2020-2021学年山东省潍坊市高考模拟训练文科数学试题(四)有答案
2020-2021学年人教版五年级上册期中考试数学试卷(四)(有答案)
2020-2021学年人教版五年级上册期中考试数学试卷(四)一.选择题(共5小题)1.6.8×101=6.8×100+6.8是运用了()A.乘法交换律B.乘法结合律C.乘法分配律D.加法结合律2.7千克苹果可榨汁3.5千克,照这样计算,要榨5.6千克苹果汁,需要苹果()千克.A.7÷3.5×5.6B.3.5÷7×5.6C.7×3.5×5.6D.7÷3.5÷5.6 3.每个瓶子可以装2.5kg油,王师傅加工了11千克的油,至少需要准备()个这样的空瓶.A.3B.4C.5D.64.下列算式中,()的得数比1大.A.0.7×0.9B.1÷0.9C.0.9÷0.95.小数乘小数,积()是小数.A.一定B.不一定C.不可能D.以上答案都不对二.填空题(共9小题)6.2019年11月20日我们生活的地方会下雨.7.做一个玩具需要用布2.3m,有120m长的布最多能做个这样的玩具.8.根据28×15=420,直接写出下列得数.2.8×0.15=×1.5=424.2÷0.28=÷1.5=2.89.0.4292929…这个循环小数的循环节是,保留三位小数是.10.请根据第一列里的数,填出其他各列里的数.被除数495495049.20.495除数45 4.50.45 4.5商1111 1.111.一个数的小数点向左移动一位后,比原数小85.5,原数是.12.按规律填空:①0.01、0.04、0.09、0.36……、0.81、1.②3÷11=0.2727……、4÷11=0.3636……、5÷11=0.、6÷11=、9÷11=.13.88.2÷9=9.888.8885÷9=88.83÷9=9.8788.88886÷9=88.884÷9=9.87688.888887÷9=14.用三张分别写着2、6、9的数字卡片,任意摆一个三位数,摆出单数的可能性比摆出双数的可能性.(填“大”或“小”)三.判断题(共5小题)15.0.75×0.4÷0.75×0.4=0.3÷0.3=1.(判断对错)16.0.75÷0.25×0.75÷0.25=3×3=9.(判断对错)17.5.6÷3的商是循环小数.(判断对错)18.4.5和4.50的大小相等,意义却不相同.(判断对错).19.8.7979……≈8..(判断对错)四.计算题(共1小题)20.列竖式计算下面各题.1.02×1.3=16.54÷1.1=(商用循环小数表示)6.2÷7≈(保留两位小数)11.7÷0.65=五.应用题(共5小题)21.工人要制做一批书架,计划每天做17个,9天完成.实际8.5天就完成了.实际平均每天做多少个?22.妈妈带50元钱去水果超市买水果,苹果每千克4.5元,香蕉每千克3.6元,妈妈买了2千克苹果,3千克香蕉,剩下的钱还够买一盒23.2元的草莓?23.一袋洗衣粉13.5元,一块肥皂3.8元.妈妈买了两袋洗衣粉和5块肥皂,妈妈应付给售货员多少元?24.水果超市上午运了3.75吨水果,上午比下午多运了0.25吨,货车每次可以运1800千克水果,这辆货车全天运了几次才将水果全部运完?25.有一张长1.3米,宽1.2米的长方形纸板,要剪成面积为0.36平方米的正方纸板,能剪出几块?六.操作题(共1小题)26.10月1日国庆节期间,平平一家坐汽车从厦门到福州旅游,从家(3,3)出发,经过3.5小时到达福清(10,3),再经过1小时到达目的地福州鼓山(10,5).(1)在图中标出平平家、福清、福州鼓山所在的位置.(2)从平平家到福州鼓山,这辆汽车平均每小时行驶多少千米?七.解答题(共3小题)27.写出下面各循环小数的近似值(保留三位小数)1.59090……≈□0.42≈□0.222……≈□6.8≈□28.在〇里填上“>”“<”或“=”.3.3×1.01〇3.3÷1.019.3×0.01〇0.93÷1000.014÷1.4〇0.0198×0.99〇9829.下面的计算对吗?如果不对,将错的改正过来.参考答案与试题解析一.选择题(共5小题)1.6.8×101=6.8×100+6.8是运用了()A.乘法交换律B.乘法结合律C.乘法分配律D.加法结合律解:6.8×101=6.8×100+6.8×1=680+6.8=686.8.故选:C.2.7千克苹果可榨汁3.5千克,照这样计算,要榨5.6千克苹果汁,需要苹果()千克.A.7÷3.5×5.6B.3.5÷7×5.6C.7×3.5×5.6D.7÷3.5÷5.6解:7÷3.5×5.6=2×5.6=11.2(千克)答:需要苹果11.2千克.故选:A.3.每个瓶子可以装2.5kg油,王师傅加工了11千克的油,至少需要准备()个这样的空瓶.A.3B.4C.5D.6解:11÷2.5≈5(个)答:至少需要准备5个这样的空瓶.故选:C.4.下列算式中,()的得数比1大.A.0.7×0.9B.1÷0.9C.0.9÷0.9解:A、0.99×0.8<1,B、1÷0.99>1,C、0.9÷0.9=1,故选:B.5.小数乘小数,积()是小数.A.一定B.不一定C.不可能D.以上答案都不对解:比如:1.25×0.8=1所以小数乘小数的积不一定是小数.故选:B.二.填空题(共9小题)6.2019年11月20日我们生活的地方可能会下雨.解:2019年11月20日我们生活的地方可能会下雨.故答案为:可能.7.做一个玩具需要用布2.3m,有120m长的布最多能做52个这样的玩具.解:120÷2.3≈52(个)答:120m长的布最多能做52个这样的玩具.故答案为:52.8.根据28×15=420,直接写出下列得数.2.8×0.15=0.4228×1.5=424.2÷0.28=154.2÷1.5=2.8解:2.8×0.15=0.4228×1.5=424.2÷0.28=154.2÷1.5=2.8故答案为:0.42;28;15;4.2.9.0.4292929…这个循环小数的循环节是29,保留三位小数是0.429.解:0.4292929…这个循环小数的循环节是29,保留三位小数是0.429;故答案为:29;0.429.10.请根据第一列里的数,填出其他各列里的数.被除数495495049.20.4950.495除数45450 4.50.45 4.5商111111 1.10.11解:0.495被除数495495049.20.495除数45450 4.50.45 4.5商111111 1.10.11 11.一个数的小数点向左移动一位后,比原数小85.5,原数是95.解:85.5÷(1﹣)=85.5÷0.9=95答:这个数原来是95.故答案为:95.12.按规律填空:①0.01、0.04、0.090.16、0.250.36……、0.81、1.②3÷11=0.2727……、4÷11=0.3636……、5÷11=0.、6÷11=0.、9÷11=0..解:①0.4×0.4=0.160.5×0.5=0.25②3÷11=0.2727……、4÷11=0.3636……、5÷11=0.、6÷11=0.、9÷11=0..故答案为:0.16,0.25;0.,0..13.88.2÷9=9.888.8885÷9=9.876588.83÷9=9.8788.88886÷9=9.8765488.884÷9=9.87688.888887÷9=9.876543解:88.2÷9=9.888.83÷9=9.8788.884÷9=9.87688.8885÷9=9.876588.88886÷9=9.8765488.888887÷9=9.876543故答案为:9.8765,9.87654,9.876543.14.用三张分别写着2、6、9的数字卡片,任意摆一个三位数,摆出单数的可能性比摆出双数的可能性小.(填“大”或“小”)解:用2、6、9三张数字卡片组成的三位数有:269、296、629、692、926、962共六个;其中单数有269、629两个,双数有296、692、926、962四个,摆出单数的可能性是2÷6=,摆出双数的可能性是4÷6=,答:摆出单数的可能性比摆出双数的可能性小.故答案为:小.三.判断题(共5小题)15.0.75×0.4÷0.75×0.4=0.3÷0.3=1.×(判断对错)解:0.75×0.4÷0.75×0.4=0.3÷0.75×0.4=0.4×0.4=0.160.16<1原题计算错误.故答案为:×.16.0.75÷0.25×0.75÷0.25=3×3=9.√(判断对错)解:0.75÷0.25×0.75÷0.25=3×0.75÷0.25=2.25÷0.25=99=9原题计算正确.故答案为:√.17.5.6÷3的商是循环小数.√(判断对错)解:5.6÷3=1.866…,商是循环小数.原题说法正确.故答案为:√.18.4.5和4.50的大小相等,意义却不相同.√(判断对错).解:根据小数的基本性质,4.5=4.50;根据小数的意义,4.5的计数单位是0.1,而4.50的计数单位是0.01,所以4.5和4.50的大小相等,意义不同,所以本题说法正确;故答案为:√.19.8.7979……≈8..×(判断对错)解:8.7979……=8.,原题说法错误.故答案为:×.四.计算题(共1小题)20.列竖式计算下面各题.1.02×1.3=16.54÷1.1=(商用循环小数表示)6.2÷7≈(保留两位小数)11.7÷0.65=解:1.02×1.3=1.32616.54÷1.1=15.06.2÷7≈0.8911.7÷0.65=18五.应用题(共5小题)21.工人要制做一批书架,计划每天做17个,9天完成.实际8.5天就完成了.实际平均每天做多少个?解:17×9÷8.5=153÷8.5=18(个)答:实际平均每天做18个.22.妈妈带50元钱去水果超市买水果,苹果每千克4.5元,香蕉每千克3.6元,妈妈买了2千克苹果,3千克香蕉,剩下的钱还够买一盒23.2元的草莓?解:4.5×2+3×3.6=9+10.8=19.8(元)50﹣19.8=30.2(元)30.2>23.2,所以够.答:剩下的钱还够买一盒23.2元的草莓.23.一袋洗衣粉13.5元,一块肥皂3.8元.妈妈买了两袋洗衣粉和5块肥皂,妈妈应付给售货员多少元?解:13.5×2+3.8×5=27+19=46(元)答:妈妈应付给售货员46元.24.水果超市上午运了3.75吨水果,上午比下午多运了0.25吨,货车每次可以运1800千克水果,这辆货车全天运了几次才将水果全部运完?解:3.75﹣0.25+3.75=7.25(吨)7.25吨=7250千克7250÷1800≈5(次)答:这辆货车全天运了5次才将水果全部运完.25.有一张长1.3米,宽1.2米的长方形纸板,要剪成面积为0.36平方米的正方纸板,能剪出几块?解:因为0.62=0.36所以面积是0.36平方米的正方形的边长是0.6米以长为边可以剪出1.3÷0.6≈2(块)以宽为边可以剪出1.2÷0.6=2(块)所以一共可以剪出2×2=4(块)答:能剪出4块.六.操作题(共1小题)26.10月1日国庆节期间,平平一家坐汽车从厦门到福州旅游,从家(3,3)出发,经过3.5小时到达福清(10,3),再经过1小时到达目的地福州鼓山(10,5).(1)在图中标出平平家、福清、福州鼓山所在的位置.(2)从平平家到福州鼓山,这辆汽车平均每小时行驶多少千米?解:(1)平平家、福清、福州鼓山所在的位置,如图所示:(2)(7+2)×30÷(3.5+1)=9×30÷4.5=270÷4.5=60(千米/小时)答:这辆汽车平均每小时行驶60千米.七.解答题(共3小题)27.写出下面各循环小数的近似值(保留三位小数)1.59090……≈□0.42≈□0.222……≈□6.8≈□解:1.59090……≈1.5910.42≈0.4250.222……≈0.2226.8≈6.186故答案为:1.591,0.425,0.222,6.186.28.在〇里填上“>”“<”或“=”.3.3×1.01〇3.3÷1.019.3×0.01〇0.93÷1000.014÷1.4〇0.0198×0.99〇98解:(1)3.3×1.01=3.333,3.3÷1.01≈3.267,3.333>3.267;所以,3.3×1.01>3.3÷1.01;(2)9.3×0.01=0.093,0.93÷100=0.0093,0.093>0.0093;所以,9.3×0.01>0.93÷100;(3)0.014÷1.4=0.01所以,0.014÷1.4=0.01;(4)98×0.99=97.02,97.02<98;所以,98×0.99<98.故答案为:>,>,=,<.29.下面的计算对吗?如果不对,将错的改正过来.解:。
2020-2021学年浙江省高考数学一模试卷(文科)及答案解析
浙江省高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1} D.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<13.函数的一条对称轴是()A.B.C.D.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1=______,数列{a n}通项公式a n=______.10.函数则f(﹣1)=______,若方程f(x)=m有两个不同的实数根,则m的取值范围为______.11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为______,x2+4y2+xy的最小值为______.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为______;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是______.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为______.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为______.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD﹣A1B1C1D1在平面α上的投影面积为______.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1} D.【考点】交集及其运算.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式lgx≥0=lg1,得到x≥1,即A={x|x≥1},由B中不等式变形得:2x≥=2,即x≥,∴B={x|x≥},则A∩B={x|x≥1},故选:A.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<1【考点】四种命题的真假关系.【分析】举例说明命题p为假命题,求出命题p的逆命题,否命题,逆否命题逐一判断即可得答案.【解答】解:已知命题p:若a<1,则a2<1,如a=﹣2,则(﹣2)2>1,命题p为假命题,∴A 不正确;命题p的逆命题是:若a2<1,则a<1,为真命题,∴B正确;命题p的否命题是:若a≥1,则a2≥1,∴C不正确;命题p的逆否命题是:若a2≥1,则a>1,∴D不正确.故选:B.3.函数的一条对称轴是()A.B.C.D.【考点】三角函数中的恒等变换应用;正弦函数的对称性.【分析】由三角函数公式化简可得f(x)=2sin(x+),由三角函数的对称性可得.【解答】解:由三角函数公式化简可得f(x)=sinx+sin(+x)=sinx+cosx=2(sinx+cosx)=2sin(x+),由x+=kπ+可x=kπ+,k∈Z.结合选项可得当k=0时,函数的一条对称轴为x=.故选:B.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,α与β相交或平行;在C中,α与β相交或平行;在D中,由面面垂直的判定定理得α⊥β.【解答】解:由α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β,知:在A中,若m,n是异面直线,则α与β相交或平行,故A错误;在B中,若m∥β,n∥α,则α与β相交或平行,故B错误;在C中,若m⊥n,则α与β相交或平行,故C错误;在D中,若m⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定【考点】等差数列的性质.【分析】S n=na1+=+,利用二次函数的性质即可得出.【解答】解:S n=na1+=+,可知:a1>0,d<0,则唯一确定时n不一定唯一确定,可能有两个值,故选:D.6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增【考点】函数的图象.【分析】判断函数的奇偶性,求出函数的零点,利用导数判断单调性.【解答】解:∵f(﹣x)=(﹣x+)sin(﹣x)=(x﹣)•sinx=f(x).∴f(x)是偶函数.故A错误.令f(x)=0得x﹣=0或sinx=0,∵x∈[﹣π,π],∴x=±1或x=±π.∴f(x)有4个零点.故C正确.故选:C.7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t【考点】平面向量数量积的运算.【分析】连结BC,CD,则=AB2,=AD2.于是•==.【解答】解:连结BC,CD.则AD⊥CD,AB⊥BC.∴=AB×AC×cos∠BAC=AB2=t+1.=AD×AC×cos∠CAD=AD2=t+2.∵,∴•===1.故选:A.8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3【考点】双曲线的简单性质.【分析】首先求出F1到渐近线的距离,利用焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,可得直角三角形,即可求出双曲线的离心率.【解答】解:由题意,F1(﹣c,0),F2(c,0),设一条渐近线方程为y=x,则F1到渐近线的距离为=b.设F1关于渐近线的对称点为M,F1M与渐近线交于A,∴|MF1|=2b,A为F1M的中点,又焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,∴OA∥F2M,∴∠F1MF2为直角,∴△MF1F2为直角三角形,∴由勾股定理得4c2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选:B.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1= 1 ,数列{a n}通项公式a n= .【考点】等比数列的通项公式.【分析】由于3a2﹣4=2.利用等比数列的通项公式可得3a n﹣2n,即可得出.【解答】解:3a2﹣4=2.∴3a n﹣2n=2×2n﹣2=2n﹣1.∴3a1﹣2=1,解得a1=1.∴a n=.故答案分别为:1;.10.函数则f(﹣1)= 2﹣,若方程f(x)=m有两个不同的实数根,则m的取值范围为(0,2).【考点】函数的零点与方程根的关系;函数的值.【分析】根据分段函数的表达式代入求解即可,作出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:由分段函数的表达式得f(﹣1)=|﹣2|=2﹣,故答案为:2﹣,作出函数f(x)的图象如图:当x<0时,f(x)=2﹣e x∈(1,2),∴当x≤1时,f(x)∈[0,2),当x≥1时,f(x)≥0,若方程f(x)=m有两个不同的实数根,则0<m<2,即实数m的取值范围是(0,2),故答案为:2﹣,(0,2).11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为,x2+4y2+xy的最小值为.【考点】函数的最值及其几何意义.【分析】根据基本不等式进行转化求解得的最小值,利用换元法转化为一元二次函数,利用一元二次函数的性质即可求x2+4y2+xy的最小值.【解答】解:由x+2y=3得+=1,则=+=(+)×1=(+)(+)=2+++≥+2=+=,当且仅当=,即3x2=2y2取等号,即的最小值为.由x+2y=3得x=3﹣2y,由x=3﹣2y>0得0<y<,则x2+4y2+xy=(3﹣2y)2+4y2+(3﹣2y)y=6y2﹣9y+9=6(y﹣)2+,即当y=时,x2+4y2+xy的最小值为,故答案为:,.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为 5 ;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是1<a或a <.【考点】简单线性规划.【分析】(1)作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过B (5,3)时,z最大,当直线过C时,z最小.(2)作出不等式组.表示的平面区域,从而解出.【解答】解:(1)画出不等式表示的平面区域:将目标函数变形为z=2x+y,作出目标函数对应的直线,,解得A(1,3),直线过A(1,3)时,直线的纵截距最大,z最小,最小值为5;则目标函数z=2x+y的最小值为:5.故答案为:5.(2).如下图:y=a(x﹣3)恒过(3,0),则若不等式组表示的平面区域是一个三角形,K AB==﹣,则实数a的取值范围,1<a或a<,故答案为:1<a或a<.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为1002 .【考点】数列与向量的综合;向量的模.【分析】根据题意,求出x n与y n的通项公式,计算的模长最小值即可.【解答】解:是按先后顺序排列的一列向量,且,,∴+(1,1),即(x n,y n)=(x n﹣1,y n﹣1)+(1,1)=(x n﹣1+1,y n﹣1+1);∴,∴,∴||===;∴当n==1002,即n=1002时,其模最小.