2014-2015福清市七年级上期中数学答题卡(20141026)
2014-2015年七年级上学期期中数学试卷
2014~2015学年度第一学期期中试题七年级数学(满分:150分 ;考试时间:120分钟)一、选择题 (本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填下表相应的空格内)1.的倒数是 A .21 B .21- C . 2- D . 2 2.数轴上,原点左边的点所表示的数是A .正数B .负数C .非正数D .非负数 3.在下列数:1()2--,-7, 4--,18,4(1)-,0中,正数有 A .1个 B .2个 C .3个D .4个4.用代数式表示“m 的2倍与n 的平方的差”,正确的是A .2(2)m n -B .22m n -C . 22()m n -D .2(2)m n -5.下图是一个简单的运算程序.若输入x 的值为-3,则输出的数值为x 输入输出A .-1B .1C .-12D . 12 6.在解方程1223x x -=-时,去分母后正确的是 A . x =2-2(x -1) B .3x =2-2(x -1) C .3x =6-2(x -1)D .3x =12-2(x -1)7.甲、乙两班共有94人,若从乙班调2人到甲班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程 A .(94-x )-2=x B .94-x =x +2 C .(94-x )+2=x -2 D .(94-x )-2=x +2 8.将正偶数按下表排成5列第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10第3行 18 20 22 24 ... ... 28 26根据上面排列规律,则2014应在( ).A .第251行,第4列B .第251行,第5列C .第252行,第2列D .第252行,第3列 二、填空题 (本大题共有10小题,每小题3分,共30分.)9.小华用百度搜索引擎搜索了2014年网络流行热词之一的“点赞”一词,电脑显示结果为“百度为您找到相关结果约71600000个”,这个数字用科学记数法表示为 .10.单项式223ab -的系数为_______.11.绝对值是5的整数是 .12.某长方形长为a 厘米,宽为b 厘米,那么这个长方形的周长是_________厘米.13.若21(3)0x y ++-=,则=-y x _______.14.在数轴上到表示2-的点的距离等于2的点所对应的数是 _______. 15.若b a 、互为相反数,d c 、互为倒数,则_______3)(2=++cd b a .16.20142013)31()3(⨯-= . 17.若方程213x -=和213x a-=的解相同,则a 的值是 . 18.已知1a ,2a ,3a ,…,2014a 是从1,0,-1这三个数中取值的2014个数,即:1a 为1,0,-1这三个数中一个数;2a 为1,0,-1这三个数中一个数,…,2014a 为1,0,-1这三个数中一个数.若12a a ++…2014100a +=,221122(3)(3)a a a a ++++ (22014)2014(3)2300a a +=,则1a ,2a ,3a ,…,2014a 中为0的个数是 个.三.解答题(本大题共有9小题,共96分.解答时写出必要的文字说明、解题过程或演算步骤) 19.(本题满分8分)计算:(1)-7+(-4)-(-5) (2)2119()(6)32⨯--÷20.(本题满分8分)计算:(1)22(3)228----+ (2)11120.54⎧⎫⎡⎤⎛⎫----÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭解方程:(1)2(1)39x +-= (2)21160.50.2x x +-+=22.(本题满分8分)(1)当2-=a ,4=b ,求代数式)(3)(2b a b a -++的值.(2)先化简,再求值:2212(23)3()3x xy x xy ---+ .其中2x =,16y =-.23.(本题满分10分)画出数轴,在数轴上表示下列各数,并用“<”连接这些数.4--,21()2,(2)--,3-,1-,0某巡警骑摩托车在一条南北大道上巡逻,某天早上他从岗亭出发,晚上停留在A 处,规定岗亭处向北方向为正,当天行驶情况记录如下(单位:千米):+10,-8,+7,-15,+6,-16; (1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油m 升,这一天共耗油多少升?25.(本题满分10分)如图,四边形ABCD 与ECGF 是两个边长分别为a ,b 的正方形. (1)用含a ,b 的代数式表示阴影部分面积;(2)当cm a 4=,cm b 6=时,计算图中阴影部分的面积.26. (本题满分10分)阅读与探究:我们知道分数13写为小数即0.3∙,反之,无限循环小数0.3∙写成分数即13.一般地,任何一个无限循环小数都可以写成分数形式.例如把0.5∙写成分数形式时: 设0.5x ∙=,则0.5555x =……根据等式性质得:10 5.555x =…… 即:105x x =+解得59x =, 所以50.59∙=.(1)模仿上述过程,把无限循环小数0.8∙写成分数形式; (2)小明知道无限循环小数0.43∙∙写成分数形式为4399,但他不知道其中原因,请你帮他写出探究的过程.27. (本题满分12分)对正整数a ,b ,a b ∆等于由a 开始的的连续b 个正整数之和,如:232349∆=++=, 又如:54567826∆=+++=. (1)若318x ∆=,求x . (2)若(3)375y ∆∆=,求y .28.(本题满分12分)某市出租车收费标准如下:3公里以内(含3公里)收费10元,超过3公里的部分每公里收费2元。
七年级(上)期中数学试卷 含(答题卡)
七年级(上)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)计算4+(﹣2)2×5=()A.﹣16B.16C.20D.243.(3分)如图,点A所表示的数的绝对值是()A.3B.﹣3C.D.4.(3分)单项式2a3b的次数是()A.2B.3C.4D.55.(3分)已知a、b、c三个数在数轴上的位置如图所示,用“<”把连接正确的是()A.b<a<c B.c<b<a C.b<c<a D.c<a<b 6.(3分)2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×10127.(3分)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a28.(3分)某市电力公司为了鼓励居民用电,采用分段计费的方法收取电费:居民每月用电不超过100度时,按每度0.6元计费,每月用电量超过100度时,其中的100度仍按原标准收费,超过部分按每度0.5元计费.若12月份张老师家用电量为a度(a>100),那么张老师应缴纳电费()元.A.60+0.50(a﹣100)B.60+0.50aC.0.60a D.1.10a9.(3分)有理数a、b在数轴上的位置如图所示,则下列说法正确的是()A.B.ab<0C.a+b<0D.a﹣b>0 10.(3分)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110B.158C.168D.178二.填空题(共10小题,满分30分,每小题3分)11.(3分)一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.12.(3分)如果单项式x a+1y3与2x3y b﹣1是同类项,那么a b=.13.(3分)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.14.(3分)如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是.15.(3分)若|﹣m|=2018,则m=.16.(3分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.(3分)单项式﹣的系数是,次数是.18.(3分)如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.19.(3分)如果向东走3米记为+3米,那么向西走6米记作.20.(3分)观察下列等式:第一个等式是1+2=3,第二个等式是2+3=5,第三个等式是4+5=9,第四个等式是8+9=17,…猜想:第n个等式是.三.解答题(共8小题,满分60分)21.(18分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.22.(8分)化简:(1)(5a﹣3b)﹣3(a﹣2b);(2)3x2﹣[7x﹣(4x﹣3)﹣2x2].23.(4分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.24.(4分)已知|a﹣1|+(b+2)2=0,求(a+b)2009+a2010的值.25.(6分)2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行次记录如下(单位:千米):18,﹣8,15,﹣7,11,﹣6,10,﹣5问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?26.(6分)有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,﹣6,﹣4,+2,﹣1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?27.(6分)小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积S;(2)已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?28.(8分)观察下列等式:第1个等式:a1==(1﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4==(﹣)…请回答下列问题:(1)按上述等式的规律,列出第5个等式:a5==(2)用含n的式子表示第n个等式:a n==(3)求a1+a2+a3+a4+…+a100的值.七年级(上)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【解答】解:﹣3的相反数是3,故选:A.2.(3分)计算4+(﹣2)2×5=()A.﹣16B.16C.20D.24【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.3.(3分)如图,点A所表示的数的绝对值是()A.3B.﹣3C.D.【解答】解:|﹣3|=3,故选:A.4.(3分)单项式2a3b的次数是()A.2B.3C.4D.5【解答】解:该单项式的次数为:4故选:C.5.(3分)已知a、b、c三个数在数轴上的位置如图所示,用“<”把连接正确的是()A.b<a<c B.c<b<a C.b<c<a D.c<a<b【解答】解:b<c<a.故选:C.6.(3分)2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×1012【解答】解:将2098.7亿元用科学记数法表示是2.0987×1011,故选:C.7.(3分)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a2【解答】解:﹣a4b÷a2b=﹣a2,故选项A错误,(a﹣b)2=a2﹣2ab+b2,故选项B错误,a2•a3=a5,故选项C错误,﹣3a2+2a2=﹣a2,故选项D正确,故选:D.8.(3分)某市电力公司为了鼓励居民用电,采用分段计费的方法收取电费:居民每月用电不超过100度时,按每度0.6元计费,每月用电量超过100度时,其中的100度仍按原标准收费,超过部分按每度0.5元计费.若12月份张老师家用电量为a度(a>100),那么张老师应缴纳电费()元.A.60+0.50(a﹣100)B.60+0.50aC.0.60a D.1.10a【解答】解:原标准收费的费用为100×0.6=60,超过100度的费用为(a﹣100)×0.5,∴应缴纳的电费为60+(a﹣100)×0.5.故选:A.9.(3分)有理数a、b在数轴上的位置如图所示,则下列说法正确的是()A.B.ab<0C.a+b<0D.a﹣b>0【解答】解:由图可知,b>0,a<0且|b|>|a|,A、,故本选项错误;B、ab<0,故本选项正确;C、a+b>0,故本选项错误;D、a﹣b<0,故本选项错误.故选:B.10.(3分)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110B.158C.168D.178【解答】解:根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4﹣0,22=4×6﹣2,44=6×8﹣4,∴m=12×14﹣10=158.故选:B.二.填空题(共10小题,满分30分,每小题3分)11.(3分)一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.12.(3分)如果单项式x a+1y3与2x3y b﹣1是同类项,那么a b=16.【解答】解:根据题意得:a+1=3,b﹣1=3,解得:a=2,b=4.则a b=16.故答案是:16.13.(3分)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.14.(3分)如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是﹣1.【解答】解:∵代数式2y2+3y+5的值是6,∴2y2+3y+5=6.∴2y2+3y=1.∴4y2+6y﹣3=2(2y2+3y)﹣3=2﹣3=﹣1.故答案是:﹣1.15.(3分)若|﹣m|=2018,则m=±2018.【解答】解:因为|﹣m|=|m|,又因为|±2018|=2018,所以m=±2018故答案为:±201816.(3分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x= 4.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.17.(3分)单项式﹣的系数是﹣,次数是6.【解答】解:单项式﹣的系数是﹣,次数是6,故答案为:﹣;6.18.(3分)如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有7个,第n幅图中共有2n﹣1个.【解答】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.故答案为:7;2n﹣1.19.(3分)如果向东走3米记为+3米,那么向西走6米记作﹣6米.【解答】解:根据题意,向西走6米记作﹣6米.故答案为:﹣6米.20.(3分)观察下列等式:第一个等式是1+2=3,第二个等式是2+3=5,第三个等式是4+5=9,第四个等式是8+9=17,…猜想:第n个等式是2n﹣1+(2n﹣1+1)=2n+1.【解答】解:第n个等式是2n﹣1+(2n﹣1+1)=2n+1.三.解答题(共8小题,满分60分)21.(18分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.22.(8分)化简:(1)(5a﹣3b)﹣3(a﹣2b);(2)3x2﹣[7x﹣(4x﹣3)﹣2x2].【解答】解:(1)原式=5a﹣3b﹣3a+6b=2a+3b;(2)原式=3x2﹣[7x﹣4x+3﹣2x2]=3x2﹣7x+4x﹣3+2x2=5x2﹣3x﹣3.23.(4分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.24.(4分)已知|a﹣1|+(b+2)2=0,求(a+b)2009+a2010的值.【解答】解:∵|a﹣1|+(b+2)2=0,∴a﹣1=0,b+2=0,解得a=1,b=﹣2,∴(a+b)2009+a2010=(1﹣2)2009+12010=﹣1+1=0.25.