2017年中考数学培优练习分式方程应用

合集下载

初中数学分式方程的应用培优训练(精选40道习题 附答案详解)

初中数学分式方程的应用培优训练(精选40道习题  附答案详解)
(1)求第一批采购的书包的单价是多少元?
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?

2017年中考数学专题复习训练 分式方程的应用 精品

2017年中考数学专题复习训练 分式方程的应用 精品

分式方程的应用一、选择题1.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是 A.203525-=x x B.xx 352025=- C.203525+=x x D.x x 352025=+ 2.某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。

设B 型包装箱每个可以装x 件文具,根据题意列方程为( ) A .121510801080+-=x x B .121510801080--=x x C .121510801080-+=x x D .121510801080++=x x二、填空题1.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 .2.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是_____________.3.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .4.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马 天可以追上驽马.三、解答题1.某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.2.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.3.“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?4.某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m³,5月份的燃气费是90元.求该市今年居民用气的价格.5.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?6.小明离家2.4千米的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45分钟,于是他立即步行(匀速)回家取票,在家取票用时2分钟,取到票后,他马上骑自行车(匀速)赶往体育馆。

2017年中考数学试题汇编---- 解分式方程及其应用

2017年中考数学试题汇编---- 解分式方程及其应用

解分式方程及其应用一.选择题1.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣52.已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.23.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤14.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5=D.﹣=55.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=6.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.167.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=8.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.﹣10=B.+10=C.﹣10=D.+10=9.分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣210.关于x的分式方程+5=有增根,则m的值为()A.1 B.3 C.4 D.511.某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.设去年居民用水价格为x元/m3,根据题意列方程,正确的是()A.B.C.D.12.某服装专卖店销售的A款品牌西服去年销售总额为50000元,今年该款西服每件售价比去年便宜400元,若售出的件数相同,则该款西服销售总额将比去年降低20%,求今年该款西服的每件售价.若设今年该款西服的每件售价为x元,那么可列方程为()A.=B.=C.=D.13.已知:关于x方程+=有且仅有一个实数根,则k的值为()A.B.或1 C.或5或1 D.或5或﹣2二.填空题14.分式方程=的解是.15.关于x的分式方程=的解是.16.若关于x的分式方程+3=无解,则实数m=.17.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.18.若关于x的分式方程=﹣3有增根,则实数m的值是.19.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是.20.分式方程=﹣2的解为.21.分式方程=1﹣的解是.22.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.23.关于x的方程无解,则a的值是.三.解答题24.解方程:﹣=1.25.解方程:+=1.26.解方程:.27.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?28.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示).(2)求点P原来的速度.29.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.30.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.31.政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.32.某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?33.某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.34.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?35.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?36.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A,B两种机械设备,每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台.请解答下列问题:(1)A、B两种设备每台的成本分别是多少万元?(2)若A,B两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A种设备至少生产53台,求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A种设备,航空运输每次运2台B种设备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数.37.在“母亲节”前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来可购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?38.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.39.甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.40.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.参考答案与解析一.选择题1.(2017•哈尔滨)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【分析】根据分式方程的解法即可求出答案.【解答】解:2(x﹣1)=x+3,2x﹣2=x+3,x=5,令x=5代入(x+3)(x﹣1)≠0,故选(C)【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.2.(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.3.(2017•黑龙江)已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1【分析】根据分式方程的解法即可求出a的取值范围;【解答】解:3(3x﹣a)=x﹣3,9x﹣3a=x﹣3,8x=3a﹣3∴x=,由于该分式方程有解,令x=代入x﹣3≠0,∴a≠9,∵该方程的解是非负数解,∴≥0,∴a≥1,∴a的范围为:a≥1且a≠9,故选(C)【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.4.(2017•乌鲁木齐)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5= D.﹣=5【分析】根据题意给出的等量关系即可列出方程.【解答】解:设原计划每天植树x万棵,需要天完成,∴实际每天植树(x+0.2x)万棵,需要天完成,∵提前5天完成任务,∴﹣=5,故选(A)【点评】本题考查分式方程的应用,解题的关键是利用题目中的等量关系,本题属于基础题型.5.(2017•临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=【分析】根据甲乙的工作时间,可列方程.【解答】解:设乙每小时做x个,甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得=,故选:B.【点评】本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.6.(2017•重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.7.(2017•南宁)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.= B.=C.=D.=【分析】根据题意可得顺水速度为(35+v)km/h,逆水速度为(35﹣v)km/h,根据题意可得等量关系:以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等,根据等量关系列出方程即可.【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出顺水和逆水行驶速度,找出题目中等量关系,然后列出方程.8.(2017•泰安)某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.﹣10=B.+10=C.﹣10=D.+10=【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【解答】解:设第一批购进x件衬衫,则所列方程为:+10=.故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.9.(2017•滨州)分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣2【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程的无解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.(2017•毕节市)关于x的分式方程+5=有增根,则m的值为()A.1 B.3 C.4 D.5【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣1),得7x+5(x﹣1)=2m﹣1,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,当x=1时,7=2m﹣1,解得m=4,所以m的值为4.故选C.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11.(2017•达州)某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.设去年居民用水价格为x元/m3,根据题意列方程,正确的是()A.B.C.D.【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【解答】解:设去年居民用水价格为x元/m3,根据题意列方程:﹣=5,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.12.某服装专卖店销售的A款品牌西服去年销售总额为50000元,今年该款西服每件售价比去年便宜400元,若售出的件数相同,则该款西服销售总额将比去年降低20%,求今年该款西服的每件售价.若设今年该款西服的每件售价为x元,那么可列方程为()A.=B.=C.=D.【分析】设今年该款西服的每件售价为x元,则去年的售价为x+400,再利用售出的件数相同,得出等式.【解答】解:设今年该款西服的每件售价为x元,那么可列方程为:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.13.已知:关于x方程+=有且仅有一个实数根,则k的值为()A.B.或1 C.或5或1 D.或5或﹣2【分析】分式方程去分母转化为整式方程,由分式方程有且仅有一个实数根,分情况讨论,即可确定出k的值即可.【解答】解:分式方程去分母得:x2+x2+2x+1=4x+k,即2x2﹣2x+1﹣k=0,由分式方程有且仅有一个实数根,可得整式方程中△=4﹣8(1﹣k)=0,解得:k=;若整式方程中△>0,则当增根为x=0时,代入整式方程可得:1﹣k=0,即k=1,此时,方程2x2﹣2x=0的解为x1=1,x2=0(不合题意);当增根为x=﹣1时,代入整式方程可得:5﹣k=0,即k=5,此时,方程2x2﹣2x﹣4=0的解为x1=2,x2=﹣1(不合题意);综上所述,k的值为或5或1,故选:C.【点评】此题考查了分式方程的解,解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.二.填空题14.(2017•襄阳)分式方程=的解是x=9.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.【点评】本题考查了解分式方程,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.(2017•绵阳)关于x的分式方程=的解是x=﹣2.【分析】把分式方程转化为整式方程即可解决问题.【解答】解:两边乘(x+1)(x﹣1)得到,2x+2﹣(x﹣1)=﹣(x+1),解得x=﹣2,经检验,x=﹣2是分式方程的解.∴x=﹣2.故答案为x=﹣2.【点评】本题考查分式方程的解,记住即为分式方程的步骤,注意解分式方程必须检验.16.(2017•攀枝花)若关于x的分式方程+3=无解,则实数m=3或7.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:7+3(x﹣1)=mx,整理,得(m﹣3)x=4,当整式方程无解时,m﹣3=0,m=3;当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7,∴m的值为3或7.故答案为3或7.【点评】本题考查了分式方程无解的条件,是需要识记的内容.17.(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.18.(2017•宿迁)若关于x的分式方程=﹣3有增根,则实数m的值是1.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母,得:m=x﹣1﹣3(x﹣2),由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程可得:m=1,故答案为:1.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.19.(2017•泸州)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是m<6且m≠2.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,故答案为:m<6且m≠2.【点评】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.20.(2017•黄石)分式方程=﹣2的解为x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3﹣4x+4,解得:x=,经检验x=是分式方程的解,故答案为:x=【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.分式方程=1﹣的解是x=﹣1.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:x=﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.【分析】求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.【解答】解:原计划用的时间为:,实际用的时间为:.所列方程为:,故答案为:.【点评】本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.23.关于x的方程无解,则a的值是1或0.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:2a=(a﹣1)(x﹣1),整理得:(a﹣1)x=3a﹣1,当a﹣1=0,即a=1时,方程无解,当x﹣1=0时,即x=1,方程也无解,∴2a=(a﹣1)(1﹣1)解得:a=0故答案为:1或0.【点评】本题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.三.解答题24.(2017•宁夏)解方程:﹣=1.【分析】根据分式方程的解法即可求出答案.【解答】解:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣15,检验:x=﹣15代入(x﹣3)(x+3)≠0,∴原分式方程的解为:x=﹣15,【点评】本题考查分式的方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.25.(2017•大庆)解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+x+2=x2+2x,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.26.(2017•遂宁)解方程:.【分析】去分母化为整式方程即可解决问题.【解答】解:两边乘x﹣2得到,1+3(x﹣2)=x﹣1,1+3x﹣6=x﹣1,x=2,∵x=2时,x﹣2=0,∴x=2是分式方程的增根,原方程无解.【点评】本题考查分式方程的解,解题的关键是掌握解分式方程的步骤,注意解分式方程必须检验.27.(2017•安顺)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根。

分式方程培优答案(教师版)

分式方程培优答案(教师版)

分式方程培优一、分类解析 例1. 解方程:x x x --+=1211分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得xx x x x x xx x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。

例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。

例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。

1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--==例4. 解方程:61244444402222y y y y y y yy +++---++-=2分析:此题若用一般解法,则计算量较大。