故答案为:1002.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为90°.【考点】点、线、面间的距离计算.【分析】空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,且c=,b=,a=2.利用椭圆的性质:椭圆上点关于两焦点的张角在短轴的端点取得最大,即可得出.【解答】解:空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,c=,b=,a=2,于是A,B为椭圆的焦点,椭圆上点关于两焦点的张角在短轴的端点取得最大,∴∠APB=2∠APD=90°.故答案为:90°.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD﹣A1B1C1D1在平面α上的投影面积为.【考点】平行投影及平行投影作图法.【分析】根据题意,画出图形,找出与AC1垂直的平面去截正方体ABCD﹣A1B1C1D1所得的截面是什么,再求正方体在该平面上的投影面积.【解答】解:如图所示,连接BB1,DD1的中点MN,交AC1于点O,在对角面ACC1A1中,过点O作OP⊥AC,交AC1于点P,则平面MOP是对角线AC1的垂面;该平面截正方体ABCD﹣A1B1C1D1所得的截面是六边形MGHNFE;则正方体在该平面上的投影面积是MN•2OR=××2×=.故答案为:.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.【考点】正弦定理;两角和与差的正弦函数.【分析】(I)使用二倍角公式得出关于cosC的方程解出;(II)使用和角公式计算sinB,利用正弦定理和面积公式计算b.【解答】解:(I)∵cosA=cos2C=2cos2C﹣1=,∴cosC=±.∵A=2C,∴C是锐角,∴cosC=.(II)∵cosA=,cosC=,∴sinA=,sinC=.∴sinB=sin(A+C)=sinAcosC+cosAsinC=.由正弦定理得.∴a===5,∵S△ABC∴b=5.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.【考点】数列的求和;等比数列的通项公式;等比数列的前n项和.【分析】(Ⅰ)当n≥2时,利用a n=S n﹣S n﹣1计算,进而可知a n=2n﹣7;通过b n+1=3b n可知数列{b n}为等比数列,利用b n=b2•3n﹣2计算即得结论;(Ⅱ)通过(I)可知c n=,进而分n为奇数、偶数两种情况讨论即可.【解答】解:(Ⅰ)当n=1时,a1=S1=﹣5,当n≥2时,a n=S n﹣S n﹣1=2n﹣7,又∵当n=1时满足上式,∴a n=2n﹣7;∵b n+1=3b n,b2=3,∴数列{b n}为等比数列,故其通项公式b n=b2•3n﹣2=3n﹣1;(Ⅱ)由(I)可知c n=,当n为偶数是,T n=+=+;当n为奇数时,T n=+=+;综上所述,T n=.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(I)连结BD,则E为BD的中点,利用中位线定理得出EF∥PD,故而EF∥面PCD;(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.则可证AP⊥平面BCH,于是AP⊥OB,结合OB⊥CH得出OB⊥平面PAC,于是∠BPO为PB与平面PAC所成的角.利用勾股定理计算BH,CH,OB,得出sin∠BPO=.【解答】证明:(I)连结BD,∵四边形ABCD是矩形,E是AC的中点,∴E是BD的中点.又F是BP的中点,∴EF∥PD,又EF⊄平面PCD,PD⊂平面PBD,∴EF∥平面PCD.(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.∵面ABCD⊥面PAB,面ABCD∩面PAB=AB,BC⊥AB,∴BC⊥平面PAB,∵AP⊂平面PAB,∴BC⊥AP,∵△PAB是等边三角形,∴AP⊥HB,又BC⊂平面BCH,BH⊂平面BCH,BC∩BH=B,∴AP⊥平面BCH,又OB⊂平面BCH,∴AP⊥OB,又OB⊥CH,CH⊂平面PAC,AP⊂平面PAC,CH∩AP=H,∴OB⊥平面PAC.∴∠BPO为PB与平面PAC所成的角.∵AB=2,BC=1,∴BH=,CH==2,∴BO==,∴sin∠BPO==.即直线BP与面PAC所成角的正弦值为.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.【考点】直线与圆锥曲线的综合问题;直线的一般式方程.【分析】(Ⅰ)设直线L的方程为y=kx+b,由点到直线距离公式和相切性质得k2+1=(1+b)2,联立,得x2﹣2kx﹣2b=0,由根的判别式得k2+2b=0,由此能求出直线L的方程.(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,由此利用根的判别式、弦长公式、点到直线距离公式,结合已知能求出的最小值.【解答】解:(Ⅰ)当P=1时,抛物线x2=2y,由题意直线L的斜率存在,设直线L的方程为y=kx+b,即kx﹣y+b=0,由题意得=1,即k2+1=(1+b)2,①联立,得x2﹣2kx﹣2b=0,由△=0,得k2+2b=0,②由①②得k=±2,b=﹣4,故直线L的方程为y=,(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,(*)由△=0,得pk2+2p=0,③∴b=﹣,代入(*)式,得x=pk,故点A(pk,),由①②得b=﹣,k2=,故A(pk,),∴|AB|===2•,点F到直线L的距离d==•=,∴S=|AB|•d==,∴==≥,当且仅当p=时,有最小值(2).20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】(Ⅰ)分类讨论,从而由f(x)=0恰有一解及f(x)=0有两个不同的解求得;(Ⅱ)分类讨论,从而确定二次函数的单调性及最值,从而确定函数y=|f(x)|在[0,1]上的最大值.【解答】解:(Ⅰ)(1)若f(x)=0恰有一解,且解不为,即a2﹣4=0,解得a=±2;(2)若f(x)=0有两个不同的解,且其中一个解为,代入得+a+1=0,解得a=﹣,检验满足△>0;综上所述,a的取值集合为{﹣,﹣2,2}.(Ⅱ)(1)若﹣≤0,即a≥0时,函数y=|f(x)|在[0,1]上单调递增,故y max=f(1)=2+a;(2)若0<﹣<1,即﹣2<a<0时,此时△=a2﹣4<0,且f(x)的图象的对称轴在(0,1)上,且开口向上;故y max=max{f(0),f(1)}=max{1,a+2}=,(3)若﹣≥1,即a≤﹣2时,此时f(1)=2+a≤0,y max=max{f(0),﹣f(1)}=max{1,﹣a﹣2}=,综上所述,y max=.。
潍坊市2020-2021学年高一上学期期中数学试题(解析版)
关于 的不等式 解集包含 ,令 ,
,解得 ,
故选: .
【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.
二、多项选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.
9.下列命题中是假命题的是().
A. , B. ,
C. , D. ,
【答案】ACD
【解析】
【分析】
举反例即可判断选项A、C,解方程 即可判断选项B、D.
(1)求 ;
(2)若 ,求实数 的取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;
(2)分集合C为空集和不是空集两种情况分别建立不等式(组),可求得所求的范围.
【详解】解:( 时,满足 ,即 ,解得 .
【详解】对于A选项,函数 为奇函数,且该函数在定义域上不单调,A选项中的函数不合乎要求;
对于B选项,函数 为奇函数,且该函数在定义域上为减函数,B选项中的函数合乎要求;
对于C选项,当 时, ,则 ,
当 时, ,则 ,
又 ,所以,函数 为奇函数,
当 时,函数 单调递减;当 时,函数 单调递减.
由于函数 在 上连续,所以,函数 在 上为减函数,C选项中的函数合乎要求;
画出函数的图象,如图所示:
对于 :根据函数的图象, 的定义域为 ,值域为 ,故 错误;
2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析
三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。
潍坊一中高考模拟文科数学试题(3)
高考冲刺模拟训练(文科)(3)考试说明:本试卷分第I 卷(选择题)和第1I 卷(非选择题)两部分,满分1 50分,考试时间120分钟. 第I 卷(选择题,共50分)一、选择题(本大题共12小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题意要求的.)1.已知全集U=Z ,集合A={一1,0,1,2},B={x|x 2=x},则A C U B 为( )A .{一1,2)B .{一1,0}C .{0,1)D .{1,2)2.设i 为虚数单位,则复数31i z i=-在复平面内对应的点位于( )A .第一象限B .第_象限C .第三象限D .第四象限 3.若a=(一1,3),b=(x+1,一4),且(a+b )//b ,则实数x 为( )A .3B .13 C .一3 D .一134.执行如图所示的程序框图,若输入8,n S ==则输出的 ( ) A .49 B . 67 C .89 D .10115.已知a ,b ,l ,表示三条不同的直线,,,αβγ表示三个不同的平面,有下列四个命题:A .①②B .①④C .②③D .③④6.一动圆过点A (0,1),圆心在抛物线214y x =上,且恒与定直线,相切,则直线l 的方程为( )A .x=1B .132x =C .132y =- D .1y =-7.设第一象限内的点(,x y )满足2400x y x y --⎧⎨-⎩,,≤≥若目标函数(0,0)z ax by a b =+>>的最大值是4,则11a b+的最小值为 (A )3 (B )4 (C )8 (D )9 8.函数2()cos sin f x x x =+,那么下列命题中假命题的是( )A .()[,0]f x π-在上恰有一个零点B .f (x )既不是奇函数也不是偶函数C .f (x )是周期函数D .f (x )在区间(5,26ππ)上是增函数9.在△ABC 中,内角A,B,C 的对边长分别为a ,b ,c ,且22tan 2,3,tan A a c b C-==则b 等于 ( )A .3B .4C .6D .710.对实数a 和b ,定义运算“*”:a*b=,1,1a ab b a b -≤⎧⎨->⎩,设函数f (x )=(21x +)*(x+2),若函数y=f (x )一c 的图像与x 轴恰有两个公共点,则实数C 的取值范围是( )A .(2,4](5,+∞)B .(1,2] (4,5]C .(一∞,1)(4,5]D .[1,2]第II 卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 11.已知某三棱锥的三视图如图所示,则它的外接球的半径为 .12.平面坐标系中,O 为坐标原点,点A (3,1),点B (一1,3),若点C 满足,,1OC OA OB R αβαβαβ=+∈+=其中且,则点C 的轨迹方程为 .13.定义域为R 的函数()f x 满足(1)3f =,且()f x 的导函数1()3f x '>,则满足3()8f x x >+的x 的集合为 . 14.在区间0,1]上任取两个实数a ,b ,则函数f (x )=312x ax b +-在区间[—1,1]上有且仅有一个零点的概率为 .15.已知f (1,1)=1,f (m ,n )∈N *(m 、n∈N *),且对任意m 、n∈N *都有:① f(m ,n+1)= f (m ,n )+2; ② f(m +1,1)=2 f (m ,1).给出以下三个结论:(1)f (1,5)=9;(2)f (5,1)=16;(3)f (5,6)=26. 其中正确的个数为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分12分)已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,向量2(4,1),(cos ,cos2)2A A =-=,m n 7.2⋅=且m n (Ⅰ)求角A 的大小;(Ⅱ)若a =,试判断b·c 取得最大值时△ABC 形状.17.(本小题满分12分) 一多面体的三视图和直观图如下图所示,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)直观图中的平面BEFC 水平放置.(1)求证:AE//平面DCF ; (2)当92AB =时,求该多面体的体积. 18.(本小题满分12分)一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位:辆),若按A ,B ,C 三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A 类轿车有10辆. (Ⅰ)求z 的值;(Ⅱ)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个分数a .记这8辆轿车的得分的平均数为x ,定义事件E ={0.5a x -≤,且函数()22.31f x ax ax =-+没有零点},求事件E 发生的概率. 19.(本小题满分12分)已知数列{}n a 满足:1121222222,n n a a aan n N -+*++⋅⋅⋅++=-∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,数列{}n b 的前n 项和为n T .若存在实数λ,使得n T λ≥,试求出实数λ的最小值. 20.(本小题满分1 3分) 己知函数()(2)xf x nx n e =-+⋅∈(其中n N*)(I )求f (x )在[0,2]上的最大值;(II )若函数g (x )=(nx+2)(nx 一15)(n ∈N*),求n 所能取到的最大正整数,使对任意x>0,都有2f’(x )>g (x )恒成立. 21.(本小题满分1 4分)已知抛物线22x py =上点()2,2处的切线经过椭圆()2222:10y x E a b a b+=>>的两个顶点.(1)求椭圆E 的方程;(2)过椭圆E 的上顶点A 的两条斜率之积为4-的直线与该椭圆交于B 、C 两点.请问:是否存在一点D ,使得直线BC 恒过该点?若存在,请求出定点D 的坐标;若不存在,请说明理由; (3)在(2)的条件下,过点A 作直线BC 的垂线,垂足为H ,求点H 的轨迹方程.。
山东省济南市2020-2021学年高三上学期期末考试数学试题(含解析)
山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3C .D .46.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2C D8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是A .()12f x π−为奇函数 B .()f x 的最小正周期为πC .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点 11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是 A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32π D .直线PB 1与平面BCC 1B 112.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白 第11题球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 . 15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积. 18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)如图,在三棱柱ABC—A 1B 1C 1中,AB =AC =2,D 为BC 的中点,平面BB 1C 1C ⊥平面ABC ,设直线l 为平面AC 1D 与平面A 1B 1C 1的交线.(1)证明:l ⊥平面BB 1C 1C ;(2)已知四边形BB 1C 1C 为边长为2的菱形,且∠B 1BC =60°,求二面角D—AC 1—C 的余弦值.某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率; (2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性; (2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围.山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 答案:D解析:{}2A |60x x x =−−≤=[﹣2,3],{}B |10x x =−<=(−∞,1),故AB =[﹣2,1).选D .2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−答案:D解析:i i(1i)1i1i (1i)(1i)22z −===+++−,则1i 22z =−.选D . 3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:“直线l 的方程为y =2”⇒“直线l 与圆224x y +=相切”, “直线l 与圆224x y += 相切”“直线l 的方程为y =2”,故选A .4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种答案:B解析:甲若选牛,则有1124C C 种;甲若选马,则有1124C C 种.故共有16种,选B .5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3 C.D .4答案:B解析:由题意知△AEF 的等边三角形,故AE AF +=3,选B .6.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒ 答案:C解析:221321240e e 2k k −−=+⇒=,6311240e 1240()172k θ−=+=+⨯=,故选C . 7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2CD 答案:B解析:将直线AP 与斜率为正数的渐近线方程联立:()a y x a bb y x a ⎧=+⎪⎪⎨⎪=⎪⎩,解得P(322a b a −,222a b b a −),因为OP =a ,则322222222()()a a b a b a b a+=−−,化简得2222222334a b a c a c a =⇒=−⇒=2e ⇒=,选B .8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 答案:C解析:0()0f x <,参变分离得:000(1)e x x a x <+,令000()(1)(1)e x x g x x x =≥+,2000201()0(1)e x x x g x x +−'=−<+,所以0()g x 在[1,+∞)且0x Z ∈单调递增, 求得1(1)2e g =,22(2)3eg =,故要使存在唯一的正整数0x ,使得0()0f x <, 则223e ≤a <12e,选C . 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大 答案:AC解析:班级甲该周每天的人均体育锻炼时间的中位数为65,故B 错误;班级甲该周每天的人均体育锻炼时间的平均值比班级乙的小,故D 错误.综上选AC .10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是 A .()12f x π−为奇函数 B .()f x 的最小正周期为π C .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点答案:BD解析:()12f x π−为偶函数,故A 错误;()f x 在区间[12π−,125π]上单调,但不一定是单调递增,故C 错误.综上选BD .11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32πD .直线PB 1与平面BCC 1B 1答案:ABD解析:因为平面AB 1D 1∥平面BC 1D ,PB 1⊂平面AB 1D 1,所以直线PB 1∥平面BC 1D ,A 正确;V P—BC1D =V A—BC1D =V C1—ABD =111112=323⨯⨯⨯⨯,故B 正确;三棱锥D 1—BC 1D=S 球=246ππ=,故C 错误;PB 1min 点P 到平面BCC 1B 1的距离为1,所以直线PB 1与平面BCC 1B 1所成角的正弦值的最,故D 正确.综上选ABD .12.