(6分)2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行次记录如下(单位:千米):18,﹣8,15,﹣7,11,﹣6,10,﹣5问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?【解答】解:(1)(+18)+(﹣8)+15+(﹣7)+11+(﹣6)+10+(﹣5)=28.答:B地在A地的东面,与A地相距28千米;(2)总路程=18+8+15+7+11+6+10+5=80(千米)80×0.5﹣30=10(升).答:途中至少需要补充10升油.26.(6分)有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,﹣6,﹣4,+2,﹣1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?【解答】解:与标准重量比较,5筐菜总计超过3+(﹣6)+(﹣4)+2+(﹣1)=﹣6(千克);5筐蔬菜的总重量=50×5+(﹣6)=244(千克).故总计不足6千克,5筐蔬菜的总重量是244千克.27.(6分)小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积S;(2)已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?【解答】解:(1)S=2n+6m+3×4+2×3=6m+2n+18.(2)n=1.5时2n=3根据题意,得6m=8×3=24,∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.28.(8分)观察下列等式:第1个等式:a1==(1﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4==(﹣)…请回答下列问题:(1)按上述等式的规律,列出第5个等式:a5==×(﹣)(2)用含n的式子表示第n个等式:a n==(﹣)(3)求a1+a2+a3+a4+…+a100的值.【解答】解:(1)观察下列等式:第1个等式:a1==(1﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4==(﹣)…则第5个等式:a5==×(﹣);故答案为,×(﹣);(2)由(1)知,a n==(﹣),故答案为:,(﹣);(3)原式=+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=×(1﹣+﹣+﹣+…+﹣)=×=.七年级(上)期中数学试卷答题卡一.选择题(共10小题,满分30分,每小题3分)(请用2B铅笔填涂)二.填空题(共10小题,满分30分,每小题3分)(请在各试题的答题区内作答)三.解答题(共8小题,满分60分)(请在各试题的答题区内作答)。
七年级(上)期中数学试卷 含(答题卡)
七年级(上)期中数学试卷一.选择题(共14小题,满分42分,每小题3分)1.(3分)下列说法正确的是()A.近似数3.6与3.60精确度相同B.数2.9954精确到百分位为3.00C.近似数1.3x104精确到十分位D.近似数3.61万精确到百分位2.(3分)单项式2a3b的次数是()A.2B.3C.4D.53.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣4.(3分)多项式是关于x的四次三项式,则m的值是()A.4B.﹣2C.﹣4D.4或﹣4 5.(3分)下列算式中,与相等的是()A.B.5C.5D.56.(3分)下列计算,正确的是()A.3+2ab=5ab B.5xy﹣y=5xC.﹣5m2n+5nm2=0D.x3﹣x=x27.(3分)有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④8.(3分)若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.09.(3分)若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0B.1C.﹣1D.﹣210.(3分)已知某三角形的周长为3m﹣n,其中两边的和为m+n﹣4,则此三角形第三边的长为()A.2m﹣4B.2m﹣2n﹣4C.2m﹣2n+4D.4m﹣2n+4 11.(3分)代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数12.(3分)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()分A.B.C.D.13.(3分)一个数的立方等于它自身,则这个数可能是()A.1B.﹣1C.±1D.±1或0 14.(3分)如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()个黑子.A.37B.42C.73D.121二.填空题(共4小题,满分12分,每小题3分)15.(3分)数学竞赛85分以上的为优秀,以85分为基准简记,例如89分记作+4分,83分记作﹣2分,老师将某班6名同学的成绩记作(单位:分):+9,﹣5,0,+6,﹣4,﹣1,则这6名同学的实际成绩从高到底依次是:.16.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.17.(3分)阅读与探究:式子“1+2+3+4+…+100”表示从1开始的连续100个正整数的和.由于上述式子比较长,书写不方便,为了简便起见可以把上述式子记为n,这里是求和的记号.例如1+3+5+7+…+99记作(2n﹣1.请你计算n=,=.(直接写出计算结果)18.(3分)如果正方体的棱长是a﹣1,那么正方体的表面积是.三.解答题(共6小题,满分66分)19.(10分)计算:﹣14﹣×[2﹣(﹣3)2].20.(10分)某种杯子的高度是15cm,两个以及三个这样的杯子叠放时高度如图,(1)n个这样的杯子叠放在一起高度是(用含n的式子表示).(2)n个这样的杯子叠放在一起高度可以是35cm吗?为什么?21.(10分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(12分)某超市在春节期间对顾客实行优惠,规定如下:(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a <300),用含a的代数式表示:两次购物王老师实际付款多少元?23.(12分)如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.(1)若x=17,则a+b+c+d=.(2)移动十字框,用x表示a+b+c+d=.(3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.24.(12分)已知a,b,c都不等于零,且++﹣的最大值是m,最小值为n,求的值.七年级(上)期中数学试卷参考答案与试题解析一.选择题(共14小题,满分42分,每小题3分)1.(3分)下列说法正确的是()A.近似数3.6与3.60精确度相同B.数2.9954精确到百分位为3.00C.近似数1.3x104精确到十分位D.近似数3.61万精确到百分位【解答】解:A、近似数3.6精确到十分位,近似数3.60精确到百分位,所以A 选项错误;B、数2.9954精确到百分位为3.00,所以B选项正确;C、近似数1.3x104精确到千位,所以C选项错误;D、近似数3.61万精确到百位.故选:B.2.(3分)单项式2a3b的次数是()A.2B.3C.4D.5【解答】解:该单项式的次数为:4故选:C.3.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【解答】解:﹣3的相反数是3,故选:A.4.(3分)多项式是关于x的四次三项式,则m的值是()A.4B.﹣2C.﹣4D.4或﹣4【解答】解:∵多项式是关于x的四次三项式,∴|m|=4,﹣(m﹣4)≠0,∴m=﹣4.故选:C.5.(3分)下列算式中,与相等的是()A.B.5C.5D.5【解答】解:A、5×=≠,选项错误;B、5÷=5×=≠,选项错误;C、5+=5,选项正确;D、5﹣=4≠,选项错误.故选:C.6.(3分)下列计算,正确的是()A.3+2ab=5ab B.5xy﹣y=5xC.﹣5m2n+5nm2=0D.x3﹣x=x2【解答】解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选:C.7.(3分)有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【解答】解:∵从数轴可知:b<0<a,|b|>|a|,∴①正确;②错误,∵a>0,b<0,∴ab<0,∴③错误;∵b<0<a,|b|>|a|,∴a﹣b>0,a+b<0,∴a﹣b>a+b,∴④正确;即正确的有①④,故选:B.8.(3分)若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.0【解答】解:∵原式=x2y+(6﹣7m)xy+y3,若不含二次项,即6﹣7m=0,解得m=.故选:B.9.(3分)若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0B.1C.﹣1D.﹣2【解答】解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,解得:m=2,n=3,∴m﹣n=﹣1.故选:C.10.(3分)已知某三角形的周长为3m﹣n,其中两边的和为m+n﹣4,则此三角形第三边的长为()A.2m﹣4B.2m﹣2n﹣4C.2m﹣2n+4D.4m﹣2n+4【解答】解:根据题意得:(3m﹣n)﹣(m+n﹣4)=3m﹣n﹣m﹣n+4=2m﹣2n+4,故选:C.11.(3分)代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数【解答】解:代数式a2﹣表示a的平方与b的倒数的差,故选:C.12.(3分)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()分A.B.C.D.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为分.故选:B.13.(3分)一个数的立方等于它自身,则这个数可能是()A.1B.﹣1C.±1D.±1或0【解答】解:由于13=1,(﹣1)3=﹣1,03=0,即±1或0符合,故选:D.14.(3分)如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()个黑子.A.37B.42C.73D.121【解答】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,故选:C.二.填空题(共4小题,满分12分,每小题3分)15.(3分)数学竞赛85分以上的为优秀,以85分为基准简记,例如89分记作+4分,83分记作﹣2分,老师将某班6名同学的成绩记作(单位:分):+9,﹣5,0,+6,﹣4,﹣1,则这6名同学的实际成绩从高到底依次是:94,80,85,91,81,84.【解答】解:∵以85分为基准简记,∴6名同学的实际成绩为:94,80,85,91,81,84,则这6名同学的实际成绩从高到低依次是:94,91,85,84,81,80.16.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为 6.7×1010.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.17.(3分)阅读与探究:式子“1+2+3+4+…+100”表示从1开始的连续100个正整数的和.由于上述式子比较长,书写不方便,为了简便起见可以把上述式子记为n,这里是求和的记号.例如1+3+5+7+…+99记作(2n﹣1.请你计算n=55,=1﹣.(直接写出计算结果)【解答】解:n=1+2+3+…+10=(1+10)×10÷2=11×10÷2=110÷2=55=++…+==1﹣故答案为:55、1﹣.18.(3分)如果正方体的棱长是a﹣1,那么正方体的表面积是6(a﹣1)2.【解答】解:如果正方体的棱长是a﹣1,那么正方体的表面积是6(a﹣1)2,故答案为:6(a﹣1)2三.解答题(共6小题,满分66分)19.(10分)计算:﹣14﹣×[2﹣(﹣3)2].【解答】解:原式=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.20.(10分)某种杯子的高度是15cm,两个以及三个这样的杯子叠放时高度如图,(1)n个这样的杯子叠放在一起高度是3n+12(用含n的式子表示).(2)n个这样的杯子叠放在一起高度可以是35cm吗?为什么?【解答】解:(1)观察可以发现:一个杯子高度为15cm,二个杯子高度为15+3=18cm,三个杯子高度为15+2×3=21cm,…,∴n个这样的杯子叠放时的高度=3n+12.故答案是:3n+12;(2)设n个这样的杯子叠放在一起高度可以是35cm,则3n+12=35,解得n=,这不是整数,所以不可以.21.(10分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.22.(12分)某超市在春节期间对顾客实行优惠,规定如下:(1)王老师一次性购物600元,他实际付款530元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款0.9x元,当x大于或等于500元时,他实际付款(0.8x+50)元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a <300),用含a的代数式表示:两次购物王老师实际付款多少元?【解答】解:(1)500×0.9+(600﹣500)×0.8=530;(2)0.9x;500×0.9+(x﹣500)×0.8=0.8x+50;(3)0.9a+0.8(820﹣a﹣500)+450=0.1a+706.23.(12分)如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.(1)若x=17,则a+b+c+d=68.(2)移动十字框,用x表示a+b+c+d=4x.(3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.【解答】解:观察图1,可知:a=x﹣12,b=x﹣2,c=x+2,d=x+12.(1)当x=17时,a=5,b=15,c=19,d=29,∴a+b+c+d=5+15+19+29=68.故答案为:68.(2)∵a=x﹣12,b=x﹣2,c=x+2,d=x+12,∴a+b+c+d=(x﹣12)+(x﹣2)+(x+2)+(x+12)=4x.故答案为:4x.(3)M的值不能等于2020,理由如下:令M=2020,则4x+x=2020,解得:x=404.∵404是偶数不是奇数,∴与题目x为奇数的要求矛盾,∴M不能为2020.24.(12分)已知a,b,c都不等于零,且++﹣的最大值是m,最小值为n,求的值.【解答】解:当a,b,c三个都大于0,可得++﹣=2当a,b,c,都小于0,可得++﹣=﹣2当a,b,c一正二负,可得++﹣=﹣2当a,b,c 二正一负可得++﹣=2∴m=2,n=﹣2∴原式=﹣1七年级(上)期中数学试卷答题卡一.选择题(共14小题,满分42分,每小题3分)(请用2B铅笔填涂)二.填空题(共4小题,满分12分,每小题3分)(请在各试题的答题区内作答)三.解答题(共6小题,满分66分)(请在各试题的答题区内作答)。
2014—2015学年度第一学期七年级数学期中调研测试(试题+答题卡)
7.下列各组式子为同类项的是 A. 2 xy 与 5 x y 8.下列运算中正确的是 A. 2 x 1 2 x 1 C. 2 x 1 2 x 2 9.若 x y ,则下列等式中不成立 的是 ... A. 2 x 2 y B. B. 2 x 1 2 x 1 D. 2 x 1 2 x 2
3
2
1 B. 2014
C. 2014
D. 2014 C. 1 x y 1
x y 2 2 3 3
2.如题 2 图,在数轴上表示到原点的距离为 3 个单位长度的点有
D. 2 x 1 1 2 y
A B –4 –3 –2 –1 O 1
题2图 A.点 A 3.下列计算中正确的是 A. 5 14 9 C. 5 14 9 B.点 A 和点 C
(4)利用你发现的结论,求 20152 4030 2014 20142 的值.