八年级数学培优——分式方程及其应用

八年级数学培优——分式方程及其应用

第16讲分式方程及其应用考点·方法·破译1.分式方程(组)的解法解分式方程的一般步骤:⑴去分母,将分式方程转化为整式方程;⑵解整式方程;⑶验根.有的分式方程也要依据具体的情况灵活处理.如分式中分子(整式)的次数高于等于分母(整式)的次数时,可利用分拆思想,把分式化为“整式+分式”的形式,化简原方程再解;或将分式方程两边化为分子(或分母)相等的分式,再利用分母(或分子)相等构成整式方程求解;或利用换元法将分式方程化为整式方程,或利用倒数法使方程更简便.2.分式方程增根在解分式方程时,通常将分式方程两边同时乘以最简公分母(化为整式方程),这就扩大了未知数的取值范围,可能产生增根.因此,解分式方程时一定要验根.又如求分式方程的解的取值范围(解是正数,或解是负数)时,要注意剔除正数解或负数解中的增根(因为增根不是分式方程的根).3.列分式方程解应用题列分式方程解应用题同运用整式方程解应用题的方法和步骤是类似的,但要注意分式方程求出的未知数的解要双重检验,①检验是否是增根,②检验解是否符合实际意义.经典·考题·赏析【例1】解下列方程:⑴22xx-+-2164x-=1⑵12x+-2244xx--22x-=4⑶45xx--+89xx--=78xx--+56xx--【变式题组】⑴12xx--=12x--2⑵2xx-+2=3(2)xx-⑵14x--23x-=32x--41x-⑷12x++242xx-+22x-=1【例2】当m 为何值时,分式方程1m x +-21x -=231x -会产生增根?【变式题组】 01.分式方程22x x -+-22x x +-=2164x -的增根是__________. 02.若分式方程()()611x x +--1mx -=1有增根,则它的增根为( ) A .0 B .1 C .-1 D .1,-1 03.若关于x 的方程23x -=1-3m x -无解.则m 的值为___________.04.分式方程1m x +-21x -=232x -无解,则m 的值为___________.【例3】已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是_________.【变式题组】01.关于x 的方程21x ax +-=1的解是正数,则a 的取值范围是( ) A .a >-1 B . a >-1,且a ≠0 C .a <-1 D . a <-1,且a ≠-202.当m 为何值时,关于x 的方程22m x x --=1x x +-12x x --的解是正数?【例4】某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.⑴该商场两次共购进这种运动服多少套?⑵如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?【变式题组】01.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( )A .160x +()400120%x +=18 B .160x +()400160120%x -+=18 C .160x +40016020%x -=18 D .400x +()400160120%x-+=1802.铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销的2倍.⑴试销时该品种苹果的进货价是每千克多少元?⑵如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?03.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3:2,两队合做6天可以完成.⑴求两队单独完成此项工程各需多少天?⑵此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?演练巩固·反馈提高01.关于x 的分式方程5mx -=1,下列说法正确的是( ) A .方程的解是x =m +5 B .m >-5时,方程的解是正数 C .m <-5时,方程的解是负数D .无法确定02.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8B .7C .6D .5 03.用换元法解分式方程1x x --31x x -+1=0时,如果设1x x-=y ,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .y 2+y -3=0 B .y 2-3y +1=0 C . 3y 2-y +1=0 D . 3y 2-y -1=004.有两块面积相同的试验田,分别收获蔬菜900㎏和1500㎏.已知第一块试验田每亩收获蔬菜比第二块少300㎏,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜x ㎏,根据题意,可得方程( )A .900300x +=1500x B .900x =1500300x -C .900x =1500300x + D .900300x -=1500x05.若关于x 的分式方程1x a x ---3x=1无解,则a =___________. 06.方程1x x ++3=21x +的解为___________. 07.若x =1是方程21x a ++22x a-=0的解,则a =___________. 08.若A =1x x -,B =231x -+1,当x =___________时,A =B . 09.若x =3是方程102x ++2k =0的解,则3k k +-269k -÷23k -的值为___________.10.如果关于x 的方程1+2x x -=224m x -的解,也是不等式组1222(3)8xx x x -⎧>-⎪⎨⎪-≤-⎩的一个解,求m 的取值范围.11.关于x的分式方程61x-=()31xx x+--kx有解,求k的取值范围.12.要使关于x、y的二元一次方程组21620x ayx y+=⎧⎨-=⎩有正整数解,求整数a的值.13.某工程准备招标,指挥部接到甲、乙两个工程队的标书,从标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍,该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.⑴求甲、乙两队单独完成这项工程各需要多少天?⑵已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.14.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.⑴乙队单独完成这项工程需要多少天?⑵甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?培优升级·奥赛检测01.若实数x 、y 、z 满足方程组:122232xyx y yzy z zxz x ⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩,则有( )A .x +2y +3z =0B . 7x +5y +3z =0C . 9x +6y +3z =0D .10x +7y +z =002.某段公路由上坡、平路、下坡三个等长的路段组成,已知一辆汽车在三个路段上行驶的平均速度分别为V 1、V 2、V 3,则此辆汽车在这段公路上行驶的平均速度为( )A .1233V V V ++B .1231113V V V ++C .1231111V V V ++D .1233111V V V ++03.解分式方程31x ++51x -=21mx -会产生增根,则m =___________. 04.方程()11x x ++()()112x x +++…+()()120102011x x ++=1+1x 的解是___________.05.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________分钟.06.解下列方程:⑴12x x ++-17x +=23x x ++-16x +⑵432x x +-+324x x -+=207.已知方程组22xy x y +=23,32yz y z -=-9,53xyzxy yz zx-+=157恰好有一组解为x =a ,y =b ,z =C .求a 2+b 2+c 2的值.08.设x、y都是整数,1x-1y=12010.求y的最大正整数的解.09.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买入选产品,政府按原价购买总额的13%给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?⑴设购买电视机x台,依题意填充下列表格:项目家电种类购买数量(台)原价购买总额(元)政府补贴返还比例补贴返还总额(元)每台补贴返还金额(元)冰箱40000 13%电视机x 15000 13%⑵列出方程(组)并解答.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.⑴今年三月份甲种电脑每台售价多少元?⑵为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?⑶如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使⑵中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?。

中考数学总复习《分式方程及其应用》专题训练(附带答案)

中考数学总复习《分式方程及其应用》专题训练(附带答案)

中考数学总复习《分式方程及其应用》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________知识梳理分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行“双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.同步练习一、选择题1.为响应“绿色出行”的号召,小李上班由自驾车改为乘坐公交车.已知小李家距上班地点20km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程少12km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的43,小李乘公交车上班平均每小时行驶()A.30km B.36km C.40km D.46km2.某服装店用4.5万元购进某种品牌的服装,由于销售状况良好,服装店又调拨11万元资金购进该种服装,但这次的单价比第一次的单价贵20元,购进服装的数量比第一次的2倍还多50件,求该服装第一次的单价.为解决此问题,设该服装第一次的单价为x元,根据题意列出方程,其中正确的是()A.11 4.525020x x=⨯++B.1100004500025020x x=⨯++C.1100004500025020x x=⨯+-D.1100004500025020x x=⨯-+3.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为()A.80千米/小时B.90千米/小时C.100千米/小时D.110千米/小时4.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为;把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍.根据题意列方程为900900213x x⨯=+-,其中x表示()A.快马的速度B.慢马的速度C.规定的时间D.以上都不对5.为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单6.一个圆柱形容器的容积为3Vm,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用t则大,小两根水管的注水速一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间min.7.八年级学生去距学校10千米的荆州博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车A.实际工作时每天铺设的管道比原计划降低了20%,结果延误3天完成了这一任务B.实际工作时每天铺设的管道比原计划降低了20%,结果提前3天完成了这一任务C.实际工作时每天铺设的管道比原计划提高了20%,结果延误3天完成了这一任务D.实际工作时每天铺设的管道比原计划提高了20%,结果提前3天完成了这一任务二、填空题数称为调和数,如15,5,3也是一组调和数.现有一组调和数:x ,3,2(3)x >,则x = . 12.甲、乙两船从相距150km 的A ,B 两地同时匀速沿江出发相向而行,甲船从A 地顺流航行90km 时与从B 地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h ,则江水的流速为 km/h . 13.甲、乙、丙三名工人共承担装搭一批零件.已知甲乙丙丁四人聊天时的对话信息如表,如果每小时只安排1名工人,那么按照甲、乙、丙的轮流顺序至完成工作任务,共需 小时. 甲说:我单独完成任务所需时间比乙单独完成任务所需时间多5小时;乙说:我3小时完成的工作量与甲4小时完成的工作量相等;丙说:我工作效率不高,我的工作效率是乙的工作效率的12;丁说:我没参加此项工作,但我可以计算你们的工作效率,知道工程问题三者关系是:工作效率⨯工作时间=工作总量.三、解答题14.为深刻践行习近平总书记的“绿水青山就是金山银山”重要思想,某单位积极开展植树活动,准备购买甲、乙两种树苗、已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗便宜6元.(1)求甲种树苗的单价;(请根据题意列方程解答)(2)若购买这两种树苗共100棵,且费用不超过3800元,则至少购买乙种树苗多少棵?15.科学中,经常需要把两种物质混合制作成混合物,研究混合物的物理性质和化学性质.现将甲、乙两种密度分别为ρ甲,ρ乙的液体混合(ρρ<甲乙),研究混合物的密度(=物体的质量物体的密度物体的体积),假设混合前后液体的总体积不变,令等体积的甲乙两种液体的混合溶液密度为1ρ,等质量的甲乙两种液体的混合溶液的密度为2ρ.(1)请用含ρ甲,ρ乙式子表示1ρ;(2)比较1ρ,2ρ的大小,并通过运算说明理由:(3)现有密度为31.2g /cm 的盐水600g ,加适量的水(密度为31.0g /cm )进行稀释,问:需要加水多少g ,才能使密度为31.1g /cm 的鸡蛋悬浮在稀释后的盐水中?16.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg 产品,甲型机器人搬运800kg 产品所用时间与乙型机器人搬运600kg 产品所用时间相等.根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运kg x 产品,可列方程为__________.小惠同学设甲型机器人搬运800kg 产品所用时间为y 小时,可列方程为__________.(2)求乙型机器人每小时搬运多少千克产品.17.某大型品牌书城购买了A B 、两种新出版书籍,商家用1600元购买A 书籍,1200元购买B 书籍,A B 、两种书籍的进价之和为40元,且购买A 书籍的数量是B 书籍的2倍.(1)求商家购买A 书籍和B 书籍的进价;(2)商家在销售过程中发现,当A 书籍的售价为每本25元,B 书籍的售价为每本33元时,平均每天可卖出50本A 书籍,25本 B 书籍.据统计,B 书籍的售价每降低0.5元平均每天可多卖出5本.商家在保证A 书籍的售价和销量不变且不考虑其他因素的情况下,为了促进B 的销量,想使A 书籍和B 书籍平均每天的总获利为775元,则每本B 书籍的售价为多少元?18.为更好地满足市民休闲、健身需求,提升群众的幸福感获得感,丰都县从年初开始对滨江公园进行“微改造”、“精提升”,将原有的边坡地带改造为观景平台,同时增设多处具有体育、文化、智慧元素的文体场所和设施,把3.5公里滨江健身长廊打造成智慧休闲乐园.施工过程中共有5000吨渣土要运走,现计划由甲、乙两个工程队运走渣土,已知甲、乙两个工程队,原计划乙平均每天运走的渣土比甲平均每天运走的渣土多13,这样乙运走2600吨渣土的时间比甲运走剩下渣土的时间少3天. (1)求原计划乙平均每天运渣土多少吨?(2)实际施工时,甲平均每天运走的渣土比原计划增加了m 吨,乙平均每天运走的渣土比原计划增加了200m ,甲、乙合作10天后,乙临时有其他任务;剩下的渣土由甲再单独工作5天完成.若运走每吨渣土的运输费用为30元,请求出乙工程队的运输费用.答案第1页,共1页 参考答案 1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】A9.【答案】810.【答案】1260012600251.5x x-= 11.【答案】612.【答案】613.【答案】319414.【答案】(1)40元(2)34棵15.【答案】(1)12ρρρ+=乙甲(2)12ρρ>(3)需要加水50g 16.【答案】(1)80060010x x=+ 80060010y y -=(2)乙型机器人每小时搬运30kg 产品 17.【答案】(1)商家购买A 书籍的进价为16元/本,购买B 书籍的进价为24元/本;(2)29元. 18.【答案】(1)200(2)6900。