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 答案:ACD解析:第n 此取出球是红球的概率为n P ,则白球概率为(1)n P −,对于第1n +次,取出红球有两种情况. ①从红箱取出1(1)58n n P P +=⋅(条件概率), ②从白箱取出2(1)3(1)8n nP P +=−⋅, 对应121(1)(1)3184n n n n P P P P +++=+=+(转化为数列问题), 所以1111()242n n P P +−=−, 令12n n a P =−,则数列{n a 为等比数列,公比为14,因为158P =,所以118a =, 故2(21)2n n a −+=即对应(21)122n n P −+=+, 所以21732P =,故选项A 正确; [2(1)1](21)231111112[2]222224n n n n n P P −++−+−−+−=+−⨯+=−,故117232n n P P +=+不成立,故选项B 错误; 经验证可得,211221()2n n n n n n P P P P P P ++++−=−+,故选项C 正确;1(21)(21)11111()()2222n ni j i j i j n i j i P P −−+−+<==+−−=⋅∑∑∑ 1(21)(23)(23)142[22]3n i i n i −−+−+−+==⋅−∑11(44)(23)(21)114[222]3n n i n i i i −−−+−+−+===−∑∑ 844(23)3214164[(22)2(22)]3153n n n −−−−+−−−=−−⋅− 424141122218045369n n n −−−=−⋅−⋅+⋅ 421(14252)180n n −−=+⋅−⋅ 221(142)(12)180n n −−=−⋅−11(14)(14)180n n −−=−−,故D 正确. 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 答案:13解析:51sin()sin[()]sin()6663ππαπααπ−=−+=+=. 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 .答案:4解析:11lg lg lg()1x y x y xy x y x y+=+⇒=+⇒+=, 11()()24y xxy x y x y x y x y=+=++=++≥,当且仅当x =y =2时取“=”.15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .答案:(0,3)(﹣5,﹣1)解析:0(1)0(1)0x xf x f x >⎧+>⇒⎨+>⎩或003(1)0x x f x <⎧⇒<<⎨+<⎩或51x −<<−,故原不等式的解集为(0,3)(﹣5,﹣1).16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)答案:16,252解析:当PQ 为抛物线通径时△PTQ 的面积最小,为16;当TF =5时,可得线段PQ 中点的纵坐标为3或﹣3,故PQ 的斜率为43或43−,故PQ =2228254sin 2()5p α==. 四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积.解:在△ABC 中,由余弦定理可得:所以在△ACD 中,由正弦定理可得:,即所以所以 因为,所以所以所以18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 解:(1)因为所以所以当时,适合上式,所以(2)若选①: 因为所以若选②:因为所以则两式相减可得:所以若选③:当n为偶数时,当n为奇数时,综上:19.(本小题满分12分)如图,在三棱柱ABC—A1B1C1中,AB=AC=2,D为BC的中点,平面BB1C1C⊥平面ABC,设直线l为平面AC1D与平面A1B1C1的交线.(1)证明:l⊥平面BB1C1C;(2)已知四边形BB1C1C为边长为2的菱形,且∠B1BC=60°,求二面角D—AC1—C的余弦值.解:(1)证明:因为AB=AC=2,D为BC的中点,所以AD⊥BC,又因为平面BB1C1C⊥平面ABC,且平面BB1C1C平面ABC=BC,AD 平面ABC,所以AD⊥平面BB1C1C,而AD∥平面A1B1C1,且AD⊂平面AC1D,平面AC1D平面A1B1C1=l,所以AD∥l,所以l⊥平面BB1C1C;(2)因为AD⊥平面BB1C1C,AD⊂平面AC1D,所以平面AC1D⊥平面BB1C1C,在平面BB1C1C内,过C作CH⊥DC1于点H,则CH⊥平面AC1D,过C作CG⊥AC1于点G,则G为线段AC1的中点,连接HG,则∠CGH就是二面角D—AC1—C的平面角,在直角中,在中,,在中,,在直角中,,所以所以二面角D—AC1—C的余弦值为20.(本小题满分12分)某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率;(2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由. 解:(1)从红枣中任意取出一个,则该红枣为优质品的概率是,记“如果该农户采用方案一装箱,一箱红枣被定为A 类”为事件A ,则(2)记“如果该农户采用方案一装箱,一箱红枣被定为B 类”为事件B ,“如果该农户采用方案一装箱,一箱红枣被定为C 类”为事件C ,则所以如果该农户采用方案一装箱,每箱红枣收入的数学期望为:元;由题意可知,如果该农户采用方案二装箱,则一箱红枣被定为A 类的概率为,被定为C 类的概率也为,所以如果该农户采用方案二装箱,每箱红枣收入的数学期望为: 元;所以该农户采用方案二装箱更合适.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.解:(1)由题可知22c a b a⎧=⎪⎪⎨⎪=⎪⎩,又因为,所以所以椭圆C 的标准方程为(2)因为折线与椭圆C 相交于A ,B 两点,设点B 关于x 轴的对称点为B′, 则直线与椭圆C 相交于A ,B′两点,设则由得所以所以整理得解得22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性;(2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围. 解:(1)若,,此时在上单调递减;若,由得,此时在上单调递减,在上单调递增;综上所述,,在上单调递减;,在上单调递减,在上单调递增;(2)因为记所以在上单调递增,所以,所以恒成立;若不合题意;若,由(1)知,在上单调递减,所以不合题意;若,记记所以在上单调递增,所以所以符合题意;综上实数a的取值范围是.。
2021届全国新高考仿真模拟试题(二)数学(文)(解析版)
∴CD⊥平面
ABD,∴CD
是三棱锥
C
ABD
的高,∴VC
ABD=13×12×2×2×sin
60°×2=2 3, 3
故选 A.
8.答案:C
解析:由射线测厚技术原理公式得I20=I0e-7.6×0.8μ,∴12=e-6.08μ,-ln 2=-6.08μ,μ≈0.114,
故选 C.
9.答案:C
解析:从题图(1)可以看出,该品牌汽车在 1 月份所对应的条形图最高,即销售量最多,
商品销售 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 y10
额 y/万元
且已知 错误!i=380.0
(1)求第 10 年的年收入 x10. (2)若该城市居民年收入 x 与该种商品的销售额 y 之间满足线性回归方程y^=363x+^a,
254 (ⅰ)求该种商品第 10 年的销售额 y10; (ⅱ)若该城市居民年收入为 40.0 亿元,估计这种商品的销售额是多少?(精确到 0.01) 附:①在线性回归方程y^=b^x+^a中,b^=错误!,^a=-y -b^-x ;
(1)求轨迹Γ的方程; (2)过点 F 作互相垂直的直线 AB 与 CD,其中直线 AB 与轨迹Γ交于点 A,B,直线 CD 与轨迹Γ交于点 C,D,设点 M,N 分别是 AB 和 CD 的中点,求△FMN 的面积的最小值.
-5-
21.(12 分)[2020·安徽省示范高中名校高三联考]函数 f(x)=aex+x2-ln x(e 为自然对数的底数,a 为常 数),曲线 f(x)在 x=1 处的切线方程为(e+1)x-y=0.
于 8 月份,所以该公司 7 月份汽车的总销售量比 8 月份少,所以选项 C 是错误的;从题图(1)
山东省潍坊市2020-2021学年高一上学期期中数学试题 (1)
山东省潍坊市2020-2021学年高一上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{}1,0,1,2U =-,{} 1,1A =-,则集合UA( )A .{0,2}B .{1,0}-C .{0,1}D .{1,2}2.命题“(0,)x ∃∈+∞,13x x+≥”的否定是( ) A .(0,)x ∃∈+∞,13x x +≤ B .(0,)x ∃∈+∞,13x x +< C .(0,)x ∀∈+∞,13x x+<D .(0,)x ∀∈+∞,13x x+≤3.设x ∈R ,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列各式运算正确的是( ) A .245(1)(5)a a a a ++=++ B .222249(23)a ab b a b ++=+ C .()3322()a b a b a ab b+=+-+ D .()3322()a b a b a ab b-=--+5.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<6.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:m )与时间t (单位:s )之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米7.对x R ∀∈,不等式()2214(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( ) A .[2,6]B .[2,6){2}⋃-C .(,2)[2,6)-∞-⋃D .[2,6)8.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( ) A .120B .130C .150D .1809.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <> ②若1a b +=,则14a b+的最小值是10; ③114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭; ④函数11y a a =++的最小值为1. A .1B .2C .3D .410.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x -≤-≤的x 的取值范围是( )A .[2,2]-B .[2,1]-C .[1,3]-D .[0,2]11.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( )A .(3,1)--B .(11)(3,1--⋃+C .(2,1)(2,3)--⋃D .(2,6)12.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图像交点为()11,x y ,()22,x y ,…,()88,x y ,则128128x x x y y y +++++++的值为( ) A .20 B .24 C .36 D .40二、填空题13.函数(11)f x x -的定义域是_______. 14.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()(1)f x x x =-,则(2)f -=________.15.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为________.16.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1,1]x a a ∀∈-+,都有[1,1]y b b ∈-+,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图像上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是________.三、解答题17.已知集合{|26}A x x =-≤≤,{|35}B x x =-≤≤. (1)求AB ,A B ;(2)若{|121}C x m x m =+≤≤-,()C A B ⊆,求实数m 的取值范围.18.已知函数2()(0)1x af x a x -=>+,若不等式()1f x ≥-的解集为(,1)[0,)-∞-+∞. (1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.19.已知函数223,(02)()43,(2)x x f x x x x -+≤<⎧=⎨-+≥⎩,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图像;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围. 20.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1,1]a ∀∈-,()0f x ≥恒成立,求实数x 的取值范围.21.第二届中国国际进口博览会于2021年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2021年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+≥⎪⎩.经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2021年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2021年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少?注:利润=销售额–成本22.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图像与x 轴两交点间距离为4. (1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1,2]x ∈-. ①若()g x 为单调函数,求k 的取值范围;②记()g x 的最小值为()h k ,讨论()24h t λ-=的零点个数.参考答案1.A 【分析】利用集合补集的性质直接求解即可 【详解】由于{}1,0,1,2U =-,{} 1,1A =-,所以,UA {0,2}故选A 2.C 【分析】根据特称命题的否定是全称命题的知识,选出正确选项. 【详解】原命题是特称命题,其否定是全称命题,注意到要否定结论,故C 选项正确. 故选C. 【点睛】本小题主要考查特称命题的否定是全称命题,属于基础题. 3.A 【分析】求得不等式|3|1x -<的解集,由此判断出充分、必要条件. 【详解】由|3|1x -<得131x -<-<,即24x <<,所以“|3|1x -<”是“2x >” 充分不必要条件. 故选A. 【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题. 4.C 【分析】利用乘法分配律和立方和、立方差公式,判断出正确选项. 【详解】对于A 选项,右边265a a =++≠左边,故A 选项错误.对于B 选项,右边224129a ab b =++≠左边,故B 选项错误. 对于C 选项,根据立方和公式可知,C 选项正确.对于D 选项,根据立方差公式可知,正确的运算是()3322()a b a b a ab b -=-++,故D选项错误. 故选:C. 【点睛】本小题主要考查乘法分配律,立方和、立方差公式,考查因式分解,属于基础题. 5.D 【分析】利用函数的奇偶性化简,a c ,再根据单调性比较出三者的大小关系. 【详解】由于()f x 是偶函数,故()()()()33,11a f f c f f =-==-=.由于()f x 在(0,)+∞是增函数,所以()()()13πf f f <<,即c a b <<. 故选:D. 【点睛】本小题主要考查利用函数的奇偶性、单调性比较大小,属于基础题. 6.B 【分析】利用配方法求得()h t 的最大值,也即烟花冲出后在爆裂的最佳时刻距地面高度. 【详解】依题意2() 4.914.717h t t t =-++234.928.0252t ⎛⎫=--+ ⎪⎝⎭,故当32t =时,()max 28.02528m h t =≈.故选B. 【点睛】本小题主要考查二次函数最大值的求法,考查函数在生活中的应用,属于基础题. 7.D 【分析】对m 分成2m =和2m ≠且2m ≠-两种情况,结合一元二次不等式恒成立,求得的m 的取值范围. 【详解】当2m =时,原不等式化为104>恒成立. 当2m ≠且2m ≠-时,要使对x R ∀∈,不等式()2214(2)02m x m x m -+-+>+恒成立,则需()()22240124402m m m m ⎧->⎪⎨∆=---⋅<⎪+⎩即()()()()220260m m m m ⎧+->⎪⎨--<⎪⎩,解得26m <<. 综上所述,m 的取值范围是[2,6). 故选:D. 【点睛】本小题主要考查一元二次不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于基础题. 8.A 【分析】设出3种书每本的数量,设出学生人数,根据已知条件列方程组,解方程组求得学生人数. 【详解】设毛诗x 本,春秋y 本,周易z 本,学生人数为m ,则94345x y z mxm y mz++=⎧⎪⎪=⎪⎪⎨=⎪⎪⎪=⎪⎩, 解得120403024m x y z =⎧⎪=⎪⎨=⎪⎪=⎩. 故选A. 【点睛】本小题主要考查中国古代数学文化,考查方程的思想,属于基础题. 9.B 【分析】对四个判断逐一分析,由此确定判断正确的个数.对于①,由于0,0a b >>,由11a b <,得110b a a b ab--=<,即0a b >>>以①正确.对于②,由于0,0a b >>,()14144559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当42,23b a b a a b ===时等号成立,故②错误. 对于③,由于0,0a b >>,所以112,2a b a b+≥+≥,根据不等式的性质,有114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,故③正确.对于④,由于0,0a b >>,所以1111121111y a a a a =+=++-≥=-=++,但是由于111a a +=+时,0a =或2a =-,不符合题意,故等号不成立.所以④错误.综上所述,正确的判断个数为2个. 故选B. 【点睛】本小题主要考查不等式的性质,考查基本不等式的运用,属于基础题. 10.C 【分析】根据奇函数的性质,求得不等式1(1)1f x -≤-≤的解集. 【详解】由于()f x 是奇函数,故()()221f f =--=-.由于奇函数()f x 在[0,)+∞是减函数,所以()f x 在R 上是减函数.由1(1)1f x -≤-≤得()()()212f f x f ≤-≤-,所以212x ≥-≥-,解得13x -≤≤.故选C. 【点睛】本小题主要考查利用函数的奇偶性和单调性解不等式,属于基础题.【分析】构造函数()225(9)2f x x a x a a =-++--,根据()f x 零点分布列不等式组,解不等式组求得a 的取值范围. 【详解】构造二次函数()225(9)2f x x a x a a =-++--,其开口向上.依题意,()f x 的零点分别在区间(0,1)和(1,2)内,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()()222205920202920a a a a a a a a ⎧-->⎪-++--<⎨⎪-++-->⎩,解得(11)(3,1a ∈-⋃+. 故选:B. 【点睛】本小题主要考查根据一元二次方程根的分布求参数的取值范围,考查一元二次不等式的解法,属于基础题. 12.D 【分析】根据已知条件判断()f x 和()g x 都关于()2,3中心对称,由此求得128128x x x y y y +++++++的值.【详解】由于()f x 满足(2)(2)6f x f x -++=,当0x =时,()23f =,所以()f x 关于()2,3中心对称.由于()325315()3222x x g x x x x -+-===+---,所以()g x 关于()2,3中心对称.故()f x 和()g x 都关于()2,3中心对称.所以()f x 与()g x 的图像交点()11,x y ,()22,x y ,…,()88,x y ,两两关于()2,3对称.所以128128x x x y y y +++++++828340=⨯+⨯=.故选:D. 【点睛】本小题主要考查函数图像的对称性,考查化归与转化的数学思想方法,属于基础题.13.[2,1)(1,)-+∞【分析】要使函数()f x 有意义,只需2010x x +⎧⎨-≠⎩,解此不等式组即可.