概率统计复习讲义重点

合集下载

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。

本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。

一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。

例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。

解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。

2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。

解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。

二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

概率统计公式大全复习重点

概率统计公式大全复习重点

概率统计公式大全复习重点在学习概率统计这门学科时,掌握各种公式是至关重要的。

这些公式不仅是解决问题的工具,更是理解概率统计概念的关键。

本文将为您梳理概率统计中的重点公式,帮助您更好地复习和掌握这部分知识。

一、随机事件与概率1、古典概型概率公式如果一个随机试验所包含的基本事件总数为 n,事件 A 所包含的基本事件数为 m,则事件 A 发生的概率为:P(A) = m / n2、几何概型概率公式设样本空间为几何区域Ω,事件 A 对应的区域为ω,则事件 A 发生的概率为:P(A) =ω 的测度/Ω 的测度3、条件概率公式设 A、B 是两个事件,且 P(B) > 0,则在事件 B 发生的条件下,事件 A 发生的条件概率为:P(A|B) = P(AB) / P(B)4、乘法公式P(AB) = P(A|B)P(B) 或 P(AB) = P(B|A)P(A)5、全概率公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,则有:P(A) =∑ P(Bᵢ)P(A|Bᵢ)(i从 1 到 n)6、贝叶斯公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,在事件 A 已经发生的条件下,事件 Bᵢ发生的概率为:P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑ P(Bₙ)P(A|Bₙ) (i从 1 到 n,k 从 1 到 n)二、随机变量及其分布1、离散型随机变量的概率分布设离散型随机变量 X 的可能取值为 x₁, x₂,, xₙ,对应的概率为p₁, p₂,, pₙ,则概率分布为:P(X = xᵢ) = pᵢ(i = 1, 2,, n),且∑pᵢ= 12、二项分布如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),则概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) (k = 0, 1, 2,, n)3、泊松分布如果随机变量 X 服从参数为λ 的泊松分布,记为 X ~P(λ),则概率质量函数为:P(X = k) =(e^(λ) λ^k) / k! (k = 0, 1, 2,)4、连续型随机变量的概率密度函数设连续型随机变量 X 的概率密度函数为 f(x),则分布函数为:F(x)=∫∞, x f(t) dt5、正态分布如果随机变量 X 服从参数为μ 和σ² 的正态分布,记为 X ~N(μ, σ²),则概率密度函数为:f(x) =(1 /(σ√(2π))) e^((x μ)² /(2σ²))三、随机变量的数字特征1、数学期望离散型随机变量 X 的数学期望为:E(X) =∑ xᵢ pᵢ(i 从 1 到 n)连续型随机变量 X 的数学期望为:E(X) =∫∞,+∞ x f(x) dx2、方差离散型随机变量 X 的方差为:D(X) =∑ (xᵢ E(X))² pᵢ(i 从 1 到n)连续型随机变量 X 的方差为:D(X) =∫∞,+∞ (x E(X))² f(x) dx3、标准差随机变量 X 的标准差为:σ(X) =√D(X)4、协方差设随机变量 X 和 Y,其协方差为:Cov(X, Y) = E((X E(X))(Y E(Y)))5、相关系数随机变量 X 和 Y 的相关系数为:ρ(X, Y) = Cov(X, Y) /(σ(X)σ(Y))四、大数定律和中心极限定理1、大数定律当 n 足够大时,样本均值X依概率收敛于总体均值μ,即:P(|Xμ| >ε) → 0 (n → ∞)2、中心极限定理设随机变量 X₁, X₂,, Xₙ 相互独立,且具有相同的分布和有限的数学期望μ 和方差σ²。