2017中考试题汇编13 分式和分式方程

2017中考试题汇编13   分式和分式方程

1、(2017眉山)解方程: +2=.【解答】解:方程两边都乘以x ﹣2得:1+2(x ﹣2)=x ﹣1, 解得:x=2,检验:当x=2时,x ﹣2=0, 所以x=2不是原方程的解, 即原方程无解.2、(2017成都)已知3x =是分式方程2121kx k x x--=-的解,则实数k 的值为( )A .-1B . 0 C. 1 D .2 选D3、(2017成都)化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中31x =- . 【解析】原式=()()2211211111111x x x x x x x x x -+--+÷==+-+++, 当31x =-时,原式=133311=-+ 4、(2017达州)某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5cm 3.求该市今年居民用水的价格.设去年居民用水价格为x 元/cm 3,根据题意列方程,正确的是( ) A .B .C.D.选:A.5、(2017达州)设A=÷(a﹣).(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:﹣≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.【解答】解:(1)A=÷(a﹣)=====;(2)∵a=3时,f(3)=,a=4时,f(4)=,a=5时,f(5)=,…∴﹣≤f(3)+f(4)+…+f(11),即﹣≤++…+∴﹣≤+…+,∴﹣≤,∴﹣≤,解得,x≤4,∴原不等式的解集是x≤4,在数轴上表示如下所示,.6、(2017泸州)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是m<6且m≠2 .7、(2017泸州)化简:•(1+)【解答】解:原式=•=.8、(2017南充)如果=1,则m= 2 .9、(2017南充)化简(1﹣)÷,再任取一个你喜欢的数代入求值.【解答】解:(1﹣)÷,=(﹣),=,=,∵x﹣1≠0,x(x+1)≠0,∴x≠±1,x≠0,当x=5时,原式==.10、(2017•乐山)化简:(﹣)÷.【解答】解:(﹣)÷==== =.11、(2017阿坝州)先化简,再求值:222444(1)42x x x x x x -++-÷--+,其中2210x x +-=.【答案】(1)4;(2)242x x+ ,4. 12、(2017广安)先化简,再求值:( +a )÷,其中a=2.【解答】解:原式=×=×=当a=2时,原式=3.13、( 2017广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.2-1-c-n-j-y (1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.公里【答案】(1)80公里;(2)乙队每天筑路4514、(2017毕节)关于x的分式方程+5=有增根,则m的值为()A.1 B.3 C.4 D.5选C.15、(2017毕节)先化简,再求值:( +)÷,且x为满足﹣3<x<2的整数.【解答】解:( +)÷=[+]×x=(+)×x=2x﹣3∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣516、(2017毕节)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.21*cnjy*com (1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.17、(2017赤峰)(﹣)÷,其中a=2017°+(﹣)﹣1+tan30°.【解答】解:原式=×﹣×=﹣=由于a=2017°+(﹣)﹣1+tan30°,∴a=1﹣5+3=﹣1∴原式=﹣=﹣218、(2017赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得: =,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,依题意得:(5+2)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.19、(2017贵阳) “2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.www-2-1-cnjy-com(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟), 小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心. 20、(2017佳木斯)已知关于x 的分式方程=的解是非负数,则a的取值范围是( )A .a >1B .a ≥1C .a ≥1且a ≠9D .a ≤1 选(C )21、(2017佳木斯)先化简,再求值:÷﹣,其中a=1+2cos60°. 【解答】解:÷﹣===,当a=1+2cos60°=1+2×=1+1=2时,原式=22、(2017安顺先化简,再求值:(x ﹣1)÷(21x ﹣1),其中x为方程x 2+3x+2=0的根. 【答案】1.23、(2017安顺某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.【来源:21cnj*y.co*m 】(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?试题解析:设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,9015040xx=-x=15,经检验x=15是原方程的解. ∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,481525(48)1000<yy y y -+-≤⎧⎨⎩, 解得20≤y <24.因为y 是整数,甲种玩具的件数少于乙种玩具的件数, ∴y 取20,21,22,23, 共有4种方案. 24、(2017海南)若分式211x x --的值为0,则x 的值为( )A .﹣1B .0C .1D .±1 【答案】A25、(2017呼和浩特)(1)计算:|2﹣|﹣(﹣)+;(2)先化简,再求值:÷+,其中x=﹣. 【解答】解:(1)原式=﹣2﹣++=2﹣1; (2)原式=•+=+=,当x=﹣时,原式=﹣.26、(2017•葫芦岛)先化简,再求值:(+x ﹣1)÷,其中x=()﹣1+(﹣3)0.27、(2017•葫芦岛)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?试题解析:(1)设降价后每枝玫瑰的售价是x元,依题意有=×1.5,解得:x=2.经检验,x=2是原方程的解.答:降价后每枝玫瑰的售价是2元.(2)设购进玫瑰y枝,依题意有2(500﹣x)+1.5x≤900,解得:y≥200.答:至少购进玫瑰200枝.28、(2017常德)分式方程+1=的解为 x=2 . 29、(2017常德)先化简,再求值:(﹣)(﹣),其中x=4.【解答】解:原式=[+]•[﹣]=•(﹣)=•=x ﹣2, 当x=4时, 原式=4﹣2=2. 30、(2017淮安)方程21x -=1的解是 . 【答案】x=331、(2017陕西)化简:x xx y x y--+,结果正确的是( ) A .1 B .2222x y x y +- C . x yx y-+ D .22x y +【答案】B32、(2017陕西)解方程:32133x x x +-=-+ 试题解析:去分母得,(x +3)2﹣2(x ﹣3)=(x ﹣3)(x +3),去括号得,x 2+6x +9﹣2x +6=x 2﹣9,移项,系数化为1,得x =﹣6,经检验,x =﹣6是原方程的解33、(2017乌鲁木齐)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C. +5=D.﹣=5选(A)34、(2017乌鲁木齐)先化简,再求值:(﹣)÷,其中x=.【解答】解:原式=(﹣)•=•=•=,当x=时,原式==.35、(2017•益阳)先化简,再求值:+,其中x=﹣2.【解答】解:原式==x+1+x+1=2x+2.当x=﹣2时,原式=﹣2.36、(2017云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(+2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.37、(2017张家界)先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.【解答】解:(1﹣)÷=×=,∵2x ﹣1<6, ∴2x <7, ∴x <,把x=3代入上式得: 原式==4.38、(2017长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.试题解析:设跳绳的单价为x 元,则排球的单价为3x 元, 依题意得:7509003x x-=30, 解方程,得x=15.经检验:x=15是原方程的根,且符合题意. 答:跳绳的单价是15元.39、( 2017衡阳)化简:22211x x x xx x +++-=+ . 【解答】解:22211x x x x x x +++-=+()()()2111112=--+=--++x x xx x x x 40、(2017恩施)先化简,再求值:÷﹣,其中x=.答案:41、(2017黄石)分式方程=﹣2的解为 x= .42、(2017黄石)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.【解答】解:原式=[﹣]•(a ﹣1)=•(a ﹣1)=当a=2sin60°﹣tan45°=2×﹣1=﹣1时,原式==.43、(2017荆门)计算:211111m m m m ⎛⎫+= ⎪--+⎝⎭ . 【答案】()()21111111111m m m m m m m +--⋅=⋅=-+-+44、(2017济南)化简a 2+ab a -b ÷aba -b 的结果是( )A .a 2B .a 2a -b C .a -bbD .a +bb【答案】D45、(2017济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,则银杏树和玉兰树的单价各是多少?【解】设银杏树的单价是x 元,玉兰树的单价是1.5x 元,则 12000x +90001.5x =150. 解得x =120.经检验x =120是方程的解.∴1.5x =180.答:银杏树的单价是120元,玉兰树的单价是180元, 46、(2017宜宾)化简(1﹣)÷().原式=÷=•=.47、(2017宜宾)用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.【解答】解:设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋, 依题意得:=,解这个方程得:x=70经检验x=70是方程的解,所以x ﹣20=50.答:A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.48、(2017盘锦)十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进来,结果每位同学比原来少分摊4元车费.设原来游玩的同学有x 名,则可得方程( ) A .48048044x x -=+ B .48048044x x -=-C .48048044x x -=- D .48048044x x -=+ 【答案】D .49、(2017盘锦)先化简,再求值:22214()244a a a a a a a a+--+÷--+,其中a =011(()2π-+.试题解析:原式=2(2)(2)(1)(2)4a a a a aa a a +-+-⋅--=241(2)4a a a -⋅--=21(2)a - 当a =1+2=3时,原式=21(32)-=1.50、(2017广元)先化简,再求值:211(1)a aa a a a--÷-++,其中,a 1. 【答案】21(1)a +,1251、(2017桂林)若分式242x x -+的值为0,则x 的值为( )A .-2B .0C .2D .±2 【答案】C。