【详解】解:要使函数()f x 有意义,须有2010x x +⎧⎨-≠⎩,解得2x -,且1x ≠,故函数()f x 的定义域为:{|2x x -,且1}x ≠, 故答案为:[2,1)(1,)x ∈-+∞.【点睛】本题考查函数定义域的求解,属基础题,若函数为偶次根式,被开放数须大于等于0;若函数为分式,分母必不为0. 14.2 【分析】根据函数的奇偶性求得()2f -的值.【详解】由于()f x 是奇函数,故()()()222122f f -=-=--=⎡⎤⎣⎦. 故答案为:2. 【点睛】本小题主要考查利用函数的奇偶性求函数值,属于基础题. 15.{1|6x x <或12x ⎫>⎬⎭.【分析】根据20ax bx c ++>的解集写出根与系数关系,由此求得不等式20cx bx a ++<的解集. 【详解】由于不等式20ax bx c ++>的解集为{|26}x x <<,所以0a <,2682612b a c a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩,即812b a c a=-⎧⎨=⎩,所以不等式20cx bx a ++<可化为21280ax ax a -+<,由于0a <,所以21280ax ax a -+<可化为212810x x -+>,即()()21610x x -->,解得16x <或12x >. 故答案为{1|6x x <或12x ⎫>⎬⎭. 【点睛】本小题主要考查一元二次不等式的解法,考查化归与转化的数学思想方法,考查运算求解能力,属于基础题.16.11,22⎡⎤-⎢⎥⎣⎦ 【分析】对m 分成1,11,1m m m ≤--<<≥三种情况,结合[1,1]x m m ∀∈-+,都有[1,1]y n n ∈-+进行分类讨论,由此求得m 的取值范围.【详解】 函数212y x =-开口向下,对称轴为y 轴.由于B 在函数212y x =-的图像上,所以212n m =-.依题意[1,1]x m m ∀∈-+,都有[1,1]y n n ∈-+,即:[1,1]x m m ∀∈-+,都有22[11122,1]y m m --∈-+. 当10m +≤,即1m ≤-时,函数212y x =-在[1,1]m m -+上递增,最小值为()2112m --,最大值为()2112m -+,所以()()2222111111211222m m m m ---<-+≤--≤+,此不等式在1m ≤-时无解.当101m m -<<+,即11m -<<时,函数212y x =-在[1,1]m m -+上,最大值为0,最小值在区间[1,1]m m -+的端点取得,故()()222222221110122111111222111111222m m m m m m m m ⎧--≤≤-+⎪⎪⎪--≤--≤-+⎨⎪⎪--≤-+≤-+⎪⎩,解得1122m -≤≤. 点10m -≥,即m 1≥时,函数212y x =-在[1,1]m m -+上递减,最小值为()2112m -+,最大值为()2112m --,所以()()2222111111211222m m m m --+<--≤--≤+,此不等式在m 1≥时无解.综上所述,m 的取值范围是11,22⎡⎤-⎢⎥⎣⎦. 故答案为11,22⎡⎤-⎢⎥⎣⎦ 【点睛】本小题主要考查新定义函数的理解,考查分类讨论的数学思想方法,考查不等式的解法,属于中档题.17.(1){|25}A B x x ⋂=-≤≤,{|36}A B x x ⋃=-≤≤(2)3m ≤【分析】(1)根据交集、并集的知识,求得A B ,A B . (2)根据(1)得到A B ,对C 分成C =∅和C ≠∅两种情况,结合()C A B ⊆进行分类讨论,由此求得m 的取值范围.【详解】(1)由已知可得{|25}A B x x ⋂=-≤≤,{|36}A B x x ⋃=-≤≤.(2)由(1)知{|25}A B x x ⋂=-≤≤.由于()C AB ⊆,①若C =∅,则121m m +>-,∴2m <;②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23m ≤≤,综上可得3m ≤.【点睛】本小题主要考查集合交集和并集的概念和运算,考查根据集合的包含关系求参数,属于基础题.18.(1)1a =;(2)证明见解析.【分析】(1)化简不等式()1f x ≥-为整式形式,根据不等式()1f x ≥-的解集,求得a 的值.(2)利用函数单调性的定义,计算()()210f x f x ->,由此证得函数()f x 在[0,)+∞上是增函数.【详解】(1)由题意211x a x -≥-+, 变形2311011x a x a x x --++=≥++, 等价于(31)(1)0x a x -++≥且10x +≠,解得1x <-或13a x -≥, 所以103a -=,解得1a =. (2)由(1)得21()1x f x x -=+, 任取12,[0,)x x ∈+∞,且12x x <,则210x x ->,那么()()()()()2121212112321211111x x x x f x f x x x x x ----=-=++++, ∵210x x ->,()()12110x x ++>,∴()()210f x f x ->,∴函数()f x 在[0,)+∞上是增函数.【点睛】本小题主要考查分式不等式的解法,考查利用函数单调性的定义证明函数单调性,属于基础题.19.(1)()F x 在R 上是偶函数,增区间为(2,0)-,(2,)+∞,递减区间为:(,2)-∞-,(0,2),图像见解析;(2)3t >或1t =-【分析】(1)利用奇偶性的定义,判断出()F x 为偶函数,根据函数()f x 的解析式以及()F x 图像的对称性,画出()F x 的图像,根据图像写出()F x 的单调区间.(2)令()()0H x F x t =-=,()F x t =,结合()F x 图像与y t =的图像有两个交点,求得t 的取值范围.【详解】(1)由题意知()F x 定义域为R ,关于原点对称,又()(||)(||)()F x f x f x F x -=-==,∴()F x 在R 上是偶函数.函数()F x 的大致图像如下图:观察图像可得:函数()F x 的单调递增区间为:(2,0)-,(2,)+∞,单调递减区间为:(,2)-∞-,(0,2).(2)当()()H x F x t =-有两个零点时,即()F x 的图像与直线y t =图像有两个交点,观察函数图像可得3t >或1t =-.【点睛】本小题主要考查函数奇偶性,考查函数图像的对称性,考查函数零点问题的求解策略,考查20.(1)当1a <-时,不等式的解集为(,1)a -;当1a =-时,不等式的解集为∅;当1a >-时,不等式的解集为(1,) a -;(2){|1x x ≤-或}1x ≥.【分析】(1)将不等式()0f x <左边因式分解,将a 分成1,1,1a a a <-=->-三种情况分类讨论,结合一元二次不等式的解法,求得不等式()0f x <的解集.(2)变换主参变量,将“[1,1]a ∀∈-,()0f x ≥恒成立”转化为一次函数在区间[]1,1-上恒大于零,列不等式组来求解得x 的取值范围.【详解】(1)不等式2(1)0x a x a +--<等价于 ()(1)0x a x -+<,当1a <-时,不等式的解集为(,1)a -;当1a =-时,不等式的解集为∅;当1a >-时,不等式的解集为(1,)a -.(2)22(1)(1)x a x a a x x x +--=-+++,设2()(1),[1,1]g a a x x x a =-+++∈-,要使()0g a ≥在[1,1]a ∈-上恒成立, 只需(1)0(1)0g g -≥⎧⎨≥⎩, 即22210,10,x x x ⎧++≥⎨-≥⎩解得1x ≥或1x ≤-,所以x 的取值范围为{|1x x ≤-或}1x ≥.【点睛】本小题主要考查一元二次不等式的解法,考查不等式恒成立问题的求解策略,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.21.(1)2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-≥⎪⎩(2)2021年产量为100(千台)时,企业所获利润最大,最大利润是8990万元【分析】(1)利用()104000R =求得a 的值.利用销售额减去固定成本和()R x ,求得利润()W x 的函数关系式.(2)结合二次函数的性质、基本不等式,求得当x 为何值时,()W x 取得最大值.【详解】(1)由题意2(10)1010104000R a =⨯+=,所以300a =,当040x <<时,()22()9001030026010600260W x x x x x x =-+-=-+-; 当40x ≥时, 22901945010000919010000()900260x x x x W x x x x-+-+-=--=, 所以2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-≥⎪⎩. (2)当040x <<,2()10(30)8740W x x =--+当30x =时,max ()8740W x = 当40x ≥,29190100001000010000()91909190x x W x x x x x x -+-⎛⎫==--+=-++ ⎪⎝⎭, 因为0x >,所以10000200x x +≥=, 当且仅当10000x x=时,即100x =时等号成立, 此时()20091908990W x ≤-+=,所以max ()8990W x =万元,因为87408990<,所以2021年产量为100(千台)时,企业所获利润最大,最大利润是8990万元.【点睛】本小题主要考查分段函数在实际生活中的应用,考查分段函数求最值的方法,属于中档题.22.(1)2()23f x x x =+-(2)①0k ≥或6k ≤-;②2λ>时无零点;12λ<<时,有4个零点,1λ=时,有3个零点,2λ=或1λ<时,有2个零点【分析】(1)设出二次函数解析式,根据已知条件得到二次函数对称轴、与y 轴交点、根与系数关系,由此列方程组,解方程组求得二次函数解析式(2)①求得()g x 解析式,根据其对称轴与区间[1,2]-的位置关系,求得k 的取值范围. ②将k 分成0k ≥,60k -<<,6k ≤-三种情况,结合()g x 的单调性,求得()h k 的表达式,利用换元法:令244m t =-≥-,即()(4)h m m λ=≥-,结合()h m 的图像对λ进行分类讨论,由此求得()24h t λ-=的零点个数.【详解】(1)设2()(0)f x ax bx c a =++≠,由题意知对称轴12b x a=-=-;① (0)3f c ==-;②设()0f x =的两个根为1x ,2x ,则12b x x a +=-,12c x x a=,124x x -===;③ 由①②③解得1a =,2b =,3c =-,∴2()23f x x x =+-.(2)①2()(2)2g x x k x =+++,其对称轴22k x +=-. 由题意知:212k +-≤-或222k +-≥, ∴0k ≥或6k ≤-.② 1)当0k ≥时,对称轴212k x +=-≤-,()g x 在[1,2]-上单调递增,()(1)1h k g k =-=-+,2)当60k -<<时,对称轴2(1,2)2k x +=-∈-,2244()24k k k h k g +--+⎛⎫=-= ⎪⎝⎭, 3)当6k ≤-时,对称轴222k x +=-≥,()g x 在[1,2]-单调递减, ()(2)210h k g k ==+, ∴21,0,44(),604210, 6.k k k k h k k k k -+≥⎧⎪--+⎪=-<<⎨⎪+≤-⎪⎩, 令244m t =-≥-,即()(4)h m m λ=≥-,画出()h m 简图,i )当1λ=时,()1h m =,4m =-或0,∴244t -=-时,解得0t =,240t -=时,解得2t =±,有3个零点.ii )当1λ<时,()h m λ=有唯一解10m >,2140t m -=>,t =2个零点.iii )当12λ<<时,()h m λ=有两个不同的零点2m ,3m ,且23,(4,2)(2,0)m m ∈--⋃-,2340,40m m +>+>,∴224t m -=时,解得t =234t m -=时,解得t =4个不同的零点.iv )当2λ=时,()2h m =,224m t =-=-,∴t =有2个零点.v )当2λ>时,()h m λ=无解.综上所得:2λ>时无零点;12λ<<时,有4个零点;1λ=时,有3个零点;2λ=或1λ<时,有2个零点.【点睛】本小题主要考查根据二次函数的性质求得二次函数解析式,考查含有参数的二次函数在给定区间上的单调性讨论问题,考查函数零点问题的求解策略,考查数形结合的数学思想方法,属于中档题.。
高中数学高考模拟训练系列试题
高中数学高考模拟训练系列试题(5)文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题),满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的)⒈ 已知全集R U =,集合}0)1)(2(|{>-+=x x x A ,}01|{<≤-=x x B ,则)(B C A U 为A.}12|{>-<x x x 或B.}02|{≥-<x x x 或C.}01|{≥-<x x x 或D.}11|{>-<x x x 或⒉ 设0<a <1,实数x ,y 满足x +y a log =0,则y 关于x 的函数的图象大致形状是A B C D ⒊ 条件21:>+x p ,条件131:>-xq ,则p ⌝是q ⌝的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件⒋ 将抛物线 y 2= 4x 沿向量a 平移得到抛物线 y 2 -4y = 4x .则向量a 为 A.(-1,2) B.(1,-2) C.(-4,2) D.(4,-2)⒌ 设b、c表示两条直线,α、β表示两个平面,下列命题中真命题是A.若b⊂α,c∥α,则b∥c. B.若b⊂α,b∥c,则c∥α. C.若c∥α,c⊥β,则α⊥β. D .若c∥α,α⊥β,则c⊥β.⒍ 已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b|=( )A .1B .C .D .⒎ 函数x x x x x f cos sin cos sin )(--+=是A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数 D .最小正周期为π的偶函数 ⒏ 设A 、B 是锐角三角形ABC 的两个内角,则有A.A B B A sin cos ,sin cos <<且B.A B B A sin cos ,sin cos >>且C.A B B A sin cos ,sin cos ><且D.A B B A sin cos ,sin cos <>且⒐ 实数x 、y 满足不等式组 则W=11+-x y 的取值范围是 A.[-1,31] B.[-21,31]C.⎪⎭⎫⎢⎣⎡+∞-,21 D.⎪⎭⎫⎢⎣⎡-1,21⒑ 若函数)24lg(xa y ⋅-=的定义域为}1|{≤x x ,则实数a 的取值范围是 A.),0(+∞ B.)2,0( C.)2,(-∞ D.)0,(-∞第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上) 11.在△ABC 中,已知60=∠C ,a 、b 、c 分别为角A 、B 、C 所对的边,则ac bc b a +++的值等于 .12.等差数列}{n a 中,21=a ,公差不为零,且1a 、3a 、11a 恰好成等比数列,那么该等比数列公比的值等于 .13.正四棱锥P-ABCD 的五个顶点在同一球面上, 若正四棱锥的底面边长为4,侧棱长为26,则此球的表面积为14.给出下列四个命题:① 函数c bx x x x f ++=)(为奇函数的充要条件是c =0; ②函数)0(2>=-x y x的反函数是)10(log 2<<-=x x y ;③若函数)lg()(2a ax x x f -+=的值域是R ,则4-≤a 或0≥a ;④ 若函数)1(-=x f y 是偶函数,则函数)(x f y =的图象关于直线0=x 对称。
2020-2021学年高考总复习数学(文)二轮复习模拟试题及答案解析
最新高考数学二模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤03.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a是()A.3 B.57 C.19 D.766.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.310.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是.14.已知||=,||=2,若(+)⊥,则与的夹角是.15.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB 的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=0.050 0.025 0.010P(K2≥k0)3.841 5.024 6.635K020.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤0考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,x2﹣x+1>0”的否定是:∃x0∈R,x02﹣x0+1≤0.故选:D.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.3.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:化简复数为a+bi的形式,然后利用对称性求解即可.解答:解:==﹣2﹣i.在复平面内,复数z与的对应点关于虚轴对称,则z=2﹣i.故选:A.点评:本题考查复数的基本概念,复数的乘除运算,考查计算能力.4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:直接由已知结合等差数列的通项公式和前n项和列式求得公差.解答:解:设等差数列{a n}的首项为a1,公差为d,由a7=8,S7=42,得,解得:.故选:D.点评:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a是()A.3 B.57 C.19 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:C.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据奇函数的定义f(x)+f(﹣x)=0,x=1,特殊值求解即可.解答:解:∵函数f(x)=+a,f(x)是奇函数,∴f(1)+f(﹣1)=0,即++a=0,2a=1,a=,故选:B点评:本题考查了奇函数的定义性质,难度很小,属于容易题.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义以及斜率公式的计算,即可求z的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分).z=的几何意义是区域内的点(x,y)到定点D(﹣1,0)的斜率,由图象知BD的斜率最大,CD的斜率最小,由,解得,即B(,),即BD的斜率k==,由,解得,即C(,),即CD的斜率k==,即≤z≤,故选:D.点评:本题主要考查线性规划以及直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.3考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是三棱柱与三棱锥的组合体,结合图中的数据,求出它的体积.解答:解:根据几何体的三视图,得;该几何体是下部为直三棱柱,上部为直三棱锥的组合体;如图所示:∴该几何体的体积是V几何体=V三棱柱+V三棱锥=×2×1×1+××2×1×1=.故选:A.点评:本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.10.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]考点:函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用.分析:作函数y=x2与y=a x(a>0)在[1,2]上的图象,结合图象写出a的取值范围即可.解答:解:作函数y=x2与y=a x(a>0)在[1,2]上的图象如下,结合图象可得,a的取值范围是[,],故选:B.点评:本题考查了函数的图象的应用,属于基础题.11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA≤2,∴点M到原点距离小于等于3,∴t2+4≤9,∴﹣≤t≤,故选:B.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是x﹣y+1=0 .考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,得到在x=0处的导数值,再求出f(0),然后直接写出切线方程的斜截式.解答:解:由f(x)=e x,得f′(x)=e x,∴f′(0)=e0=1,即曲线f(x)=e x在x=0处的切线的斜率等于1,曲线经过(0,1),∴曲线f(x)=e x在x=0处的切线方程为y=x+1,即x﹣y+1=0.