数学高考复习概率与统计重点梳理

数学高考复习概率与统计重点梳理

数学高考复习概率与统计重点梳理高考复习概率与统计重点梳理概率与统计是数学高考中的重要内容,也是考生们备考过程中需要重点关注的部分。

在高考中,概率与统计经常出现在选择题、计算题和应用题中,因此,熟练掌握概率与统计的基本概念、定理和解题方法,对于取得高分至关重要。

本文将针对高考中概率与统计的重点内容进行梳理,帮助考生们更好地复习和应对考试。

一、基本概念与术语1.1 概率的基本定义概率是表示事件发生可能性大小的数值,通常用0到1之间的实数表示。

在概率中,事件发生的可能性越大,其概率值越接近于1;反之,事件发生的可能性越小,其概率值越接近于0。

1.2 随机事件与样本空间随机事件是在一定条件下,有可能发生的事件。

样本空间是一个包含了所有可能结果的集合,每个结果称为样本点。

随机事件可以由样本空间中的样本点组成。

1.3 事件的概率计算公式事件的概率计算公式根据事件的性质和样本空间的大小来确定。

对于等可能的随机试验,事件A发生的概率可以表示为:P(A) = 事件A的样本点数 / 样本空间的样本点数。

二、概率的计算方法2.1 乘法原理与加法原理乘法原理是指若事件A是由两个或多个独立事件的发生所组成,则事件A的概率可以用每个独立事件概率的乘积表示。

加法原理是指若事件A可以由事件B或事件C等多个互不相容的事件所组成,则事件A的概率可以用各个事件概率之和表示。

2.2 条件概率与独立性条件概率是指在已知事件A发生的情况下,事件B发生的概率。

如果事件A与事件B的发生是独立的,那么事件A发生的概率与事件B 发生的概率的乘积等于事件A与B同时发生的概率。

2.3 贝叶斯定理贝叶斯定理是利用已知的条件概率,求解与之相反的条件概率的方法。

它的基本思想是通过已知条件概率和全概率公式,得到所需的条件概率。

三、离散型与连续型随机变量3.1 随机变量的定义与性质随机变量是数学中的一种函数关系,用来描述随机试验的结果与实数之间的对应关系。

随机变量可以是离散型的,也可以是连续型的。

概率统计复习提纲(百度文库)讲解

概率统计复习提纲(百度文库)讲解

《概率论与数理统计》总复习提纲第一块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为:,.1)试验可在相同的条件下重复进行;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验F的所有可能结果组成的集合称为F的样本空间;记为Q;试验的每一个可能结果,即Q中的元素,称为样本点,记为「(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为「)和不可能事件(记为-).2、事件的关系与运算(1)包含关系与相等:“事件一发生必导致匸'发生”,记为二一「或丄-J ; A=B^AcB 且鸟匚乂.(2)互不相容性-互为对立事件1 :、「-门且一 :.(3)独立性:(i)设丄:'为事件,若有匸二-匸二y 口‘,则称事件-与F相互独立.等价于:若* 1 2 3 4(2)多个事件的独立:设一……;是n个事件,如果对任意的乂山二口匚,任意的1■\ ',具有等式,称;个事件…人相互独立.3、事件的运算(1)和事件(并):“事件一与匸'至少有一个发生”,记为」一丄.(2)积事件(交):“ 事件」与匸'同时发生”,记为』丄「或丄.(3)差事件、对立事件(余事件):“事件发生一而匸'不发生”,记为」「称为一与匚'的差事件;…二二称为T的对立事件;易知:二】匸.4、事件的运算法则1 交换律:亠二一二一 _」,二土;2结合律:』u0uO = (£u仍uC,(曲)0 =玫蜀;3分配律:(心―2此,的uC = (g(S;4 对偶()律:丸匸二丄,,一二二一1,十十u A=n n©u血可推广* ■'5、概率的概念(1)概率的公理化定义:i厂存v「J的f事件域.恥F隹义在F上的一个集值函数P(備足;1)菲负性:旳1)20;2)规范性:卩⑼訂3)可列可加性;设力岀,…是可列个互不相容事件,则则称P")为事件胡概率.(2)频率的定义:事件」在「次重复试验中出现11次,则比值」称为事件」在[次重复试验中出现的频率,记为 ,即— 」.即随旳的増大越来越韋近基个常数戸切丹斗审冲 n 称W 为事件一的(统计)概率在实际问题中,当「很大时,取f 一,“(4)古典概率:若试验的基本结果数为有限个, 且每个事件发生的可能性相等,则(试验对应古典概型)事件 」发生的概率为:—A 中所含样本点数」/(占) c 中样本点总数n(5)几何概率:若试验基本结果数无限,随机点落在某区域 g 的概率与区域g的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域「中随机地取一点落在区域-中”这一事件二发生的概率为:1丿Q 的测度. (6)主观概率:人们根据经验对该事件发生的可能性所给出的个人信念6、概率的基本性质(3)统计概率: 频率具有稳定性, 9 QD(1)不可能事件概率零:= 0.(2)有限可加性:设\ \ -是n个两两互不相容的事件,即」•.=;,(;) 丄,12…j 则有= + 酗)+…+P⑷.(3)单调不减性:若事件口—上「」「—」,且冊卜附也).(4)互逆性:丿二】且H上-(5)加法公式:对任意两事件二:,有二二-匚—二二I-P匚.—厂扑;此性质可推广到任意个事件的情形.(6)可分性:对任意两事件二:,有门上二:,且AAu3)<PU) + ?(3)7、条件概率与乘法公式(1)条件概率:设丄E是两个事件,即」.,则P(AB)称为事件一发生的条件下事件匸'发生的条件概率.(2)乘法公式:设丄H 且「一•〕「"」则W = P(^P(B| X) = P^)P(A13)称为事件二-的概率乘法公式.8全概率公式与贝叶斯()公式(1)全概率公式:设-…二是异的一个划分,且S,•厂亠,…,则对任何事件”」,有p(s)=^mwi4)2-1称为全概率公式(2)贝叶斯()公式:设是打的一个划分,且■ 1 ' 1 _'\ ,则对任何事件丄「一,有P(AAP(B\JL)mi月)=丨宀心=1,…⑻i-L称为贝叶斯公式或逆概率公式9、贝努里()概型(1)只有两个可能结果的试验称为贝努里试验,常记为丄.丄也叫做“成功—失败”试验,“成功”的概率常用/ " L:/表示,其中」成功”.(2)把匚重复独立地进行•.次,所得的试验称为!重贝努里试验,记为匸.(3)把::'重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为孑.