linear algebra
Linear_algebra_1
Linear algebra
徐 明 华 Xu Minghua 数理学院 School of Mathematics and Physics, Changzhou University 2010年1月
前言
研究内容 线 性 代 数(Linear Algebra)是 数 学 的 一 个 分 支, 它 的 研 究 对 象 是 向 量 , 向 量 空 间 (或 称 线 性 空 间 ), 线 性 变 换 和 有 限 维 线 性 方 程 组 . 矩 阵 是 用 来 表示向量之间的关系、线性变换、线性方程组及其解的重要工具. 应用领域 • 在 数 学 、 力 学 、 物 理 、 管 理 等 学 科 中 有 各 种 重 要 应 用; 是 计 算 机 图 形 学、计算机辅助设计、密码学等学科的基础或工具; • 是 进 行 科 学 计 算 的 基 础; 实 际 问 题 大 多 数 为 非 线 性 问 题, 而 非 线 性 问 题 通 常 可 以 被 近 似 为 线 性 问 题, 即 可 以 线 性 化, 随 着 计 算 机 的 发 展, 线 性 问 题 又 可 以 计 算 出 来, 因 此, 线 性 代 数 是 解 决 这 些 实 际 问 题 给 定 的 四 个 数 : a11, a12, a21, a22, 按 照 下 述 方 式 排 成 队 二 行 二 列的数表 a11 a21 a11 a21 a12 a22 a12 a22,
规 定表 达式 a11a22 − a12a21为上 述 数表 的二 阶行 列 式, 记 为 = a11a22 − a12a21,
14
• 当 a < b时 , 经对 换后a的逆 序 数增 加1, 而b的逆 序数 不 变; • 当 a > b时 , 经对 换后a的逆 序 数不 变, 而 b的 逆序 数减 少1. 所以下面两个排列 a1 · · · al abb1 · · · bm, 的奇偶性不同. 再证一般对换的情形. 设排列 a1 · · · al ab1 · · · bmbc1 · · · cn 交 换a, b得到 a1 · · · al bb1 · · · bmac1 · · · cn. (2) (1) a1 · · · al bab1 · · · bm
哈工大选修课 LINEAR ALGEBRA 试卷及答案
LINEAR ALGEBRAANDITS APPLICATIONS 姓名:易学号:成绩:1. Definitions(1) Pivot position in a matrix; (2) Echelon Form; (3) Elementary operations;(4) Onto mapping and one-to-one mapping; (5) Linearly independence.2. Describe the row reduction algorithm which produces a matrix in reduced echelon form.3. Find the 33⨯ matrix that corresponds to the composite transformation of a scaling by 0.3, a rotation of 90︒, and finally a translation that adds (-0.5, 2) to each point of a figure.4. Find a basis for the null space of the matrix361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦5. Find a basis for Col A of the matrix1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦6. Let a and b be positive numbers. Find the area of the region bounded by the ellipse whose equation is22221x y ab+=7. Provide twenty statements for the invertible matrix theorem. 8. Show and prove the Gram-Schmidt process. 9. Show and prove the diagonalization theorem.10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Answers:1. Definitions(1) Pivot position in a matrix:A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.(2) Echelon Form:A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:1.All nonzero rows are above any rows of all zeros.2.Each leading entry of a row is in a column to the right of the leading entry of the row above it.3.All entries in a column below a leading entry are zeros.If a matrix in a echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):4.The leading entry in each nonzero row is 1.5.Each leading 1 is the only nonzero entry in its column.(3)Elementary operations:Elementary operations can refer to elementary row operations or elementary column operations.There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations):1.(Replacement) Replace one row by the sum of itself anda multiple of another row.2.(Interchange) Interchange two rows.3.(scaling) Multiply all entries in a row by a nonzero constant.(4)Onto mapping and one-to-one mapping:A mapping T : n →m is said to be onto m if each b in m is the image of at least one x in n.A mapping T : n →m is said to be one-to-one if each b in m is the image of at most one x in n.(5)Linearly independence:An indexed set of vectors {V1, . . . ,V p} in n is said to be linearly independent if the vector equationx 1v 1+x 2v 2+ . . . +x p v p = 0Has only the trivial solution. The set {V 1, . . . ,V p } is said to be linearly dependent if there exist weights c 1, . . . ,c p , not all zero, such that c 1v 1+c 2v 2+ . . . +c p v p = 02. Describe the row reduction algorithm which produces a matrix in reduced echelon form. Solution: Step 1:Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top. Step 2:Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position. Step 3:Use row replacement operations to create zeros in all positions below the pivot. Step 4:Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there all no more nonzero rows to modify. Step 5:Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by scaling operation.3. Find the 33⨯ matrix that corresponds to the composite transformation of a scaling by 0.3, a rotation of 90︒, and finally a translation that adds (-0.5, 2) to each point of a figure. Solution:If ψ=π/2, then sin ψ=1 and cos ψ=0. Then we have ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110003.00003.01y x y x scale⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−110003.00003.0100001010y x R o t a t e⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−110003.00003.0100001010125.0010001y x T r a n s l a t eThe matrix for the composite transformation is ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003.00003.0100001010125.0010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=10003.00003.0125.0001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=125.0003.003.004. Find a basis for the null space of the matrix 361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦Solution:First, write the solution of A X=0 in parametric vector form: A ~ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---00002302101000201, x 1-2x 2 -x 4+3x 5=0 x 3+2x 4-2x 5=0 0=0The general solution is x 1=2x 2+x 4-3x 5, x 3=-2x 4+2x 5, with x 2, x 4, and x 5 free. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+--+=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10203012010001222325425454254254321x x x x x x x x x x x x x x x xu v w=x 2u+x 4v+x 5w (1)Equation (1) shows that Nul A coincides with the set of all linear conbinations of u, v and w . That is, {u, v, w}generates Nul A. In fact, this construction of u, v and w automatically makes them linearly independent, because (1) shows that 0=x 2u+x 4v+x 5w only if the weights x 2, x 4, and x 5 are all zero.So {u, v , w} is a basis for Nul A.5. Find a basis for Col A of the matrix 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦Solution: A ~ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---07490012002300130001, so the rank of A is 3. Then we have a basis for Col A of the matrix: U = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001, v = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0013and w = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--07496. Let a and b be positive numbers. Find the area of the region bounded by the ellipse whose equation is22221x y ab+=Solution:We claim that E is the image of the unit disk D under the linear transformation Tdetermined by the matrix A=⎥⎦⎤⎢⎣⎡b a 00, because if u= ⎥⎦⎤⎢⎣⎡21u u , x=⎥⎦⎤⎢⎣⎡21x x , and x = Au, then u 1 =ax 1 and u 2 =bx 2It follows that u is in the unit disk, with 12221≤+u u , if and only if x is in E , with1)()(2221≤+b x a x . Then we have{area of ellipse} = {area of T (D )} = |det A| {area of D} = ab π(1)2= πab7. Provide twenty statements for the invertible matrix theorem.Let A be a square n n ⨯ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or false. a. A is an invertible matrix.b. A is row equivalent to the n n ⨯ identity matrix.c. A has n pivot positions.d. The equation Ax = 0 has only the trivial solution.e. The columns of A form a linearly independent set.f. The linear transformation x → Ax is one-to-one.g. The equation Ax = b has at least one solution for each b in n.h. The columns of A spann.i. The linear transformation x → Ax maps nonton.j. There is an n n ⨯ matrix C such that CA = I. k. There is an n n ⨯ matrix D such that AD = I. l. A T is an invertible matrix. m. If 0A ≠, then ()()T11T A A --=n. If A, B are all invertible, then (AB)* = B *A *o. T**T )(A )(A =p. If 0A ≠, then ()()*11*A A --=q. ()*1n *A 1)(A --=-r. If 0A ≠, then ()()L11L A A --= ( L is a natural number )s. ()*1n *A K)(KA --=-t. If 0A ≠, then *1A A1A =-8. Show and prove the Gram-Schmidt process.Solution:The Gram-Schmidt process:Given a basis {x 1, . . . , x p } for a subspace W of n, define11x v = 1112222v v v v x x v ⋅⋅-=222231111333v v v v x v v v v x x v ⋅⋅-⋅⋅-=. ..1p 1p 1p 1p p 2222p 1111p p p v v v v x v v v v x v v v v x x v ----⋅-⋅⋅⋅-⋅⋅-⋅⋅-=Then {v 1, . . . , v p } is an orthogonal basis for W. In additionSpan {v 1, . . . , v p } = {x 1, . . . , x p } for p k ≤≤1 PROOFFor p k ≤≤1, let W k = Span {v 1, . . . , v p }. Set 11x v =, so that Span {v 1} = Span {x 1}.Suppose, for some k < p, we have constructed v 1, . . . , v k so that {v 1, . . . , v k } is an orthogonal basis for W k . Define1k w1k 1k x p r o j x v k+++-= By the Orthogonal Decomposition Theorem, v k+1 is orthogonal to W k . Note that proj Wk x k+1 is in W k and hence also in W k+1. Since x k+1 is in W k+1, so is v k+1 (because W k+1 is a subspace and is closed under subtraction). Furthermore, 0v 1k ≠+ because x k+1 is not in W k = Span {x 1, . . . , x p }. Hence {v 1, . . . , v k } is an orthogonal set of nonzero vectors in the (k+1)-dismensional space W k+1. By the Basis Theorem, this set is an orthogonal basis for W k+1. Hence W k+1 = Span {v 1, . . . , v k+1}. When k + 1 = p, the process stops.9. Show and prove the diagonalization theorem. Solution:diagonalization theorem:If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal. PROOFLet v 1 and v 2 be eigenvectors that correspond to distinct eigenvalues, say, 1λand 2λ. T o show that 0v v 21=⋅, compute2T 