故答案为:x﹣y+1=0.点评:本题考查利用导数研究曲线上某点的切线方程,曲线上某点处的导数值,就是曲线在该点处的切线的斜率,是中档题.14.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.15.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB 的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.考点:点、线、面间的距离计算;空间中直线与平面之间的位置关系.专题:综合题;空间位置关系与距离.分析:(Ⅰ)取PD中点E,连AE,EM,证明MN⊥平面PCD,可得MN⊥PC,即可证明PN=CN;(Ⅱ)设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,即可得出结论.解答:(Ⅰ)证明:取PD中点E,连AE,EM,则EM∥AN,且EM=AN,四边形ANME是平行四边形,MN∥AE.由PA=AD得AE⊥PD,故MN⊥PD.又因为MN⊥CD,所以MN⊥平面PCD,则MN⊥PC,PN=CN.…(6分)(Ⅱ)解:设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,故MF:FN=d1:d2=1:1.…(12分)点评:本题考查线面垂直的证明,考查等体积的运用,考查学生分析解决问题的能力,属于中档题.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=0.050 0.025 0.010P(K2≥k0)3.841 5.024 6.635K0考点:独立性检验.专题:计算题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,列表确定基本事件,即可求出这2家中恰好中、小型企业各一家的概率.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,分别记为A1,A2,B1,B2,B3,B4,B5,B6,把可能结果列表如下:A1 A2 B1 B2 B3 B4 B5 B6A1﹣+ + + + + +A2﹣+ + + + + +B1 + + ﹣B2 + + ﹣B3 + + ﹣B4 + + ﹣B5 + + ﹣B6 + + ﹣结果总数是56,符合条件的有24种结果.(若用树状图列式是:)从8家中选2家,中、小企业恰各有一家的概率为=.…(12分)点评:本题考查独立性检验的应用,考查概率的计算,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.考点:直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)k AF==﹣k,所以ak=2,确定B的坐标,再求出B到n的距离.解答:解:(Ⅰ)m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0①,x2+4kx﹣4ka+4=0②,…(2分)由△1=0得k2﹣ka﹣1=0,由△2>0得k2+ka﹣1>0,…(4分)故有2k2﹣2>0,得k2>1,即k<﹣1或k>1.…(6分)(Ⅱ)F(0,1),k AF==﹣k,所以ak=2.…(8分)由△1=0得k2=ka+1=3,B(2k,k2),所以B到n的距离d===4 …(12分)点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.考点:利用导数研究函数的极值;函数的零点.专题:导数的综合应用.分析:(Ⅰ)求出导函数,利用f(x)的极小值点为x=t.推出t=>0,然后求解单调区间,a=﹣表示出a与t的关系.(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值,就是证明g()=g(t).(ⅱ)求出函数的g′(t)=﹣(1+)lnt,利用单调性以及极值,判断分别存在唯一的c ∈(1,1)和d∈(1,e2),推出g(c)=g(d)=0,化简即可.解答:解:(Ⅰ)f′(x)=1﹣+=.t=>0,…(2分)当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.…(4分)由f′(t)=0得a=﹣t.…(6分)(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值为g(t)=t++(﹣t)lnt,则g()=+t+(t﹣)ln=t++(﹣t)lnt=g(t).…(8分)(ⅱ)g′(t)=﹣(1+)lnt,…(9分)当t∈(0,1)时,g′(t)>0,f(t)单调递增;当t∈(1,+∞)时,g′(t)<0,g(t)单调递减.…(10分)又g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(1,1)和d∈(1,e2),使得g(c)=g(d)=0,且cd=1,所以y=g(t)有两个零点且互为倒数.…(12分)点评:本题考查函数的导数的综合应用,函数的单调性以及函数的极值的求法,函数的零点的应用,考查计算能力.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC ⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。
2020-2021学年高三数学(文科)高三毕业4月份联考检测试题及答案解析
最新高三(下)4月联考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.0076.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.407.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.4810.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣311.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.高三(下)4月联考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}【考点】交、并、补集的混合运算.【分析】由全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},知C U A={4,6,7,8},由此能求出(C u A)∩B.【解答】解:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴C U A={4,6,7,8},∴(C u A)∩B={4,6}.故选B.2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故选:B.3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”【考点】必要条件、充分条件与充要条件的判断.【分析】A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,即可判断出结论;B.利用非命题的定义即可判断出真假;C.若p∧q为假命题,则p,q至少一个为假命题,即可判断出真假;D.利用否命题的定义即可判断出真假.【解答】解:A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,因此.“f(0)=0”是“函数f(x)是奇函数”的既不充分也不必要条件,不正确;B.若p:.则¬p:∀x∈R,x2﹣x﹣1≤0,因此不正确;C.若p∧q为假命题,则p,q至少一个为假命题,因此不正确;D.“若,则”的否命题是“若,则”,正确.故选:D.4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.【考点】任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义转化求解sinα的值.【解答】解:角α的终边上一点的坐标为(sin,cos)即(,),则由任意角的三角函数的定义,可得sinα=,故选:A.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.007【考点】系统抽样方法.【分析】从第5行第6个数2的数开始向右读,依次为253,313,457,860,736,253,007,其中860,736不符合条件故可得结论.【解答】解:从第5行第6个数2的数开始向右读,第一个数为253,符合条件,第二个数为313,符合条件,第三个数为457,符合条件,以下依次为:860,736,253,007,328,其中860,736不符合条件且253与第一个重复了不能取,这样007是第四数,第五个数应为328.故第五个数为328..故选:B.6.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.40【考点】数列的求和.【分析】由题意知道,本题是构造新等差数列的问题,经过推导可知{x n}是等差数列,运用等差数列的性质可求解答案.【解答】解:由题意知:∵数列{}为调和数列∴﹣=x n+1﹣x n=d∴{x n}是等差数列又∵x1+x2+…+x20=200=∴x1+x20=20又∵x1+x20=x5+x16∴x5+x16=20故选:B.7.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.【考点】正弦函数的图象.【分析】由题意可得=2sinφ,结合(|φ|<)可得φ的值,由五点作图法令2x+=0,可解得:x=﹣,则可求f(x)的图象的一个对称中心.【解答】解:∵函数f(x)=2sin(2x+φ)(|φ|<)的图象过点(0,),∴=2sinφ,由(|φ|<),可得:φ=,∴f(x)=2sin(2x+),∴由五点作图法令2x+=0,可解得:x=﹣,则f(x)的图象的一个对称中心是(﹣,0).故选:B.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.【考点】由三视图求面积、体积.【分析】由三视图判断几何体的形状,通过三视图的数据求出几何体的体积,再计算原几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π;底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π;所以切削掉部分的体积为54π﹣34π=20πcm3.故选:A.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.10.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣3【考点】平面向量数量积的运算.【分析】由题意可得,可得四边形OBAC是平行四边形,结合||=||可得四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,可得∠ACB=∠AC0=30°,由投影的定义可得.【解答】解:∵,∴,即,可得四边形OBAC是平行四边形,∵△ABC的外接圆的圆心为O,半径为2,∴||=||=||=2,∴四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,∴∠ACB=∠AC0=30°,∴向量在方向上的投影为:cos∠ACB=2cos30°=.故选:A11.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)【考点】椭圆的简单性质.【分析】作出图形,则易知|AF2|=a+c,|BF2|=,再由∠BAF2是直线的倾斜角,易得k=tan∠BAF2,然后通过0<k<,分子分母同除a2得0<<求解.【解答】解:如图所示:|AF2|=a+c,|BF2|=,∴k=tan∠BAF2=,又∵0<k<,∴0<<,∴0<<,∴<e<1.故选:D.12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.【考点】利用导数研究曲线上某点切线方程.【分析】分别求出函数f(x)的导数,函数g(x)的导数.由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则有f(x0)=g(x0),且f′(x0)=g′(x0),解出x0=a,得到b关于a的函数,构造函数,运用导数求出单调区间和极值、最值,即可得到b的最大值.【解答】解:函数f(x)的导数为f'(x)=x+2a,函数g(x)的导数为,由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则,由于x0>0,a>0则x0=a,因此构造函数,由h'(t)=2t(1﹣3lnt),当时,h'(t)>0即h(t)单调递增;当时,h'(t)<0即h(t)单调递减,则即为实数b的最大值.故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .【考点】函数的值.【分析】根据分段函数的表达式,直接代入进行求解即可.【解答】解:由分段函数可知,f()=log,f(﹣1)=,故答案为:.14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为12π.【考点】球的体积和表面积.【分析】由∠BAC=90°,AB=AC=2,得到BC,即为A、B、C三点所在圆的直径,取BC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,则OA可求,再由球的表面积公式即可得到.【解答】解:如图所示:取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,∴OA==,即球的半径R为,∴球O的表面积为S=4πR2=12π.故答案为:12π.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为2.【考点】圆的标准方程.【分析】得到圆心坐标和半径.等边△PAB的一边AB为圆C的一条弦,可得|PC|的最大值为直径,即可得出结论.【解答】解:由圆C:(x﹣1)2+(y﹣2)2=2,∴圆心坐标C(1,2),半径r=.∵等边△PAB的一边AB为圆C的一条弦,∴|PC|的最大值为直径2.故答案为:2.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .【考点】余弦定理.【分析】利用正弦定理化简已知的第一个等式,得到a+b=4c,代入第二个等式中计算,即可求出c的长,利用三角形的面积公式表示出三角形ABC的面积S,代入已知的等式中,利用完全平方公式变形后,将a+b=4代入化简,即可求出cosC的值.【解答】解:△ABC中,∵sinA+sinB﹣4sinC=0,∴a+b=4c,∵△ABC的周长L=5,∴a+b+c=5,∴c=1,a+b=4.∵面积S=﹣(a2+b2),∴absinC=﹣(a2+b2)=﹣[(a+b)2﹣2ab]=ab,∴sinC=,∵c<a+b,C是锐角,∴cosC==.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)通过联立a2=3、a4=7计算可知等差数列{a n}的首项和公差,从而可得其通项公式;通过等比数列{b n}成公比大于1的等比数列可确定b1=1、b2=2、b3=4,进而可求出首项和公比,从而可得通项公式;(Ⅱ)通过(I),利用分组求和法计算即得结论.【解答】解:(Ⅰ)设等差数列的首项和公差分别为a1、d,∵a2=3,a4=7,∴a1+d=3,a1+3d=7,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,∵等比数列{b n}成公比大于1的等比数列且{b1,b2,b3}={1,2,4},∴b1=1,b2=2,b3=4,∴b1=1,q=2,∴b n=2n﹣1;(Ⅱ)由(I)可知S n=(a1+a2+…+a n)+(b1+b2+…+b n)=+=n2+2n﹣1.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?【考点】独立性检验;古典概型及其概率计算公式.【分析】(Ⅰ)由图表得到乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.然后利用枚举法得到从这六名学生随机抽取两名的基本事件个数,进一步得到恰有一位学生成绩优秀的事件个数,由古典概型概率计算公式得答案;(Ⅱ)直接由公式求出K的值,结合图表得答案.【解答】解:(Ⅰ)乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.从这六名学生随机抽取两名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个,设事件G表示恰有一位学生成绩优秀,符合要求的事件有:{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8个,∴;(Ⅱ)优秀不优秀总计甲班 4 16 20乙班 2 18 20总计 6 34 40.在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面平行的性质.【分析】(1)证明FB∥平面AED,BC∥平面AED,利用面面平行的判定定理可得结论;(2)连接AC,AC∩BD=O,证明AO⊥面BDEF,即可求出四棱锥A﹣BDEF的体积.【解答】(1)证明:∵ABCD是菱形,∴BC∥AD,∵BC⊄面ADE,AD⊂面ADE,∴BC∥面ADE…∵BDEF是矩形,∴BF∥DE,∵BF⊄面ADE,DE⊂面ADE,∴BF∥面ADE,∵BC⊂面BCF,BF⊂面BCF,BC∩BF=B,∴面BCF∥面ADE…(2)解:连接AC,AC∩BD=O∵ABCD是菱形,∴AC⊥BD∵ED⊥面ABCD,AC⊂面ABCD,∴ED⊥AC,∵ED,BD⊂面BDEF,ED∩BD=D,∴AO⊥面BDEF,…∴AO为四棱锥A﹣BDEF的高由ABCD是菱形,,则△ABD为等边三角形,由BF=BD=a,则,∵,∴…20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.【考点】直线与圆的位置关系.【分析】(Ⅰ)设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,从而曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,由此能求出曲线C的方程.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则A(1+λ,),B(1+μ,),由此能求出直线AB的斜率.【解答】解:(Ⅰ)∵圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C,设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,∴曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,∴曲线C的方程为.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则直线QA、QB的一个方向向量为(1,k),(1,﹣k),则=λ(1,k),=μ(1,﹣k),∴A(1+λ,),B(1+μ,),代入=1,并整理,得,两式相减,得:λ﹣μ=﹣,两式相加,得:λ+μ=﹣,∴直线AB的斜率k AB==.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)法一:令,求出函数的导数,通过讨论m的范围求出函数的单调区间,从而求出m的最小值即可;法二:分离参数,得到恒成立,令,根据函数的单调性求出函数h(x)的最大值,从而求出m的最小值即可.【解答】解:(Ⅰ),所以.…令f′(x)=0得x=1;…由f′(x)>0得0<x<1,所以f(x)的单调递增区间为(0,1).由f′(x)<0得x>1,所以f(x)的单调递增区间为(1,+∞).…所以函数,无极小值…(Ⅱ)法一:令.所以.…当m≤0时,因为x>0,所以G′(x)>0所以G(x)在(0,+∞)上是递增函数,又因为.所以关于x的不等式G(x)≤mx﹣1不能恒成立.…当m>0时,.令G′(x)=0得,所以当时,G′(x)>0;当时,G′(x)<0.因此函数G(x)在是增函数,在是减函数.…故函数G(x)的最大值为.令,因为.又因为h(m)在m∈(0,+∞)上是减函数,所以当m≥2时,h(m)<0.所以整数m的最小值为2.…法二:由F(x)≤mx﹣1恒成立知恒成立…令,则…令φ(x)=2lnx+x,因为,φ(1)=1>0,则φ(x)为增函数故存在,使φ(x0)=0,即2lnx0+x0=0…当时,h′(x)>0,h(x)为增函数当x0<x时,h′(x)<0,h(x)为减函数…所以,而,所以所以整数m的最小值为2.…请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.【考点】与圆有关的比例线段;圆內接多边形的性质与判定.【分析】(1)推导出B,C,D,E四点在以BC为直径的圆上,由割线定理能证明AD•AB=AE •AC.(2)过点F作FG⊥BC于点G,推导出B,G,F,D四点共圆,F,G,C,E四点共圆,由此利用割线定理能求出BC的长.【解答】证明:(1)由已知∠BDC=∠BEC=90°,所以B,C,D,E四点在以BC为直径的圆上,由割线定理知:AD•AB=AE•AC.…解:(2)如图,过点F作FG⊥BC于点G,由已知,∠BDC=90°,又因为FG⊥BC,所以B,G,F,D四点共圆,所以由割线定理知:CG•CB=CF•CD,①…同理,F,G,C,E四点共圆,由割线定理知:BF•BE=BG•BC,②…①+②得:CG•CB+BG•BC=CF•CD+BF•BE,即BC2=CF•CD+BF•BE=3×5+3×5=30,…所以BC=.…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【分析】解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,联立即可解得.设(ρ2,θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.【解答】解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用零点分段法去掉绝对值符号,转化为不等式组,解出x的范围;(2)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,将条件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可证得要求证得式子.【解答】(1)解:①x≥2时,f(x)=2x﹣4+x+1=3x﹣3,由f(x)<6,∴3x﹣3<6,∴x<3,即2≤x<3,②﹣1<x<2时,f(x)=4﹣2x+x+1=5﹣x,由f(x)<6,∴5﹣x<6,∴x>﹣1,即﹣1<x <2,③x≤﹣1时,f(x)=4﹣2x﹣1﹣x=3﹣3x,由f(x)<6,∴3﹣3x<6,∴x>﹣1,可知无解,综上,不等式f(x)<6的解集为(﹣1,3);(2)证明:∵f(x)=2|x﹣2|+|x+1|,∴f(2)=3,∴m+n+p=f(2)=3,且m,n,p为正实数∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,∵m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,∴m2+n2+p2≥mn+mp+np,∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9≥3(mn+mp+np)又m,n,p为正实数,∴可以解得mn+np+pm≤3.故证毕.2016年10月19日。
