极性能的重要实验技术。

通过测量电极在不同电位下的电流和电势,可以得到极化曲线。

这些曲线提供了有关于电极在特定条件下的电流传输和反应速率等信息。

2. 循环伏安技术循环伏安技术是一种用于研究电化学反应和材料表征的常用实验方法。

通过变化电极电位来研究反应机理、动力学和电化学性能等方面的信息。

3. 电动势测量电动势测量是用于评估电化学反应的重要实验技术。

电动势测量可以帮助我们了解反应的热力学特征,包括电动势的大小和反应的方向。

氧化还原反应与电化学

氧化还原反应与电化学

氧化还原反应与电化学氧化还原反应(Redox Reaction)是化学反应中常见的一种类型,也是电化学的基础。

在氧化还原反应中,物质会发生电荷转移过程,其中一个物质被氧化(失去电子),另一个物质被还原(获得电子)。

这种电荷转移过程伴随着电流的流动,因此氧化还原反应与电化学密切相关。

1. 氧化还原反应的基本原理在氧化还原反应中,常常可以观察到电子的转移与氧原子的参与。

在一些反应中,物质会失去电子,被称为氧化剂(Oxidizing Agent),而另一些物质则会获得电子,被称为还原剂(Reducing Agent)。

这种电子的转移与氧原子的参与使得物质的氧化态和还原态发生变化。

2. 氧化还原反应的重要性氧化还原反应在生活和工业中具有广泛的应用。

例如,我们所熟悉的腐蚀现象就是一种氧化还原反应。

金属物质在与氧气接触时会发生氧化反应,形成金属氧化物。

此外,氧化还原反应还被广泛应用于电池、电解、电镀等方面。

3. 电化学的基本概念电化学是研究化学反应与电流之间关系的学科。

它主要涉及电解反应(Electrolysis)和电化学电池(Electrochemical Cell)两个方面。

3.1 电解反应电解反应是在外加电压的作用下,将化学反应逆转的过程。

电解反应的基本原理是利用外部电压提供能量,使得自发不利反应变得可逆,从而实现物质的分解或转化。

3.2 电化学电池电化学电池是将化学能转化为电能的装置。

它由两个半电池组成,分别包含一个氧化反应和一个还原反应。

这两个半电池通过电解质溶液(Electrolyte)或电解质桥(Salt Bridge)连接起来,形成一个闭合的电路。

4. 电化学电池的工作原理电化学电池中,氧化反应和还原反应在两个半电池中同时进行。

在氧化反应中,电子流从还原剂移动到电解质溶液中;而在还原反应中,电子从电解质溶液流向氧化剂。

这一过程中,电子的流动经过外部电路,形成了电流。

根据电化学电池反应的性质和电流的方向,我们可以将电化学电池分为两类:电解池(Electrolytic Cell)和电池(Galvanic Cell)。

无机化学(大连理工)第七章。ppt教材

无机化学(大连理工)第七章。ppt教材

配平步骤:
①用离子式写出主要反应物和产物(气体、纯 液体、固体和弱电解质则写分子式)。
②分别写出氧化剂被还原和还原剂被氧化的半 反应。
③分别配平两个半反应方程式,等号两边的各 种元素的原子总数各自相等且电荷数相等。
④确定两半反应方程式得、失电子数目的最 小公倍数。将两个半反应方程式中各项分别乘以 相应的系数,使得、失电子数目相同。然后,将 两者合并,就得到了配平的氧化还原反应的离子 方程式。有时根据需要可将其改为分子方程式。
• 1) 2Mg(s)+O2(g) = 2MgO(s) 与氧结合
• 2) Mg→Mg2+ + 2e
电子转移
• 3) 2P(s)+2Cl2(g) = 2PCl3(l) 电子偏移
氧化还原反应—— 有电子得失或电子转移的反
Cu应2+。(aq) + Zn(s) Zn2+ (aq) + Cu(s) 得失电子
H2(g)+ Cl2(g) 2HCl(g)
例1:配平反应方程式
KMnO4 (aq) + K2SO3(aq) 酸性溶液中 MnSO4 (aq) + K2SO4 (aq)