12T 11211v )(A v v )v (λv v λ==⋅ Since v 1 is an eigenvector ()()2T12T T1Avv v A v ==)(221v v Tλ=2122T12v v λv v λ⋅==Hence ()0v v λλ2121=⋅-, but ()0λλ21≠-, so 0v v 21=⋅10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent. Solution:If v 1, . . . , v r are eigenvectors that correspond to distinct eignvalues λ1, . . . , λr of an n n ⨯ matrix A.Suppose {v 1, . . . , v r } is linearly dependent. Since v 1 is nonzero, Theorem, Characterization of Linearly Dependent Sets, says that one of the vectors in the set is linear combination of the preceding vectors. Let p be the least index such that v p +1 is a linear combination of he preceding (linearly independent) vectors. Then there exist scalars c 1, . . . ,c p such that 1p p p 11v v c v c +=+⋅⋅⋅+ (1) Multiplying both sides of (1) by A and using the fact that Av k = λk v k for each k, we obtain 111+=+⋅⋅⋅+p p p Av Av c Av c11111++=+⋅⋅⋅+p p p p p v v c v c λλλ (2) Multiplying both sides of (1) by 1+p λ and subtracting the result from (2), we have0)()(11111=-+⋅⋅⋅+-++p p p p c v c λλλλ (3) Since {v 1, . . . , v p } is linearly independent, the weights in (3) are all zero. But none of the factors 1+-p i λλ are zero, because the eigenvalues are distinct. Hence 0=i c for i = 1, . . . ,p. But when (1) says that 01=+p v , which is impossible. Hence {v 1, . . . , v r } cannot be linearly dependent and therefore must be linearly independent.。
线性代数Linear Algebra总结
MATRICES· SOME DEFINITIONS
• Matrix: A rectangular array of numbers (named with capital letters) called entries with the size of the matrix described by the number of rows (horizontals) and columns (verticals); for example, a 3 by 4 matrix (3 X 4) has 3 rows and 4 columns;
o ~ 1 -2lFra bibliotek7 300 5 and this is a diagonal matrix 0 - 2 0 0 0 1
• Identity matrix (denoted by I): A square matrix with entries that are all' zeros except entries on the main diagonal, which must all equal the number one • Triangular matrix: A square matrix with all entries below the main diagonal equal to zero (upper triangular), or with all entries above the main diagonal equal to zero (lower triangular) • Equal matrices: Are the same size and have equal entries • Zero matrix: Every entry is the number zero • Scalar: A magnitude or a multiple • Row equivalent matrices: Can be produced through a sequence of row operations, such as: • Row interchange: Interchanging any 2 rows • Row scaling: Multiplying a row by any nonzero number • Row addition: Replacing a row with the sum of itself and any other row or multiple of that other row • Column equivalent matrices: Can be produced through a sequence of column operations, such as: • Column interchange: interchanging any 2 columns • Column scaling: multiplying a column by any nonzero number • Column addition: replacing a column with the sum of itself and any other column or multiple of that other column. • Elementary matrices: Square matrices that can be obtained from an identity matrix, I, of the same dimensions through a single row operation • The rank of matrix A, denoted rank(A), is the common dimension of the row space and column space of matrix A • The nullity of matrix A, denoted nullity(A), is the dimension of the nullspace of A
数据建模-linear Algebra
二、矩阵运算
向量相加————元素分别相加; 向量相等————元素分别相等; 向量数乘————实数分别乘以各元素; 向量相乘————行向量在前,列向量在后;两个向
量相乘得到实数。
三、矩阵相乘举例
1
2
3
8 9
11 12
56
74
10 13
1 4
2 5
3 6
7 8 9
15400
1 4
2 5
Байду номын сангаас63
7 8 9
量组,极大线性无关部分组的个数不超过m。 举例 六、矩阵的秩 矩阵的秩等于其行向量组的秩或其列向量组的秩。
返回
线性代数知识回顾
一.矩阵与向量 由m×n个数排成的m行n列的数表
a11 a21
a12 a22
a1n a2n
am1 am2 amn
称为一个m×n矩阵
• 当n=1时,矩阵称为一个列向量,即
a1
B
a2
am
• 当m=1时,矩阵称为一个行向量,即 A=(a1,a2,…,an)
10 11 12
15400
16687
四、向量组的线性相关与线性无关
给定向量组α1,α2,…,αS 及实数k,若由下式
成立时
k1α1+k2α2+…+kSαS = 0 必推出 k1 = k2 = … = kS= 0
则称该向量组线性无关。 举例:
五、向量组的秩 向量组极大线性无关部分组的个数;对于任意m维的向
大一线性代数课本
大一线性代数课本1. Linear algebra is the study of linear equations and their properties.2. A linear equation is an equation of the form ax + b = 0, where a and b are real numbers.3. A system of linear equations is a set of two or more linear equations.4. A matrix is a rectangular array of numbers, symbols, or expressions.5. The inverse of a matrix is a matrix that when multiplied by the original matrix yields the identity matrix.6. The determinant of a matrix is a number that can be used to determine the solution of a system of linear equations.7. The rank of a matrix is the number of non-zero rows or columns in the matrix.8. The null space of a matrix is the set of all solutions to the system of linear equations.9. The eigenvalues of a matrix are the values of the matrix that