2020-2021学年度山东省济南市高考第二次模拟考试数学试题(文)及答案
文科数学参考公式:锥体的体积公式:1 3V Sh=,其中S为锥体的底面积,h为锥体的高.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R=,集合{}10A x x=-≤,集合{}260B x x x=--<则下图中阴影部分表示的集合为()A.{}3x x<B.{}31x x-<≤C.{}2x x<D.{}21x x-<≤2.设复数z满足()12z i-=(其中i为虚数单位),则下列说法正确的是()A.2z=B.复数z的虚部是iC.1z i=-+D.复数z在复平面内所对应的点在第一象限3.已知{}n a是公差为2的等差数列,n S为数列{}n a的前n项和,若515S=,则5a=()A.3B.5C.7D.94.已知角a的终边经过点(),2m m-,其中0m≠,则sin cosa a+等于()A.55-B.55± C.35-D.35±5.某商场举行有奖促销活动,抽奖规则如下:箱子中有编号为1,2,3,4,5的五个形状、大小完全相同的小球,从中任取两球,若摸出的两球号码的乘积为奇数则中奖;否则不中奖则中奖的概率为()A.110B.15C.310D.256.已知变量,x y满足约束条件1,50,210,xx yx x⎧≥⎪=-≥⎨⎪-+≤⎩则目标函数2z x y=+的最小值为()A.3B.6 C.7D.87.已知底面是直角三角形的直棱柱的正视图、俯视图如下图所示,则该棱柱5的左视图的面积为()A .186B .183 C. 182 D .27228.设12,F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,12,A A 为双曲线的左右顶点,其中1212,3,F F A A =,若双曲线的顶点到渐近线的距离为2,则双曲线的标准方程为( )A .22136x y -= B .22163x y -= C. 2212y x -= D .2212x y -= 9.执行如图所示的程序框图,则该程序框图的输出结果是( )A .3-B .12-C.13D .2 10.如图,半径为1的圆O 中,,A B 为直径的两个端点,点P 在圆上运动,设BOP x ∠=,将动点P 到,A B 两点的距离之和表示为x 的函数()f x ,则()y f x =在[]0,2π上的图象大致为( )A. B.C.C.11.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O为坐标原点若,0PA PB =u u u r u u u r,则直线OA 与OB 的斜率之积为( )A .14-B .3- C.18- D .4- 12.已知定义在R 上的函数()f x ,当1x >-时,21,10,()1n ,0,x x f x x x +-<≤⎧⎪=⎨>⎪⎩且(1)f x -为奇函数,若方程()()R f x kx k k =+∈的根为12,,,n x x x L ,则12x x x +++L 的所有的取值为( )A .6-或4-或2-B .7-或5-或3-C. 8-或6-或4-或2- D .9-或7-或5-或3-第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题5分,满分20分.13.已知12,e e u r u u r 是互相垂直的单位向量,向量123a e e =-u r u u r r,12b e e =+u r u u r r ,则a b ⋅=r r .14.2018年4月4日,中国诗词大会第三季总决赛如期举行,依据规则,本场比赛共有甲、乙、丙、丁、戊五位选手有机会问鼎冠军,某家庭中三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:爸爸:冠军是甲或丙;妈妈:冠军一定不是乙和丙;孩子:冠军是丁或戊. 比赛结束后发现:三人中只有一个人的猜测是对的,那么冠军是.15.已知[]x 表示不超过x 的最大整数,例如:[][]2.32, 1.52=-=-.在数列{}n a 中,[]1,n a gn n N +=∈,记n S 为数列{}n a 的前n 项和,则2018S =.16.已知点,,,P A B C 均在表面积为81π的球面上,其中PA ⊥平面ABC ,30,=3BAC AC ∠=o,则三棱锥P ABC -的体积的最大值为.三、解答题:共70分。
2020-2021学年最新高考总复习数学(文)第三次高考模拟训练试题及答案解析一
最新高考数学三模试卷(文科)一、选择题1.设集合A={x|x (x ﹣3)<0},B={x|x ﹣2≤0},则A ∩B=( )A .(0,2]B .(0,2)C .(0,3)D .[2,3)2.设z 满足i (1+z )=2+i ,则|z|=( )A .B .C .2D .13.设命题p :∀x >0,xe x >0,则¬p 为( )A .∀x ≤0,xe x ≤0B .∃x 0≤0,x 0e x0≤0C .∀x >0,xe x ≤0D .∃x 0>0,x 0e x0≤04.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是( )A .B .C .D .5.如图所示的程序框图的算法思路源于我国古代数字著作《数书九章》,称为“秦九韶算法”.执行该程序框图,若输入x=2,n=5,则输出的v=( )A .26B .48C .57D .646.一个圆柱挖去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积等于( )A .39πB .48πC .57πD .63π7.已知x ,y 满足约束条件,则的最大值是( )A .﹣2B .﹣1C .D .28.已知函数f (x )=Asin (ωx+φ)(A >0,ω>0)的图象与直线y=b (0<b <A )相交,其中一个交点P 的横坐标为4,若与P 相邻的两个交点的横坐标为2,8,则函数f (x )( )A .在[0,3]上是减函数B .在[﹣3,0]上是减函数C .在[0,π]上是减函数D .在[﹣π,0]上是减函数9.设函数f (x )=e x +ax 在(0,+∞)上单调递增,则实数a 的取值范围为( )A .[﹣1,+∞)B .(﹣1,+∞)C .[0,+∞)D .(0,+∞)10.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为( )A .4πB .8πC .12πD .16π11.已知定义在R 上的函数f (x )是奇函数,且f (x )在(﹣∞,0)上是减函数,f (2)=0,g (x )=f (x+2),则不等式xg (x )≤0的解集是( )A .(﹣∞,﹣2]∪[2,+∞)B .[﹣4,﹣2]∪[0,+∞)C .(﹣∞,﹣4]∪[﹣2,+∞)D .(﹣∞,﹣4]∪[0,+∞)12.已知抛物线C :y 2=2px (p >0)的焦点为F ,点A ,B 在C 上,且点F 是△AOB 的重心,则cos ∠AFB 为( )A .﹣B .﹣C .﹣D .﹣二、填空题13.若和是两个互相垂直的单位向量,则|+2|=_______.14.已知α为锐角,cos α=,则sin (﹣α)=_______.15.在△ABC 中,∠A ,∠B ,∠C 所对的边长分别是x+1,x ,x ﹣1,且∠A=2∠C ,则△ABC 的周长为_______.16.已知圆C :(x ﹣a )2+y 2=1(a >0),过直线l :2x+2y+3=0上任意一点P 作圆C 的两条切线PA ,PB ,切点分别为A ,B ,若∠APB 为锐角,则a 的取值范围为_______.三、解答题17.设S n 是数列{a n }的前n 项和,且S n =2a n ﹣1.(1)证明:数列{a n }是等比数列;(2)求数列{na n }的前n 项和T n .18.在四棱锥P ﹣ABCD 中,底面ABCD 是菱形,AB=2,∠BAD=60°,PC ⊥BD .(1)证明:PB=PD ;(2)若平面PBD ⊥平面ABCD ,且∠DPB=90°,求点B 到平面PDC 的距离.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y 表示每年3月份的PM2.5指数的平均值(单位:μg/m 3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(1)根据折线图中的数据,完成表格:年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)(2)建立y关于x的线性回归方程;(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=, =﹣.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.[选修4-1:几何证明选讲]22.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.(1)证明:AE2=AD•AB.(2)若AE=4,CB=6,求⊙O的半径.[选修4-4:坐标系与参数方程选讲]23.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C 相交于A,B两点,求△GAB的面积.[选修4-5:不等式选讲]24.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.参考答案与试题解析一、选择题1.设集合A={x|x (x ﹣3)<0},B={x|x ﹣2≤0},则A ∩B=( )A .(0,2]B .(0,2)C .(0,3)D .[2,3)【考点】交集及其运算.【分析】求出A 与B 中不等式的解集分别确定出A 与B ,找出两集合的交集即可.【解答】解:由A 中不等式解得:0<x <3,即A=(0,3),由B 中不等式解得:x ≤2,即B=(﹣∞,2],则A ∩B=(0,2],故选:A .2.设z 满足i (1+z )=2+i ,则|z|=( )A .B .C .2D .1【考点】复数求模.【分析】根据复数的四则运算求出z ,然后利用复数的模长公式进行求解即可.【解答】解:由i (1+z )=2+i ,得1+z==1﹣2i ,则z=﹣2i ,则|z|=2,故选:C3.设命题p :∀x >0,xe x >0,则¬p 为( )A .∀x ≤0,xe x ≤0B .∃x 0≤0,x 0e x0≤0C .∀x >0,xe x ≤0D .∃x 0>0,x 0e x0≤0【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定是特称命题,则¬p :∃x 0>0,x 0e x0≤0,故选:D4.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是( )A .B .C .D .【考点】古典概型及其概率计算公式.【分析】本题是一个等可能事件的概率,试验发生所包含的事件数是C 52种结果,满足条件的事件是抽到的2名学生恰好是1男1女,有C 31C 21,进而得到概率.【解答】解:从3名男生和2名女生中任意推选2名选手参加辩论赛,共有C 52=10种选法, 选出的2名选手恰好是1男1女有C 31C 21=6种,故推选出的2名选手恰好是1男1女的概率是=,故选:C .5.如图所示的程序框图的算法思路源于我国古代数字著作《数书九章》,称为“秦九韶算法”.执行该程序框图,若输入x=2,n=5,则输出的v=( )A.26 B.48 C.57 D.64【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:模拟程序的运行,可得x=2,n=5,v=1,k=2执行循环体,v=4,k=3满足条件k<5,执行循环体,v=11,k=4满足条件k<5,执行循环体,v=26,k=5不满足条件k<5,退出循环,输出v的值为26.故选:A.6.一个圆柱挖去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积等于()A.39π B.48π C.57π D.63π【考点】由三视图求面积、体积.【分析】根据三视图可知该几何体是:一个圆柱在上底面挖去了一个同底等高的圆锥,由三视图求出几何元素的长度,由圆柱、圆锥的侧面积公式求出剩余部分的表面积.【解答】解:根据三视图可知该几何体是:一个圆柱在上底面挖去了一个同底等高的圆锥,且圆柱底面圆的半径为3,母线长是4,则圆锥的母线长是=5,∴剩余部分的表面积S=π×32+2π×3×4+π×3×5=48π,故选:B.7.已知x,y满足约束条件,则的最大值是()A.﹣2 B.﹣1 C.D.2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用直线的斜率公式,结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则的几何意义是区域内的点到原点的斜率,由图象知OA的斜率最大,由得,即A(2,4),此时的最大值是,故选:D8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)()A.在[0,3]上是减函数B.在[﹣3,0]上是减函数C.在[0,π]上是减函数D.在[﹣π,0]上是减函数【考点】正弦函数的图象.【分析】先根据正弦函数的图象的对称性可得函数f(x)的图象的相邻的两条对称轴分别为x=3和x=6,且函数f(x)在[3,6]上单调递减,故f(x)在[0,3]上是增函数,在[﹣3,0]上是减函数,从而得出结论.【解答】解:∵函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)的图象的相邻的两条对称轴分别为x=3和x=6,且函数f(x)在[3,6]上单调递减,故f(x)在[0,3]上是增函数,在[﹣3,0]上是减函数,故选:B.9.设函数f(x)=e x+ax在(0,+∞)上单调递增,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣1,+∞)C.[0,+∞)D.(0,+∞)【考点】利用导数研究函数的单调性.【分析】函数f(x)=e x+ax在区间(0,+∞)上单调递增⇔函数f′(x)=e x+a≥0在区间在区间(0,+∞)上成立.(0,+∞)上恒成立⇔a≥[﹣e x]min【解答】解:f′(x)=e x+a,∵函数f(x)=e x+ax在区间(0,+∞)上单调递增,∴函数f′(x)=e x+a≥0在区间(0,+∞)上恒成立,∴a≥[﹣e x]在区间(0,+∞)上成立,min∵在区间(0,+∞)上﹣e x<﹣1,∴a≥﹣1,故选:A.10.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为()A.4πB.8πC.12π D.16π【考点】球的体积和表面积.【分析】根据正三棱柱的对称性,它的外接球的球心在上下底面中心连线段的中点.再由正三角形的性质和勾股定理,结合题中数据算出外接球半径,用球表面积公式即可算出该球的表面积.【解答】解:设三棱柱ABC﹣A′B′C′的上、下底面的中心分别为O、O′,,根据图形的对称性,可得外接球的球心在线段OO′中点O1∵OA=AB=1,OO=AA′=11A=∴O1因此,正三棱柱的外接球半径R=,可得该球的表面积为S=4πR2=8π故选:B.11.已知定义在R上的函数f(x)是奇函数,且f(x)在(﹣∞,0)上是减函数,f(2)=0,g(x)=f(x+2),则不等式xg(x)≤0的解集是()A.(﹣∞,﹣2]∪[2,+∞)B.[﹣4,﹣2]∪[0,+∞)C.(﹣∞,﹣4]∪[﹣2,+∞)D.(﹣∞,﹣4]∪[0,+∞)【考点】奇偶性与单调性的综合.【分析】由题意可得g(x)关于点(﹣2,0)对称,g(0)=f(2)=0,g(﹣4)=f(﹣2)=0,画出g(x)的单调性示意图,数形结合求得不等式xg(x)≤0的解集.【解答】解:由题意可得g(x)的图象是把f(x)的图象向左平移2个单位得到的,故g(x)关于点(﹣2,0)对称,g(0)=f(2)=0,g(﹣4)=f(﹣2)=0,它的单调性示意图,如图所示:根据不等式xg(x)≤0可得,x的符号和g(x)的符号相反,∴xg(x)≤0的解集为(﹣∞,﹣4]∪[﹣2,+∞),故选:C.12.已知抛物线C:y2=2px(p>0)的焦点为F,点A,B在C上,且点F是△AOB的重心,则cos∠AFB为()A.﹣ B.﹣ C.﹣D.﹣【考点】抛物线的简单性质.【分析】设A(m,)、B(m,﹣),则=,p=,可得A的坐标,求出AF,利用二倍角公式可求.【解答】解:由抛物线的对称性知,A、B关于x轴对称.设A(m,)、B(m,﹣),则=,∴p=.∴A(m, m),∴AF=m,∴cos∠AFB==,∴cos∠AFB=2cos2∠AFB﹣1=﹣.故选:D.二、填空题13.若和是两个互相垂直的单位向量,则|+2|= .【考点】平面向量数量积的运算.【分析】计算()2,然后开方即可.【解答】解:∵和是两个互相垂直的单位向量,∴,.∴()2==5,∴||=.故答案为:.14.已知α为锐角,cosα=,则sin(﹣α)= .【考点】两角和与差的正弦函数.【分析】由已知利用同角三角函数基本关系式可求sinα,利用特殊角的三角函数值及两角差的正弦函数公式化简所求即可计算得解.【解答】解:∵α为锐角,cosα=,∴sin==,∴sin(﹣α)=sin cosα﹣cos sinα=﹣×=.故答案为:.15.在△ABC中,∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,则△ABC 的周长为15 .【考点】余弦定理.【分析】由已知及正弦定理,二倍角的正弦函数公式可得:cosC=,又由余弦定理可得:cosC=,从而可得=,解得x,即可得解三角形的周长.【解答】解:∵∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,∴由正弦定理可得:,∴,可得:cosC=,又∵由余弦定理可得:cosC=,∴=,整理即可解得x=5,∴△ABC的周长为:(x+1)+x+(x﹣1)=3x=15.故答案为:15.16.已知圆C:(x﹣a)2+y2=1(a>0),过直线l:2x+2y+3=0上任意一点P作圆C的两条切线PA,PB,切点分别为A,B,若∠APB为锐角,则a的取值范围为(,+∞).【考点】圆的切线方程.【分析】作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由∠APB为锐角,可得0<∠APC<,运用解直角三角形可得可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,求得PC的最小值,可得PA的最小值,解不等式即可得到所求a的范围.【解答】解:作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由圆心C(a,0)到直线l的距离为d=>>1,可得直线和圆相离.