温馨提示:同学们做完试卷后,若有时间请仔细地检查,预祝你考出理想成绩! 七年级数学试题 第 3 页(共 4 页)
温馨提示:同学们做完试卷后,若有时间请仔细地检查,预祝你考出理想成绩! 七年级数学试题 第 4 页(共 4 页)
(4 )求 2015 4030 2014 2014 的值.
2
2
温馨提示:同学们做完试卷后,若有时间请仔细地检查,预祝你考出理想成绩! 七年级数学答题卷 第 3 页 (共 4 页)
温馨提示:同学们做完试卷后,若有时间请仔细地检查,预祝你考出理想成绩! 七年级数学答题卷 第 4 页 (共 4 页)
……………………密……………封……………线……………内……………不……………要……………作……………答……………………
2014-2015学年七年级上学期第二次段考(期中)数学试卷
2014-2015学年七年级上学期第二次段考(期中)数学试题(满分120分 时间120分钟)一.选择题(3分×10=30分)(将所选答案填入下表中)1. 5-的相反数是A. 5+B. 15C. 15- D. 5-2. 某班有学生m 人, 若每4人一组, 有一组少2人, 则所分组数是 A.24m - B. 24m + C. 24m + D. 24m- 3. 如图, 下列判断正确的是 A.a+b>0 B.a+b<0 C.ab>0 D. b a < 4. 下列运算中,错误的是 A 、-3+(-2)=-5 B 、5-(-4)=1 C 、6÷(-13 )=6×(-3) D 、(-3)2×(13 )2=15. 下列说法中正确的是A. 0是最小的有理数B. 0的相反数、绝对值、倒数都是0C. 0不是正数也不是负数D. 0不是整数也不是分数 6. 若代数式3x 4y 与-x m y 是同类项,则常数m 的值为 A 、1 B 、2 C 、3 D 、47. 下列说法中正确的是 A 、1是单项式B 、单项式m 的系数为0,次数为0C 、单项式2a2b 的系数是2,次数是2D 、x y -x +y -4的项是xy,x,y,48. 若22432,434A x x B x x =--=--,则A ,B 的大小关系是 A. A B < B. A B = C. A B > D. 无法确定 9. 绝对值大于2且不大于5的整数有 A.3个 B.4个 C.5个 D.6个 10. 已知1a b -=-,则()33b a a b ---的值是 A.-4 B. -2 C. 4 D. 2 二.填空题(3分×8=24分) 11. -3的倒数是12. 某市冬天中的某一天最高气温是7℃, 最低气温是-1℃, 则该天的温差是_____.13. 将数150000000用科学记数法表示为14. 电脑设计了这样一个运算程序如图所示, 请问当输入的数值是-3时最后输出的结果是_________. 15.在数轴上,A 点距离原点2个单位, 若 将A 点先向左移动5个单位, 向右移动3 个单位, 则此时点A 所表示的数是______.16. 把多项式2342351x x x x +-+-按字母x 的降幂排列是_______________.17.已知单项式-5x m y 3与4x 3y n 能合并成一项,则m n = 。
2014-2015学年人教版七年级数学上期中检测题及答案解析
期中检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.下列说法正确的是( )①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数; ④两个数比较,绝对值大的反而小.A.①②B.①③C.①②③D.①②③④2.(2014·南昌中考)据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为( )A.5.78×103B.57.8×103C.0.578×104D.5.78×104 3.下列各组算式中,运算结果最小的是( )A.()232--- B.()()32-⨯- C.()()232-⨯- D.()()232-÷-4.下列各对数中,数值相等的是( )A.与B.与C.与D.与5.绝对值大于或等于1,而小于4的所有的正整数的和是( )A.0B.7C.6D.56.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A. 0.8 kgB. 0.6 kgC.0.5 kgD.0.4 kg7.关于多项式的值,下列说法正确的是( )A .与,,的大小无关B .与,的大小有关,而与的大小无关C .与的大小有关,与,的大小无关D .与,,的大小都有关8. 已知实数a ,b ,c 满足a +b +c =-2,则当x =-1时,多项式ax 5+bx 3+cx -1的值是( )A. 1B. -1C. 3D. -39.下列说法正确的是( )A .单项式与单项式的和仍是单项式B .多项式与单项式的和仍是多项式C .多项式与多项式的和仍是多项式D .整式与整式的和仍是整式10.某校组织若干师生到大峡谷进行社会实践活动.若学校租用45座的客车辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A. B. C. D.11. 一个两位数,个位上的数是,十位上的数是,交换个位与十位上的数字得到一个新两位数,则这两个数的差一定能被下列数整除的是( )A .11B .9C .5D .212. 小刚做了一道数学题:“已知两个多项式为,,,求的值.” 他误将“”看成了“”,结果求出的答案是,那么原来的的值应该 是( )A .B .C .D .二、填空题(每小题3分,共24分)13. 某旅游景点11月5日的最低气温为℃,最高气温为8℃,那么该景点这天的温差是____℃.14. 已知P 是数轴上的一点4-,把P 点向左移动3个单位后再向右移动1个单位长度,那么P 点表示的数是_____.15. 1-2+3-4+5-6+…+2 011-2 012的值是______.16.(2013•沈阳中考)如果x =1时,代数式3234ax bx ++的值是5,那么x =-1时,代数式3234ax bx ++的值是_______.17. 一个长方形的周长为24 cm .如果宽增加2 cm ,就可成为一个正方形.则这个长方形的宽为 .18. 公共汽车上原有名乘客,中途下车一半,后来又上来名乘客,这时公共汽车上共有乘客 名.19. 当时,二次三项式的值等于18,那么当时,该二次三项式的值等于 .20. 扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆. 这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是 .三、解答题(共60分)21. (6分) 解下列各题.(1)(2)22. (6分)先化简,再求值:(1)-2(mn -3m 2)-[m 2-5(mn -m 2)+2mn ],其中m =1,n =-2.(2))3123()21(22122b a b a a ----- , 其中 32,2=-=b a . 23.(6分) 已知互为相反数,互为倒数,的绝对值为2,求 的值.24.(6分)如图,当 5.5x =,4y =时,求阴影部分的周长和面积.25. (6分) 某商店营业员每月的基本工资为900元,奖金制度是:每月完成规定指标10 000元营业额的,发奖金600元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13 200元,问他九月份的收入为多少元?26.(6分)任意写出一个数位不含零的三位数,任取三个数字中的两个,组合成所有可能的两位数(有6个),求出所有这些两位数的和,然后将它除以原三位数的各个数位上的数的和.例如,对三位数223,取其两个数字组成所有可能的两位数:22,23,22,23,32,32.它们的和是154.三位数223各位数的和是7,.再换几个数试一试,你发现了什么?请写出你按上面方法的探索过程和所发现的结果,并运用代数式的知识说明所发现的结果的正确性.27. (8分)有这样一道题:“当,时,求多项式的值”.有一位同学看到,的值就怕了,这么大的数怎么算啊?真的有这么难吗?你能帮他解决这个问题,是吗?28. (8分)已知某船顺水航行3 h ,逆水航行2 h.(1)已知轮船在静水中前进的速度是m km/h ,水流的速度是 km/h ,则轮船共航行多少千米?(2)轮船在静水中前进的速度是80 km/h ,水流的速度是3 km/h ,则轮船共航行多少km ?第24题图29.(8分)某农户2014年承包荒山若干亩,投资7 800•元改造后,种果树2 000棵.今年水果总产量为18 000千克,此水果在市场上每千克售元,在果园每千克售b元(b<).该农户将水果拉到市场出售平均每天出售1 000千克,需8•人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用,b表示两种方式出售水果的收入?(2)若=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.(3)该农户加强果园管理,力争到明年纯收入达到15 000元,那么纯收入增长率是多少(纯收入=总收入-总支出,该农户采用了(2)中较好的出售方式出售)?期中检测题参考答案1.A 解析:负数的绝对值是正数,正数的绝对值是正数,0的绝对值是0,所以0是绝对值最小的有理数,所以①正确;负数的相反数是正数,0的相反数是0,正数的相反数是负数,所以相反数大于本身的数是负数,所以②正确;数轴上原点两侧与原点距离相同的两点表示的数互为相反数,所以③不正确;两个负数比较,绝对值大的反而小,所以④不正确.故选A.2. D 解析:5.78万=57 800=5.78×.3.A 解析:A中B中C中D中其中最小的为-25,故选A.4.A 解析:,所以A中两数值相等;,所以B中两数值不相等;所以C中两数值不相等;所以D中两数值不相等,故选A.5.C 解析:绝对值大于或等于1,而小于4的所有的正整数有所以其和等于6.故选C.6.B 解析:这三种品牌的面粉,质量最大为25.3 kg,质量最小为24.7 kg,所以从中任意拿出两袋,它们的质量最多相差0.6 kg.故选B.7.A 解析:=所得结果与8. A 解析:当x=-1时,多项式ax5+bx3+cx-1=(-1)5a+(-1)3b+(-1)c-1=-a-b-c-1=-(a+b+c)-1.又a+b+c=-2,代入,得原式=-(-2)-1=2-1=1.9.D 解析:单项式与单项式的和可能是单项式,也可能是多项式,如果两个单项式分别为,那么它们的和为多项式,如果两个单项式分别为,,那么它们的和为0,是单项式,故A不正确;多项式与单项式的和可能是单项式,也可能是多项式,如果多项式为,单项式为,那么它们的和为,是单项式,故B不正确;多项式与多项式的和可能是单项式,也可能是多项式,如果两个多项式分别为,,那么它们的和为,是单项式,故C不正确;整式与整式的和一定是整式,故D正确.10.C 解析:∵学校租用45座的客车辆,则余下20人无座位,∴师生的总人数为.又∵租用60座的客车则可少租用2辆,∴乘坐最后一辆60座客车的人数为:.故选C.11.B 解析:∵一个两位数,个位上的数是,十位上的数是,∴这个两位数可以表示为.交换个位与十位上的数字得到一个新两位数,则这个新两位数为,交换前的两位数与交换后的两位数的差为:,∴它们的差一定能被9整除.故选B.12.D 解析:∵,,∴,解得,∴.故选D.13.10 解析:温差为最高气温-最低气温14.-6 解析:数轴上的一点-4向左移动3个单位长度变为-7,再向右移动1个单位长度变为-6.15.-1 006 解析:1-2=-1,3-4=-1,5-6=-1,…,2 011-2 012=-1,总共有1 006个-1相加,所以原式=1 006×(-1)=-1 006.16.3 解析:因为当x=1时,代数式3++=++=,即2312342345ax bx a b+=,所以当x=-1a b时,代数式3++=--+=-++=-+=().ax bx a b a b23423423414317.5 cm 解析:由题意可知长比宽长2 cm,长与宽的和为12 cm,所以长为7 cm,宽为5c m.18.