MnO
4
+
SO
2 3
SO
2 4
+
Mn 2+

MnO
4
+ 8H +
+ 5e
=
Mn 2+
+
4H 2O

SO
2 3
+
H2O
=
SO
2 4
+
2H +
+

第七章 氧还原反应 电化学基础

第七章 氧还原反应 电化学基础

§7.1 氧化还原反应的基本概念•氧化还原反应由氧化反应和还原反应两个半反应组成一、氧化态•定义:氧化态(氧化数)是元素一个原子的形式电荷,这种形式电荷是由假设两个键中的电子指定给电负性更大的原子而求得(以化合价为基础)•氧化态是按一定规则(人为规定)指定的形式电荷的数值(可以是负数、正数、零or分数)。

二、确定氧化态的规则1. 离子型化合物中,元素的氧化数等于该离子所带的电荷数2. 共价型化合物中,共用电子对偏向于电负性大的原子,两原子的形式电荷数即为它们的氧化数3. 单质中,元素的氧化数为零;离子Xn-氧化数为n-4. 中性分子中,各元素原子的氧化数的代数和为零,复杂离子的电荷等于各元素氧化数的代数和5. 氢的氧化数一般为+1,在金属氢化物中为-1,如NaH6. 氧的氧化数一般为(-II),例外有-I、+I、+II等,在过氧化物中为-1,如Na2O2 ,在超氧化物中为-0.5,如KO2 ,在氧的氟化物中为+1或+2,如O2F2 和OF2中7. 氧化数可以是分数Fe3O4(Fe2O3·FeO),Fe的氧化数为8/3,可见是平均氧化数•氧化数、化合价、化学键数的区分§7.2电化学电池一、原电池•借助于氧化还原反应将化学能直接转变成电能的装置。

理论上,任何氧化还原反应都可以设计为原电池。

•要求:(1) 自发氧化还原反应(2)装置,氧化过程和还原过程分别在不同的电极上进行,电极之间要通过导线和盐桥连接。

•盐桥:饱和的电解质溶液。

如KCl 溶液。

•目的:保持溶液电中性——由于K+和Cl-的定向移动,使两池中过剩的正负电荷得到平衡,恢复电中性。

于是两个半电池反应乃至电池反应得以继续,电流得以维持。

•原电池装置可用简单的符号表示,称为电池图示。

例:Daniell电池的电池图示——(-) Zn | Zn2+(c1) ||Cu2+(c2) | Cu (+)•原电池符号的要求:(1) 负极在左,正极在右(2) 按顺序排列各物质,两相之间的界面用“ | ”隔开(3) 盐桥用“||”表示(4) 溶液需标出浓度,气体需标出压力§7.3电极电势一、原电池的电动势原电池的电动势E MF等于正极的电极电势E(+)减去负极的电极电势E(-) 。