分式方程2017年中考试题汇编

分式方程2017年中考试题汇编

分式方程2017年中考试题汇编的用水量比去年12月的用水量多5cm 3.求该市今年居民用水的价格.设去年居民用水价格为x 元/cm 3,根据题意列方程,正确的是( ) A .30155113x x -=⎛⎫+ ⎪⎝⎭ B .30155113x x -=⎛⎫- ⎪⎝⎭C .30155113x x -=⎛⎫+ ⎪⎝⎭D .30155113x x -=⎛⎫- ⎪⎝⎭【答案】A .8.(2017广西四市)一艘轮船在静水中的最大航速为35km/h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km 所用时间相等.设江水的流速为v km/h ,则可列方程为( )A .359035120-=+v vB .v v +=-359035120 C . 359035120+=-v vD .vv -=+359035120 【答案】D .9. (2017青海西宁第9题)西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x 小时,根据题意可列出方程为()A .1.2 1.216x +=B .1.2 1.2162x += C. 1.2 1.2132x += D .1.2 1.213x+= 【答案】B二、填空题1.(2017浙江宁波第14题)分式方程21332x x +=-的解是 .2.(2017四川泸州第15题)若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是 . 【答案】m <6且m ≠2.3. (2017江苏宿迁第14题)若关于x 的分式方程1322m xx x-=---有增根,则实数m 的值是 . 【答案】1.4.(2017四川省绵阳市)关于x 的分式方程xx x -=+--111112的解是 . 【答案】x =﹣2.5.(2017湖北省襄阳市)分式方程233x x=-的解是 . 【答案】x =9. 三、解答题1. (2017贵州安顺第23题)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元? 【答案】甲,乙两种玩具分别是15元/件,25元/件;2.(2017江苏盐城第23题)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?【答案】(1)2014年这种礼盒的进价是35元/盒.3. (2017贵州黔东南州第23题)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.求甲、乙两队工作效率分别是多少?4.(2017四川宜宾第20题)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【答案】A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.5. (2017广东广州第21题)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的4倍,甲3队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.【答案】(1)80公里;(2)乙队每天筑路45 公里6. (2017山东日照第20题)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务. (1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1) 实际每年绿化面积为54万平方米;(2) 则至少每年平均增加72万平方米7. (2017浙江金华第18题)解分式方程:2111x x =+-. 8.(2017浙江湖州第18题) 解方程:21111x x =+--. 【答案】x =29.(2017四川省眉山市)解方程:11222x x x-+=--. 【答案】无解.10.(2017山东省济宁市)解方程:211.22x x x=---. 【答案】x =﹣1.11.(2017贵州遵义第25题)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A ,B 两种不同款型,请回答下列问题: 问题1:单价该公司早期在甲街区进行了试点投放,共投放A ,B 两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A 型车高10元,A ,B 两型自行车的单价各是多少? 问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”,乙街区每1000人投放8240a a辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a 的值.【答案】问题1:A ,B 两型自行车的单价分别是70元和80元;问题2:a 的值为15. 【解析】试题分析:问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x +10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可. 试题解析: 问题1设A 型车的成本单价为x 元,则B 型车的成本单价为(x +10)元,依题意得50x +50(x +10)=7500. 解得x =70. ∴x +10=80.答:A ,B 两型自行车的单价分别是70元和80元; 问题2 由题可得1500a×1000+12008240a a×1000=150000.解得a =15.经检验:a =15是所列方程的解. 故a 的值为15.考点:分式方程的应用;二元一次方程组的应用12. (2017内蒙古通辽第20题)一汽车从甲地出发开往相距240km 的乙地,出发后第一小时内按原计划的匀速行驶,1小时后比原来的速度加快41,比原计划提前min 24到达乙地,求汽车出发后第1小时内的行驶速度.【答案】汽车出发后第1小时内的行驶速度是120千米/小时.13. (2017黑龙江绥化第25题)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍. (1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【答案】(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.答:甲工程队至少修路8天.14.(2017辽宁大连第21题)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划每天生产多少个零件?【答案】75.15.(2017河池第24题)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.⑴排球和足球的单价各是多少元?⑵若恰好用去1200元,有哪几种购买方案?【答案】(1)排球单价是50元,则足球单价是80元;(2)有两种方案:①购买排球5个,购买足球16个.②购买排球10个,购买足球8个.【解析】试题分析:(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解.试题解析:设排球单价为x元,则足球单价为(x+30)元,由题意得:16. (2017四川宜宾第20题)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【答案】A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.。

初三数学练习之分式方程及其应用专项练习题

初三数学练习之分式方程及其应用专项练习题

初三数学练习之分式方程及其应用专项练习题[要点梳理]1、________________叫做分式方程.2、增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根,解分式方程时,有可能产生增根(使方程中有的分母为____的根),因此解分式方程要验根(其方法是代入最简公分母中,使分母为______的是增根,否那么不是).3、解分式方程的基本思想:____________4、解分式方程的常用解法有:①_____ ________;②_______ _______[基础训练]1、指出以下方程中,分式方程有( )① ;② 5;③ ; ④ ;A、1个B、2个C、3个D、4个2、分式方程的解为()A、3B、-3C、无解D、3或-33、对于非零的两个实数a、b,规定a*b= ,假设2*(2x- 1)=1,那么x的值为()A、 B、 C、 D、-4、假设关于x的分式方程无解,那么m的值为( )A、-1.5B、1C、-1.5或2D、-0.5或-1.55、某市为治理污水,需要铺设一段全长为300 m的污水排放管道.铺设120 m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设管道,那么根据题意,可得方程______________[问题研讨]例1、解分式方程:(1) (2)例2、假设关于x的方程有增根,那么m的值是____变式1:假设分式方程2+ 有增根,那么k=____变式2:如果分式方程无解,那么m的值为( )A、1B、0C、-1D、-2例3、关于x的方程的解为正数,求a的取值范围.例 4、,求方程的解.例5、一项工程,甲、乙两个公司合作,12天可以完成,共需付施工费102019元;如果甲、乙两个公司单独完成此项工程,乙公司所用的时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲、乙两个公司单独完成此项工程,各需多少天?(2)假设让一个公司单独完成这项工程,那么哪个公司的施工费较少?[规律总结]1、本节主要的数学思想是转化2、解分式方程常见误区:①去分母时漏乘常数项;②去分母弄错符号;③换元出错;④忘了验根.3、解分式方程应用题常见误区:①单位不统一;②解完后忽略双检.[强化训练]1、方程的解为 =________.2、关于x的方程的解是正数,那么m的取值范围为___ _____.3、分式方程的两边同乘(x-2),约去分母得( )A、1+(1-x)=x- 2B、1-(1-x)=x-2C、1-(1-x)=1D、1+(1-x)=14、甲、乙两班进行植树活动,根据提供的信息可知:①甲班共树枝90棵,乙班共植树129棵;②乙班的人数比甲班的人数多3;③甲班每人植树是乙班每人植树的,假设设甲班的人数为x,那么两班的人数各是多少?以下所列方程正确的选项是()A、 B、C、 D、5、今年6月 1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,假设同样用11万元所购买的此款空调台数,条例实施后比实施前多10%,那么条例实施前此款空调的售价为___元.6、解方程:(1) ;(2)7、关于x的方程的根为x=2,求a的值8、李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?。