解析:由题意可知中途下车名,所以这时公共汽车上共有乘客19.6 解析:当,,则.将,代入,可得:.20.5 解析:设第一步的时候,每堆牌的数量都是;第二步的时候:左边,中间,右边;第三步的时候:左边,中间,右边;第四步开始的时候,左边有()张牌,则从中间拿走()张,则中间所剩牌数为.所以中间一堆牌此时有5张.21.分析:按照有理数混合运算的顺序,先算乘方后算乘除最后算加减,有括号的先算括号里面的.解:(1)===(2)==9-==-12.22.分析:本题应先将括号去掉,然后合并同类项,将多项式化为最简式,最后把值代入计算即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号,合并同类项时,只把系数相加减,字母与字母的指数不变.解:(1)解:原式=-2mn+6m2-m2+5(mn-m2)-2mn=-2mn+6m2-m2+5mn-5m2-2mn=mn,当m=1,n=-2时,原式=1×(-2)=-2.(2)==将代入,原式=23.分析:根据相反数、倒数和绝对值的定义,可知将它们代入,即可求出结果.解:∵互为相反数,互为倒数,绝对值为2,∴,,∴原式==.当时,原式;当,原式. 24.解:阴影部分的周长为464 5.56446x y +=⨯+⨯=;阴影部分的面积为4(20.5) 3.5 3.5 5.5477xy y x x x xy ---==⨯⨯=.25.分析:该营业员每月的工资包括基本工资和奖金,奖金又包括完成规定指标的奖金和超出规定指标的奖金.解:根据题意可得该营业员九月份的工资=900+600+(13 200-10 000)×5%=1 500+3 200×5%=1 500+160=1 660(元).答:他九月份的收入为1 660元. 26.解:举例1:三位数578: 57757887588522578+++++=++; 举例2:三位数123: 12211331233222123+++++=++. 猜想:所有可能的两位数的和除以这几个数字的和恒等于22.证明如下:设三位数为()10010,,0a b c a b c ++≠,则所有的两位数是10,10,a b a c ++10,b a +10,b c +10,10c a c b ++.10101010101022222222()22.a b b a a c c a b c c b a b c a b c a b c a b c a b c+++++++++++++=++++++==++故 27.分析:本题应对代数式合并同类项,将代数式化为最简式即可求得原式等于0.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相 加减,字母与字母的指数不变.解:==0-0+0=0.因为所得结果与、的值无关,所以无论、取何值,多项式的值都是0.28.分析:(1)根据顺水航行的速度=静水中的速度+水流的速度,逆水航行的速度=静水中的速度-水流的速度,然后根据路程=速度×时间可列出代数式.(2)将具体的数据代入(1)式解答即可.解:(1)由题意可知,轮船顺水航行的速度为km/h ,逆水航行的速度为.所以轮船顺水航行了,逆水航行了km ,所以轮船共航行了 答:轮船共航行了km.(2)将静水中的速度和水流的速度代入(1)中的算式.得轮船共航行答:轮船共航行了403 km.29.分析:(1)市场出售收入=水果的总收入-额外支出,而水果直接在果园的出售收入为:18 000.(2)根据(1)中得到的代数式,将,代入代数式计算即可.(3)根据(2)的数据,首先确定今年的最高收入,然后计算增长率即可.解:(1)将这批水果拉到市场上出售收入为18 000-×8×25-×100=18 000-3 600-1 800=(18 000-5 400)(元).在果园直接出售收入为18 000b 元.(2)当=1.3时,市场收入为18 000-5 400=18 000×1.3-5 400=18 000(元). 当b =1.1时,果园收入为18 000b =18 000×1.1=19 800(元).因为18 00019 800,所以应选择在果园出售. (3)因为今年的纯收入为19 800-7 800=12 000,所以×100%=25%,所以纯收入增长率为25%.。
七年级(上)期中数学试卷 含(答题卡)
七年级(上)期中数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)某种药品说明书上标明保存温度是(20±3)℃,则该药品在()范围内保存最合适.A.17℃~20℃B.20℃~23℃C.17℃~23℃D.17℃~24℃2.(3分)对于式子:,,,3x2+5x﹣2,abc,0,,m,下列说法正确的是()A.有5个单项式,1个多项式B.有3个单项式,2个多项式C.有4个单项式,2个多项式D.有7个整式3.(3分)计算a2+3a2,结果正确的是()A.3a4B.3a2C.4a2D.4a44.(3分)一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y2 5.(3分)下列变形中:①由方程=2去分母,得x﹣12=10;②由方程x=两边同除以,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A.4B.3C.2D.16.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣27.(3分)若有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|2b|为()A.a+3b B.a+b C.﹣a﹣b D.﹣a+b8.(3分)观察图中正方形四个顶点所标的规律,可知2012应标在()A.第502个正方形的左下角B.第502个正方形的右下角C.第503个正方形的左上角D.第503个正方形的左下角二.填空题(共10小题,满分30分,每小题3分)9.(3分)﹣的相反数是;绝对值是.10.(3分)据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为人次.11.(3分)三个连续整数,设中间一个为2n+1,则这三个整数的和是.12.(3分)如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…则第2014次输出的结果为.13.(3分)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.14.(3分)已知多项式(m﹣1)x4﹣x n+2x﹣5是三次三项式,则(m+1)n=.15.(3分)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为.16.(3分)若5x+3与﹣2x﹣4互为相反数,则x的倒数为.17.(3分)若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为.18.(3分)已知2是关于x的方程=x+1的解,则m的值为.三.解答题(共10小题,满分96分)19.(8分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(8分)解方程:(1)(2).22.(8分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.23.(10分)检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣3、+7、﹣5(1)收工时,检修工在A地的哪里?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?24.(10分)已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.25.(10分)当m为何值时,关于x的方程2x+m=﹣x+5与x﹣4m=2x+m的解相同?26.(10分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?27.(12分)阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.28.(12分)已知数轴上A、B两点对应的数为0、10,P为数轴上一点(1)点P为AB线段的中点,点P对应的数为.(2)数轴上有点P,使P到A,B的距离之和为20,点P对应的数为.(3)若点P点表示6,点M以每秒钟5个单位的速度从A点向右运动,点N以每秒钟1个单位的速度从B点向右运动,t秒后有PM=PN,求时间t的值(画图写过程).七年级(上)期中数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)某种药品说明书上标明保存温度是(20±3)℃,则该药品在()范围内保存最合适.A.17℃~20℃B.20℃~23℃C.17℃~23℃D.17℃~24℃【解答】解:20℃﹣3℃=17℃20℃+3℃=23℃所以该药品在17℃~23℃范围内保存才合适.故选:C.2.(3分)对于式子:,,,3x2+5x﹣2,abc,0,,m,下列说法正确的是()A.有5个单项式,1个多项式B.有3个单项式,2个多项式C.有4个单项式,2个多项式D.有7个整式【解答】解:,,,3x2+5x﹣2,abc,0,,m中:有4个单项式,,abc,0,m;2个多项式为:,3x2+5x﹣2.故选:C.3.(3分)计算a2+3a2,结果正确的是()A.3a4B.3a2C.4a2D.4a4【解答】解:a2+3a2=4a2,故选:C.4.(3分)一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y2【解答】解:多项式为:x2﹣2y2+(x2+y2)=(1+1)x2+(﹣2+1)y2=2x2﹣y2,故选:B.5.(3分)下列变形中:①由方程=2去分母,得x﹣12=10;②由方程x=两边同除以,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A.4B.3C.2D.1【解答】解:①方程=2去分母,两边同时乘以5,得x﹣12=10.②方程x=,两边同除以,得x=;要注意除以一个数等于乘以这个数的倒数.③方程6x﹣4=x+4移项,得5x=8;要注意移项要变号.④方程2﹣两边同乘以6,得12﹣(x﹣5)=3(x+3);要注意去分母后,要把是多项式的分子作为一个整体加上括号.故②③④变形错误故选:B.6.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣2【解答】解:根据题意,得解得m=3,n=2.故选:B.7.(3分)若有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|2b|为()A.a+3b B.a+b C.﹣a﹣b D.﹣a+b【解答】解:由图形可得:a<b<0,则|a﹣b|+|2b|=﹣a+b﹣2b=﹣a﹣b.故选:C.8.(3分)观察图中正方形四个顶点所标的规律,可知2012应标在()A.第502个正方形的左下角B.第502个正方形的右下角C.第503个正方形的左上角D.第503个正方形的左下角【解答】解:∵2012=503×4,∴2012应标在第503个正方形的左下角,故选:D.二.填空题(共10小题,满分30分,每小题3分)9.(3分)﹣的相反数是;绝对值是.【解答】解:﹣的相反数是;绝对值是,故答案为:,.10.(3分)据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为8.03×106人次.