以上三种贝努里试验统称为贝努里概型.(4)匸中成功卜次的概率是二」mi其中—1 1:--/--1.疑难分析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件•它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件」与厂必有一个事件发生,且至多有一个事件发生,则J、'为互逆事件;如果两个事件」与1不能同时发生,则J、'为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形•作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个3、两事件独立与两事件互斥两事件」、T独立,则」与T中任一个事件的发生与另一个事件的发生无关,这时「'' ■:' 1;而两事件互斥,则其中任一个事件的发生必然导致另一个事件不发生,这两事件的发生是有影响的,这时二一二二二.可以用图形作一直观解释.在图1.1左边的正方形中,图1.1咖)二.P⑷丄F(B) 一、^ 亠、4 2 ,表示样本空间中两事件的独立关系,而在右边的正方形中,丄匸•,表示样本空间中两事件的互斥关系.4、条件概率''与积事件概率「卜是在样本空间「内,事件二的概率,而’'''是在试验丄增加了新条件发生后的缩减的样本空间中计算事件』的概率.虽然都发生,但两者是不同的,一般说来,当」、-同时发生时,常用「加,而在有包含关系或明确的主从关系时,用"八二.如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率•问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯()公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件•贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设「是随机试验的样本空间,如果对于试验的每一个可能结果二一X,都有唯一的实数'与之对应,则称为定义在「上的随机变量,简记为.随机变量通常用大写字母二-■-等表示.设g,F*)是一t概率空间,若枷W R有珂紋是-个随腋氢离散型随机喪量(可能取值至多可列)随机变量连续型随机变量(可育諏值充满某个区间〉奇异型随机变量■-2、离散型随机变量及其分布列如果随机变量二只能取有限个或可列个可能值,贝淋二为离散型随机变量.如果」的一切可能值为〔1 ,并且負取:;的概率为X,则称儿":一:一】“:为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为匸:日,分布列为丄工卜;■'■-■'!5 P或(2)二项分布:记为'-,,概率函数尸区胡乂”(1-卩严北二0「也0<^<1(3)泊松分布,记为'-',概率函数iJtP&"}二斗,"Oh, 4 0<1泊松定理设“::是一常数,J是任意正整数,设’人',则对于任一固定的非负整数i,有八,■-.当〔很大且|很小时,二项分布可以用泊松分布近似代替,即切(1宀年,其中5(4) 超几何分布:记为概率函数(5) 几何分布:记为上•「心口,概率函数> ;< :匚 ‘ .;■..3、分布函数及其性质分布函数的定义:设"为随机变量,:为任意实数,函数阳=P{X <X)(-0O<X< +oo)称为随机变量負的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下 性质: (1) 有界性(-00 < X <松);⑵ 单调性 如果:'< ,则旳g(xj ;(3) 右连续, 即戸;7C(4) 极限性 血 F(i) = 0> 陀)二127 W-Hfi ;(5)完美性 Pg fXSxj =P{X “卜P{X 二F(xj-F(xj .4、连续型随机变量及其分布分布如果对于随机变量二的分布函数门「,存在非负函数「九,使对于任一实数:, 有宀'",则称;为连续型随机变量.函数—称为;的概率密度函数.P{X "}= pJtr k- 0丄…,min (丹,M) ,其中匚暑为正整数,且:二「- \n 当:「很大,且'1较小时,有马軒泌"(1十严概率密度函数具有以下 性质:(1)工沁〕;⑵二(3) - ' _、「 7 '■ ' ; ( 4)丄;二 11 ;(5) 如果在:处连续,则.常用连续型随机变量的分布:(1) 均匀分布:记为- ; ,概率密度为a①其它分布函数为Q,x <a-f a<x<bl, x(2) 指数分布:记为工- ,概率密度为分布函数为0, A<0(3) 正态分布:记为--,概率密度为p(x) = -=^ 2f2 ? -DO <z < +CO* ?相应的分布函数为di当"-"■■■-1时,即「时,称負服从标准正态分布.这时分别用」:和 _1表示二的密度函数和分布函数,即具有性质:①」:i .jPW = 加-X >Q0,其它②一般正态分布]」严丁的分布函数门与标准正态分布的分布函数■' 有关系:陀)二①¥5、随机变量函数的分布(1)离散型随机变量函数的分布设;为离散型随机变量,其分布列为(表2-2):则亠— if任为离散型随机变量,其分布列为(表2-3):表2-3h有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设;为离散型随机变量,概率密度为'-'1,贝L 「二的概率密度有两种方法可求.1)定理法:若f在丄的取值区间内有连续导数「,且:单调时,X⑷ 是连续型随机变量,其概率密度为11 / 27• ①其它其中二一匸「7二「代汕匚一二1二;I—]:门是]:的反函数.2)分布函数法:先求的分布函数F,(y) = P(Y<y^P(g(X)<y)=X[人何必 &止心)然后求疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间沐上,对试验的每一个可能结果:,都有唯一的实数•「与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间2、分布函数的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数门「左连续,但大多数书籍定义分布函数「二为右连续.左连续与右连续的区别在于计算「二时,二二点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于 '負-^ ,则定义左连续或右连续时门值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布1、二维随机变量及其联合分布函数如果随机变量血(讥血(町…,血@)定义在同一概率空间(Q FQ上则称恥)心⑷兀(叭-北3)为n维(n元)随机变量或随机向量.