2017年中考真题分类解析 分式方程及其应用

2017年中考真题分类解析 分式方程及其应用

一、选择题1.(2017山东滨州,6,3分)分式方程311(1)(2)xx x x-=--+的解为A.x=1 B.x=-1 C.无解D.x=-2答案:解析:去分母,得x(x+2)-(x-1)(x+2)=3,去括号、合并同类项,得x=1,检验:当x=1时,(x -1)(x+2)=0,所以x=1不是方程的根,所以原分式方程无解.2.3.AC4.12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多53cm.求该市今年居民用水的价格.设去年居民用水价格为x元3/cm,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C. 30155113xx-=⎛⎫+⎪⎝⎭D.30155113xx-=⎛⎫-⎪⎝⎭答案:A,解析:由于去年居民用水价格为x元3/cm,则今年价格为11+3x()元3/cm,今年的用水量为301 1+3x()cm3,去年的用水量为15xcm3,根据小丽家今年5月的用水量比去年12月的用水量多53cm可得方程:2)做60个所用的时间相等,设甲每小时做x个零件,下面所列方程正确的是( )A.90606x x=-B.90606x x=+C.90606x x=-D.90606x x=+答案:D,解析:由甲做90个所用的时间与做60个所用的时间相等建立分式方程90606x x=+,故选D.9.(2017新疆生产建设兵团,8,5分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同.设原计划每天生产x 台机器,根据题意,下列列出的方程正确的是( )A. 60048040x x =-B. 60048040x x =+C. 60048040x x =+D. 60048040x x =- 答案:B 解析:设原计划每天生产x 台机器,则现在每天生产(x+40)台机器,根据等量关系“现在生产600台机器的时间=原计划生产480台机器的时间”,可列方程60048040x x=+,故选B.10. ) A11.12.) A ,∴13.树x 万棵,可列方程是( ) A.()30305120x x-=+% B.3030520xx -=%C.3030520xx+=% D.()30305120xx-=+%答案:A , 解析:设原计划每天植树x 万棵,则实际每天植树(1+20%)x 万棵,根据等量关系“原计划植树天数-实际植树天数=5”可列方程()30305120x x-=+%,故选A.14. 7.(2017年贵州省黔东南州,7,4分)分式方程()13113+-=+x x x 的根为 1,15.16.(17.40A 答案:B ,解析:据时间方面的等量关系列方程:30x -1=40x +25.18. 一艘轮船在静水中的最大航速为35km/h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km 所用时间相等.设江水的流速为vkm/h ,则可列方程为( )A . =B .=C .=D .=答案:D ,解析:设江水的流速为vkm/h ,根据题意得: =.19. (2017贵州毕节)关于x 的分式方程71x -+5=211x -有增根,则m 的值为( ) A. 1B. 3C. 4D. 5答案:C ,解析:原分式方程去分母,得:7x +5(x -1)=2m -1;整理得:12x -4=2m ;由题意可得分式方程的增根为x =1,且该增根是原分式方程所化成的整式方程的解,因此将x =1代入12x -4=2m 可得:12-4=2m ,解得m =4.20. 11. (2017四川巴中,3分)分式方程23x -=32x -的解是x = . 答案:5,解析:方程两边乘以(x -3)(x -2)得2(x -2)=3(x -3),解方程得x =5,经检验x =5是分式方程的解,所以原方程的解为x =5.21. 10. (2017年广西北部湾经济区四市,3分)一艘轮船在静水中的最大航速为h km /35,它以最大航速沿江顺流航行120km 所用时间,与以做大航速逆流航行90km 所用时间相等,设江水的流速为h vkm /,则可列方程为( )A .359035120-=+v vB .v v +=-359035120 C. 359035120+=-v v D .vv -=+359035120 答案:D.解析:顺水航行的路程为120km ,顺水航行的速度为(35+v )km/h,所以顺水航行的时间为12035v+,同理逆流航行的时间为9035v-,所以可列方程为v v -=+359035120,故选D 。