【解答】解:803万=8 030 000=8.03×106.故答案为:8.03×106.11.(3分)三个连续整数,设中间一个为2n+1,则这三个整数的和是6n+3.【解答】解:三个连续的整数为:2n,2n+1,2n+2,则这三个整数的和是2n+2n+1+2n+2=6n+3,故答案为:6n+312.(3分)如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…则第2014次输出的结果为3.【解答】解:当输入x=48时,第一次输出48×=24;当输入x=24时,第二次输出24×=12;当输入x=12时,第三次输出12×=6;当输入x=6时,第四次输出6×=3;当输入x=3时,第五次输出3+3=6;当输入x=6时,第六次输出6×=3;…∴第2014次输出的结果为3.故答案为:3.13.(3分)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是15.【解答】解:当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x=,不是整数;所以输入的最小正整数为15,故答案为:15.14.(3分)已知多项式(m﹣1)x4﹣x n+2x﹣5是三次三项式,则(m+1)n=8.【解答】解:由题意得:m=1,n=3,则(m+1)n=8.故答案为:815.(3分)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为240x=150x+12×150.【解答】解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,故答案为:240x=150x+12×15016.(3分)若5x+3与﹣2x﹣4互为相反数,则x的倒数为3.【解答】解:根据题意列得:5x+3﹣2x﹣4=0,整理得:3x=1,解得:x=,则x的倒数为3.故答案为:317.(3分)若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为﹣1.【解答】解:把x=2代入方程得:4+3m﹣1=0,解得:m=﹣1,故答案为:﹣118.(3分)已知2是关于x的方程=x+1的解,则m的值为﹣5.【解答】解:将x=2代入方程=x+1,得:=3,解得:m=﹣5,故答案为:﹣5.三.解答题(共10小题,满分96分)19.(8分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.21.(8分)解方程:(1)(2).【解答】解:(1)6x﹣(2x+5)=6﹣3(2x﹣3)6x﹣2x﹣5=6﹣6x+96x﹣2x+6x=6+9+510x=20x=2(2)5(x﹣2)﹣2(x+1)=35x﹣10﹣2x﹣2=35x﹣2x=3+10+23x=15x=522.(8分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【解答】解:原式=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.23.(10分)检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣3、+7、﹣5(1)收工时,检修工在A地的哪里?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【解答】解:(1)+8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=﹣6千米,故收工时,检修工在A地西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66,0.3×66=19.8(升).故若每千米耗油0.3升,从A地出发到收工时,共耗油19.8升.24.(10分)已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.【解答】解:(1)3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2∴A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9(2)A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=7xy﹣7y﹣7∵A﹣2B的值与x的取值无关∴7y=0,∴y=025.(10分)当m为何值时,关于x的方程2x+m=﹣x+5与x﹣4m=2x+m的解相同?【解答】解:∵2x+m=﹣x+5,∴x=∵x﹣4m=2x+m,∴x=﹣5m∵方程2x+m=﹣x+5与x﹣4m=2x+m的解相同,∴=﹣5m,∴m=﹣即当m=﹣时,关于x的方程2x+m=﹣x+5与x﹣4m=2x+m的解相同.26.(10分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.27.(12分)阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.【解答】解:(1)当x<﹣2时,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=x+2+4﹣x=6;当x≥4时,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;(2)当x<﹣1时,原式=3x+5<2,当﹣1≤x≤1时,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,当x>1时,原式=﹣3x﹣5<﹣8,则|x﹣1|﹣4|x+1|的最大值为2.28.(12分)已知数轴上A、B两点对应的数为0、10,P为数轴上一点(1)点P为AB线段的中点,点P对应的数为5.(2)数轴上有点P,使P到A,B的距离之和为20,点P对应的数为﹣5或15.(3)若点P点表示6,点M以每秒钟5个单位的速度从A点向右运动,点N以每秒钟1个单位的速度从B点向右运动,t秒后有PM=PN,求时间t的值(画图写过程).【解答】解:(1)(0+10)÷2=5.故点P对应的数为5.故答案为:5.(2)①分P在A的左边,点P对应的数是﹣5,②P在B的右边,点P对应的数是15.故点P对应的数为﹣5或15.故答案为:﹣5或15.(3)①M在P的左边,依题意有6﹣5t=t+(10﹣6),解得t=,②M在P的右边,依题意有5t﹣6=t+(10﹣6),解得t=2.5.故t的值为或2.5.七年级(上)期中数学试卷答题卡一.选择题(共8小题,满分24分,每小题3分)(请用2B铅笔填涂)二.填空题(共10小题,满分30分,每小题3分)(请在各试题的答题区内作答)三.解答题(共10小题,满分96分)(请在各试题的答题区内作答)。
福建省福清市2014-2015学年七年级下学期期末考试 数学试题(图片版)及答案
福清市2014-2015学年度第二学期七年级期末数学参考答案一、选择题。
(每小题2分,10题共20分)二、填空题。
(每小题3分,8题共24分)11.25120x y += 12.假 13.2- 14.1 15.64 16.()4,0 17.9 18.7- 三、认真解答,一定要细心哟!(本题有6题,满分56分) 19、计算题(每小题4分,总12分) (1)计算解方程组:21,3211,x y x y +=⎧⎨-=⎩①②解:原式=216--+……… 3分 解:①+②得:412x =……… 1分 =3-……… 4分 3x =……… 2分 将3x =代入①,得:1y =-∴原方程组的解为31x y =⎧⎨=-⎩……… 4分(3)解不等式组:21,2(3)33,x x x +≥⎧⎨+->⎩①②(将不等式组解集在数轴上表示出来)解:由①得:1x ≥……1分 由②得:3x <……2分将不等式组的解集在数轴上表示出来:………… 3分∴原不等式组的解集为13x ≤<………… 4分20、(本题满分6分) (1)证明:BE 平分ABC ∠ABE EBC ∴∠=∠………… 1分 AEB ABE ∠=∠AEB EBC ∴∠=∠………… 2分∴AD //BC (内错角相等,两直线平行) …… 4分 (2)AD //BC∴180D C ∠+∠=︒(两直线平行,同旁内角互补) ………5分 又60D ∠=︒∴120C ∠=︒…………………6分 21、(本题满分6分)解:(1)如图所示:……… 2分(2)由图可知,A'(0,4),B'(-1,1);……4分(3)利用割补法,四边形''A ACC 的面积=111155-23-33-23-33=102222⨯⨯⨯⨯⨯⨯⨯⨯⨯……6分22、(本题满分6分)解:(1)抽查的总人数:()81612%200+÷=(人)…… 2分(2)范围是115145x ≤<的人数是:20081671601629-----=(人)则跳绳次数范围135155x ≤<所在的扇形的圆心角度数是:291636081200+⨯=︒.…… 3分…… 4分(3)优秀的比例是:602916100%52.5%200++⨯=则估计全市8000名八年级学生中成绩为优秀的人数是:800052.5%4200⨯=(人) 6分 23、(本题满分8分)(1)解:设每个笔记本x 元,每支钢笔y 元.依题意可得:4286357.x y x y +=⎧⎨+=⎩,……… 2分 解得1415.x y =⎧⎨=⎩,答:每个笔记本14元,每支钢笔15元. ……… 4分(2)设买奖品x 件(10x >)买笔记本费用为14x ,买钢笔费用为:15ⅹ10+15ⅹ0.8(x-10)=12x+30………5分 ①当141230x x <+时,15x <; ②当141230x x =+时,15x =; ③当141230x x >+时,15x >.综上,当买超过10件但少于15件商品时,买笔记本省钱; 当买15件奖品时,买笔记本和钢笔一样;当买奖品超过15件时,买钢笔省钱. ………………… 8分 24、(本题满分7分)(1)26x y <+<;………………… 3分 (2)x y m -=x y m ∴=+………………… 4分又∵1x <-,1y m ∴+<-,∴1y m <--, 又∵1y >,∴11y m <<--,…①………………… 5分 同理得:11m x +<<-,…②………………… 6分 由①+②得:111(1)m y x m ++<+<--+-,∴x y +的取值范围是:22m x y m +<+<--.………………… 7分25、(本题满分11分)解:(1)由平移可知:(0,2)C ,(4,2)D ………………… 2分 (2) 可得:4,2AB CO ==428ABDC S AB CO =∙=⨯=平行四边形设M 坐标为()0,m当M 在x 轴上方时,有1482MAB S m ∆=⨯∙=,得4m = 当M 在x 轴下方时,有1482MABS m ∆=-⨯∙=,得4m =-∴M 的坐标为()0,4或()0,4-(3)①1(34)272COBP S =⨯+⨯=梯形 当P 与D 重合时,COP ∆面积最大=12442⨯⨯=,则743CDP BOP S S ∆∆+=-= 当P 与B 重合时,COP ∆面积最小=12332⨯⨯=,则734CDP BOP S S ∆∆+=-=所以,34CDP BOP S S ∆∆<+<②当P 在BD 之间时,CPO DCP BOP ∠=∠+∠ 当P 在D 上方时,BOP CPO DCP ∠=∠+∠ 当P 在B 的下方时, DCP CPO BOP ∠=∠+∠(图9-2)。
福清市2016—2017学年第一学期七年级期中质量检测数学答题卡
计算
4
1 2
2
,方方同学的计算过程如下:解:原式=
4
1 2
2
4
1
Hale Waihona Puke 4.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.