氧化还原反应与电化学

氧化还原反应与电化学

氧化还原反应与电化学氧化还原反应是化学反应中十分重要的一类反应。

与之密切相关的是电化学,它研究的是电流与化学反应之间的关系。

本文将探讨氧化还原反应与电化学之间的联系以及其在实际应用中的重要性。

一、氧化还原反应的基本概念氧化还原反应是指物质失去电子的过程称为氧化,物质获得电子的过程称为还原。

氧化还原反应是通过电子的转移来达到化学变化的。

在氧化还原反应中,被氧化的物质被称为还原剂,因为它促使其他物质被氧化;而被还原的物质被称为氧化剂,因为它促使其他物质被还原。

氧化还原反应中,电子的转移通常会伴随着原子的转移,使得反应物在电荷上发生变化。

二、电化学基础知识电化学是研究电荷与化学反应之间相互转化关系的学科。

其中最重要的概念是电解质溶液和电解池。

电解质溶液是指在溶液中存在自由离子的物质,能够导电。

电解质溶液中,正负离子在电场作用下会迁移,形成电流。

而电解池是由两个电极和其中的电解质溶液构成的系统。

电极又分为阴极和阳极,阴极是在电解质溶液中的负极,而阳极则是正极。

电解质溶液中的离子在电极上发生氧化还原反应,产生电流。

三、氧化还原反应与电化学之间的联系氧化还原反应与电化学密不可分。

在电化学中,氧化还原反应是产生电流的基础。

电化学反应中,阴极上发生还原反应,而阳极上发生氧化反应。

阴极接受来自阳极的电子,使得阴极上的物质还原;而阳极失去电子,使得阳极上的物质氧化。

四、氧化还原反应在实际应用中的重要性氧化还原反应在实际应用中有着广泛的应用。

以下是一些例子:1. 电池:电池是将化学能转化为电能的装置。

其中的电化学反应是氧化还原反应的典型例子。

在电池中,化学反应将化学能转化为电能,提供给我们的日常生活所需。

2. 腐蚀:金属的腐蚀也是一种氧化还原反应。

金属与氧气或其他化合物反应,使金属表面形成氧化物,从而损坏金属的性能。

腐蚀的控制和防治是保护金属材料的重要方法。

3. 电解制氢:电解水是将水分解为氢气和氧气的过程。

在电解水过程中,水发生氧化还原反应,电流通过水分子,将水分解为氧气和氢气。

氧化还原反应和电化学

氧化还原反应和电化学

氧化还原反应和电化学氧化还原反应(Redox)是化学反应中的一种重要类型,涉及物质间的电子的转移。

它在许多行业中都有广泛应用,尤其在电化学领域中占有重要地位。

一、氧化还原反应基础氧化还原反应是指在化学反应中,原子、离子或分子中的电子由一个物质转移给另一个物质的过程。

其中,电子的转移发生在氧化剂和还原剂之间。

氧化剂是指能够接受电子的物质,而还原剂则是能够捐赠电子的物质。

氧化还原反应常常伴随着物质的氧化与还原状态的改变。

二、氧化还原反应的重要性1. 电池和蓄电池:氧化还原反应是电池工作的基础。

电池中的正极发生氧化反应,负极发生还原反应,通过外部电路,电子从负极流向正极,从而产生电流供应给外部设备。

蓄电池则将反应进行逆转,将电流用于电解还原,实现电能转化和储存。

2. 腐蚀和防腐:许多金属材料在氧化还原环境中容易发生腐蚀现象,因此了解氧化还原反应规律可以帮助我们有效地进行防腐措施,延长材料的使用寿命。

3. 化学分析:氧化还原反应在化学分析中发挥着重要的作用。

比如电位滴定、氧化还原指示剂的应用等,使得化学分析的方法更加全面和准确。

4. 电解和电镀:电解过程是利用外加电流使物质发生化学反应,氧化还原反应是其中关键环节。

电化学反应在电镀工艺中广泛运用,可使金属表面得到保护或改变其性质。

三、电化学基础电化学是研究电能与化学能之间相互转化关系的学科。

它与氧化还原反应有着密切的联系,通过电化学实验可以研究电流与氧化还原反应之间的关系。

电化学反应包括两种基本类型:非自发反应(电解反应)和自发反应(电池反应)。

电解反应是指在外界电源的作用下,使非自发的氧化还原反应发生。

而电池反应则是在没有外界电源的情况下,使自发的氧化还原反应发生,从而产生电能。

电化学反应中的重要参数包括电位和电解质浓度。

电位是物质发生氧化还原反应时与标准氢电极之间电势差的度量。

而电解质浓度的改变会影响电解反应的速率和方向。

电化学反应在电池、电解、电镀、电解分析等领域都有广泛应用。

氧化还原反应及电化学

氧化还原反应及电化学

伏安法
总结词
伏安法是通过测量电流随电压变化的过程来分析物质的氧化还原性质。
详细描述
伏安法是一种常用的电化学分析方法,通过在电极上施加一系列电压并测量相应的电流来分析物质的氧化还原性 质。这种方法可以提供关于物质氧化还原反应的动力学信息和机理信息,有助于深入了解物质的性质和行为。
极谱法
要点一
总结词
电池的能量转换效率
1
电池的能量转换效率是指电池输出的电能或化学 能与其输入的能量的比值,是评价电池性能的重 要指标之一。
2
提高电池的能量转换效率不仅可以减少能源浪费, 还可以降低电池的充电时间和重量,提高电池的 续航能力。
3
提高电池能量转换效率的方法包括优化电极材料、 改进电池结构、提高电解质的离子电导率等。
氧化还原反应及电化学
• 氧化还原反应概述 • 电化学基础 • 氧化还原反应在电化学中的应用 • 氧化还原反应的电化学检测方法 • 氧化还原反应的电化学应用实例
01
氧化还原反应概述
定义与特点
定义
氧化还原反应是一种化学反应,其中电子在反应过程中从一个原子或分子转移到另一个原子或分子。
特点
氧化和还原是同时发生的,且反应过程中有电子转移。
极谱法是通过测量电解过程中的电流随电压变化的过程来 分析物质的氧化还原性质。
要点二
详细描述
极谱法是一种常用的电化学分析方法,通过在电极上施加 一系列电压并测量相应的电流来分析物质的氧化还原性质 。极谱法通常使用滴汞电极作为工作电极,通过测量电解 过程中的电流随电压变化的过程来分析物质的性质和行为 。极谱法可以提供关于物质氧化还原反应的动力学信息和 机理信息,有助于深入了解物质的性质和行为。
02