当沪2时诽为二维随戕氢常记为工儿联合分布函数的定义设—-匸丄二一「赴随机变量,心"为随机向量1■的联合分布函数特别卄血称为二淼合分布函数即恥』)訂(淞汀幻)二维联合分布函数具有以下基本性质:(1)单调性是变量:或;的非减函数;(2)有界性一―]I:* ;(3)极限性” 7」,:',一,厂「.一(?」丨一■.- -」.-工-1「-工,亠二(3)连续性l I;.关于:右连续,关于^也右连续;(4)非负性对任意点 =.「_.「,若「;二,贝V式表示随机点二门落在区域内的概率为:二…2、二维离散型随机变量及其联合分布列如果二维随机变量所有可能取值是有限对或可列对,则称■'为二维离散型随机变量.设「「为二维离散型随机变量,它的所有可能取值为匸- 将f 一—°厂一」或表3.1称为「「的联合分布列.表3.1(1)「「';( 2)肴' 联合分布列具有下列性质:3、二维连续型随机变量及其概率密度函数如果存在一个非负函数和乩门,使得二维随机变量的分布函数‘八「对任意实数「有 'f,则称 — 是二维连续型随机变量,称u为的联合密度函数(或概率密度函数)联合密度函数具有下列性质:设…丄|为二维随机变量,则称F x (x ) = P (X<^<Y <+oo ) 的0)二 P 卜00 <X <4007<7) 分别为关于二和关于「的边缘(边际)分布函数当为离散型随机变量,则称(1) 非负性对一切实数",有■" 1;(3) *-ho在任意平面域-上,「厂 取值的概率F {(工二[“(砂)如y Q ;3细(兀刃=Xj 为如果小」在;’处连续,则 「八一八 规范性(4)4、二维随机变量的边缘分布P 广乞珂(八12…):-1分别为关于;和关于『的边缘分布列当为连续型随机变量,则称內A )二ph 』)必分别为关于二和关于「的边缘密度函数5、二维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布列分别为P(X = ip/ = - p^,P(X= f P(Y -y^} = (ij = 12…),则当 j 固定P{f = ”} = Pj>Ci 时,称---------------------------------- 二——为'「条件下随机变量匚的条件分布律.同理,有吃讪|XrJ 二丝八12…Pi(2)连续型随机变量的条件分布设■= 为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:心.则当’•时,在和门,的连续点处,-在条件’下,】的条件概率密度函数为曲力)=畔 Px Wp^\y)=p (兀力p^y) 同理,6、随机变量的独立性设;」’及匚:'1分别是的联合分布函数及边缘分布函数.如果对任何实数「有『上=则称随机变量;与「相互独立.设:;'|为二维离散型随机变量,..与『相互独立的充要条件是廿妝血=12…).设为二维连续型随机变量,二与[相互独立的充要条件是对几乎一切实数,有7、两个随机变量函数的分布设二维随机变量的联合概率密度函数为」;」,「—“ —「是;'的函数,则匚的分布函数为马⑵二\\p(x t yyixdy.(1);'二的分布若.1;|为离散型随机变量,联合分布列为',则】的概率函数为:易仇)=£临耳-吗)&仇)=5>%巩-为);或>若丄八为连续型随机变量,概率密度函数为W,则匚的概率函数为:严r-Ko旳⑵二p^z-x)dx=\ p(z-y r y)dy的分布若I为连续型随机变量,概率密度函数为小乩门,则]的概率函数为:8.最大值与最小值的分布曲”冊勺)畝阿〔兀…兀)勺厂P©)畅)胡旳)*血吃…北)勺)4*(卜恥))9.数理统计中常用的分布(1)正态分布:设随机变劉諾厂也相互紐,肮广N仏口;),心谊…也则2也皿左的加巾其中用心…尼为常黏(2)宀 *:设随机变就“血…也相互從,且丫厂M(叮〉心12…”则(3)「• 卄:亡*……-厂\ L書让二I(4)「—--:亡「疑难分析1、事件=-丄二「表示事件梟•丄「与的积事件,为什么二计不一定等于'■■■'■ :■■■.■ ?如同仅当事件二f相互独立时,才有「二-1三匚二一样,这里依乘法原理只有事件一与1「■'/.相互独立时,才有P{X<x t Y<y) = P(X<^ P(Y<y\,因为P{Y<y\X<x} = P{Y <y).2、二维随机变量「厂的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由「丄丫二心」宀「7 r知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果二『相互独立,贝V「仁―t —:,即卩宀二;丄J •:'.说明当二『独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量二〕相互独立,是指组成二维随机变量•厂的两个分量二〕中一个分量的取值不受另一个分量取值的影响,满足儿」—匸-:匚-.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有「二—L匚.两者可以说不是一个问题.但是,组成二维随机变量I的两个分量二「是同一试验丄的样本空间上的两个一维随机变量,而丄f也是一个试验的样本空间的两个事件.因此,若把“匸土”、”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质1、随机变量的数学期望设离散型随机变量負的分布列为「工二:!亠,如果级数台"'绝对收敛,则称级数的和为随机变量J丄的数学期望.设连续型随机变量x的密度函数为p⑴,如果广义积分L腴R处绝对收敛,则f-HD称此积分值」为随机变量匚的数学期望•数学期望有如下性质:(1)设「是常数,则"'■;(2)设]'是常数,则和(3)若-1:'是随机变量,则-[丄:_:丄-';对任意〔个随机变量■ ' - ■ ',有(4)若-亠相互独立,贝U -七--'-.1 ;对任意「个相互独立的随机变量 u :•,有2、随机变量函数的数学期望设离散型随机变量 負的分布律为■"丄|丄,则」的函数一1 一的设连续型随机变量 負的密度函数为;;|,则負的函数'■_ ■的数学期望为i +®购恥讥讷,式中积分绝对收敛 3、随机变量的方差设匚是一个随机变量,贝V 丄一匸「L - - 称为匚的方差-一“称为;的标准差或均方差.