remain unchanged when the matrix is multiplied by a vector.10. The eigenvectors of a matrix are the vectors that remain unchanged when the matrix is multiplied by the vector.11. The trace of a matrix is the sum of the diagonal elements of the matrix.12. The transpose of a matrix is the matrix obtained by interchanging the rows and columns of the original matrix.13. The adjoint of a matrix is the matrix obtained by taking the transpose of the cofactor matrix of the original matrix.14. The characteristic polynomial of a matrix is a polynomial equation that can be used to determine the eigenvalues of the matrix.15. The singular value decomposition of a matrix is a decomposition of the matrix into a product of three matrices.。
线性代数重点词汇
线性代数——Linear algebras第一章行列式——Chapter 1. 奇排列Odd行列式Determinant行Row列Column主对角线Leading次对角线Minor三角行列式Triangular余子式Cofactor代数余子式Algebra子式Minor子行列式Minor Determinantpermutationdiagonal;Principal diagonaldiagonal;Secondary diagonaldeterminant;Complement minorCofactordeterminant;Subdeterminant;Underdeterminant第二章矩阵——Chapter 2. 矩阵Matrix方阵Square矩阵的阶零矩阵Null矩阵的元素对角阵Diagonal单位矩阵Identity三角矩阵Triangular上三角矩阵下三角矩阵转置Transpose矩阵的转置转置矩阵Transposed 对称矩阵Symmetric反对称Inverse反对称矩阵Anti-symmetric 矩阵乘法左乘法Left右乘Postmultiplication 幂等矩阵Idempotent 幂零矩阵Nilpotent 可逆Invertible非奇异的Nonsingular 非奇异矩阵Nonsingular 奇异的Singular奇异矩阵Singular互逆的Mutually不可逆Irreversible逆矩阵Inverse互逆矩阵ReciprocalMatrixmatrixOrder of a matrixmatrixElement of matrixmatrixmatrixmatrixUpper triangular matrixLower triangular matrixTranspose of a matrixmatrixmatrixsymmetricmatrix;Inverse symmetric matrix Multiplication of matricesmultiplicationmatrixmatrix;Reversiblematrixmatrixinverse matrix;Invertible matrix matrix伴随矩阵Adjoint分块矩阵Partitioned 分块对角矩阵Block 子块Subblock子矩阵Submatrix秩Rank行秩Row列秩Column满秩Full变换Transform初等变换Elementary 等价变换Equivalencematrixmatrixdiagonal matrixrankrankrank;Transformationtransformationtransformation第三章向量与线性方程组——Chapter 3. Vector and linear equation system 消元法Elimination向量Vector行向量Row列向量Column零向量Null非零向量Non-vanishing 线性相关Linear线性无关Linear部分相关Part线性表示Linear线性方程Linear线性方程组非线性方程组齐次Homogeneous 非齐次Inhomogeneous 非齐次线性方程系数矩阵Matrix增广矩阵Augmented唯一解Unique零解Null非零解Untrivial基本解Fundamental基础解系解向量Solutionvectorvectorvectorvectordependence;Linearly dependent;Linear correlationindependence;Linearly independentcorrelationexpression;Linear representationequationSystem of linear equations System of nonlinear equationsHomogeneous linear equationNon-homogeneous linear equationof coefficientsmatrixsolutionsolutionsolutionsolutionFundamental system of solutions;System of fundamental solutions vector第四章向量空间——Chapter 4. 空间Space线性空间Linearn 维空间n-dimensional多维的Multidimensional Vector spacespacespace2度量空间Metric基Basis基变换Change内积Inner向量内积向量积Vector单位向量Unit正交的Orthogonal正交向量Orthogonal两两正交Pairwise正交基Orthogonal标准正交基Normal正交化Orthogonalization 斯密特正交化法Schmidt’sspaceof baseproduct;Interior product;Dot product Inner product of vectorproductvectorvectorsorthogonalbasisorthogonal basis;Orthonormal basisorthogonalization第五章特征值与特征向量——Chapter 5. Eigenvalue and eigenvector特征多项式Eigenpolynomial特征根Characteristic特征值Eigenvalue特征向量Eigenvector迹Trace矩阵的迹Matrix多重特征值Multiple特征值的重数Multiplicity 相似性Similarity相似矩阵Similar相似变换Similarity变换矩阵Transformation逆变换Inverse 矩阵的对角化Diagonalization 约当标准型约当矩阵Jordan第六章二次型——Chapter 6. 齐次多项式Homogeneous 二次齐次多项式n 次齐次多项式二次型Quadratic实二次型二次型的矩阵线性变换Linear非奇异线性变换Nonsingular 标准型Canonical配方法root;Characteristic value;Characteristic vector;Spurtrace;Spur of matrixeigenvaluesof eigenvaluematricestransformation;Equiform transformationmatrixtransformationtransformationof matrixJordan canonical formmatrixQuadratic formpolynomial Quadratic homogeneous polynomial Homogeneous polynomial of degree nform;Quadric formReal quadratic formMatrix of a quadratic formtransformationlinear transformationformMethod of completing the square3定二次型正定的Positive正定矩阵Positive正定二次型正定对称矩阵半定二次型Semi-definite 半正定的Positive半正定型Semi-positive 半正定矩阵半正定二次型不定二次型Indefinite 负定矩阵负定二次型Definite quadratic formdefinitedefinite matrixPositive definite quadratic form Positive definite symmetricmatrixquadratic formsemi-definitedefinite form Positive semi-definite matrix Positive semi-definite quadratic formquadratic formNegative definite matrix Negative definite quadraticform。
Linear Algebra (chapter2)03
§2.8 Subspace of Rn
Example 3 For v1,…,vp in Rn, the set of all linear combinations of v1,…,vp is a subspace of Rn. The verification of this statement is similar to the argument given in Example 1. We shall now refer to Span {v1,…,vp} as the subspace spanned by v1,…,vp . special subspace: Rn , zero subspace.