第七章 氧化还原反应 电化学基础

第七章 氧化还原反应 电化学基础

Eθ =1.229V
解(1) EBr2 / Br (2) E MnO
0.0592 2 = 1.065 lg cBr 2
2+
2 / Mn
0.0592 cMn 2+ = 1.228 lg 4 4 cH +
(3) EO2 / H 2O
0.0592 1 = 1.229 lg 4 4 cH + pO2
第七章 氧化还原反应 电化学基础
§7.1 氧化还原反应的基本概念 §7.2 电化学电池
§7.3 电极电势
§7.4 电极电势的应用
§ 7.1 氧化还原反应的基本概念
7.1.1 氧化值 7.1.2 氧化还原反应方程式的配平
7.1.1 氧化值
有电子得失或电子转移的反应,被称为 氧化还原反应。
Cu (aq) + Zn(s) Zn (aq) + Cu(s) 得失电子 H 2 (g)+ Cl2( ) 2HCl( ) g g 电子偏移 氧化值:是指某元素的一个原子的荷电 数,该荷电数是假定把每一化学键中的电 子指定给电负性更大的原子而求得的。
2KMnO + 5K2SO3 + 3H2SO4 4 = 2MnSO4 + 6K2SO4 + 3H2O
配平的难点是未发生电子得失的原子的配平 在进行未发生电子得失的H和O原子数配平时,有 下列规律:
(1) 反应在酸性介质中进行,则方程式两边根据需要均可 出现H+或H20,但绝不能出现OH-.如果反应前氧原子数小 于反应后的,则在左边加上H20,右边生成H+;反之,则左边 加H+,右边生成H20. (2) 反应在碱性介质中进行,则方程式两边根据需要均可 出现OH-或H20,但绝不能出现H+.如果反应前氧原子数小 于反应后的,则在左边加上0H-,右边生成H2O;反之,则左 边加H20,右边生成0H-. (3)反应在中性介质中进行,则左边加H20,右边(产 物)根据需要均可出现H+或OH-.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在正极上氧化剂得到电子被还原,在负极上还原剂失去电子被氧化。
两个半电池之间通过导线和盐桥等联系起来,才能产生电流。
在两个半电池中发生地反应叫做半电池反应或电极反应。
氧化还原的总反应叫做电池反应。
表示原电池的简单符号叫做电池符号或电池图示。
原电池产生电流是由于正极和负极的电极电势不同。原电池的电动势 E(MF ) 等于在没有电流通过 条件下正极的电极电势 E(+) 减负极的电极电势 E(-) ,即 m = Qgl
(4)将两个半反应分别乘以相应的系数后相加,即得到配平的离子反应方程式。 有时根据题目要求,需要将离子方程式改写为分子方程式。最后,还应该在核对方程式两边原 子个数是否各自相等,氧化剂的电子数与与还原剂失电子数是否相等。
3.原电池
原电池是借助于氧化还原反应产生电流的装置,它能将化学能转变为电能。
原电池由两个半电池(正极和负极)组成。
Co(NH3 )62+ Co( NH3 )36+
将组成原电池的正极和负极的 Nernst 方程式相减,即得到电池反应的 Nernst 方程是:
EMF
(T
)
=
EMF
(T
)
-
RT zF
ln
J
(7­9)
298K 时,电池反应的 Nernst 方程式为
EMF
( 298K )
=
EMF
(298K ) -
0.0592V z
0.0592V c(M Z+ ) + z lg c
MX(s) + z e- ƒ M(s) + XZ-(aq)
E(MX/M) =
E