20.(6 分 )计 算 : 3 1 3 1 2 2 5 7 , 并 说 出 计 算 过 程 中 所 用 到 的 运 算 律 . 3 8 3 8
………○…………密…………封…………线…………内…………不…………要…………答…………题…………○………
姓名:__________________
福清市 2016-2017 学年度第一学期七年级期中质量检测
数学试题答题卡
一
二
三
总分
一、精心选择(共 10 小题,每小题 2 分,满分 20 分)
题号
1
2
21.(6 分 )先化简,再求值: x 2 2x 1 2( x 2 x) ,其中 x 1 . 2
(七上数学答题卡,共 4 页,第2页)
22.(7 分 )⑴ 现将有理数对(3,-2)放入盒中得到有理数 m,求 m 的值;
⑵a、b 的大小关系是 a___________b (填“>”、“<”或“=”); ⑶ (_______,_______).
3
4
5
6
7
8
9
10
答案
二、耐心填空(共 6 小题,每小题 3 分,满分 18 分)
11.
; 12.
; 13.
; 14.
; 15.
; 16.
.
三、用心解答(本大题共 6 题,满分 62 分,请将解答过程填入答题卡相应位置)
17.计算:(每题 4 分,共 8 分)
七年级(上)期中数学试卷 含(答题卡)
七年级(上)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在3,2,﹣1,﹣4这四个数中,比﹣2小的数是()A.﹣4B.﹣1C.2D.32.(3分)一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y2 3.(3分)单项式2a3b的次数是()A.2B.3C.4D.54.(3分)2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×10125.(3分)某书上有一道解方程的题:+1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.7B.5C.2D.﹣26.(3分)若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0B.1C.﹣1D.﹣27.(3分)若|x|=4,且x+y=0,那么y的值是()A.4B.﹣4C.±4D.无法确定8.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b9.(3分)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形.通过计算这两个图形的面积验证了一个等式,这个等式是()A.(a+2b)(a﹣b)=a2+ab﹣2b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a﹣b)2=a2﹣2ab﹣b2.10.(3分)设[a]是有理数,用[a]表示不超过a的最大整数,如[1.7]=1,[﹣1]=﹣1,[0]=0,[﹣1.2]=﹣2,则在以下四个结论中,正确的是()A.[a]+[﹣a]=0B.[a]+[﹣a]等于0或﹣1C.[a]+[﹣a]≠0D.[a]+[﹣a]等于0或1二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,在每个“〇”中填入一个整数,使得其中任意四个相邻“〇”中所填整数之和都相等,可得d的值为.12.(3分)若单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,则m﹣n=.13.(3分)已知﹣1<b<0,0<a<1,则代数式a﹣b、a+b、a+b2、a2+b中值最大的是.14.(3分)有一个含a的代数式,当a=2的时候,该代数式的值为﹣8,则此代数式可以为.15.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.16.(3分)如图所示,把半径为2个长度单位的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是.三.解答题(共8小题,满分72分)17.(8分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.18.(8分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.19.(8分)“十•一”黄金周期间,蚌埠市花博园在7天假期中每天参观的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日的游客人数记为a人,请用a的代数式表示10月2日的游客人数?(2)请判断七天内游客人数最多的是哪天?请说明理由.(3)若9月30日的游客人数为1000人,门票每人20元.问黄金周期间花博园门票收入是多少元?20.(8分)列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?21.(8分)如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.(1)若x=17,则a+b+c+d=.(2)移动十字框,用x表示a+b+c+d=.(3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.22.(10分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.23.(10分)某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?24.(12分)已知x,y为有理数,现规定一种新运算*,满足x*y=xy﹣2x+1(1)求3*2的值;(2)对于任意两个有理数x,y,是否都有x*y=y*x成立?如果成立,请证明,如果不成立,请举反例说明;(3)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是1*(﹣9),点C在数轴上表示的数是(﹣8)*.若线段AB以6个单位长度每秒的速度向右匀速运动,同时线段CD以2个单位长度每秒的速度向左匀速运动.问运动多少秒时,BC=8(单位长度)?此时点B在数轴上表示的数是多少.七年级(上)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)在3,2,﹣1,﹣4这四个数中,比﹣2小的数是()A.﹣4B.﹣1C.2D.3【解答】解:根据有理数比较大小的方法,可得3>﹣2,2>﹣2,﹣1>﹣2,﹣4<﹣2,比﹣2小的数是﹣4.故选:A.2.(3分)一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y2【解答】解:多项式为:x2﹣2y2+(x2+y2)=(1+1)x2+(﹣2+1)y2=2x2﹣y2,故选:B.3.(3分)单项式2a3b的次数是()A.2B.3C.4D.5【解答】解:该单项式的次数为:4故选:C.4.(3分)2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×1012【解答】解:将2098.7亿元用科学记数法表示是2.0987×1011,故选:C.5.(3分)某书上有一道解方程的题:+1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.7B.5C.2D.﹣2【解答】解:把x=﹣2代入+1=x得:+1=﹣2,解这个方程得:□=5.故选:B.6.(3分)若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0B.1C.﹣1D.﹣2【解答】解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,解得:m=2,n=3,∴m﹣n=﹣1.故选:C.7.(3分)若|x|=4,且x+y=0,那么y的值是()A.4B.﹣4C.±4D.无法确定【解答】解:∵|x|=4,∴x=±4,∵x+y=0,∴当x=4时,y=﹣4,当x=﹣4时,y=4,故选:C.8.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.9.(3分)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形.通过计算这两个图形的面积验证了一个等式,这个等式是()A.(a+2b)(a﹣b)=a2+ab﹣2b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a﹣b)2=a2﹣2ab﹣b2.【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选:C.10.(3分)设[a]是有理数,用[a]表示不超过a的最大整数,如[1.7]=1,[﹣1]=﹣1,[0]=0,[﹣1.2]=﹣2,则在以下四个结论中,正确的是()A.[a]+[﹣a]=0B.[a]+[﹣a]等于0或﹣1C.[a]+[﹣a]≠0D.[a]+[﹣a]等于0或1【解答】解:(1)当a是整数时,[a]+[﹣a]=a+(﹣a)=0(2)当a不是整数时,例如:a=1.7时,[1.7]+[﹣1.7]=1+(﹣2)=﹣1∴[a]+[﹣a]=﹣1.综上,可得[a]+[﹣a]等于0或﹣1.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,在每个“〇”中填入一个整数,使得其中任意四个相邻“〇”中所填整数之和都相等,可得d的值为8.【解答】解:∵a+8+b﹣5=8+b﹣5+c=b﹣5+c+d=﹣5+c+d+4,∴a+8+b﹣5=8+b﹣5+c①,8+b﹣5+c=b﹣5+c+d②,b﹣5+c+d=﹣5+c+d+4③,∴a﹣5=c﹣5,8+c=c+d,b﹣5=﹣5+4,∴b=4,d=8,a=c,故答案为8.12.(3分)若单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,则m﹣n=.【解答】解:∵单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,∴m﹣2=n,2m﹣3n=3,解得:m=3,n=1,∴m﹣n=3﹣1=;故答案为:.13.(3分)已知﹣1<b<0,0<a<1,则代数式a﹣b、a+b、a+b2、a2+b中值最大的是a﹣b.【解答】解:∵﹣1<b<0,∴﹣b>b,0<b2<1,∴a﹣b>a+b,a﹣b>a+b2;又∵0<a<1,∴0<a2<1,∴a﹣b>a2+b;综上,可得在代数式a﹣b,a+b,a+b2,a2+b中,对任意的a,b,对应的代数式的值最大的是a﹣b.故答案为:a﹣b.14.(3分)有一个含a的代数式,当a=2的时候,该代数式的值为﹣8,则此代数式可以为﹣4a.【解答】解:代数式﹣4a,当a=2时,﹣4a=﹣4×2=﹣8,所以,所写代数式为﹣4a(答案不唯一).故答案为:﹣4a.15.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距504千米.【解答】解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.16.(3分)如图所示,把半径为2个长度单位的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是﹣4π.【解答】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为﹣4π,故答案为﹣4π,三.解答题(共8小题,满分72分)17.(8分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.18.(8分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【解答】解:原式=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.19.(8分)“十•一”黄金周期间,蚌埠市花博园在7天假期中每天参观的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日的游客人数记为a人,请用a的代数式表示10月2日的游客人数?(2)请判断七天内游客人数最多的是哪天?请说明理由.(3)若9月30日的游客人数为1000人,门票每人20元.问黄金周期间花博园门票收入是多少元?【解答】解:(1)10月2日的人数为a+(+1400)+(﹣800)=a+600.(2)10月1日人数:a+1400,10月2日人数:a+1400+(﹣800)=a+600,10月3日人数:a+600+(+550)=a+1150,10月4日人数:a+1150+(﹣100)=a+1050,10月5日人数:a+1050+(+600)=a+1650,10月6日人数:a+1650+(﹣300)=a+1350,10月7日人数:a+1350+(﹣150)=a+1200,故10月5日人数最多.(3)黄金周期间旅游总人数为:(a+1400)+(a+600)+(a+1150)+(a+1050)+(a+1650)+(a+1350)+(a+1200)=7a+8400,∵a=1000,∴7a+8400=7×1000+8400=15400,∴门票收入为15400×20=308000元.20.(8分)列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?【解答】解:设乙的速度为x千米/小时,则甲的速度为3x千米/小时,依题意有3x(3﹣)+3x=25×2,9x﹣2x+3x=50,10x=50,x=5,3x=15答:甲的速度为15千米/小时,乙的速度为5千米/小时.21.(8分)如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.(1)若x=17,则a+b+c+d=68.(2)移动十字框,用x表示a+b+c+d=4x.(3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.【解答】解:观察图1,可知:a=x﹣12,b=x﹣2,c=x+2,d=x+12.(1)当x=17时,a=5,b=15,c=19,d=29,∴a+b+c+d=5+15+19+29=68.故答案为:68.(2)∵a=x﹣12,b=x﹣2,c=x+2,d=x+12,∴a+b+c+d=(x﹣12)+(x﹣2)+(x+2)+(x+12)=4x.故答案为:4x.