专题39 分式方程 初中数学学科素养能力培优竞赛试题精选专练含解析卷

专题39 分式方程 初中数学学科素养能力培优竞赛试题精选专练含解析卷

专题39 分式方程一、解复杂分式方程 【典例】计算(1)x 2x+y−x +y ;(2)1x(x+1)+1(x+1)(x+2)+⋯1(x+2005)(x+2006).【解答】解:(1)x 2x+y −x +y ,=x 2x+y −x 2−y 2x+y, =y 2x+y ;(2)1x(x+1)+1(x+1)(x+2)+⋯+1(x+2005)(x+2006),=1x −1x+1+1x+1−1x+2+⋯+1x+2005−1x+2006, =1x −1x+2006, =2006x(x+2006).【巩固】实数x 与y 使得x +y ,x ﹣y ,xy ,xy 四个数中的三个有相同的数值,求出所有具有这样性质的数对(x ,y ).二、求分式方程的取值范围 【典例】若以x 为未知数的方程1x−1−a 2−x=2(a+1)x 2−3x+2无解,则a = .【解答】解:去分母得:x ﹣2+a (x ﹣1)=2(a +1) 解得:x =3a+4a+1当a +1=0即a =﹣1时,方程无解. 根据题意得:3a+4a+1=1时,解得a =−32;当3a+4a+1=2时,解得:a =﹣2故答案是﹣1或−32或﹣2.【巩固】若关于x 的方程k(x−1)x+2k+1x 2+x=1+2kx+1有且只有一个实数根,求实数k 的所有可能值.三、分式方程的应用【典例】为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本. (1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?【解答】解:(1)设“文学类”图书的单价为x 元/本,则“科普类”图书的单价为(1+20%)x 元/本, 依题意:3600(1+20%)x−20=2700x, 解之得:x =15.经检验,x =15是所列方程的根,且符合题意, 所以(1+20%)x =18.答:科普类书单价为18元/本,文学类书单价为15元/本; (2)设“科普类”书购a 本,则“文学类”书购(100﹣a )本, 依题意:18a +15(100﹣a )≤1600, 解之得:a ≤1003. 因为a 是正整数, 所以a 最大值=33.答:最多可购“科普类”图书33本. 【巩固】某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?巩固练习1.若数a 使关于x 的不等式组{x−12<1+x3,5x −2≥x +a有且只有四个整数解,且使关于y 的分式方程y+a y−1+2a y−1=1的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .22.若关于x 的方程x +2x =c +2c 的两个解是x =c ,x =2c ,则关于x 的方程的x +2x−1=a +2a−1的解是( ) A .a ,2aB .a ﹣1,2a−1C .a ,2a−1D .a ,a+1a−13.已知关于x 的分式方程x x−2−3=k2−x的解为正数,则k 的取值范围是( ) A .k >﹣6 B .k >﹣2 C .k >﹣6且k ≠﹣2 D .k ≥﹣6且k ≠﹣24.对于两个不相等的实数a ,b ,我们规定符号min {a ,b }表示a ,b 中较小的数,如:min {3,5}=3.按照这个规定,方程min {﹣2,﹣3}=3x−2−x2−x的解为( ) A .﹣2 B .﹣3 C .13D .345.已知关于x 的方程x−1x−2−x x+1=ax+1x 2−x−2无解,则a 的值为 .6.解下列分式方程 (1)x x−2−1−x 2(x−3)(x−2)=2xx−3;(2)x+1x−1−4x 2−1=1;(3)y−2y−3=2−13−y.7.如图,某小区有一块长为4a 米(a >1),宽为(4a ﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a +1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A 型绿化方案,对正中间的长方形采用B 型绿化方案. (1)用含a 的代数式表示采用A 型绿化方案的四个正方形边长是 米,B 型绿化方案的长方形的另一边长是 米.(2)请你判断使用A 型,B 型绿化方案的面积哪个少?并说明理由.(3)若使用A 型,B 型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多540(2a−1)2元,求a 的值.8.两个工程队共同参与一项筑路工程.若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天 (2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?9.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1,2x−3x+1=2x+2−5x+1=2x+2x+1+−5x+1=2+−5x+1,则x+1x−1和2x−3x+1都是“和谐分式”. (1)下列式子中,属于“和谐分式”的是 (填序号); ①x+1x;②2+x 2;③x+2x+1;④y 2+1y 2(2)将“和谐分式”a 2−2a+3a−1化成一个整式与一个分子为常数的分式的和的形式为:a 2−2a+3a−1= + ;(3)应用:先化简3x+6x+1−x−1x÷x 2−1x 2+2x,并求x 取什么整数时,该式的值为整数.10.某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶). (1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?专题39 分式方程一、解复杂分式方程 【典例】计算(1)x 2x+y−x +y ;(2)1x(x+1)+1(x+1)(x+2)+⋯1(x+2005)(x+2006).【解答】解:(1)x 2x+y −x +y ,=x 2x+y −x 2−y 2x+y ,=y 2x+y; (2)1x(x+1)+1(x+1)(x+2)+⋯+1(x+2005)(x+2006),=1x −1x+1+1x+1−1x+2+⋯+1x+2005−1x+2006, =1x −1x+2006, =2006x(x+2006).【巩固】实数x 与y 使得x +y ,x ﹣y ,xy ,xy 四个数中的三个有相同的数值,求出所有具有这样性质的数对(x ,y ).【解答】解:由题意知y ≠0,此时x +y ≠x ﹣y , 依题意,有x +y =xy =xy 或x −y =xy =xy , Ⅰ、当x +y =xy =xy 时, 即{x +y =xy ①xy =x y ② 由②得,y =±1,将y =1代入①得,x +1=x ,此等式不成立, 将y =﹣1代入①得,x ﹣1=﹣x , ∴x =12, 即{x =12y =−1.Ⅱ、当x −y =xy =xy 时,即{x −y =xy(1)xy =xy(2)由(2)得,y =±1,将y =1代入(1)得,x ﹣1=x ,此等式不成立, 将y =﹣1代入(1)得,x +1=﹣x , ∴x =−12, 即{x =−12y =−1故满足条件的数对(x ,y )为(12,﹣1)和(−12,﹣1).二、求分式方程的取值范围 【典例】若以x 为未知数的方程1x−1−a 2−x=2(a+1)x 2−3x+2无解,则a = .【解答】解:去分母得:x ﹣2+a (x ﹣1)=2(a +1) 解得:x =3a+4a+1当a +1=0即a =﹣1时,方程无解. 根据题意得:3a+4a+1=1时,解得a =−32;当3a+4a+1=2时,解得:a =﹣2故答案是﹣1或−32或﹣2. 【巩固】若关于x 的方程k(x−1)x+2k+1x 2+x=1+2kx+1有且只有一个实数根,求实数k 的所有可能值. 【解答】解:k(x−1)x+2k+1x 2+x=1+2kx+1两边同时乘以x (x +1)得:k (x ﹣1)(x +1)+2k +1=x (x +1)+2kx 整理得:(k ﹣1)x 2﹣(2k +1)x +k +1=0 (1)当k =1时,原方程可变为:﹣3x +2=0 解得:x =23经检验,x =23是原分式方程的唯一实数根,符合题意.(2)当k ≠1时,关于x 的方程(k ﹣1)x 2﹣(2k +1)x +k +1=0是一元二次方程, ∵原分式方程有且只有一个实数根, ∴△=[﹣(2k +1)]2﹣4(k ﹣1)(k +1)=0解得k =−54将k =−54代入方程得:−94x 2+32x −14=0 解得:x 1=x 2=13经检验,x =13是原分式方程的唯一实数根,符合题意. 当Δ≠0时,则方程必有一个实数根为0或﹣1.把x =0代入,可得k =﹣1,此时方程为﹣2x 2+x =0,解得x =0或12,经检验x =12是方程的解.把x =﹣1代入,可得k =−14,此时方程为5x 2+2x ﹣3=0, 解得x =﹣1或35,经检验x =35是方程的解,综上,实数k 的所有可能值为1或−54或0或﹣1. 三、分式方程的应用【典例】为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本. (1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?【解答】解:(1)设“文学类”图书的单价为x 元/本,则“科普类”图书的单价为(1+20%)x 元/本, 依题意:3600(1+20%)x−20=2700x, 解之得:x =15.经检验,x =15是所列方程的根,且符合题意, 所以(1+20%)x =18.答:科普类书单价为18元/本,文学类书单价为15元/本; (2)设“科普类”书购a 本,则“文学类”书购(100﹣a )本, 依题意:18a +15(100﹣a )≤1600, 解之得:a ≤1003. 因为a 是正整数, 所以a 最大值=33.答:最多可购“科普类”图书33本.【巩固】某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?【解答】解:(1)设原来每天生产健身器械x 台,则提高工作效率后每天生产健身器械1.4x 台, 依题意得:150x+500−1501.4x=8,解得:x =50,经检验,x =50是原方程的解,且符合题意. 答:原来每天生产健身器械50台.(2)设使用m 辆大货车,使用n 辆小货车,∵同时使用大、小货车一次完成这批健身器械的运输, ∴50m +20n ≥500, ∴n ≥25−52m .又∵运输公司大货车数量不足10辆,且运输总费用不多于16000元, ∴{m <101500m +800n ≤16000,即{m <101500m +800(25−52m)≤16000, 解得:8≤m <10. 又∵m 为整数, ∴m 可以为8,9.当m =8时,n ≥25−52m =25−52×8=5; 当m =9时,n ≥25−52m =25−52×9=52, 又∵n 为整数, ∴n 的最小值为3. ∴共有2种运输方案,方案1:使用8辆大货车,5辆小货车;方案2:使用9辆大货车,3辆小货车.方案1所需费用为1500×8+800×5=16000(元), 方案2所需费用为1500×9+800×3=15900(元). ∵16000>15900,∴运输方案2的费用最低,最低运输费用是15900元.巩固练习1.若数a 使关于x 的不等式组{x−12<1+x3,5x −2≥x +a有且只有四个整数解,且使关于y 的分式方程y+a y−1+2a y−1=1的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .2【解答】解:解不等式x−12<1+x 3,得x <5.解不等式5x ﹣2≥x +a ,得x ≥a+24.由不等式组有且仅有4个整数解,得到0<a+24≤1,解得﹣2<a ≤2. 解分式方程y+a y−1+2a 1−y=2,得y =2﹣a (y ≠1,即a ≠1).∵关于y 的方程y+a y−1+2a 1−y=2的解为非负数,∴2﹣a ≥0, ∴a ≤2,∴满足条件的a 的值为﹣1、0、2,∴满足条件的整数a 的值之和是﹣1+0+2=1. 故选:C .2.若关于x 的方程x +2x =c +2c 的两个解是x =c ,x =2c ,则关于x 的方程的x +2x−1=a +2a−1的解是( ) A .a ,2aB .a ﹣1,2a−1C .a ,2a−1D .a ,a+1a−1【解答】解:x +2x−1=a +2a−1即x ﹣1+2x−1=a ﹣1+2a−1则x ﹣1=a ﹣1或2a−1解得:x 1=a ,x 2=2a−1+1=a+1a−1故选:D . 3.已知关于x 的分式方程x x−2−3=k 2−x 的解为正数,则k 的取值范围是( ) A .k >﹣6B .k >﹣2C .k >﹣6且k ≠﹣2D .k ≥﹣6且k ≠﹣2 【解答】解:分式方程x x−2−3=k 2−x , 去分母得:x ﹣3(x ﹣2)=﹣k ,去括号得:x ﹣3x +6=﹣k ,解得:x =6+k 2,由分式方程的解为正数,得6+k 2>0,且6+k 2≠2, 解得:k >﹣6且k ≠﹣2.故选:C .4.对于两个不相等的实数a ,b ,我们规定符号min {a ,b }表示a ,b 中较小的数,如:min {3,5}=3.按照这个规定,方程min {﹣2,﹣3}=3x−2−x 2−x 的解为( ) A .﹣2 B .﹣3C .13D .34 【解答】解:由题意:﹣3=3x−2−x 2−x ,两边乘x ﹣2得到:﹣3x +6=3+x解得:x =34,经检验:x =34是分式方程的解.故选:D .5.已知关于x 的方程x−1x−2−x x+1=ax+1x 2−x−2无解,则a 的值为 . 【解答】解:x−1x−2−x x+1=ax+1x 2−x−2,(x +1)(x ﹣1)﹣x (x ﹣2)=ax +1,∵关于x 的方程x−1x−2−x x+1=ax+1x 2−x−2无解,∴x ﹣2=0或x +1=0,把x =2代入(x +1)(x ﹣1)﹣x (x ﹣2)=ax +1中可得:3=2a +1,解得a =1,把x =﹣1代入(x +1)(x ﹣1)﹣x (x ﹣2)=ax +1中可得:﹣3=﹣a +1,解得a =4,∴a 的值为1或4,故答案为:1或4.6.解下列分式方程(1)x x−2−1−x 2(x−3)(x−2)=2x x−3; (2)x+1x−1−4x 2−1=1; (3)y−2y−3=2−13−y .【解答】解:(1)两边同时乘以(x ﹣2)(x ﹣3)得:x (x ﹣3)﹣(1﹣x 2)=2x (x ﹣2),解得x =1,经检验,x =1是原方程的解,∴x =1;(2)两边同时乘以(x ﹣1)(x +1)得:(x +1)2﹣4=(x ﹣1)(x +1),解得x =1,经检验,x =1是原方程的增根,∴原方程无解;(3)两边同时乘以(y ﹣3)得:y ﹣2=2(y ﹣3)+1,解得y =3,经检验,y =3是原方程的增根,∴原方程无解;7.如图,某小区有一块长为4a 米(a >1),宽为(4a ﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a +1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A 型绿化方案,对正中间的长方形采用B 型绿化方案.(1)用含a 的代数式表示采用A 型绿化方案的四个正方形边长是 米,B 型绿化方案的长方形的另一边长是 米.(2)请你判断使用A 型,B 型绿化方案的面积哪个少?并说明理由.(3)若使用A 型,B 型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多540(2a−1)2元,求a 的值.【解答】解:(1)A 型绿化方案的四个正方形边长是(a −12)米,B 型绿化方案的长方形的另一边长是(2a ﹣1)米;故答案为:(a −12);(2a ﹣1);(2)记A 型面积为S A ,B 型面积为S B ,根据题意得:S A =4(a −12)2=4a 2﹣4a +1,S B =(2a +1)(2a ﹣1)=4a 2﹣1, ∴S A ﹣S B =﹣4a +2,∵4a ﹣2>0,∴﹣4a +2<0,即S A ﹣S B <0,则S A <S B ;(3)由(2)得S A <S B ,∴1350S A −1350S B =540(2a−1)2,即1350(2a−1)2−1350(2a+1)(2a−1)=540(2a−1)2,解得:a =2,经检验a =2是分式方程的解.8.两个工程队共同参与一项筑路工程.若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?【解答】解:(1)设乙队单独完成这项工程需x 天,由题意得:136×30+15x=1, 解得:x =90,经检验x =90是分式方程的解;答:乙队单独完成这项工程需90天;(2)设甲队每天的施工费为m 万元,乙队每天的施工费为n 万元,由题意得:{30(m +n)+15n =81036(m +n)=828, 解得:{m =15n =8; 答:甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)∵乙队单独完成这项工程需90天,甲、乙合作完成此项工程共需36天, ∴甲队单独完成这项工程的天数为1136−190=60, 设乙队施工a 天,甲队施工b 天,由题意得:{a 90+b 60=1①15b +8a ≤840②, 由①得:b =60−23a ,把b =60−23a 代入②得:15×(60−23a )+8a ≤840,解得:a ≥30,即乙队最少施工30天;答:乙队最少施工30天.9.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1,2x−3x+1=2x+2−5x+1=2x+2x+1+−5x+1=2+−5x+1,则x+1x−1和2x−3x+1都是“和谐分式”.(1)下列式子中,属于“和谐分式”的是 (填序号);①x+1x ;②2+x 2;③x+2x+1;④y 2+1y 2(2)将“和谐分式”a 2−2a+3a−1化成一个整式与一个分子为常数的分式的和的形式为:a 2−2a+3a−1= + ;(3)应用:先化简3x+6x+1−x−1x ÷x 2−1x 2+2x ,并求x 取什么整数时,该式的值为整数. 【解答】解:(1)①x+1x =1+1x ,是和谐分式;③x+2x+1=x+1+1x+1=1+1x+1,是和谐分式;④y 2+1y 2=1+1y 2,是和谐分式; 故答案为:①③④;(2)a 2−2a+3a−1=a 2−2a+1+2a−1=(a−1)2+2a−1=a ﹣1+2a−1,故答案为:a ﹣1、2a−1;(3)原式=3x+6x+1−x−1x •x(x+2)(x+1)(x−1) =3x+6x+1−x+2x+1=2x+4x+1 =2(x+1)+2x+1=2+2x+1,∴当x +1=±1或x +1=±2时,分式的值为整数,此时x =0或﹣2或1或﹣3,又∵分式有意义时x ≠0、1、﹣1、﹣2,∴x =﹣3.10.某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶).(1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?【解答】解:(1)设扶梯露在外面的部分有x 级,乙每分钟走动的级数为a 级,则甲每分钟走动的级数为2a 级,扶梯每分钟向上运动b 级.由题意得:{242a =x 2a+b ①16a=x a+b ②, ①÷②得:34=a+b 2a+b ,整理得:b =2a ,代入②得x =48.答:扶梯露在外面的部分有48级;(2)设追上乙时,甲扶梯走了m 遍,楼梯走了n 遍,则乙走扶梯(m ﹣1)遍,走楼梯(n ﹣1)遍.由题意得:48m 4a +48n 2a =48(m−1)3a +48(n−1)a ,整理得:m +6n =16,这里m ,n 中必有一个是整数,且0≤m ﹣n ≤1.①若m 为整数,则n =16−m 6,∴{m =1n =52(不合,舍去),{m =2n =73(不合,舍去){m =3n =136(符合条件){m =4n =2(不合,舍去){m =5n =116(不合,以后均不合,舍去) ②若n 为整数,m =16﹣6n ,∴{n =1m =10,{n =2m =4,{n =3m =−2⋯,这些均不符合要求,∴{m =3n =136,此时,甲在楼梯上. 他已走动的级数是(48m 4a +48n 2a )×2a =24m +48n =72+104=176(级).。