§2.8 Subspace of Rn
3. Basis for a Subspace Definition A basis (基) for a subspace H of Rn is a linearly independent set in H that spans H. Example 5 The columns of an invertible n×n matrix form a basis for all of Rn.(why?) The set {e1,…,e2} is called the standard basis for Rn.
Thus The basis B determines a “coordinate system” on H.
§2.9 Dimension and Rank(维数与秩)
1. Coordinate Systems 2. The Dimension of a Subspace 3. Rank and the Invertible Matrix Theorem
introduction to linear algebra 每章开头方框-概述说明以及解释
introduction to linear algebra 每章开头方框-概述说明以及解释1.引言1.1 概述线性代数是数学中的一个重要分支,主要研究向量空间和线性变换的性质及其应用。
它作为一门基础学科,在多个领域如物理学、计算机科学以及工程学等都有广泛的应用。
线性代数的研究对象包括向量、向量空间、矩阵、线性方程组等,通过对其性质和运算法则的研究,可以解决诸如解线性方程组、求特征值与特征向量等问题。
线性代数的基本概念包括向量、向量空间和线性变换。
向量是指在空间中具有大小和方向的量,可以表示为一组有序的实数或复数。
向量空间是一组满足一定条件的向量的集合,对于向量空间中的任意向量,我们可以进行加法和数乘运算,得到的结果仍然属于该向量空间。
线性变换是指将一个向量空间映射到另一个向量空间的运算。
线性方程组与矩阵是线性代数中的重要内容。
在实际问题中,常常需要解决多个线性方程组,而矩阵的运算和性质可以帮助我们有效地解决这些问题。
通过将线性方程组转化为矩阵形式,可以利用矩阵的特殊性质进行求解。
线性方程组的解可以具有唯一解、无解或者有无穷多解等情况,而矩阵的行列式和秩等性质能够帮助我们判断线性方程组的解的情况。
向量空间与线性变换是线性代数的核心内容。
向量空间的性质研究可以帮助我们理解向量的运算和性质,以及解释向量空间的几何意义。
线性变换是一种将一个向量空间映射到另一个向量空间的运算,通过线性变换可以将复杂的向量运算问题转化为简单的矩阵运算问题。
在线性变换中,我们需要关注其核、像以及变换的特征等性质,这些性质可以帮助我们理解线性变换的本质和作用。
综上所述,本章节将逐步介绍线性代数的基本概念、线性方程组与矩阵、向量空间与线性变换的相关内容。
通过深入学习和理解这些内容,我们能够掌握线性代数的基本原理和应用,为进一步研究更高级的线性代数问题打下坚实的基础。
1.2文章结构在文章结构部分,我们将介绍本文的组织结构和各章节的内容概述。
学习矩阵论有什么书推荐?
矩阵论是现代数学中的重要分支,它在各个领域中都有广泛的应用,如物理学、计算机科学、统计学等。
学习矩阵论可以帮助我们更好地理解和解决实际问题,因此推荐以下几本书籍供大家参考。
1.《线性代数及其应用》(Linear Algebra and Its Applications)这是一本经典的线性代数教材,由Gilbert Strang撰写。
这本书详细介绍了线性代数的基本概念,如向量、矩阵、线性变换等,并探讨了线性代数在各个领域中的应用。
书中还包括了大量的例题和习题,帮助读者更好地理解和掌握知识。
2.《矩阵分析与应用》(Matrix Analysis and Applied Linear Algebra)这是一本由Carl D. Meyer撰写的矩阵论教材,它介绍了矩阵论的基本理论和应用。
书中包括了大量的例题和习题,可以帮助读者更好地理解和掌握知识。
书中还介绍了一些高级的矩阵理论,如奇异值分解、特征值分解等,这些理论在实际问题中有着广泛的应用。
3.《矩阵计算》(Matrix Computations)这是一本由Gene H. Golub和Charles F. Van Loan撰写的矩阵论教材,它介绍了矩阵计算的基本理论和算法。
书中包括了大量的算法和代码实现,可以帮助读者更好地理解和掌握知识。
书中还介绍了一些高级的矩阵计算方法,如特征值计算、奇异值计算等,这些方法在实际问题中有着广泛的应用。
通过学习以上推荐的书籍,我们可以深入了解矩阵论的基本理论和应用,掌握矩阵计算的基本算法和方法,从而更好地解决实际问题。
学习矩阵论是非常重要的,它不仅可以帮助我们理解和解决实际问题,还可以提高我们的数学素养和分析能力。
我推荐大家选择一本适合自己的矩阵论教材,认真学习并掌握其中的知识。
LINEAR ALGEBRA 线性代数 课文 翻译
4 LINEAR ALGEBRA 线性代数“Linear algebra” is the study of linear sets of equations and their transformation properties. 线性代数是研究方程的线性几何以及他们的变换性质的Linear algebra allows the analysis of rotations in space, least squares fitting, solution of coupled differential equations, determination of a circle passing through three given points, as well as many other problems in mathematics, physics, and engineering.线性代数也研究空间旋转的分析,最小二乘拟合,耦合微分方程的解,确立通过三个已知点的一个圆以及在数学、物理和机械工程上的其他问题The matrix and determinant are extremely useful tools of linear algebra.矩阵和行列式是线性代数极为有用的工具One central problem of linear algebra is the solution of the matrix equation Ax = b for x. 线性代数的一个中心问题是矩阵方程Ax=b关于x的解While this can, in theory, be solved using a matrix inverse x = A−1b,other techniques such as Gaussian elimination are numerically more robust.理论上,他们可以用矩阵的逆x=A-1b求解,其他的做法例如高斯消去法在数值上更鲁棒。
linear algebra done right和丘维声高等代数-概述说明以及解释