(3)M的值不能等于2020,理由如下:令M=2020,则4x+x=2020,解得:x=404.∵404是偶数不是奇数,∴与题目x为奇数的要求矛盾,∴M不能为2020.22.(10分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.23.(10分)某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?【解答】解:(1)设该班购买乒乓球x盒,则甲:100×5+(x﹣5)×25=25x+375,乙:0.9×100×5+0.9x×25=22.5x+450,当甲=乙,25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样;(2)买20盒时:甲25×20+375=875元,乙22.5×20+450=900元,选甲;买40盒时:甲25×40+375=1375元,乙22.5×40+450=1350元,选乙.24.(12分)已知x,y为有理数,现规定一种新运算*,满足x*y=xy﹣2x+1(1)求3*2的值;(2)对于任意两个有理数x,y,是否都有x*y=y*x成立?如果成立,请证明,如果不成立,请举反例说明;(3)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是1*(﹣9),点C在数轴上表示的数是(﹣8)*.若线段AB以6个单位长度每秒的速度向右匀速运动,同时线段CD以2个单位长度每秒的速度向左匀速运动.问运动多少秒时,BC=8(单位长度)?此时点B在数轴上表示的数是多少.【解答】解:(1)3*2=3×2﹣2×3+1=1(2)不成立,当x=3,y=2时,x*y=3*2=3×2﹣2×3+1=1,y*x=2*3=2×3﹣2×2+1=6﹣4+1=3,∴对于任意两个有理数x,y,x*y=y*x不一定成立;(3)∵点A在数轴上表示的数是1*(﹣9)=1×(﹣9)﹣2×1+1=﹣10,∵AB=2,∴点B在数轴上表示的数是:﹣8,∵点C在数轴上表示的数是(﹣8)*=﹣8×﹣2×(﹣8)+1=16,设运动t秒时,BC=8(单位长度),分两种情况:①当点B在点C的左侧时,由题意得:(16﹣2t)﹣(﹣8+6t)=8,t=2,此时点B在数轴上表示的数是:﹣8+6t=﹣8+12=4,②当点B在点C的右侧时,由题意得:(﹣8+6t)﹣(16﹣2t)=8,t=4,此时点B在数轴上表示的数是:﹣8+6t=﹣8+24=16.七年级(上)期中数学试卷答题卡一.选择题(共10小题,满分30分,每小题3分)(请用2B铅笔填涂)二.填空题(共6小题,满分18分,每小题3分)(请在各试题的答题区内作答)三.解答题(共8小题,满分72分)(请在各试题的答题区内作答)。
七年级(上)期中数学试卷 含(答题卡)
七年级(上)期中数学试卷一.选择题(共12小题,满分48分,每小题4分)1.(4分)某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A.100g B.150g C.300g D.400g2.(4分)下列各式结果是负数的是()A.﹣(﹣3)B.﹣|﹣3|C.3﹣2D.(﹣3)2 3.(4分)﹣3的相反数是()A.3B.﹣3C.D.﹣4.(4分)﹣1+3的结果是()A.﹣4B.4C.﹣2D.25.(4分)26表示()A.2乘以6B.2个6相乘C.6个2相加D.6个2相乘6.(4分)208031精确到万位的近似数是()A.2×105B.2.1×105C.21×104D.2.08万7.(4分)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()分A.B.C.D.8.(4分)下列说法正确的有()(1)任何一个有理数的平方都是正数;(2)两个数比较,绝对值大的反而小;(3)﹣a不一定是负数;(4)符号相反的两个数互为相反数.A.1个B.2个C.3个D.4个9.(4分)已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.610.(4分)有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<a B.|b|>|a|C.a+b>0D.ab<0 11.(4分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.12.(4分)下列说法中正确的有()①同号两数相乘,符号不变;②几个因数相乘,积的符号由负因数的个数决定;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)13.(4分)若a、b是互为倒数,则2ab﹣5=.14.(4分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.15.(4分)若a是绝对值最小的数,b是最大的负整数,则a﹣b=.16.(4分)一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.(4分)已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,则m2+(cd+a+b)×m+(cd)2018的值为.18.(4分)在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A 向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,则A3表示的数是按照这种移动规律移动下去,第n次移动到点A N,如果点A N与原点的距离不小于20,那么n的最小值是.三.解答题(共2小题,满分14分,每小题7分)19.(7分)3+2+(﹣)﹣(﹣)20.(7分)有理数a、b、在数轴上的位置如图所示.(1)用“>”或“<”填空:a+b0,c﹣b0;(2)化简:|a+b|+|c|﹣|c﹣b|.四.解答题(共4小题,满分40分,每小题10分)21.(10分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.22.(10分)计算:|4﹣4|+()﹣(+5).23.(10分)已知:|a|=5,|b|=3,(1)求a+b的值.(2)若|a+b|=a+b,求a﹣b的值.24.(10分)冰箱开始启动时内部温度为10℃,如果每小时冰箱内部的温度降低5℃,那么3小时后冰箱内部的温度是多少?五.解答题(共2小题,满分24分,每小题12分)25.(12分)如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.26.(12分)观察下列等式:第1个等式:a1==(1﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4==(﹣)…请回答下列问题:(1)按上述等式的规律,列出第5个等式:a5==(2)用含n的式子表示第n个等式:a n==(3)求a1+a2+a3+a4+…+a100的值.七年级(上)期中数学试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.(4分)某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A.100g B.150g C.300g D.400g【解答】解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选:D.2.(4分)下列各式结果是负数的是()A.﹣(﹣3)B.﹣|﹣3|C.3﹣2D.(﹣3)2【解答】解:A、﹣(﹣3)=3,故错误;B、﹣|﹣3|=﹣3,正确;C、,故错误;D、(﹣3)2=9,故错误;故选:B.3.(4分)﹣3的相反数是()A.3B.﹣3C.D.﹣【解答】解:﹣3的相反数是3,故选:A.4.(4分)﹣1+3的结果是()A.﹣4B.4C.﹣2D.2【解答】解:﹣1+3=2,故选:D.5.(4分)26表示()A.2乘以6B.2个6相乘C.6个2相加D.6个2相乘【解答】解:26表示6个2相乘.故选:D.6.(4分)208031精确到万位的近似数是()A.2×105B.2.1×105C.21×104D.2.08万【解答】解:208031精确到万位的近似数是2.1×105,故选:B.7.(4分)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()分A.B.C.D.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为分.故选:B.8.(4分)下列说法正确的有()(1)任何一个有理数的平方都是正数;(2)两个数比较,绝对值大的反而小;(3)﹣a不一定是负数;(4)符号相反的两个数互为相反数.A.1个B.2个C.3个D.4个【解答】解:(1)0的平方是0,故A错误;(2)两个负数比较,绝对值大的反而小,故B错误;(3)当a为负数时,﹣a表示正数,故C正确;(4)只有符号不同的两个数互为相反数,故D错误.故选:A.9.(4分)已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.6【解答】解:当a2+2a=3时原式=2(a2+2a)﹣3=6﹣3=3故选:C.10.(4分)有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<a B.|b|>|a|C.a+b>0D.ab<0【解答】解:∵b<﹣1,0<a<1,∴b<a,∴选项A不符合题意;∵b<﹣1,0<a<1,∴|b|>1,0<|a|<1,∴|b|>|a|,∴选项B不符合题意;∵b<﹣1,0<a<1,∴a+b<0,∴选项C符合题意;∵b<﹣1,0<a<1,∴ab<0,∴选项D不符合题意.故选:C.11.(4分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.12.(4分)下列说法中正确的有()①同号两数相乘,符号不变;②几个因数相乘,积的符号由负因数的个数决定;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个【解答】解:①两个负数相乘,结果得正,说法错误;②几个非0的因数相乘,积的符号由负因数的个数决定,说法错误;③互为相反数的非零两数相乘,积一定为负,说法错误;④两个有理数的积的绝对值等于这两个有理数的绝对值的积,说法正确.故选:A.二.填空题(共6小题,满分24分,每小题4分)13.(4分)若a、b是互为倒数,则2ab﹣5=﹣3.【解答】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为:﹣3.14.(4分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为 6.7×1010.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.15.(4分)若a是绝对值最小的数,b是最大的负整数,则a﹣b=1.【解答】解:若a是绝对值最小的数,b是最大的负整数,则a=0,b=﹣1,a﹣b=0﹣(﹣1)=1.故答案为:1.16.(4分)一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.17.(4分)已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,则m2+(cd+a+b)×m+(cd)2018的值为7.【解答】解:∵a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,∴a+b=0,cd=1,|m|=3,∴m=﹣3,∴m2+(cd+a+b)×m+(cd)2018=(﹣3)2+(1+0)×(﹣3)+12018=9+1×(﹣3)+1=9+(﹣3)+1=7,故答案为:7.18.(4分)在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A 向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,则A3表示的数是﹣5按照这种移动规律移动下去,第n次移动到点A N,如果点A N与原点的距离不小于20,那么n的最小值是13.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A N与原点的距离不小于20,那么n的最小值是13,故答案为:﹣5,13.三.解答题(共2小题,满分14分,每小题7分)19.(7分)3+2+(﹣)﹣(﹣)【解答】解:原式=3﹣+2+=3+3=6.20.(7分)有理数a、b、在数轴上的位置如图所示.(1)用“>”或“<”填空:a+b>0,c﹣b<0;(2)化简:|a+b|+|c|﹣|c﹣b|.【解答】解:(1)∵从数轴可知:c<﹣1<a<0<1<b,|a|<|b|<|c|,∴a+b>0,c﹣b<0,故答案为:>,<;(2))∵从数轴可知:c<﹣1<a<0<1<b,|a|<|b|<|c|,∴a+b>0,c﹣b<0,∴|a+b|+|c|﹣|c﹣b|=a+b+(﹣c)﹣(﹣c+b)=a.四.解答题(共4小题,满分40分,每小题10分)21.(10分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.22.(10分)计算:|4﹣4|+()﹣(+5).【解答】解:原式=|﹣|+(﹣+﹣)×12﹣4﹣5=﹣6+8﹣2﹣4﹣5=﹣8.23.(10分)已知:|a|=5,|b|=3,(1)求a+b的值.(2)若|a+b|=a+b,求a﹣b的值.【解答】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.24.(10分)冰箱开始启动时内部温度为10℃,如果每小时冰箱内部的温度降低5℃,那么3小时后冰箱内部的温度是多少?【解答】解:∵冰箱开始启动时内部温度为10℃,如果每小时冰箱内部的温度降低5℃,那么3小时后冰箱内部的温度为10﹣3×5=﹣5(℃).答:3小时后冰箱内部的温度是﹣5℃.五.解答题(共2小题,满分24分,每小题12分)25.(12分)如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.【解答】解:(1)阴影部分的面积为b2+a(a+b);(2)当a=3,b=5时,b2+a(a+b)=×25+×3×(3+5)=,即阴影部分的面积为.26.(12分)观察下列等式:第1个等式:a1==(1﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4==(﹣)…请回答下列问题:(1)按上述等式的规律,列出第5个等式:a5==×(﹣)(2)用含n的式子表示第n个等式:a n==(﹣)(3)求a1+a2+a3+a4+…+a100的值.【解答】解:(1)观察下列等式:第1个等式:a1==(1﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4==(﹣)…则第5个等式:a5==×(﹣);故答案为,×(﹣);(2)由(1)知,a n==(﹣),故答案为:,(﹣);(3)原式=+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=×(1﹣+﹣+﹣+…+﹣)=×=.七年级(上)期中数学试卷答题卡一.选择题(共12小题,满分48分,每小题4分)(请用2B铅笔填涂)二.填空题(共6小题,满分24分,每小题4分)(请在各试题的答题区内作答)三.解答题(共2小题,满分14分,每小题7分)(请在各试题的答题区内作答)四.解答题(共4小题,满分40分,每小题10分)(请在各试题的答题区内作答)五.解答题(共2小题,满分24分,每小题12分)(请在各试题的答题区内作答)。