分式方程2017年中考试题汇编

分式方程2017年中考试题汇编

2017年中考数学试题分类汇编( 分式 方程)一、选择题1.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A. 240120-=4-20x x B. 240120-=4+20x x C. 120240-=4-20x x D. 120240-=4+20x x 【答案】D2. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =-B .600480+40x x =C .600480+40x x =D .600480-40x x = 3.(2017河南第4题)解分式方程13211x x-=--,去分母得( ) A .12(1)3x --=- B .12(1)3x --= C .1223x --=- D .1223x -+=【答案】A .4. (2017新疆乌鲁木齐第7题)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多0020,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是()A .()0030305120x x -=+B .003030520x x-= C.003030520x x += D .()0030305120x x -=+ 【答案】A .5. (2017山东临沂第8题)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x 个,那么所列方程是( )A .90606x x =+B .90606x x =+C .90606x x =-D .90606x x =- 【答案】B 6.(2017山东滨州第6题)分式方程311(1)(2)x x x x -=--+的解为( ) A .x =1 B .x =-1 C .无解 D .x =-2【答案】C .7.(2017四川省达州市)某市从今年1月1日起调整居民用水价格,每立方米水费上涨13.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5cm 3.求该市今年居民用水的价格.设去年居民用水价格为x 元/cm 3,根据题意列方程,正确的是( )A .30155113x x -=⎛⎫+ ⎪⎝⎭B .30155113x x -=⎛⎫- ⎪⎝⎭C . 30155113x x -=⎛⎫+ ⎪⎝⎭D .30155113x x -=⎛⎫- ⎪⎝⎭【答案】A .8.(2017广西四市)一艘轮船在静水中的最大航速为35km/h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km 所用时间相等.设江水的流速为v km/h ,则可列方程为( )A .359035120-=+v vB .v v +=-359035120C . 359035120+=-v vD .vv -=+359035120 【答案】D .9. (2017青海西宁第9题)西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x 小时,根据题意可列出方程为()A .1.2 1.216x +=B .1.2 1.2162x += C. 1.2 1.2132x += D .1.2 1.213x+= 【答案】B二、填空题1.(2017浙江宁波第14题)分式方程21332x x +=-的解是 . 2.(2017四川泸州第15题)若关于x 的分式方程x 2322m m x x ++=--的解为正实数,则实数m 的取值范围是 . 【答案】m <6且m ≠2.3. (2017江苏宿迁第14题)若关于x 的分式方程1322m x x x -=---有增根,则实数m 的值是 . 【答案】1.4.(2017四川省绵阳市)关于x 的分式方程x x x -=+--111112的解是 . 【答案】x =﹣2.5.(2017湖北省襄阳市)分式方程233x x=-的解是 . 【答案】x =9.三、解答题 1. (2017贵州安顺第23题)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?【答案】甲,乙两种玩具分别是15元/件,25元/件;2.(2017江苏盐城第23题)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?【答案】(1)2014年这种礼盒的进价是35元/盒.3. (2017贵州黔东南州第23题)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.求甲、乙两队工作效率分别是多少?4.(2017四川宜宾第20题)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【答案】A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.5.(2017广东广州第21题)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.【答案】(1)80公里;(2)乙队每天筑路45公里6. (2017山东日照第20题)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1) 实际每年绿化面积为54万平方米;(2) 则至少每年平均增加72万平方米7. (2017浙江金华第18题)解分式方程:2111 x x=+-.8.(2017浙江湖州第18题)解方程:21111x x=+--.【答案】x=29.(2017四川省眉山市)解方程:11222xx x-+=--.【答案】无解.10.(2017山东省济宁市)解方程:211.22xx x=---.【答案】x=﹣1.11.(2017贵州遵义第25题)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A ,B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A ,B 两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A 型车高10元,A ,B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”,乙街区每1000人投放8240a a+辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a 的值.【答案】问题1:A ,B 两型自行车的单价分别是70元和80元;问题2:a 的值为15.【解析】试题分析:问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x +10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.试题解析:问题1设A 型车的成本单价为x 元,则B 型车的成本单价为(x +10)元,依题意得50x +50(x +10)=7500.解得x =70.∴x +10=80.答:A ,B 两型自行车的单价分别是70元和80元;问题2 由题可得1500a ×1000+12008240a a+×1000=150000. 解得a =15.经检验:a =15是所列方程的解.故a 的值为15.考点:分式方程的应用;二元一次方程组的应用12. (2017内蒙古通辽第20题)一汽车从甲地出发开往相距240km 的乙地,出发后第一小时内按原计划的匀速行驶,1小时后比原来的速度加快41,比原计划提前min 24到达乙地,求汽车出发后第1小时内的行驶速度. 【答案】汽车出发后第1小时内的行驶速度是120千米/小时.13. (2017黑龙江绥化第25题)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【答案】(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.答:甲工程队至少修路8天.14.(2017辽宁大连第21题)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划每天生产多少个零件?【答案】75.15.(2017河池第24题)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.⑴排球和足球的单价各是多少元?⑵若恰好用去1200元,有哪几种购买方案?【答案】(1)排球单价是50元,则足球单价是80元;(2)有两种方案:①购买排球5个,购买足球16个.②购买排球10个,购买足球8个.【解析】试题分析:(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解.试题解析:设排球单价为x元,则足球单价为(x+30)元,由题意得:16. (2017四川宜宾第20题)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【答案】A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.。

初中数学分式方程的应用培优训练题(附答案详解)

初中数学分式方程的应用培优训练题(附答案详解)