linear algebra done right和丘维声高等代数-概述说明以及解释1.引言1.1 概述概述本文将介绍《Linear Algebra Done Right》和丘维声所著《高等代数》这两本经典的线性代数教材。
线性代数作为数学领域中的重要分支,研究了向量、向量空间、线性映射以及线性方程组等概念和性质。
它在科学、工程和经济等各个领域中都有着广泛的应用。
首先,我们将简要介绍《Linear Algebra Done Right》这本书。
这是一本由Sheldon Axler撰写的线性代数教材,以其独特的视角和简洁的风格而闻名。
与传统的线性代数教材不同,Axler的书籍更加关注线性代数的核心思想和概念,强调线性代数的几何直观和抽象代数结构的统一性。
在《Linear Algebra Done Right》中,Axler通过引入向量空间和线性映射的概念来建立线性代数的理论框架。
他讲解了基础的线性代数知识,如向量空间的定义、线性映射的性质和矩阵的表示等。
此外,Axler还探讨了线性代数的一些重要应用,例如特征值和特征向量、正交性和内积空间等。
他以简明的语言和丰富的例子来阐释概念,使读者能够深入理解线性代数的本质。
另一本讨论线性代数的书籍是丘维声的《高等代数》。
丘维声是中国著名数学家,他的《高等代数》是许多大学线性代数课程的教材。
这本书在中国乃至国际上都享有高度声誉,被广大学生和教师所推崇。
丘维声的《高等代数》系统地介绍了线性代数的基础理论和应用。
这本书既从几何的角度来理解线性代数,也从代数的角度进行了深入探讨。
丘维声详细阐述了向量和矩阵的运算法则,矩阵的秩和行列式以及线性方程组的解法等内容。
此外,他还介绍了线性代数的一些高级概念,如特征值和特征向量、正交变换和相似矩阵等。
两本书籍在内容和风格上有所不同,但都对线性代数的基础知识和应用进行了全面的讲解。
本文将针对这两本书的主要内容进行概括和比较,以帮助读者选择适合自己学习线性代数的教材。
LINEAR ALGEBRA 线性代数 课文 翻译
4 LINEAR ALGEBRA 线性代数“Linear algebra” is the study of linear sets of equations and their transformation properties. 线性代数是研究方程的线性几何以及他们的变换性质的Linear algebra allows the analysis of rotations in space, least squares fitting, solution of coupled differential equations, determination of a circle passing through three given points, as well as many other problems in mathematics, physics, and engineering.线性代数也研究空间旋转的分析,最小二乘拟合,耦合微分方程的解,确立通过三个已知点的一个圆以及在数学、物理和机械工程上的其他问题The matrix and determinant are extremely useful tools of linear algebra.矩阵和行列式是线性代数极为有用的工具One central problem of linear algebra is the solution of the matrix equation Ax = b for x. 线性代数的一个中心问题是矩阵方程Ax=b关于x的解While this can, in theory, be solved using a matrix inverse x = A−1b,other techniques such as Gaussian elimination are numerically more robust.理论上,他们可以用矩阵的逆x=A-1b求解,其他的做法例如高斯消去法在数值上更鲁棒。
LinearAlgebraandItsApplications第五版课程设计
Linear Algebra and Its Applications 第五版课程设计1. 简介本文档是针对《Linear Algebra and Its Applications》第五版课程设计的一份报告。
本课程是针对数学专业的本科生开设的,旨在介绍线性代数相关理论和应用。
2. 课程目标本课程的主要目标是使学生能够:•掌握基本的线性代数理论和方法;•熟练运用线性代数相关知识解决实际问题;•理解线性代数在现代科学和工程领域中的重要作用;•具备自主学习和独立思考的能力。
3. 课程内容3.1 线性方程组和矩阵•向量、矩阵、线性方程组的定义和基本性质;•高斯消元法、矩阵的逆和转置、初等矩阵;•同解方程组、非齐次线性方程组的解法。
3.2 向量空间和线性变换•向量空间的概念、维数和基;•矩阵作为线性变换的表示、核和值域;•矩阵的特征值和特征向量、对角化和相似矩阵。
3.3 行列式和线性方程组的解法•行列式的定义和性质;•克拉默法则;•行列式的计算。
3.4 特殊矩阵和矩阵分解•对称矩阵和正定矩阵的特性和判定;•广义逆和伪逆矩阵;•最小二乘问题和奇异值分解。
4. 课程要求•准时出席、认真听讲、积极思考;•完成课堂笔记和作业;•参加课程考试。
5. 评分标准•平时成绩占40%:包括考勤、作业和课堂表现;•期中考试占30%:考察学生对前半学期内容的掌握程度;•期末考试占30%:考察学生对全学期内容的掌握程度。
6. 实践项目为了加强学生对线性代数相关理论和方法的应用能力,本课程还设置了实践项目。
学生可以选择任意一个实际问题,运用所学的线性代数知识进行分析、建模和解决。
实践项目占整个课程总成绩的20%。
7. 教材和参考书目本课程主要教材为《Linear Algebra and Its Applications》第五版,作者为David C. Lay。
其他参考书目包括:•《线性代数及其应用》(周明德等著)•《矩阵分析与应用》(方企勤著)•《线性代数与应用》(张贤达等著)8. 总结本课程旨在介绍线性代数的基本理论和应用,帮助学生掌握解决实际问题的能力。
Linear Algebra (chapter1)01
§1.1 Systems of Linear Equations 4. Existence and Uniqueness Questions
Example 3
consistent:
Determine if the following system is
Sol:
The equation 0x1+0x2+0x3=(5/2) is never true, so the system is inconsistent
A linear equation in the variables x1,…,xn is an equation of the form a1x1 + a2x2+ . . . + anxn = b (1)
where b and the coefficients a1,…,an are real or complex numbers. eg.