七年级(上)期中数学试卷含(答题卡)
七年级(上)期中数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列比较大小结果正确的是()A.﹣3<﹣4B.﹣(﹣2)<|﹣2|C.D.2.(3分)某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A.100g B.150g C.300g D.400g3.(3分)据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有()A.56℃B.﹣56℃C.310℃D.﹣310℃4.(3分)2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×10125.(3分)计算﹣(+1)+|﹣1|,结果为()A.﹣2B.2C.1D.06.(3分)已知数a,b,c的大小关系如图所示,则下列各式中正确的个数是()①ab+ac>0;②﹣a﹣b+c>0;③++=1;④|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.A.1B.2C.3D.47.(3分)a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.b<﹣a<﹣b<a B.﹣b<b<﹣a<a C.﹣a<b<﹣b <a D.﹣a<﹣b<b<a8.(3分)在实数,,0,,,1.414,有理数有()A.1 个B.2 个C.3 个D.4 个二.填空题(共8小题,满分24分,每小题3分)9.(3分)升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作.10.(3分)甲地到乙地的路程为s千米,小康骑自行车从甲地到乙地的平均速度为v千米/时,则他从甲地到乙地所用的时间为小时.11.(3分)在,﹣(﹣1),3.14,﹣|﹣8﹣4|,﹣3,π,﹣(﹣),0这8个数中,有理数有m个,自然数有n个,分数有k个,负数有t个,则m﹣n ﹣k+t=.12.(3分)已知3x2+x=1,则代数式x2+x﹣2的值为.13.(3分)已知有理数a在数轴上的位置如图,则a+|a﹣1|=.14.(3分)定义运算“*”,规定x*y=2x+y,如1*2=4,2*3=7,则(﹣2)*5=.15.(3分)已知|x|=4,y2=25,xy<0,则x﹣y=.16.(3分)(1)多项式4x3+2x﹣3是次项式;(2)单项式﹣的系数是.三.解答题(共9小题,满分72分)17.(10分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.18.(10分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)19.(10分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?20.(6分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.21.(6分)(1)如图,试用a的代数式表示图形中阴影部分的面积;(2)当a=2时,计算图中阴影部分的面积.22.(7分)如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒3个单位长度的速度在数轴上由A向B运动,当点P 到达点B后立即返回,仍然以每秒3个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒)(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离;(用含t的代数式表示)(4)当点P表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t值.23.(7分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.24.(10分)红星中学九年级(1)班三位教师决定带领本班a名学生利用假期去某地旅游,枫江旅行社的收费标准为:教师全价,学生半价;而东方旅行社不管教师还是学生一律八折优惠,这两家旅行社的全价都是500元.(1)用含a的式子表示三位教师和a位学生参加这两家旅行社所需的费用各是多少元;(2)如果a=55时,请你计算选择哪一家旅行社较为合算?25.(6分)计算:|4﹣4|+()﹣(+5).七年级(上)期中数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列比较大小结果正确的是()A.﹣3<﹣4B.﹣(﹣2)<|﹣2|C.D.【解答】解:化简后再比较大小.A、﹣3>﹣4;B、﹣(﹣2)=2=|﹣2|=2;C、<﹣;D、|﹣|=>﹣.故选:D.2.(3分)某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A.100g B.150g C.300g D.400g【解答】解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选:D.3.(3分)据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有()A.56℃B.﹣56℃C.310℃D.﹣310℃【解答】解:127﹣(﹣183)=127+183=310℃,故选:C.4.(3分)2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×1012【解答】解:将2098.7亿元用科学记数法表示是2.0987×1011,故选:C.5.(3分)计算﹣(+1)+|﹣1|,结果为()A.﹣2B.2C.1D.0【解答】解:原式=﹣1+1=0,故选:D.6.(3分)已知数a,b,c的大小关系如图所示,则下列各式中正确的个数是()①ab+ac>0;②﹣a﹣b+c>0;③++=1;④|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.A.1B.2C.3D.4【解答】解:由题意b<0,c>a>0,|c|>|b|,|b|>|a|∴①ab+ac>0;正确;②﹣a﹣b+c>0;正确;③++=1;正确;④|a﹣b|﹣|c+b|+|a﹣c|=a﹣b﹣c﹣b﹣a+c=﹣2b;正确;故选:D.7.(3分)a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.b<﹣a<﹣b<a B.﹣b<b<﹣a<a C.﹣a<b<﹣b <a D.﹣a<﹣b<b<a【解答】解:根据图示,可得:﹣1<b<0,a>1,∴0<﹣b<1,﹣a<﹣1,∴﹣a<b<﹣b<﹣a.故选:C.8.(3分)在实数,,0,,,1.414,有理数有()A.1 个B.2 个C.3 个D.4 个【解答】解:在实数,,0,,,1.414,有理数有:,0,,1.414,故选:D.二.填空题(共8小题,满分24分,每小题3分)9.(3分)升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作+25米.【解答】解:∵上升13米记作+13米,∴上升25米时记作+25米.故答案为:+25米.10.(3分)甲地到乙地的路程为s千米,小康骑自行车从甲地到乙地的平均速度为v千米/时,则他从甲地到乙地所用的时间为小时.【解答】解:根据速度公式v=可得t=,故答案为11.(3分)在,﹣(﹣1),3.14,﹣|﹣8﹣4|,﹣3,π,﹣(﹣),0这8个数中,有理数有m个,自然数有n个,分数有k个,负数有t个,则m﹣n ﹣k+t=4.【解答】解:,﹣(﹣1),3.14,﹣|﹣8﹣4|,﹣3,π,﹣(﹣),0这8个数中,有理数有:,﹣(﹣1),3.14,﹣|﹣8﹣4|,﹣3,﹣(﹣),0,共7个.自然数有:﹣(﹣1),0,共2个,分数有,3.14,﹣(﹣),共3个,负数有:﹣|﹣8﹣4|,﹣3,共2个,∴m=7、n=2、k=3、t=2,则m﹣n﹣k+t=7﹣2﹣3+2=4,故答案为:4.12.(3分)已知3x2+x=1,则代数式x2+x﹣2的值为﹣.【解答】解:当3x2+x=1时,原式=(3x2+x)﹣2=×1﹣2=﹣,故答案为:﹣.13.(3分)已知有理数a在数轴上的位置如图,则a+|a﹣1|=1.【解答】解:由数轴上a点的位置可知,a<0,∴a﹣1<0,∴原式=a+1﹣a=1.故答案为:1.14.(3分)定义运算“*”,规定x*y=2x+y,如1*2=4,2*3=7,则(﹣2)*5=1.【解答】解:根据题中的新定义得:﹣4+5=1,故答案为:115.(3分)已知|x|=4,y2=25,xy<0,则x﹣y=9或﹣9.【解答】解:∵|x|=4,y2=25,∴x=±4,y=±5.又xy<0,∴x=4,y=﹣5或x=﹣4,y=5.当x=4,y=﹣5时,x﹣y=4﹣(﹣5)=9,当x=﹣4,y=5时,x﹣y=﹣4﹣5=﹣9.故答案为:9或﹣9.16.(3分)(1)多项式4x3+2x﹣3是三次三项式;(2)单项式﹣的系数是﹣.【解答】解:(1)多项式4x3+2x﹣3是三次三项式,故答案为:三,三;(2)单项式﹣的系数是﹣,故答案为:﹣.三.解答题(共9小题,满分72分)17.(10分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.18.(10分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.19.(10分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.20.(6分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【解答】解:原式=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.21.(6分)(1)如图,试用a的代数式表示图形中阴影部分的面积;(2)当a=2时,计算图中阴影部分的面积.【解答】解:(1)如图,大正方形的面积为(2a+3)2=4a2+12a+9,小正方形的面积为(2a+3﹣a)2=(a+3)2=a2+6a+9,则阴影部分面积为(4a2+12a+9)﹣(a2+6a+9)=3a2+6a;(2)当a=2时,原式=3×22+6×2=24.22.(7分)如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒3个单位长度的速度在数轴上由A向B运动,当点P 到达点B后立即返回,仍然以每秒3个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒)(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离;(用含t的代数式表示)(4)当点P表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t值.【解答】解:(1)当t=1时3×1=3﹣6+3=﹣3所以点P 所表示的有理数是﹣3;(2)当点P与点B重合时,点P所运动的路程为|6﹣(﹣6)|=12所以t=12÷3=4;(3)点P沿数轴由点A到点B再回到点A的运动过程中,点P与点A的距离分为2中情况:当点P到达点B前点P与点A的距离是3t;当点P到达点B再回到点A的运动过程中点P与点A的距离是:24﹣3t;(4)当点P表示的有理数与原点(设原点为O)的距离是3个单位长度时,则有以下四种情况:当点P由点A到点O时:OP=AO﹣3t,即:6﹣3t=3,∴t=1;当点P由点O到点B时:OP=3t﹣AO,即:3t﹣6=3,∴t=3;当点P由点B到点O时:OP=18﹣3t,即:18﹣3t=3,∴t=5;当点P由点O到AO时:OP=3t﹣18,即:3t﹣18=3,∴t=7,即:当点P表示的有理数与原点的距离是3个单位长度时,t值的值为1秒或3秒或5秒或7秒;23.(7分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.24.(10分)红星中学九年级(1)班三位教师决定带领本班a名学生利用假期去某地旅游,枫江旅行社的收费标准为:教师全价,学生半价;而东方旅行社不管教师还是学生一律八折优惠,这两家旅行社的全价都是500元.(1)用含a的式子表示三位教师和a位学生参加这两家旅行社所需的费用各是多少元;(2)如果a=55时,请你计算选择哪一家旅行社较为合算?【解答】解:(1)参加枫江旅行社的总费用为:3×500+250a=250a+1500;参加东方旅行社的总费用为:(3+a)×500×0.8=400a+1200;答:参加枫江旅行社的总费用为(250a+1500)元,参加东方旅行社的总费用为(400a+1200)元;(2)当a=55时,参加枫江旅行社的总费用为250×55+1500=15250(元);参加东方旅行社的总费用为:400×55+1200=23200(元).∴参加枫江旅行社合算.答:参加枫江旅行社合算.25.(6分)计算:|4﹣4|+()﹣(+5).【解答】解:原式=|﹣|+(﹣+﹣)×12﹣4﹣5=﹣6+8﹣2﹣4﹣5=﹣8.七年级(上)期中数学试卷答题卡一.选择题(共8小题,满分24分,每小题3分)(请用2B铅笔填涂)二.填空题(共8小题,满分24分,每小题3分)(请在各试题的答题区内作答)三.解答题(共9小题,满分72分)(请在各试题的答题区内作答)。