初中数学分式方程的应用培优训练题(附答案详解)1.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成. (1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?2.已知一个长方形的面积为6,它的一边为x ,它的另一边长为y ,周长为p .(1)填空:(用含x 的代数式表示)① y=__________;② p=__________;(2)当x 值从2增大到a+2时,y 的值减少了2,求增量a 的值;(3)当x=m 时,p 的值为1p ;当1x m =+时,p 的值为2p ,求21p p -的值,并化成最简分式.3.在Rt△ABC 中,∠B=90°,AB=3cm ,BC=4cm.(1)如图1,点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿CB 匀速运动.两点同时出发,在B 点处首次相遇.设点P 的速度为xcm/s. 表示点Q 的速度是多少cm/s (用含x 的代数式表示);(2)在(1)的条件下,两点在B 点处首次相遇后,点P 的运动速度每秒提高了2 cm ,并沿B→C→A 的路径匀速运动;点Q 保持原速度不变,沿B→A→C 的路径匀速运动,如图2.两点在AC 边上点D 处再次相遇后停止运动.又知AD=1cm.求点P 原来的速度x 的值.4.广州市中山大道快速公交(简称BRT )试验线道路改造工程中,某工程队小分队承担了300米道路的改造任务.为了缩短对站台和车道施工现场实施围蔽的时间,在确保工程质量的前提下,该小分队实际施工时每天比原计划多改造道路20%,结果提前5天完成了任务,求原计划平均每天改造道路多少米?5.如果一辆汽车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上行驶的平均速度是多少千米∕小时?6.近年来,泰州多条动车路线的开通进一步加强了与其他城市的沟通,同时也为市民的出行带来了方便.已知某市到泰州的路程约为900km,一列动车的平均速度比特快列车快50%,所需时间比特快列车少2h,求该列动车的平均速度.7.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的1 3后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已修建道路多少米?(2)求原计划每小时修建道路多少米?8.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用12天;(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.9.某单位在疫情期间用3000 元购进A、B 两种口罩1100 个,购买A种口罩与购买B 种口罩的费用相同,且A种口罩的单价是B 种口罩单价的1.2 倍求A,B 两种口罩的单价各是多少元?10.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?11.甲、乙两火车站相距1200千米,采用“和谐号”动车组提速后,列车行驶的速度是原来的2.5倍,从甲站到乙站的时间缩短了6小时,求列车提速前的速度.12.工程队在完成某项工程的过程中,因提高了工作效率从而缩短了工作时间.经测试:工作时间缩短的百分率是工作效率提高的百分率的2倍,且提高工作效率后的工作量是原来工作量的0.88倍.若完成原来工作量的时间为3小时,求提高工作效率后完成工作量所花的时间.13.A市到B市的距离约为210km,小刘开着小轿车,小张开着大货车,都从A市去B市,小刘比小张晚出发1小时,最后两车同时到达B市,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少.(列方程解答)(2)当小刘出发时,求小张离B市还有多远.14.阅读材料:一般情形下等式11x y+=1不成立,但有些特殊实数可以使它成立,例如:x=2,y=2时,1122+=1成立,我们称(2,2)是使11x y+=1成立的“神奇数对”.请完成下列问题:(1)数对(43,4),(1,1)中,使11x y+=1成立的“神奇数对”是;(2)若(5﹣t,5+t)是使11x y+=1成立的“神奇数对”,求t的值;(3)若(m,n)是使11x y+=1成立的“神奇数对”,且a=b+m,b=c+n,求代数式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值.15.某市从今年1月l同起调整居民用水价格,每立方米水费上涨20%.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.16.小丽和爸爸进行1200米竞走比赛,爸爸的速度是小丽的1.5倍,小丽走完全程比爸爸多用5分钟,小丽和爸爸每分钟各走多少米?17.某校初二年级的同学乘坐大巴车去展览馆参观,展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.18.列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积.(1)在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.设首届进博会企业平均展览面积为x平方米,把下表补充完整:第二届330 000(2)根据以上分析,列出方程(不解..方程). 19.如图,“主收1号”小麦的试验田是边长为am(a >1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a ﹣1)m 的正方形,两块试验田的小麦都收获了500kg.(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的3a a+(kg)倍,求a 的值 (3)利用(2)中所求的a 的值,分解因式x 2﹣ax ﹣108=_____.20.一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于14,求这个分数. 21.设231,24x A B x x =-=--,当x 为何值时A 与B 的值相等. 22.阅读:对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以关于x 的方程ab x a b x+=+有两个解,分别为1x a =,2x b =. 应用上面的结论解答下列问题:(1)方程p x q x+=的两个解分别为12x =-,23x =,则p =_________,q =_________; (2)方程23x x -+=的两个解分别为1x a =,2x b =,求44a b +的值; (3)关于x 的方程222221n n x n x +-+=+的两个解分别为()1212x x x x <、,求122122x x +-的值.23.列分式方程解应用题:从甲地到乙地的路程是15千米,小明骑自行车从甲地到乙地先走,40分钟后,小亮骑自行车从甲地出发,结果同时到达,已知小亮的速度是小明速度的3倍,求小明,小亮两人的速度。

培优专题分式方程培优提高经典例题

培优专题分式方程培优提高经典例题

培优专题分式方程培优提高经典例题分式方程专题例1:去分母法解分式方程1、$63x-216x^{\frac{2}{3}}-2=12$,解得$x=3$2、$\frac{1}{x-1}+\frac{1}{x+2}-\frac{4}{x-4}-\frac{1}{x-2}=\frac{x^2+3x+2}{(x-1)(x+2)(x-4)(x-2)}=\frac{1}{1}$,解得$x=-\frac{1}{2},1,3$3、$\frac{2x-7}{x-4}+\frac{4-x}{x+2}-\frac{x+6}{x-2}-\frac{x+5}{x-3}=\frac{1}{x^2+3x+2}=\frac{1}{(x+1)(x+2)}$,解得$x=-3,-1,2,3$例2:整体换元与倒数型换元:1、设$y=x+\frac{1}{x}$,则原方程化为$y+2=6y^2$,解得$y=\frac{1}{2},2$,带回原式得$x=-1,\frac{1}{3}$2、设$y=x-\frac{1}{x}$,则原方程化为$y+\frac{1}{y}=2$,解得$y=1,-1$,带回原式得$x=\frac{1\pm\sqrt{5}}{2},0$3、设$y=\frac{x-1}{x}$,则原方程化为$3y-y^2=2$,解得$y=1,-\frac{1}{2}$,带回原式得$x=2,3$例3:分式方程的增根的意义1、若分式方程$\frac{a_1}{x-2}+\frac{2}{x-4}+2=\frac{x+1}{x}$有增根,则$a_1=6$2、关于x的分式方程$\frac{x}{x-1}-\frac{a}{x}=1$无解,则$a=2$3、若关于x的分式方程$\frac{36x+m}{x(x-1)}-1$有根,则$m=0$例4:一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙两车单独运这批货物分别运$2a$次、$a$次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了$180t$;若乙、丙两车合运相同次数运完这批货物时,乙车共运了$270t$.问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运$1t$付运费$20$元计算)解:设甲车每次运货物量为$x$,则乙车每次运货物量为$mx$,丙车每次运货物量为$y$,则有$\begin{cases}2ax=180\\ay=2a-x\\my=270\end{cases}$,解得$x=20,m=3,y=8$,故乙车每次所运货物量是甲车每次所运货物量的$3$倍,运费分别为$3600$元、$5400$元和$1600$元。

2017年中考数学培优练习 分式方程应用(无答案)

2017年中考数学培优练习 分式方程应用(无答案)

分式方程应用【温故而知新】1、解方程(1).-2= + . (2). + = .2、关于x 的分式方程1131=-+-x x m 的解为正数,求m 的取值范围。

3.关于x 的方程223242mx x x x +=--+会产生增根,求m 的值。

4.当a 为何值时,关于x 的方程223242ax x x x +=--+无解?5、关于x 的方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x 的一个解,求m 的取值范围。

[应用题专项练习]1、老城街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天?2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进行了技术改进,-提高了生产效率,每天比原计划增产25%,结果提前10天完成了任务.原计划每天生产多少个零件?3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,则要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、 某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。

(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。

5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。

2017年中考数学培优练习-分式方程(含答案)

2017年中考数学培优练习-分式方程(含答案)

分式方程3.若对于3±=x 以外的一切数98332-=--+x x x n x m 均成立,则mn 的值是( ) (A)8 (B)8- (C )16 (D )16-15. a 为何值时,分式方程()01113=++++-x x a x x x 无解? 16. 关于x 的分式方程2322x m m x x ++=--的解为正实数,则实数m 的取值范围是 .(2017遵义) 为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A 、B 两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A 型车高10元,A 、B 两型自行车的单价各是多少? 问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车",乙街区每1000人投放辆“小黄车",按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a 的值.(2017淄博) 某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h .求汽车原来的平均速度.(2017淄博) 若分式||11x x -+的值为零,则x 的值是( )A .1 B .-1 C . 1± D .2 (2017重庆B) 某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?12、若数a 使关于x 的分式方程4112=-+-x a x 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤--+021232a y y y 的解集为2- y ,则符合条件的所有整数a 的和为( )A 、10B 、12C 、14D 、16(2017云南) 某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.该商店第一次购进水果多少千克?(2017永州) 某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x 元,根据题意可列方程为_______. (2017营口) 某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为 . (2017通辽) 一汽车从甲地出发开往相距240km 的乙地,出发后第一小时内按原计划的匀速行驶,1小时后比原来的速度加快41,比原计划提前min 24到达乙地,求汽车出发后第1小时内的行驶速度。

中考数学专题复习训练 分式方程的应用(无答案)(2021年整理)

中考数学专题复习训练 分式方程的应用(无答案)(2021年整理)

2017年中考数学专题复习训练分式方程的应用(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专题复习训练分式方程的应用(无答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专题复习训练分式方程的应用(无答案)的全部内容。

分式方程的应用一、选择题1.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是 A.203525-=x x B.xx 352025=- C.203525+=x x D.x x 352025=+ 2.某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。

设B 型包装箱每个可以装x 件文具,根据题意列方程为( )A .121510801080+-=x xB .121510801080--=x xC .121510801080-+=x xD .121510801080++=x x 二、填空题1.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 .2.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是_____________.3.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .4.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?"请你回答:良马 天可以追上驽马。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程应用
【温故而知新】
1、解方程
(1).
-2= + . (2). + = .
2、关于x 的分式方程
1131=-+-x x m 的解为正数,求m 的取值范围。

3.关于x 的方程
223242
mx x x x +=--+会产生增根,求m 的值。

4.当a 为何值时,关于x 的方程223242
ax x x x +=--+无解?
5、关于x 的方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8
)3(2221x x x x 的一个解,求m 的取值范围。

[应用题专项练习]
1、老城街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3
2;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天?
2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进行了技术改进,-提高了生产效率,每天比原计划增产25%,结果提前10天完成了任务.原计划每天生产多少个零件?
3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,则要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?
4、 某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的3
2,厂家需付甲、丙两队共5500元。

(1) 求甲、乙、丙各队单独完成全部工程各需多少天?
(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。

5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙
管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?
6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。

7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.
8、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程
为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”
第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老
师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问
王老师的步行速度及骑自行车的速度各是多少?
9、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。

问:(1)若小船顺水由A港漂流到B港需要多少小时?(2)救生圈是何时掉入水中的?
10.将总价为200元的甲种糖果与总价值为480元的乙种糖果混合后,其单价比甲种糖果的单价低0.30
元,而比乙种糖果的单价高0.10元.问混合后的单价是多少元?
11.某商店经销一种商品,由于进货价降低了6.4%,使利润率提高了8%,求原来经销这种商品的利润率是多少?
12.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨。

问:(1)乙车每次所运货物是甲车每次所运货物量的几倍?
(2)现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1吨付运费20元计算)。

13、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?。

相关文档
最新文档