A system of linear equations has either
1. No solution, or 2. Exactly one solution, or 3. Infinitely many solutions. Inconsistent (不相容)
}
Consistent (相容)
If a matrix A is row equivalent to an echelon matrix U, we call U an echelon form of A; If U is in reduced echelon form, we call U the reduced echelon form of A.
Operations on equations in a linear system correspond to operations on the appropriate rows of the augmented matrix.
LinearAlgebra(I)_02
Rank
Matrix and vector
The ij th entry of A, the entry on the ith row and j th column, is usually denoted by aij . A is a zero matrix of size m × n if all entries of A are zero, that is, aij = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n. We use 0 to denote a zero matrix of any size. If aij = 0 for i = j , A is a diagonal matrix and is sometimes written as A = diag(a11 , a22 , · · · , ann ). If A is diagonal and aii = 1 for each i, A is an identity matrix. We use I to denote an identity matrix of any size.
NCTU ICN5502
Fall 2017
2-6
Outline
Matrix
Linear function
Vector space
Basis and dimension
Null space and range
Rank
Some rules of matrix operations
For A, B, C of compatible sizes and scalar α, (a) A + B = B + A. (b) α(A + B ) = αA + αB (c) A + (B + C ) = (A + B ) + C . (d) C (A + B ) = CA + CB . (e) (A + B )C = AC + BC . (f) A(BC ) = (AB )C . But usually AB = BA.
LinearAlgebra7.1坐标变换和过渡矩阵
三、坐标 设x1 ,x2 , …,xn是线性空间V 的一组基,则 称x由x1 ,x2 , …,xn唯一线性表示的系数为向量 x在基x1 ,x2 , …,xn下的坐标,记为X.
即设 则
x 1x1 2x2 L nxn
记作: y1 y2 L yn x1 x2 L xn P
其中 P ( pij )nn 称P是由基x1 ,x2 , …,xn到基y1 ,y2 , …, yn的过渡矩 阵。其中P的第j列是在基yj(I)下的坐标。
过渡矩阵结论
(1)过渡矩阵P是可逆矩阵; (2)设P是由基x1 ,x2 , …,xn到基y1 ,y2 , …, yn的过渡矩阵, 则P-1是由基y1 ,y2 , …, yn到基x1 ,x2 , …,xn的过渡矩阵。
Y
P 1 X
0
1
1
2
1
0 0 1 1 1
1 1
X1
0
,
X2
1
,
X3
1 ,
2
0
0
1 1
解法1: 由向量坐标的定义,可设:
1X1 2 X 2 3 X 3
得方程组
1 1 2 3 2 2 3 1 3
1
x1
x2 L
xn
2
M
n
X 1 2 L n T
说明:在不同的坐标系(或基)中,同一向量的坐标一般
线性代数—Linear Algebra
v
1 1
2 2
onto
Pv
0 0
பைடு நூலகம்
2 2
投影的結果保留了column space, 而nullspace 只剩下零向量
2020/1/10
8
6.1 Introduction to Eigenvalues
範例:映射矩陣R的特徵值λ為1,-1
0 1 R 1 0
2020/1/10
4
6.1 Introduction to Eigenvalues
.8 .3
0.6
1
A .2
.7
, x1 0.4
, x2 1
λ1 =1
λ2 =1/2
其中λ1, λ2 是矩陣A的特徵值,我們令det(A-λI)=0求出λ1, 與λ2,而特徵向量x1屬於A-I的nullspace ,而特徵向量x2屬 於A-(1/2)I 的nullspace。 重要性質: A2 的特徵值是A的特徵值的平方 ,且對應之特徵向量不變 。 不同特徵值對應之特徵向量是線性獨立。
如果A是可逆矩陣,則0不是特徵值,我們將矩陣平移λ
單位使之成為奇異矩陣(A-λI ) 。
2020/1/10
12
6.1 Introduction to Eigenvalues :
The Equation for the Eigenvalues
針對2 by 2的矩陣A,當A-λI是奇異矩陣,則A-λI所有的列會是某
F在o同r λ一2線=5上, 。A-λ2I的列與向量(-4,2)在同一線上,而特徵向量與(2, 4)
4 2
2 1
x1 x2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The parametric form of this equation is ⃗ s + c1⃗ v1 + c2⃗ v2 + · · · + cp⃗ vp . Example: Solve the equation A⃗ x =⃗ b, where 1 −2 0 1 1 (A ⃗ b) ∼ 0 0 1 8 −1 . 0 0 0 0 0 Again, the free variables are x2 , x4 and further x1 −1 − 8x4 . So x1 1 + 2x2 − x4 1 x2 0 x2 + x2 = = x3 −1 − 8x4 −1 0 x4 x4 = 1 − 2x2 − x4 , x3 = 2 1 + x4 0 0
2
Homogeneous Matrix Equation(齐次矩阵方 程组)
Definition 1 (Homogeneous(齐次的)). A system of linear equation is said to be homogeneous if it can be written as A⃗ x =⃗ 0, where ⃗ 0 is the zero vector m ⃗ x = 0 is called a homogeneous (matrix) equation (齐次矩 (零向量) in R . A⃗ 阵方程). Obviously, the zero vector is a solution to the homogeneous linear system and this solution is called trivial solution (平凡解). If there is more solutions rather than the trivial solution to the system, we call the homogeneous equation A⃗ x =⃗ 0 has a nontrivial solution (非平凡解) 1