由∠APB为锐角,可得0<∠APC<,即0<tan∠APC<1,在Rt△APC中,tan∠APC==,可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,当PC⊥l时,PC取得最小值,且为,即有1<,解得a>.故答案为:(,+∞).三、解答题17.设S n 是数列{a n }的前n 项和,且S n =2a n ﹣1.(1)证明:数列{a n }是等比数列;(2)求数列{na n }的前n 项和T n .【考点】数列的求和;等比数列的通项公式.【分析】(1)由S n =2a n ﹣1.可得当n=1时,a 1=2a 1﹣1,解得a 1.当n ≥2时,a n =S n ﹣S n ﹣1,化为:a n =2a n ﹣1.利用等比数列的通项公式即可得出.(2)由(1)可得:a n =2n ﹣1.na n =n •2n ﹣1.利用“错位相减法”与等比数列的前n 项和公式即可得出.【解答】(1)证明:∵S n =2a n ﹣1.∴当n=1时,a 1=2a 1﹣1,解得a 1=1.当n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣1﹣(2a n ﹣1﹣1),化为:a n =2a n ﹣1.∴数列{a n }是等比数列,首项为1,公比为2.(2)解:由(1)可得:a n =2n ﹣1.na n =n •2n ﹣1.∴数列{na n }的前n 项和T n =1+2×2+3×22+…+n •2n ﹣1,2T n =2+2×22+…+(n ﹣1)•2n ﹣1+n •2n ,∴﹣T n =1+2+22+…+2n ﹣1﹣n •2n =﹣n •2n =(1﹣n )•2n ﹣1,∴T n =(n ﹣1)•2n +1.18.在四棱锥P ﹣ABCD 中,底面ABCD 是菱形,AB=2,∠BAD=60°,PC ⊥BD .(1)证明:PB=PD ;(2)若平面PBD ⊥平面ABCD ,且∠DPB=90°,求点B 到平面PDC 的距离.【考点】点、线、面间的距离计算.【分析】(1)如图所示,连接AC 交BD 于点O ,连接OP .利用菱形的性质可得AC ⊥BD ,利用线面垂直的判定与性质定理可证明BD ⊥PO .又O 是BD 的中点,可得PB=PD .(2)底面ABCD 是菱形,AB=2,∠BAD=60°,可得△PBD 与△BCD 都是等边三角形.由平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD=BD ,PO ⊥BD .可得PO ⊥平面ABCD ,因此PO ⊥AC ,又AC⊥BD,可建立如图所示的空间直角坐标系.设平面PCD的法向量=(x,y,z),则,利用点B到平面PDC的距离d=即可得出.【解答】(1)证明:如图所示,连接AC交BD于点O,连接OP.∵四边形ABCD是菱形,∴AC⊥BD,又PC⊥BD,且PC∩AC=C,∴BD⊥平面PAC.则BD⊥PO.又O是BD的中点,∴PB=PD.(2)解:底面ABCD是菱形,AB=2,∠BAD=60°,∴△PBD与△BCD都是等边三角形.∵平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,PO⊥BD.∴PO⊥平面ABCD,∴PO⊥AC,又AC⊥BD,可建立如图所示的空间直角坐标系.∵∠DPB=90°,PB=PD,BD=2,∴PO=1,∴P(0,0,1),B(1,0,0),D(﹣1,0,0),C(0,,0),=(﹣1,0,﹣1),=(0,,﹣1),=(1,﹣,0),设平面PCD的法向量=(x,y,z),则,∴,取=,则点B到平面PDC的距离d===.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y表示每年3月份的PM2.5指数的平均值(单位:μg/m3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(1)根据折线图中的数据,完成表格:年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)(2)建立y关于x的线性回归方程;(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=, =﹣.【考点】线性回归方程.【分析】(1)根据折线图中的数据,完成表格即可;(2)计算线性回归方程中的系数,可得线性回归方程;(3)x=5代入线性回归方程,可得结论.【解答】解:(1)年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)90 88 70 64(2)=2.5, =78,(xi ﹣)(yi﹣)=﹣48,=5,==﹣9.6, =﹣=102,∴y关于x的线性回归方程是: =﹣9.6x+102;(3)2017年的年份代号是5,当x=5时, =﹣9.6×5+102=54,∴该市2017年3月份的PM2.5指数的平均值的预测值是54μg/m3.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由=,2a+2c=6,a2=b2+c2,联立解出即可得出椭圆C的方程.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,可得λ==﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),代入椭圆方程整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△>0,利用根与系数的关系可得=,•=(x1+1)(x2+1)+y1y2,计算即可得出.【解答】解:(1)∵=,2a+2c=6,a2=b2+c2,解得a=2,c=1,b2=3.∴椭圆C的方程为=1.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,||=3, =, =.•=,则λ===﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),则,整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△=64k4﹣4(4k2+3)(4k2﹣12)=122(1+k2)>0,x 1+x2=,x1x2=.==,=(x1+1,y1),=(x2+1,y2)..• =(x1+1)(x2+1)+y1y2=(k2+1)[x1x2+(x1+x2)+1]=,则==﹣.综上所述:可得存在常数λ=﹣,使||=λ•恒成立.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,根据f(1)=2,f′(1)=﹣1,求出a,b的值即可;(2)问题转化为(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),求出g(x)的单调区间,从而证出结论即可.【解答】解:(1)f(x)的定义域是(0,+∞),f(x)=+b,切点是(1,2),∴f(1)=b=2,f′(x)=,∴f′(1)=a=﹣1,故a=﹣1,b=2;(2)证明:由(1)得:f(x)=+2,f(x)>,∴(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),则g′(x)=(x﹣1)2>0,∴g(x)在(0,1)递增,在(1,+∞)递增,∵g(1)=0,∴g(x)>0⇔x>1,g(x)<0⇔0<x<1,∴x>1时, g(x)>0,0<x<1时, g(x)>0,x>0且x≠1时,(x﹣﹣2lnx)>0,∴当x>0,且x≠1时,f(x)>.[选修4-1:几何证明选讲]22.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.(1)证明:AE2=AD•AB.(2)若AE=4,CB=6,求⊙O的半径.【考点】与圆有关的比例线段.【分析】(1)证明AC是⊙O的切线,根据切割线定理可得:AE2=AD•AB.(2)根据切割线定理求出AD,即可求⊙O的半径.【解答】(1)证明:∵过点B作⊙O的切线交AE的延长线于点C,∴∠CBO=∠CBE+∠OBE=90°.∵CE=CB,OE=OB,∴∠CEB=∠CBE,∠OEB=∠OBE,∴∠CEO=∠CEB+∠OEB=∠CBE+∠OBE=90°,∴CE⊥OE,∵OE是⊙O的半径,∴AC是⊙O的切线,根据切割线定理可得AE2=AD•AB.(2)解:∵CE=CB=6,AE=4,∴AC=10,∴AB=8∵AE2=AD•AB,AE=4,∴42=AD•8,∴AD=2,∴BD=8﹣2=6,∴⊙O的半径为3.[选修4-4:坐标系与参数方程选讲]23.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C相交于A,B两点,求△GAB的面积.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,令,即可得出直角坐标方程.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0).kl=1,倾斜角为,可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,设t1与t2为此方程的两个实数根,可得|AB|=|t1﹣t2|=.点G到直线l的距离d.即可得出S△GAB=|BA|•d.【解答】解:(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,∴直角坐标方程为:y2=8x.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0),kl==1,倾斜角为,直角坐标方程为:y=x﹣2.可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,△=128+4×32>0,设t1与t2为此方程的两个实数根,可得:t1+t2=,t1t2=﹣32.∴|AB|=|t1﹣t2|===16.点G到直线l的距离d==2.∴S △GAB=|BA|•d==16.[选修4-5:不等式选讲]24.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.【考点】函数的最值及其几何意义.【分析】(1)记g(x)=|x+3|﹣|x﹣1|+5,分类讨论求得g(x)=,从而求值域;(2)由柯西不等式知(a2+b2)(c2+d2)≥(ac+bd)2,从而求取值范围.【解答】解:(1)记g(x)=|x+3|﹣|x﹣1|+5,则g(x)=,故g(x)∈[1,9],故f(x)∈[1,3].(2)由(1)知,a2+b2=1,c2+d2=3,由柯西不等式知,(a2+b2)(c2+d2)≥(ac+bd)2,(当且仅当ad=bc时,取等号;)即(ac+bd)2≤3,故﹣≤ac+bd≤,故ac+bd的取值范围为[﹣,].2016年9月12日。
山东省2020-2021学年高三普通高中学业水平等级考试模拟试题(二)地理试题(有答案)
山东省2020-2021学年高三普通高中学业水平等级考试模拟试题(二)地理试题一、单选题1. 赵家峁村地处黄土高原沟壑丘陵区,长期以来农业生产收益低下,村民生活贫困,村庄空心化突出。
2013年以来,赵家峁村以流转农户土地经营权、发展村集体经济为突破口,发展特色现代农业和乡村旅游,有效带动了农民脱贫致富(下图示意)。
据此完成下面小题。
(1)图1中M处的内容为()A.地块分散,耕地撂荒B.耕地匮乏,沙化严重C.耕地集中,土壤肥沃D.多中低产田,土地贫瘠(2)赵家峁村通过土地整治带动农民脱贫致富的主要途径是()A.增加耕地面积,改善农业生产条件B.缓解人地矛盾,改善农村人居环境C.土地规模经营,促进产业结构升级D.开发未利用土地,增加土地资产收益2. 输沙模数,是指某一时段内流域输沙量与相应集水面积的比值。
下表为我国解家湾小流域不同时期侵蚀产沙变化中植被与降雨贡献率。
该小流域有旱耕地3.25km2,其中大于10°的坡耕地1.69km2;荒坡2.84km2。
主要农作物为玉米、番薯、普通小麦、蚕豆,主要经果林为柑橘、桃、桑。
据此完成下面小题。
解家湾小流域不同时期侵蚀产沙变化中植被与降雨贡献率(1)1990~2008年,该小流域输沙模数大幅度下降的主要原因是()A.降水量减少B.土地平整度提高C.植被覆盖率上升D.建坝阻沙效果凸显(2)2009~2016年,该小流域输沙模数有所上升的主要原因是()A.降水量较前期增加B.顺坡种植加剧土壤侵蚀C.林下植被覆盖减少D.梯田毁坏致使沟蚀加剧3. 城市经济由产业分工到功能分工的转变过程产生了各种类型的功能专业化城市或功能多样化城市。
下图示意城市从产业分工向功能分工的演变。
据此完成下列小题。
(1)图中甲、乙、丙三类城市的主要功能分别为()A.研发型、总部型、制造型B.制造型、研发型、总部型C.总部型、研发型、制造型D.总部型、制造型、研发型(2)推动城市经济由产业分工到功能分工转变的基本动力是()A.交通通达性B.产品价值链C.科技竞争力D.比较区位优势4. 金奈是印度重要的工商业中心,软件产业发达。
2020-2021学年高三数学(文科)高三毕业联考试题及答案解析
最新高三(下)第一次联考数学试卷(文科)一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的.)1.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4 C.5 D.62.设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx5.已知等差数列{a n}中,a4+a6=10,前5项和S5=5,则其公差为()A.1 B.2 C.3 D.46.设x,y满足约束条件,则z=x﹣2y的取值范围为()A.[﹣2,0] B.[﹣3,0] C.[﹣2,3] D.[﹣3,3]7.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=18.执行如图所示的程序,则输出的i的值为()A.2 B.3 C.4 D.59.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣10.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则()A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>011.某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A.B.C. D.12.将正奇数排成如图所示的三角形数阵(第k行有k个奇数),其中第i行第j个数表示为a ij,例如a42=15,若a ij=2015,则i﹣j=()A.26 B.27 C.28 D.29二.填空题(本大题共4小题,每小题5分,共20分)13.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.14.若曲线y=kx2+lnx在点(1,k)处的切线与直线2x﹣y+3=0平行,则k= .15.已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为.16.定义在R上的函数f(x)满足f(x)﹣f(x﹣5)=0,当x∈(﹣1,4]时,f(x)=x2﹣2x,则函数f(x)在[0,2016]上的零点个数是.三.解答题(解答应写出文字说明、证明过程或演算步骤,第17-21题,每题12分,选做题10分,共70分)17.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.19.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC中点.(1)求证:平面ADM⊥平面PBC;(2)求点P到平面ADM的距离.20.已知椭圆M的对称轴为坐标轴,离心率为,且一个焦点坐标为(,0).(1)求椭圆M的方程;(2)设直线l与椭圆M相交于A、B两点,以线段OA、OB为邻边作平行四边形OAPB,其中点P在椭圆M上,O为坐标原点,求点O到直线l的距离的最小值.21.设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g (x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证.(Ⅰ)∠DEA=∠DFA;(Ⅱ)AB2=BE•BD﹣AE•AC.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cos θ﹣2sinθ)=7距离的最小值.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求实数x的范围.第一次联考数学试卷(文科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的.)1.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4 C.5 D.6【考点】集合的确定性、互异性、无序性;集合中元素个数的最值.【分析】利用已知条件,直接求出a+b,利用集合元素互异求出M中元素的个数即可.【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选B.2.设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】判断必要条件与充分条件,推出结果即可.【解答】解:设p:x<3,q:﹣1<x<3,则p成立,不一定有q成立,但是q成立,必有p成立,所以p是q成立的必要不充分条件.故选:C.3.设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.12【考点】函数的值.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==12×=6,则有f(﹣2)+f(log212)=3+6=9.故选C.4.下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【考点】两角和与差的正弦函数;三角函数的周期性及其求法.【分析】求出函数的周期,函数的奇偶性,判断求解即可.【解答】解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.5.已知等差数列{a n}中,a4+a6=10,前5项和S5=5,则其公差为()A.1 B.2 C.3 D.4【考点】等差数列的通项公式.【分析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a4+a6=10,前5项和S5=5,∴2a1+8d=10,5a1+d=5,解得a1=﹣3,d=2.则其公差为2.故选:B.6.设x,y满足约束条件,则z=x﹣2y的取值范围为()A.[﹣2,0] B.[﹣3,0] C.[﹣2,3] D.[﹣3,3]【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得:,B(1,2).化目标函数z=x﹣2y为直线方程的斜截式.由图可知,当直线过B(1,2)时,直线在y轴上的截距最大,z最小,最小值为1﹣2×2=﹣3;当直线过A(3,0)时,直线在y轴上的截距最小,z最大,最大值为3﹣2×0=3.∴z=x﹣2y的取值范围为[﹣3,3].故选:D.7.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的标准方程.【分析】由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程.【解答】解:由题意,=,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a2+b2=c2=7,∴a=2,b=,∴双曲线的方程为.故选:D.8.执行如图所示的程序,则输出的i的值为()A.2 B.3 C.4 D.5【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的i,S的值,当S=0时满足条件S≤1,退出循环,输出i的值为4.【解答】解:模拟执行程序,可得S=10,i=0执行一次循环体后,i=1,S=9不满足条件S≤1,再次执行循环体后,i=2,S=7不满足条件S≤1,再次执行循环体后,i=3,S=4不满足条件S≤1,再次执行循环体后,i=4,S=0满足条件S≤1,退出循环,输出i的值为4.故选:C.9.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣【考点】复数的代数表示法及其几何意义;几何概型.【分析】判断复数对应点图形,利用几何概型求解即可.【解答】解:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,它的几何意义是以(1,0)为圆心,1为半径的圆以及内部部分.y≥x的图形是图形中阴影部分,如图:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率:=.故选:C.10.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则()A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0【考点】函数零点的判定定理.