(MX / M ) +
0.0592V z
lg
1 c( X Z- ) / c
将这两个半反应组成原电池。当反应达到平衡时,EMF = 0,即 E(MZ+/M) = E(MX/M),则
p(还原型) / p 。
298K 时,电极反应的 Nernst 方程式为
E (298K ) = E
(298K ) - 0.0592V
z
ln
c(还原型)/c c(氧化型)/c
(7­6)
由电极反应的 Nernet 方程式看出: c(氧化型)或 p(氧化型)增大,电极电势增大; c(还原型)或 p(还原型)增大,电极电势减小。 Nernst 方程式中的氧化性和还原型分别是电极反应中等号右侧和左侧的各物种。 在有含氧酸根、氧化物或氢氧化物参与的电极反应中,c(H+)或 c(OH-)的变化能引起电极 电势的变化。
2.氧化还原方程式的配平
氧化还原方程式的配平方法主要有氧化值法和离子—­电子法。 对于气相或固相反应,通常用氧化值法配平。 对于水溶液中的反应,用离子­­电子法配平方程式简单﹑直观,不需要知道元素的氧化值即可 配平离子反应方程式,能反映出水溶液中氧化还原反应的本质。 用离子­­电子法配平氧化还原反应方程式的原则是: (1) 反应前后各种元素的原子总数各自相等。 (2) 反应前后各种物种所带电荷总数相等。 其配平步骤是: (1)写出主要反应物和生成物的离子式。 (2)分别写出两个半反应。 (3)根据介质的酸碱性配平两个半反应。先使等号两边各种元素的原子数各自相等,再用加电 子数的方法使方程式两边电荷数相等。
( ) ( ) E
MX / M
=E
M Z+ / M
0.0592V +z
lg
éëc(M Z + ) / c
ùû éëc( X Z - ) / c
ùû
( ) = E
M Z+ / M
0.0592V
+ z lg Ksp (MX)
同理,电对(MZ+/M)的氧化型形成配合物 MLnZ+时,电极电势也将减小,则
电极反应中氧化性或还原型形成难溶电解质、配合物、弱酸或弱碱时,都能使电极电势改变。
利用原有电对的标准电极电势和 Ksp , K f , Ka 或 Kb 可以计算出改变后的电极电势,即新电
对的标准电极电势。 电对 MZ+/M 的氧化型 MZ+形成难溶电解质 MX(s)时,电极电势将减小,
( ) 即 E (MX / M ) 小于 E M Z+ / M ,298.15K 时,两者之间的关系为
zx Ex =z1 E1 +z2 E2 +z3 E3 +…
(7­12)
根据元素电势图给出的 E 还可以判断中间氧化值物种能否发生岐化反应。
当 E (右)> E (左)时,在标准状态下中间氧化值的物种能否发生岐化反应。
在应用元素电势图中所给出的 E 数值时,应注意酸碱性条件。
( ) ( ) ( ) E
M
Z n
+
/
M
=E
M Z+ / M
0.0592V
1
+z
lg K sp
MLzn+
(7­8)
电对的还原型形成难溶电解质或配合物时,电极电势将增大。例如:
E
(Cu2+/CuI) =
E
(Cu2+/Cu+)
+ 0.0592 V lg
K sp
1
(CuI )
1
Ksp (CuI )
( ) E
E(MF ) = E(+) - E(-) = E(氧化剂电对) – E(还原剂电对)
通常由标准电极电势很容易求得标准电池电动势 EMF ,但它只能用于判断标准状态下氧化还原
反应的方向。像用 DrGm 代替 DrGm 判断反应方向一样,用 EMF 代替 EMF 判断氧化还原反应方向的
经验规则是:
EMF >0.2V,反应正向进行;
化学反应可以分为氧化还原反应和非氧化还原反应。 有电子转移(或电子得失)的反应称为氧化还原反应。 在氧化还原反应中,还原剂失去电子被氧化,氧化剂得到电子被还原,氧化过程和还原过程同 时进行发生。 氧化剂中某元素的原子得到电子时其氧化值降低,还原剂中某元素的原子失去电子时其氧化值 升高。 氧化还原反应是由两个半反应组成的。半反应中同一元素两个不同氧化值的物种组成电对,即 氧化型/还原型。 氧化值大的物种称为氧化型,氧化值小的物种称为还原型。
E(MF ) = E(+) - E(-)
电池反应的 Gibbs 函数[变]与电池电动式的关系为
(7­1)
在标准状态下则有
DrGm = -zFEMF
(7­2)
EMF = E(+) - E(-)
(7­3)
DrGm = -zFEMF
(7­4)
4 电极电势
电极电势的绝对值尚无法确定,通常以标准氢电极为基准,确定其他电极的标准电极电势。
Ksp (Co(OH )3 ) Ksp (Co(OH )2 )
电对的氧化型和还原型均生成配合物时,电极电势的变化取决于氧化型的 K f 和还原型 K f 的
相对大小,例如:
(( )) E
(Co(NH3)63+ / Co(NH3)62+) =
E
(Co3+/Co2+) + 0.0592 V lg K f Kf
( ) E (MX / M 92V
+ z lg Ksp (MX)
(7­7)
这一关系可以通过将相关的两个电极反应组成原电池的方法得到。先分别写出两个电极反应及其
Nernst 方程式:
MZ+(aq) + ze- ƒ M(s)
( ) E(MZ+/M) = E
M Z+ / M
第七章 氧化还原反应电化学基础
•教学基本要求•
(1) 熟悉氧化还原反应的基本概念,能熟练的配平氧化还原反应方程式。 (2) 了解原电池及其电动势的概念,掌握标准电极电势的概念和应用以及影响电极电势的因素,
有关 Nernst 方程式的简单计算。 (3) 掌握元素电势图及其应用。
•重点内容概要•
1.氧化还原反应的基本概念
化还原反应的 K <1, EMF <0, E(+) < E(-) 。
7.元素电势图
将同一元素不同氧化值物种所组成的各电对的标准电极电势及其关系以图的形式表示出来,即
为元素电势图。
A E1 (z1)
B
E2
(z2)
C E3
D
(z3)
Ex (zx)
利用元素电势图中各电对 E 间的关系,可由已知 E 求未知的 E 。
(Cu2+/CuI2­) =
E
(Cu2+/Cu+) + 0.0592 V lg K f
CuI
2
电对的氧化型和还原型均生成难溶电解质时,电极电势的变化取决于氧化型的 Ksp 和还原型
K sp 的相对大小,例如:
E
(Co(OH)3/Co(OH)2) =
E
(Co3+/Co2+) + 0.0592 V lg
2H+ (aq) +2e­ ƒ H2 (g) ,
E =0
以标准氢电极为负极,其他标准电极为正极,组成原电池,测得的标准电池电动势即为待测电极的 标准电极电势。 应当注意,这里的标准电势是标准还原电极电势,所对应的电极反应必须是还原反应。
5. Nernst 方程式
影响电极电势的因素有温度、压力、浓度等。对于一般的电极反应
EMF <­0.2V,反应逆向进行;
当­0.2V< EMF <0.2V 时,必须用 EMF 来判断反应方向。
⑶确定氧化还原反应的限度
氧化还原反应的限度可由标准平衡常数 K 来确定,而 K 可以由标准电极电势计算得到。 298.15K 时,
相关文档
最新文档