3
Non-homogeneous matrix equations (非 齐 次矩阵方程)
For the case of non–homogeneous matrix equations, we have the following theorem. Theorem 3. Suppose that matrix equation A⃗ x =⃗ b has a solution ⃗ s. Let ⃗ S and S0 be the solution sets of A⃗ x = b and its corresponding homogeneous equation A⃗ x =⃗ 0 respectively. Then we have S = {⃗ s+⃗ s0 | ⃗ s0 ∈ S0 } = ⃗ s + S0 . Proof. (1) Let t ∈ S . Then we have A(⃗ t−⃗ s) = A⃗ t − A⃗ s = ⃗ b −⃗ b = ⃗ 0. This means that ⃗ s0 = ⃗ t−⃗ s ∈ S0 . So ⃗ t=⃗ s+⃗ s0 ∈ ⃗ s + S0 , i.e. S ⊆ ⃗ s + S0 . (2) On the other hand, Let ⃗ s0 ∈ S0 . Then we have A(⃗ s+⃗ s0 ) = A⃗ s + A⃗ s0 = ⃗ b +⃗ 0 = ⃗ b. So ⃗ s+⃗ s0 ∈ S , i.e. ⃗ s + S0 ⊆ S . From (1) and (2), S = ⃗ s + S0 . So by Theorem 3, the solution set of equation A⃗ x =⃗ b can be written as ⃗ s + Span{⃗ v1 , . . . , ⃗ vp }. 3
• For p = 0, i.e. no free variable, ⃗ 0 is the unique solution. In this case, the solution set can be written as Span{⃗ 0}. Geometrically, the solution set represents the origin if p = 0, a line through the origin if p = 1, a subspace of dimension 2 if p = 2 (a plane through the origin in the case that we work in R3 ) and so on.(这里详见板书 进一步解释)
In summary, if there are solutions to linear system A⃗ x =⃗ b and there is ⃗ solution to the corresponding homogeneous system A⃗ x = 0, then the solution to A⃗ x =⃗ b can be either: 1. unique, when the homogeneous system only has trivial solution. 2. infinitely many, when homogeneous system only has non-trivial solution.
Given a matrix equation A⃗ x =⃗ b, where A is an m × n matrix, we know that it is equivalent to the system of linear equations with augmented matrix [A ⃗ b]. Hence, the solution set can be determined using the method introduced in the previous lectures. In this lecture, we shall study the structure of the solution set, which is a subset of Rn , in greater detail. Basic concept:Homogeneous(齐次), trivial solution (平凡解)
ቤተ መጻሕፍቲ ባይዱ
−1 0 . −8 1 1 0 is the general solution in parametric form. It is easy to verify that −1 0 is indeed a concrete solution of this equation.
In general, the solution set of any homogeneous equation can be expressed as a set spanned by some vectors. Let us illustrate this fact via a concrete example. Example: Solve the equation A⃗ x =⃗ 0, where 1 −2 0 1 A ∼ 0 0 1 8 . 0 0 0 0 It is easy to see that the free variables of this equation are x2 , x4 and further x1 = 2x2 − x4 , x3 = −8x4 . So the general solution can be written as x1 2x2 − x4 −1 2 x2 x2 = = x2 1 + x4 0 . x3 −8x4 −8 0 x4 1 x4 0 2 −1 1 v2 = 0 is Thus, we obtain that Span{⃗ v1 , ⃗ v2 } where ⃗ v1 = 0 , ⃗ −8 0 1 exactly the solution set of this equation. Moreover, it is easy to verify that ⃗ v1 , ⃗ v2 are linearly independent. 注:下面的定理理解上有一定难度。在本节先供参考,以后学到的知识 会更容易理解。 Theorem 2. Let p denote the number of free variables of a homogeneous equation A⃗ x =⃗ 0. • For p > 0, the solution set of this equation can be spanned by p independent vectors, say ⃗ v1 , . . . , ⃗ vp , i.e. Solution Set = Span{⃗ v1 , . . . , ⃗ vp }. The general solution can be written as c1 ⃗ v1 + c2⃗ v2 + · · · + cp⃗ vp , which is said to be in parametric vector form(参数向量形式). 2
Reference
David C. Lay. Linear Algebra and Its Applications (3rd edition). Pages 50∼56.
A Young Girl Reading, by Fragonard
4