计算方差也常用公式 方差具有如下性质:(1)设一1是常数,则\ '-; (2)设「是常数,则--------;(3)若分1、*2相互独立,则0区+托)=D(X])+°(為);对任意〔个相互独立的随机变量■' -■' ,有- ;(4) 的充要条件是:存在常数 「,使- - - -二八 4、几种常见分布的数学期望与方差 (1)匸;.「匸;二:.:;(2) 「——数学期望为亟(②卜另欽亦)久朮=12…jt-i 式中级数绝对收敛(3)(4)匸」已匸二2 1 ;(5)「一 -'■- :丫;(6)—「二 < 匚一,「I」门一:■汀匸⑺—:'二一;:.;;(8)八“血刊凤& = “23)=代5、矩设;是随机变量,贝y L 「2;* 4称为;的一阶原点矩.如果f存在,则■ ■ _ ' ' ■ '■■ - - - | "'-称为負的;阶中心矩.设「「是二维随机变量,贝y心亠;止【;;「工称为的I 阶混合原点矩;址=E ([X-E(Q*•[『-占(別),灯=1,2,…称为(x,y)的七+]阶混合中心矩.6、协方差与相关系数随机变量(XQ的协方差为^f Y^E{[X-E^Y-£(『)]).它是i+i阶混合中心矩,有计算公式:沏(工『)二E(沼)・E(x)E(y).随机变量■= 的相关系数为_ cov(xn呛二亦页相关系数具有如下性质:(1)卜冷」;(2)卜」存在常数•:',使";-汇+「=1,即二与1以概率1线性相关;(3)若;独立,则L •,即不相关.反之,不一定成立.(4)() 设()是二维随机变量,若X与Y的方差都存在,则[Cau(X r^<DX DY疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性•但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数1■二反映了随机变量二和「之间的什么关系?相关系数;I是用随机变量就和[的协方差和标准差来定义的,它反映了随机变量二和『之间的相关程度.当时,称二'与丁依概率1线性相关;当匚二I 时,称免与『不相关;当时,又分为强相关与弱相关.4、两个随机变量二与]相互独立和不相关是一种什么样的关系?(1)若、相互独立,则、不相关.因为、独立,则川;「厂小.,故心二-一,从而七j,所以J、r不相关.(2)若不相关,则门、「不一定独立.如:f —]"兀x2+y2 <}rPW= 1 o, 其它一因为TO = £(y)= 0,TO=1/4-1'1二•,知」、」不相关.但U ;1「’L,加y)二2尸加,瞼J)HP占)P0 ,知乂、『不独立.(3)若相关,则匚、[一定不独立.可由反证法说明.(4)若匚、)不相关,则二、不一定不相关.因为二、不独立,二—〕,但若汇-厂m时,可以有―,从而可以有」、不相关.但是,也有特殊情况,如服从二维正态分布时,不相关与;、J 独立是等价的第五块大数定律和中心极限定理内容提要基本内容:切比雪夫()不等式,切比雪夫大数定律,伯努里()大数定律,辛钦()大数定律,棣莫弗-拉普拉斯()定理,列维-林维德伯格()定理.1、切贝雪夫不等式设随机变量二的数学期望m—工,方差匸,则对任意正数「,有不等刊■心沪召或刊,小"-召成立2、大数定律(1)切贝雪夫大数定律:设…是相互独立的随机变量序列,数学期望J. 1和方差’二都存在,且「二」〔|,则对任意给定的I「,有1丄如列-乞凶-欧扎)]|<沪1“讯i-i .(2)贝努利大数定律:设L是「次重复独立试验中事件d发生的次数,:是事limP(|^-^|<F)=l件丿在一次试验中发生的概率,则对于任意给定的:'.■丨,有…贝努利大数定理给出了当[很大时,」发生的频率一=依概率收敛于d的概率,证明了频率的稳定性.(3)辛钦大数定律:设相互独立,服从同一分布的随机变量序列且匸也〕卫(:=匚),则对任意给定的:,I,有3、中心极限定律(1) 林德贝格-勒维中心极限定理:设〔芒〕,…丄 是独立同分布的随机变量 序列,有有限的数学期望和方差,「二-「,「..「一、:.则对任意实数刀(血-“)刀疋厂冲“Y _ ____:,随机变量■■,'■--■的分布函数二-满足 Em 氏⑵二曲尸也<i} = fJ2/T(2) 李雅普诺夫定理:设是不同分布且相互独立的随机变量,它护—y 2 们分别有数学期望和方差:小1 一畀,■'■■'■■<;「厂-八-■-;亠文欧因-丛角TO正数$,,使得当心谕时,有盯口,则随机变量»X屋据F7 _ i-1 H _ J-1 X的分布函数对于任意的x ,满足当〔很大时,爲』㈣总拓』(也昭.(3)德莫佛一拉普拉斯定理:设随机变量'■. 1 " 1 1服从参数为匚时卩J 匸;的二项分布,则对于任意的:,恒有疑难分析D 乞逊!-1lim 坨(打=lira <>=r 加 J 十矩rlimP\%-® J 誓(D<x1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列J依概率收敛于,,说明对于任给的£>0,当"很大时,事件“”的概率接近于1•但正因为是概率,所以不排除小概率事件“ 1八_2卜6”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳
1 1 x
1 dy 2
同理 E(X2 )=1/6, E(XY )=1/12. 从而DX=E(X2 )- (EX )2=1/18 由对称性有 E(Y )= E(X )=1/3, DY= DX = 1/18. 于是 Cov (X, Y) = E(XY )- E(X) E(Y ) = 1/12-(1/3)2 = -1/36
P( D) P( ABC AB C A BC) P( ABC ) P( AB C) P( A BC)
0.3 0.2 0.9 0.3 0.8 0.1 0.7 0.2 0.1 =0.092 P(C D) P( ABC ) 0.3 0.2 0.9 0.587 P(C / D) 0.092 P( D ) P( D)
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9; P (D/C) = 0.3*0.8+0.7*0.2,
0.1 C 0.3*0.8+0.7*0.2
0.9
C
0.3*0.2 D
P( D / C ) 0.3* 0.2.
于是有
P(C ) P( D / C ) P(C / D) P(C ) P( D / C ) P(C ) P( D / C ) 0.9 * 0.3 * 0.2 0.1* (0.3 * 0.8 0.7 * 0.2) 0.9 * 0.3 * 0.2
例5 设C.R.V.(X, Y)在三角形区域G: 0≤x ≤1, 0≤y ≤1-x上 服从均匀分布,求Cov (X, Y)和ρXY.

1 / S 2 , ( x, y ) G SG dx f ( x, y ) 0 0 ( x, y ) G 0 , 1 1 x 1 EX xf ( x, y )dxdy dx 2 xdy 0 0 3 R2

数学概率统计重点知识点详解

数学概率统计重点知识点详解

数学概率统计重点知识点详解2023年,数学概率统计依然是大学生必修课程。

在这门课程中,学生将学习各种数学概率和统计方法,以及如何将它们应用到现实生活中的问题中。

以下是数学概率统计的重点知识点详解。

一、概率论1、基本概率公式基本概率公式是指一个事件发生的概率等于这个事件发生的次数除以总的实验次数。

例如,一个硬币掷5次正面向上的概率是多少?假设每次掷硬币是独立的,则该事件的概率为 (1/2)^5=1/32。

2、独立事件在概率论中,独立事件指两个或多个事件之间没有联系,这意味着其中一个事件的发生与其他事件的发生没有关联。

例如,在掷硬币的例子中,每次掷硬币的结果都是独立事件。

3、条件概率条件概率是指在一个给定事件的前提下,另一个事件发生的概率。

例如,在问答游戏中,有50%的概率回答正确,知道前一个问题回答正确后,后一个问题回答正确的概率将得到提高。

因此,条件概率为 0.5。

4、期望值期望值是一组事件的平均值,它是每个事件的结果乘以概率的总和。

例如,假设你要掷两个骰子,每次掷骰子都有6个面,你想知道掷两个骰子的平均点数是多少。

你可以将每个点数与概率相乘,然后将它们加在一起。

结果表明,平均点数为 7。

5、方差方差是一组事件的差异,它是每个结果与平均值之间的差异的平方的总和。

例如,对于掷两个骰子的例子,如果你希望知道其方差,则可以计算每个点数与平均点数的差异,然后将其平方并相加。

结果表明,方差为(1-7)^2+(2-7)^2+(3-7)^2+(4-7)^2+(5-7)^2+(6-7)^2=17.5。

二、统计学1、频率分布频率分布是指一组数据中每个数据点的出现次数。

例如,考虑一组学生的测验成绩,你可以计算每个分数的出现次数,并将其组成频率分布表。

2、中心趋势在统计学中,中心趋势被用来衡量数据的平均值,它有三种主要的衡量方法:平均值、中位数和众数。

平均值是一组数据的所有数的总和除以这组数据的数量。

中位数是一组数据中间的值,它把数据分为一半。

高考概率统计知识点汇总

高考概率统计知识点汇总

高考概率统计知识点汇总概率统计作为数学的一个重要分支,是高中数学中的一项重要内容,也是高考中难度较大的一部分。

掌握概率统计的知识点对于高考取得好成绩至关重要。

本文将对高考概率统计的知识点进行汇总介绍,帮助考生更好地备考。

一、基本概念与定义1. 概率的概念:概率是对一件事件发生的可能性进行量化的数学方法。

常用的表示方式有百分数、小数和分数。

2. 随机事件与样本空间:随机事件指的是具有不确定性的事件,而样本空间是指所有可能结果的集合。

3. 必然事件和不可能事件:必然事件是一定会发生的事件,概率为1;不可能事件是一定不发生的事件,概率为0。

二、基本计算方法1. 乘法定理:乘法定理是指当两个随机事件A、B同时发生时,它们的概率等于事件A发生的概率乘以在A发生条件下事件B发生的概率。

2. 加法定理:加法定理是指当两个互斥事件A和B中至少一个事件发生时,它们的概率等于事件A发生的概率加上事件B发生的概率。

3. 条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率。

计算条件概率时,需要用到乘法定理。

4. 独立事件:独立事件是指两个事件A和B的发生与否互不影响,即事件A的发生与否不会对事件B的发生产生影响。

对于独立事件来说,它们的概率乘积等于各自概率的乘积。

三、概率分布1. 随机变量与概率分布:随机变量是指在随机试验中可能取得的各个值,概率分布是指随机变量取各个值的概率。

2. 离散型随机变量与离散概率分布:离散型随机变量是指可以取一定个数值的随机变量,离散概率分布是指离散型随机变量取各个值的概率。

3. 连续型随机变量与连续概率分布:连续型随机变量是指在一定范围内可以取任意值的随机变量,连续概率分布是指连续型随机变量取某个区间的概率。

四、抽样与估计1. 简单随机抽样:简单随机抽样是指从总体中依概率挑选出样本的方法,以确保样本能够代表总体。

2. 参数与统计量:参数是指总体中的某个特征值,统计量是指样本中的某个特征值。

高考复习概率与统计知识点归纳总结

高考复习概率与统计知识点归纳总结

高考复习概率与统计知识点归纳总结概率与统计是高中数学中的一大重点和难点。

在高考中,这一部分的知识点占有相当大的比重,因此学生需要在复习阶段集中精力,深入理解和掌握相关的知识点。

本文将对高考概率与统计的知识点进行归纳总结,以帮助学生们更好地复习和备考。

一、概率基本概念1. 随机事件与样本空间:随机事件是对某一随机试验的结果的一种描述,样本空间是一个随机试验中可能出现的所有结果的集合。

2. 事件的概率:事件A发生的概率用P(A)表示,其计算公式为P(A) = 事件A的可能结果数 / 样本空间的结果总数。

3. 事件的互斥与对立:互斥事件指的是两个事件不可能同时发生,对立事件指的是两个事件中一个必然发生,另一个必然不发生。

4. 事件的独立性:两个事件相互独立指的是一个事件的发生不受另一个事件的影响,它们的概率计算是相互独立的。

二、排列与组合1. 排列:排列是从n个不同元素中取出m(m≤n)个元素,按一定的顺序排列成一列。

公式为An^m = n(n-1)(n-2)...(n-m+1)。

2. 组合:组合是从n个不同元素中取出m(m≤n)个元素,不考虑排列顺序。

公式为Cn^m = n! / (m!(n-m)!)。

三、事件概率的计算1. 加法定理:对于两个事件A和B,其和事件A∪B的概率为P(A∪B) = P(A) + P(B) - P(A∩B)。

2. 乘法定理:对于两个独立事件A和B,其积事件A∩B的概率为P(A∩B) = P(A) × P(B)。

3. 全概率公式:对于一组互斥事件A1、A2、...、An,其和事件A的概率为P(A) = P(A1) + P(A2) + ... +P(An)。

4. 条件概率公式:对于两个事件A和B,已知事件B发生的条件下事件A发生的概率为P(A|B) = P(A∩B) / P(B)。

四、随机变量与概率分布1. 随机变量:随机变量是随机试验结果的函数,它的取值是随机的。

概率统计每章知识点总结

概率统计每章知识点总结

概率统计每章知识点总结第一章:基本概念1.1 概率的概念1.2 随机变量及其分布1.3 大数定律和中心极限定理第一章主要介绍了概率统计的基本概念,包括概率的定义、随机变量的概念以及大数定律和中心极限定律。

概率是描述事物发生可能性的数学工具,是对随机事件发生规律的度量和描述。

随机变量是描述随机现象的数学模型,可以用来描述随机现象的特征和规律。

大数定律和中心极限定律则是概率统计中重要的两个定律,它们描述了大量独立随机变量的和的分布规律。

第二章:随机事件的概率计算2.1 古典概型2.2 几何概型2.3 等可能概型2.4 条件概率2.5 独立性第二章主要介绍了随机事件的概率计算方法,包括古典概型、几何概型、等可能概型、条件概率和独立性。

古典概型是指实验的样本空间是有限的且每个样本点的概率相等的情形,可以直接计算出随机事件的概率。

几何概型是指随机事件的概率与其所在的几何形状有关,需要通过几何方法来计算。

等可能概型是指实验的样本空间是有限的,但不同样本点的概率不一定相等,需要通过计算总体概率来计算随机事件的概率。

第三章:随机变量及其分布3.1 随机变量及其分布3.2 数学期望3.3 方差3.4 常用离散型随机变量的分布3.5 常用连续型随机变量的分布第三章主要介绍了随机变量及其分布的知识,包括随机变量的概念、数学期望、方差以及常用的离散型和连续型随机变量的分布。

随机变量是描述随机现象的数学模型,可以是离散型的也可以是连续性的。

数学期望和方差是描述随机变量分布特征的重要指标,它们能够描述随机变量的集中程度和离散程度。

离散型随机变量常用的分布包括伯努利分布、二项分布、泊松分布;连续型随机变量常用的分布包括均匀分布、正态分布、指数分布等。

第四章:多维随机变量及其分布4.1 二维随机变量4.2 多维随机变量4.3 边际分布4.4 条件分布4.5 独立性第四章主要介绍了多维随机变量及其分布的知识,包括二维随机变量、多维随机变量、边际分布、条件分布和独立性。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率与统计的复习知识点

概率与统计的复习知识点

概率与统计的复习知识点概率与统计是数学中的重要分支,在日常生活、科学研究以及各个领域都有着广泛的应用。

为了帮助大家更好地复习这部分知识,下面将对一些关键的知识点进行梳理。

一、概率的基本概念1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

例如,抛硬币时正面朝上就是一个随机事件。

2、样本空间样本空间是指随机试验中所有可能结果的集合。

比如抛一次硬币,样本空间就是{正面,反面}。

3、事件的概率事件的概率是指某个事件在一次试验中发生的可能性大小,通常用0 到 1 之间的数来表示。

概率的计算方法有古典概型、几何概型等。

古典概型是指试验中所有可能的结果是有限的,并且每个结果出现的可能性相等。

其概率计算公式为:P(A) =事件 A 包含的基本事件数/基本事件总数。

几何概型则是适用于试验中每个结果出现的可能性相等,但结果是无限个的情况。

例如,在一个区间内随机取一个点,计算该点落在某个子区间的概率。

二、概率的基本运算1、互斥事件互斥事件是指两个事件不可能同时发生。

如果事件 A 和事件 B 互斥,那么它们的和事件的概率等于各自概率之和,即 P(A∪B) = P(A) + P(B)。

2、对立事件对立事件是指两个事件非此即彼,且它们的概率之和为 1。

即事件A 的对立事件记为A,P(A) + P(A)= 1。

3、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

记作 P(B|A),其计算公式为 P(B|A) = P(AB) / P(A)。

4、乘法公式P(AB) = P(A)P(B|A) (当 A、B 相互独立时,P(AB) = P(A)P(B))三、随机变量及其分布1、随机变量随机变量是用来表示随机试验结果的变量。

它可以是离散型的,如掷骰子的点数;也可以是连续型的,如某段时间内的气温。

2、离散型随机变量的概率分布离散型随机变量的概率分布可以用分布列来表示,即列出随机变量取每个值的概率。

概率统计知识点归纳

概率统计知识点归纳

概率统计知识点归纳概率统计是数学的一个分支,研究与描述随机现象的规律和特征。

本文将归纳概率统计的一些重要知识点,包括基本概念、概率分布、参数估计、假设检验等。

1.基本概念概率统计的基本概念包括随机试验、样本空间、事件、概率以及随机变量等。

-随机试验指的是具有不确定性的实验,其结果有多种可能性。

-样本空间是随机试验所有可能结果的集合。

-事件是样本空间的子集,表示一些结果的集合。

-概率是事件发生的可能性,用一个介于0和1之间的数值表示。

-随机变量是定义在样本空间上的函数,将每个结果映射到一个实数。

2.概率分布概率分布描述了随机变量的所有可能取值及其对应的概率。

重要的概率分布包括离散概率分布和连续概率分布。

-离散概率分布是指随机变量只能取到有限个或可数个值的分布。

常见的离散概率分布有伯努利分布、二项分布和泊松分布等。

-连续概率分布是指随机变量可以取到任意实数值的分布。

常见的连续概率分布有均匀分布、正态分布和指数分布等。

3.参数估计参数估计是通过已知样本数据来估计总体参数的过程。

常见的参数估计方法有点估计和区间估计。

-点估计是通过选择一个统计量来估计总体参数的值。

常见的点估计方法有最大似然估计、矩估计和最小二乘估计等。

-区间估计是通过给出总体参数一个区间范围来估计参数的值。

常见的区间估计方法有置信区间估计和预测区间估计等。

4.假设检验假设检验用于确定观察到的样本数据是否支持或反对一些关于总体的假设。

假设检验中包括原假设和备择假设。

-原假设是对总体参数的其中一种假设,例如总体均值等于一些值。

-备择假设是对原假设的补充,如总体均值不等于一些值。

-假设检验的步骤包括建立假设、选择显著水平、计算检验统计量、计算p值和作出决策等。

5.相关性分析相关性分析用于研究两个或多个变量之间的相关性程度。

常见的相关性分析方法有协方差和相关系数。

-协方差是衡量两个变量之间关系强弱和方向的统计量。

协方差为正表示两个变量正相关,为负表示两个变量负相关。

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果.随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理)(3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) .对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 11121 …+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==n i i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()k k i i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2).(3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1).二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为:(1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()k n k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx e x f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--x t dt e x 2221)(π , Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律.2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法:(1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f k y X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y 其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) .(4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i j ij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x y y ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2 (4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) .(X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 },{j i j i p y Y x X P ==P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X离散型随机变量 连续型随机变量 分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛) 方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2 =E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p),}{},{•=====i j i i j i p p x X P y Y x X P2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,…随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如: 样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i k i k X X n B 1)(1( k=1,2,…) 二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) . 2.χ2分布 (1)定义 若X ~N (0,1 ) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2(n),且X,Y 相互独立,则t=n Y X ~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时,n S X μ-~ t (n-1) . ③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③) 22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iL θ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定.(2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间 μ σ2已知 n X σμ-~N (0,1) (2/ασz n X ±) μ σ2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差μ 1-μ 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为 ))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

概率统计各章节知识点总结

概率统计各章节知识点总结

n k 1
Xk
P
p
X1, X 2 ,, X n ,相互独立
E( Xk ) 同分布
1
n
n k 1
Xk
P
n
X1 , X 2 ,, X n ,相互独立
X k n 近似
同分布E( X k ) D( X k ) 2 k1 n
~ N (0,1)
X n ~ B(n, p)
Xn np
近似
~ N(0,1)
f ( x, y)dxdy D是积分区域g( x, y) z与f ( x, y)
D(z)
取值非零区域的交集
第四章
随机变量的数学期望与方差
离散型随机变量
X
E( X ) xk pk
k 1
Y g( X ) E(Y ) E[g( X )]
g连续
g( xk ) pk
k 1
连续型随机变量
E( X ) xf ( x)dx
第三章 第四节 两个随机变量的函数的分布
Z g(X ,Y ) f ( X ,Y ) fZ (z) ? f Z (z) FZ (z)
1)Z X Y
fZ (z)
f (z y, y)dy
f X (z y) fY ( y)dy
2)Z max{X ,Y } Z min{X ,Y }
np(1 p)
第六章
常用统计量及抽样分布
2分布
X i ~ N (0,1) i 1,2,, n 独立
n
2
X
2 i
~
2(n)
i 1
2 (n)
E( 2 ) n D( 2 ) 2n 2 (n) 1 2(z
X ~ N (0,1), Y ~ 2 (n), 独立

概率统计公式大全复习重点

概率统计公式大全复习重点

概率统计公式大全复习重点Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,为不可能事件。

不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计总复习讲义第一讲 随机事件及其概率一 随机事件,事件间的关系及运算 1.样本空间和随机事件样本点,样本空间,随机事件,必然事件,不可能事件,基本事件. 2.事件关系和运算 ⑴事件的关系 ⑵事件的运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ⋂=⋃,B A B A ⋃=⋂; 二 概率的定义和性质 1.公理化定义(P12)2.概率的性质(P12.五个)⑴)(1)(A P A P -=; ⑵)()()()(AB P B P A P B A P -+=⋃;例题 ①设A,B 是两个独立事件,已知P(A) =0.5,P(B) =0.7,试求)(B A P ⋃. ②已知事件A 与B 独立,且1()9P AB =,()()P AB P AB =,求()P A ,()P B 。

3.古典概型和几何概型例题 ⑴总经理的五位秘书中有三位精通英语,今偶遇其中的两位秘书,设其中精通英语的人数为X ,求: ①X 的分布律; ②EX⑵两个人约定在下午3点到4点内在某地见面,先到者等对方20分钟后就离去,求两人能见面的概率; ⑶随机地向半圆220x ax y -<<内投掷一点,点落在半圆内任意区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率。

4.条件概率 )()()|(A P AB P A B P =三 常用的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P19.)例题 ⑴ 在一个人群中男女人数各半。

其中男性中有5%为色盲,女性中有0.25%为色盲。

现在从该人群中任意的挑选一人,求:①该人是色盲的概率; ②已知该人是色盲,求此人是男性的概率;⑵发报台分别以概率0.6和0.4发出信号“*”和“—”。

由于通讯系统受到干扰,当发出“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0 .2收到信号“*”和“—”; 同样,当发出信号“—”时,收报台分别以概率 0.9 和0.1收到信号“—”和“*”。

求①收报台收到信号“*”的概率;②当收报台收到信号“*”时,发报台确实是发信号“*”的概率;参考习题 P20之例4;P 28之5,6,9; 四 事件的独立性1.定义:A 和B 相互独立 )()(B P A B P =或)()()(B P A P AB P ⋅=, 例题 P23之例8;P24之例9;2.贝努利试验 在n 重贝努利试验中,事件=k A {A 恰好发生k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(例题 P26之例11;P28之20;第二讲 随机变量及其概率分布一 随机变量及其分布函数 1.随机变量2.分布函数 )()(x X P x F ≤=)(+∞<<-∞x3.分布函数的性质(P32.五个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常用来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常用来求概率)例 ⑴设随机变量X 的分布函数为⎩⎨⎧>+-≤=-0,)1(0,0)(x e x A x x F x,求 ①参数A ; ②X 的密度函数; ③)11(<<-X P ; 参考习题 P47之19;二 离散型随机变量及其分布律 1.分布律2.常用的离散型分布⑴10-分布:⎪⎪⎭⎫ ⎝⎛-p pX 110~ ⑵二项分布:kn kkn p p C k X P --==)1()(),,2,1,0(n k =例题 P.36之6,7;3.泊松分布:),2,1,0(!)( ===-λλλe k k X P k例题 P38之例10;P46之9; 三 连续型随机变量 1.密度函数 ⎰∞-=xdt t f x F )()(2.密度函数的性质(P39.五个) ⑴1)(=⎰+∞∞-dx x f ;(常用来确定密度函数中的参数) ⑵⎰=≤<badx x f b X a P )()(;(计算概率的重要公式) ⑶对R x ∈∀,有0)(==c X P (换言之,概率为0的事件不一定是不可能事件). 例题 P40之例12;P47之12,13;3.常用连续型分布⑴均匀分布:⎪⎩⎪⎨⎧<<-=other bx a a b x f ,0,1)(⑵指数分布:⎩⎨⎧>=-other x e x f x ,00,)(λλ例题 P42之例14;P47之20; ⑶正态分布:)0,(21)(222)(>=--σσμσπσμ都是常数,x ex f 标准正态分布)1,0(N :2221)(x ex f -=π例题 P44之例16,17;P48之24; 四 随机变量函数的分布1.离散情形 设X 的分布律为则)(X g Y =的分布律为例题 P66之例1;2.连续情形 设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。

⑴求Y 的分布函数:=≤=≤=))(()()(y X g P y Y P y F Y dx x f yx g X ⎰≤)()(⑵求Y 的密度函数:)()(y F y f Y Y '= 例题 ⑴ P68之例2,3;P70之例4;⑵)1,11(~N X ,⎪⎩⎪⎨⎧>-≤≤<-=12,51210,2010,1X X X Y ,试求Y 的分布律。

第三讲 二维随机变量及其概率分布一 二维随机变量的分布函数及边缘分布函数 1.二维随机变量2.联合分布函数:),(),(y Y x X P y x F ≤≤=3.联合分布函数的性质(P49.五个);4.边缘分布函数:),(lim )(y x F x F y X +∞→= , ),(lim )(y x F y F x Y +∞→=二 二维离散型随机变量的分布律和边缘分布律 1.二维离散型随机变量的分布律和边缘分布律例题 P51之例2;P64之2; 三 二维连续型随机变量 1.联合密度函数:ds dt t s f y x F x y⎰⎰∞-∞-=),(),(2.联合密度函数的性质(P52.四个)⑴1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ;(常用来确定密度函数中的参数) ⑵dxdy y x f D Y X P D⎰⎰=∈),()),((,其中2R D ⊂;(计算概率的重要公式) 例题 P53之例3;3.边缘密度函数:⎰+∞∞-=dy y x f x f X ),()( )(+∞<<-∞x⎰+∞∞-=dx y x f y f Y ),()( )(+∞<<-∞x例题 P65之12,13⑵;四 随机变量的独立性Y X ,相互独立:)()(),(y F x F y x F Y X =离散情形:j i ij p p p ∙∙= ),2,1,( =j i 连续情形:)()(),(y f x f y x f Y X = 例题 ⑴P59之例9,10;⑵设二维随机变量 (X , Y)的联合密度函数为⎩⎨⎧>>=+-other x e y x f y x ,00,0,12),()43( 证明X 与Y 相互独立。

五 二维均匀分布和二维正态分布1.二维均匀分布:⎪⎩⎪⎨⎧⊂∈=other R G y x G y x f ,0),(,1),(2的面积例题 P53之例4;2.二维正态分布结论 ⑴设),,,,(~),(222121ρσσμμN Y X ,则X 和Y 相互独立0=⇔ρ;⑵设),,,,(~),(222121ρσσμμN Y X ,则),(~211σμN X ,),(~222σμN Y ; ⑶设X 和Y 相互独立,且),(~211σμN X ,),(~222σμN Y ,b a ,为常数,则),(~22221221σσμμb a b a N bY aX +++特别地,),(~2121σμa b a N b aX ++,)1,0(~11N X σμ-;六 二维随机变量的函数及其分布 1.),(Y X 为二维离散型随机变量例题 P71之例6,8;2.),(Y X 为二维连续型随机变量设),(Y X 为二维连续型随机变量,其联合密度函数为),(y x f ,则),(Y X g Z = 的密度函数的计算方法为: ⑴先计算联合分布函数:)),(()()(z Y X g P z Z P z F Z ≤=≤=dxdy y x f zy x g ⎰⎰≤=),(),(⑵再对联合分布求导得到联合密度: )()(z F z f ZZ '= 例题 P74之例10;第四讲 随机变量的数字特征一 数学期望 1定义⑴离散情形 iiip x X E ∑=)( , iiip x g X g E ∑=)())((⑵连续情形 ⎰+∞∞-=dx x xf X E )()( , ⎰+∞∞-=dx x f x g X g E )()())((例题 P78之例1,4;P93之1;P80之例6,8,P94之8; ⑶二维随机变量的函数的期望 ①离散情形 ij ji jip yx g Y X g E ∑=,),()),((②连续情形 ⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()),((二 期望的性质⑴c c E =)( ⑵)()()(Y bE X aE bY aX E +=+⑶若X 和Y 独立,则)()()(Y E X E XY E =; 例题 P82之例11; 三 方差和标准差1.方差:222))(()(]))([()(X E X E X E X E X D -=-=;标准差:)()(X D X =σ;例题 P94之8,9; 2.方差的性质⑴0)(=c D ; ⑵)()(2X D a aX D =; ⑶若X 和Y 独立,则)()()(Y D X D Y X D +=±;3.常见随机变量的分布律(密度函数),数学期望和方差四 协方差和相关系数1.协方差 )()()())]())(([(),cov(Y E X E XY E Y E Y X E X E Y X -=--= 例题 ⑴P86之例19;P94之9;2.相关系数:)()(),cov(,Y X Y X Y X σσρ⋅=四 原点矩与中心矩:k 阶原点矩:)(kX E ;k 阶中心矩:]))([(kX E X E -;第五讲 大数定律和中心极限定理一 切比雪夫不等式设随机变量X 的期望μ和方差2σ存在,则对0>∀ε,22)|(|εσεμ≤>-X P例题 P95之17,18;二 贝努利大数定律和切比雪夫大数定律三 棣莫弗-拉普拉斯中心极限定理设 ,,21X X 是独立同分布的随机变量序列,且),1(~p B X i ,),2,1( =i ,∑==ni i n X Y 1,则对R x ∈∀,总有)())1((lim x x p np np Y P n n Φ=≤--∞→这里)(x Φ是标准正态分布的分布函数。

相关文档
最新文档