【分析】因为x0是函数f(x)=2x+的一个零点可得到f(x0)=0,再由函数f(x)的单调性可得到答案.【解答】解:∵x0是函数f(x)=2x+的一个零点∴f(x0)=0∵f(x)=2x+是单调递增函数,且x1∈(1,x0),x2∈(x0,+∞),∴f(x1)<f(x0)=0<f(x2)故选B.11.某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A.B.C. D.【考点】简单空间图形的三视图.【分析】根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.【解答】解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A12.将正奇数排成如图所示的三角形数阵(第k行有k个奇数),其中第i行第j个数表示为a ij,例如a42=15,若a ij=2015,则i﹣j=()A.26 B.27 C.28 D.29【考点】归纳推理.【分析】分析正奇数排列的正三角图表知,第i行(其中i∈N*)有i个奇数,且从左到右按从小到大的顺序排列,则2015是第1008个奇数,由等差数列的知识可得,它排在第几行第几个数【解答】解:根据正奇数排列的正三角图表知,2015是第1008个奇数,应排在i行(其中i∈N*),则1+2+3+…+(i﹣1)=i(i﹣1)≤1008①,且1+2+3+…+i=i(i+1)>1008②;验证i=45时,①②式成立,所以i=45;第45行第1个奇数是2××44×45+1=1981,而1981+2(j﹣1)=2015,∴j=18;∴i﹣j=45﹣18=27.故选:B二.填空题(本大题共4小题,每小题5分,共20分)13.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.【解答】解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=,故答案为:.14.若曲线y=kx2+lnx在点(1,k)处的切线与直线2x﹣y+3=0平行,则k= .【考点】利用导数研究曲线上某点切线方程.【分析】求函数的导数,利用切线和直线平行得到,斜率关系,建立方程进行求解即可.【解答】解:函数的定义域为(0,+∞),函数的导数f′(x)=2kx+,则在点(1,k)处的切线斜率k=f′(1)=2k+1,∵y=kx2+lnx在点(1,k)处的切线与直线2x﹣y+3=0平行,∴直线2x﹣y+3=0的斜率k=2,即切线斜率k=2,即f′(1)=2k+1=2,则2k=1,得k=,故答案为:15.已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为9 .【考点】双曲线的定义;双曲线的简单性质;双曲线的应用.【分析】根据A点在双曲线的两支之间,根据双曲线的定义求得a,进而根据PA|+|PF′|≥|AF′|=5两式相加求得答案.【解答】解:∵A点在双曲线的两支之间,且双曲线右焦点为F′(4,0),∴由双曲线性质|PF|﹣|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5两式相加得|PF|+|PA|≥9,当且仅当A、P、F′三点共线时等号成立.故答案为9.16.定义在R上的函数f(x)满足f(x)﹣f(x﹣5)=0,当x∈(﹣1,4]时,f(x)=x2﹣2x,则函数f(x)在[0,2016]上的零点个数是1209 .【考点】根的存在性及根的个数判断;函数零点的判定定理.【分析】由f(x)﹣f(x﹣5)=0可判断出函数的周期性,由x∈(﹣1,4]时函数的解析式,可以求出一个周期内函数的零点个数,进而可得函数f(x)在[0,2016]上的零点个数.【解答】解:∵f(x)﹣f(x﹣5)=0,∴f(x)=f(x﹣5),∴f(x)是以5为周期的周期函数,又∵f(x)=x2﹣2x在x∈(﹣1,4]区间内有3个零点,∴f(x)在任意周期上都有3个零点,∵x∈(1,2016]上包含403个周期,又∵x∈[0,1]时不存在零点,故零点数为3×403=1209.故答案为:1209.三.解答题(解答应写出文字说明、证明过程或演算步骤,第17-21题,每题12分,选做题10分,共70分)17.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(I)sin2B=2sinAsinC,由正弦定理可得:b2=2ac,再利用余弦定理即可得出.(II)利用(I)及勾股定理可得c,再利用三角形面积计算公式即可得出.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=2ac,解得a=c=.∴S△ABC==1.18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【考点】频率分布直方图.【分析】(1)利用频率分布直方图中的信息,所有矩形的面积和为1,得到a;(2)对该部门评分不低于80的即为90和100,的求出频率,估计概率;(3)求出评分在[40,60]的受访职工和评分都在[40,50]的人数,随机抽取2人,列举法求出所有可能,利用古典概型公式解答.【解答】解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.19.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC中点.(1)求证:平面ADM⊥平面PBC;(2)求点P到平面ADM的距离.【考点】点、线、面间的距离计算;平面与平面垂直的判定.【分析】(1)取PB中点N,连结MN、AN,证明四边形ADMN为平行四边形,AN⊥平面PBC,可得平面ADM⊥平面PBC;(2)PN⊥平面ADM,即点P到平面ADM的距离为PN,即可求点P到平面ADM的距离.【解答】解:(1)取PB中点N,连结MN、AN,则∵M是PC中点,∴,又∵BC∥AD,∴MN∥AD,MN=AD,∴四边形ADMN为平行四边形,∵AP⊥AD,AB⊥AD,∴AD⊥平面PAB,∴AD⊥AN,∴AN⊥MN,∵AP=AB,∴AN⊥PB,∴AN⊥平面PBC,∵AN⊂平面ADM,∴平面ADM⊥平面PBC.(2)由(1)知,PN⊥AN,PN⊥AD,∴PN⊥平面ADM,即点P到平面ADM的距离为PN,在Rt△PAB中,由PA=AB=2,得,∴.20.已知椭圆M的对称轴为坐标轴,离心率为,且一个焦点坐标为(,0).(1)求椭圆M的方程;(2)设直线l与椭圆M相交于A、B两点,以线段OA、OB为邻边作平行四边形OAPB,其中点P在椭圆M上,O为坐标原点,求点O到直线l的距离的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由题意可设椭圆的标准方程为:,可得,解得即可得出.(2)当直线l的向量存在时,设直线l的方程为:y=kx+m,与椭圆方程联立化为(1+2k2)x2+4kmx+2m2﹣4=0,由△>0,化为2+4k2﹣m2>0,设A(x1,y1),B(x2,y2),P(x0,y0).可得x0=x1+x2,y0=y1+y2.代入椭圆方程.利用点到直线的距离公式可得:点O到直线l的距离d==即可得出.当直线l无斜率时时,由对称性可知:点O到直线l的距离为1.即可得出.【解答】解:(1)由题意可设椭圆的标准方程为:,∴,解得a=2,b2=2,∴椭圆M的方程为.(2)当直线l的斜率存在时,设直线l的方程为:y=kx+m,联立,化为(1+2k2)x2+4kmx+2m2﹣4=0,△=16k2m2﹣4(1+2k2)(2m2﹣4)>0,化为2+4k2﹣m2>0,设A(x1,y1),B(x2,y2),P(x0,y0).∴x0=x1+x2=,y0=y1+y2=k(x1+x2)+2m=.∵点P在椭圆M上,∴,∴+=1,化为2m2=1+2k2,满足△>0.又点O到直线l的距离d====.当且仅当k=0时取等号.当直线l无斜率时时,由对称性可知:点P一定在x轴上,从而点P的坐标为(±2,0),直线l的方程为x=±1,∴点O到直线l的距离为1.∴点O到直线l的距离的最小值为.21.设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g (x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).【考点】不等式的证明;导数在最大值、最小值问题中的应用.【分析】(1)运用奇、偶函数的定义,由函数方程的思想可得f(x)、g(x)的解析式,再由指数函数的单调性和基本不等式,即可证得f(x)>0,g(x)>1;(2)当x>0时,>ag(x)+1﹣a⇔f(x)>axg(x)+(1﹣a)x,<bg(x)+1﹣b⇔f(x)<bxg(x)+(1﹣b)x,设函数h(x)=f(x)﹣cxg(x)﹣(1﹣c)x,通过导数判断单调性,即可得证.【解答】解:(1)f(x)是奇函数,g(x)是偶函数,即有f(﹣x)=﹣f(x),g(﹣x)=g(x),f(x)+g(x)=e x,f(﹣x)+g(﹣x)=e﹣x,即为﹣f(x)+g(x)=e﹣x,解得f(x)=(e x﹣e﹣x),g(x)=(e x+e﹣x),则当x>0时,e x>1,0<e﹣x<1,f(x)>0;g(x)=(e x+e﹣x)>×2=1,则有当x>0时,f(x)>0,g(x)>1;(2)证明:f′(x)=(e x+e﹣x)=g(x),g′(x)=(e x﹣e﹣x)=f(x),当x>0时,>ag(x)+1﹣a⇔f(x)>axg(x)+(1﹣a)x,<bg(x)+1﹣b⇔f(x)<bxg(x)+(1﹣b)x,设函数h(x)=f(x)﹣cxg(x)﹣(1﹣c)x,h′(x)=f′(x)﹣c(g(x)+xg′(x))﹣(1﹣c)=g(x)﹣cg(x)﹣cxf(x)﹣(1﹣c)=(1﹣c)(g(x)﹣1)﹣cxf(x),①若c≤0则h′(x)>0,故h(x)在(0,+∞)递增,h(x)>h(0)=0,(x>0),即有f(x)>cxg(x)+(1﹣c)x,故>ag(x)+1﹣a成立;②若c≥1则h′(x)<0,故h(x)在(0,+∞)递减,h(x)《h(0)=0,(x>0),即有f(x)<cxg(x)+(1﹣c)x,故<bg(x)+1﹣b成立.综上可得,当x>0时,a g(x)+(1﹣a)<<b g(x)+(1﹣b).[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证.(Ⅰ)∠DEA=∠DFA;(Ⅱ)AB2=BE•BD﹣AE•AC.【考点】与圆有关的比例线段.【分析】(Ⅰ)连结AD,由已知条件结合圆的性质推导出A、D、E、F四点共圆,由此能证明∠DEA=∠DFA.(Ⅱ)由A、D、E、F四点共圆,连结BC,能推导出△ABC∽△AEF,由此能证明AB2=BE•BD﹣AE•AC.【解答】证明:(Ⅰ)连结AD,∵AB为圆的直径,∴∠ADB=90°,又∵EF⊥AB,∴∠EFA=90°,∴A、D、E、F四点共圆,∴∠DEA=∠DFA.(Ⅱ)∵A、D、E、F四点共圆,∴由切割线定理知BD•BE=BA•BF,连结BC,则△ABC∽△AEF,∴=,∴AB•AF=AE•AC,∴BE•BD﹣AE•AC=BA•BF﹣AB•AF=AB(BF﹣AF)=AB2.∴AB2=BE•BD﹣AE•AC.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)曲线C1:(t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(θ为参数),利用cos2θ+sin2θ=1化为普通方程.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C1:(t为参数),化为(x+4)2+(y﹣3)2=1,∴C1为圆心是(﹣4,3),半径是1的圆.C2:(θ为参数),化为.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,M到C3的距离d==|5sin(θ+φ)+13|,从而当cossinθ=,sinθ=﹣时,d取得最小值.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求实数x的范围.【考点】分段函数的解析式求法及其图象的作法.【分析】本题考查的是分段函数的解析式求法以及函数图象的作法问题.在解答时对(1)要先将原函数根据自变量的取值范围转化为分段函数,然后逐段画出图象;对(2)先结和条件a≠0将问题转化,见参数统统移到一边,结合绝对值不等式的性质找出f(x)的范围,通过图形即可解得结果.【解答】解:(1)(2)由|a+b|+|a﹣b|≥|a|f(x)得又因为则有2≥f(x)解不等式2≥|x﹣1|+|x﹣2|得2016年10月18日。
2020-2021学年新教材高一数学上学期期末复习练习(四)
2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。
2020-2021学年山东省烟台市高考数学二模试卷(文科)及答案解析
【解答】解:∵集合U={2,0,1,5},集合A={0,2},
∴∁UA={1,5},
故选:C.
2.在复平面内,复数z= ﹣2i3(i为虚数单位)表示的点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
【考点】复数代数形式的乘除运算.
【分析】直接利用复数代数形式的乘除运算化简复数z,求出z在复平面内对应的点的坐标,则答案可求.
满足条件k>4,退出循环,输出S的值为﹣11.
故选:B.
8.若直线2mx﹣ny﹣2=0(m>0,n>0)过点(1,﹣2),则 + 最小值( )
A.2B.6C.12D.3+2
【考点】基本不等式在最值问题中的应用.
【分析】根据直线2mx﹣ny﹣2=0(m>0,n>0)过点(1,﹣2),建立m,n的关系,利用基本不等式即可求 + 的最小值.
选项B,“若am2<bm2,则a<b”的逆否命题为“若a≥b,则am2≥bm2”为真命题,故B正确,
选项C,命题“∃x∈R,使得2x2﹣1<0”的否定是:“∀x∈R,均有2x2﹣1≥0,故C错误,
选项D,命题“若x= ,则tanx=1”的逆命题“若tanx=1,则x= ”,因为tanx=1,则x=kπ+ ”,故D错误,
【解答】解:由余弦定理可得:a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA,
∴代入已知有:3=9﹣3bc,从而解得:bc=2,
∴S△ABC= bcsinA= = ,
故选:B.
7.执行如图的程序框图,若输入n为4,则输入S值为( )
A.﹣10B.﹣11C.﹣21D.6
【考点】程序框图.
鲁教版(五四制)2020-2021学年度第一学期六年级数学期末模拟测试题4(附答案)
鲁教版(五四制)2020-2021学年度第一学期六年级数学期末模拟测试题4(附答案)一、选择题1.(3分)下列方程:①5x=6x﹣7y;②+=1;③x2=3x;④x=0;⑤2x﹣5=7,其中属于一元一次方程的有()A.1个B.2个C.3个D.4个2.(3分)运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b﹣c B.如果,那么a=bC.如果a=b,那么D.如果a2=3a,那么a=33.(3分)一个棱柱有12条棱,那么它的底面一定是()A.十八边形B.六边形C.四边形D.八边形4.(3分)下列说法正确的是()A.5个有理数相乘,当负因数为3个时,积为负B.绝对值大于1的两个数相乘,积比这两个数都大C.3个有理数的积为负数,则这3个有理数都为负数D.任何有理数乘以(﹣1)都等于这个数的相反数5.(3分)用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.正方形B.圆锥C.圆柱D.球6.(3分)已知3﹣x+2y=﹣2,则整式x﹣2y的值为()A.12B.10C.5D.157.(3分)一个长方形的周长是26cm,若这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,则长方形的长是()A.5cm B.7cm C.8cm D.9cm8.(3分)我国港珠澳大桥开通,是世界上最长的跨海大桥,桥隧全长55千米,工程项目总投资额1269亿元,向世界展示了我们大国工匠的实力,将1269亿用科学记数法表示为()A.1.269×1011B.1269×108C.1.269×1012D.1269×109 9.(3分)将有理数1.0349精确到百分位的近似值是()A.1.03B.1.035C.1.04D.1.010.(3分)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b11.(3分)如图,在半径为1的大圆中有两个小圆,且小圆的直径都是大圆的半径,用S1表示两个小圆的面积和,用S2表示图中阴影部分的面积,则S1和S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.无法确定12.(3分)观察图中正方形四个顶点所标的数字规律可知,有理数2016应标在()A.第506个正方形的左下角B.第506个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角二、填空题13.(3分)单项式﹣的次数是.14.(3分)方程x=﹣1是关于x的一元一次方程mx﹣10=0的解,则m=.15.(3分)如果1<x<2,化简|x﹣1|+|x﹣2|=.16.(3分)若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a+b+c 的值为.17.(3分)已知两个多项式的和是a2+3a﹣1,其中一个多项式是a﹣2,则另一个多项式是.18.(3分)服装店今年秋天购进种品牌T恤衫按进价加20%作为定价,入冬后为了清理库存,按定价降价20%以96元售出,记盈利为“+”,亏损为“﹣”,则这种品牌T恤衫每件的盈亏情况表示为.19.(3分)如图,在一密闭的圆柱形玻璃杯中装有恰好一半的水,圆柱的底面半径为rcm,高是半径的3倍多lcm,将玻璃杯水平放置时,水面形成的四边形的周长是(玻璃厚度忽略不计,结果用含有r的代数式表示,并将结果化简成“和”的形式)20.(3分)若abc>0,则+++的值为.三、解答题21.计算(1)﹣32﹣(﹣﹣)÷(2)﹣﹣3.8﹣(﹣4.8)+1+1.622.解方程(1)1﹣=(2)﹣=2.523.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.24.如图,是由几个大小相同的小正方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在这个位置小正方体的个数.(1)请画出从正面、左面看到的这个几何体的形状图;(2)若每个小正方体棱长为1cm,请直接写出该几何体的表面积(包含底面)为.25.一个旅游团共26人去参观一个景点,已知成人票每张120元,儿童票每张80元,经预算,共需要门票钱2640元.(1)求这个旅游团成人和儿童的数量各是多少人?(2)到了售票窗口得知,购买两张成人票将会赠送一张儿童票,请计算共需门票钱多少元?26.已知:=1﹣,=﹣,=﹣.(1)按上述规律填空:=.(2)计算:+++…(3)根据以上规律解方程:+++…+=201827.已知点M、N在数轴上,点M对应的数是﹣3,点N在点M的右边,且距点M4个单位长度.(1)直接写出点N所对应的有理数;(2)点P是数轴上一动点,请直接写出点P到点M和点N的距离和的最小值;(3)若点P到点M、N的距离之和是6个单位长度:①求点P所对应的有理数是多少?②如果点Q从点N出发,沿数轴正方向以每秒1个单位长度的速度运动,同时点P以每秒3个单位长度的速度沿数轴正方向运动,t秒后P、Q两点相距4个单位长度,求t.参考答案:一、选择题1.解:②+=1;④x=0;⑤2x﹣5=7属于一元一次方程,共3个,故选:C.2.解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误;故选:B.3.解:设该棱柱为n棱柱.根据题意得:3n=12.解得:n=4.所以该棱柱为4棱柱.故选:C.4.解:A.5个有理数相乘,当负因数为3个时,积为负数或0,故本选项不合题意;B.绝对值大于1的两个数相乘,积不一定比这两个数都大,如﹣3×2=﹣6,﹣6<﹣3<2.故本选项不合题意;C.3个有理数的积为负数,则这3个有理数都为负数或其中有两个是正数,一个是负数,故本选项不合题意;D.任何有理数乘以(﹣1)都等于这个数的相反数.正确,故本选项符合题意.故选:D.5.解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,因为截面与正方体各面的交线为直线,故此截面的形状不可能是圆.故选:A.6.解:∵3﹣x+2y=﹣2,∴2y﹣x=﹣5,则x﹣2y=5.故选:C.7.解:设长方形的长为xcm,∵长方形的周长为26cm,∴长方形的宽为(26÷2﹣x)cm,∵长减少1cm为x﹣1,宽增加2cm为:26÷2﹣x+2,∴列的方程为:x﹣1=26÷2﹣x+2,解得:x=8.故选:C.8.解:1269亿=126900000000=1.269×1011.故选:A.9.解:1.0349≈1.03(精确到百分位),故选:A.10.解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选:B.11.解:由图可得,S1==,S2=π×12﹣S1=π﹣=,则S1=S2,故选:C.12.解:由图可知,每个正方形的数字有4个,∵(2016+2)÷4=2018÷4=504…2,∴有理数2016应标在第505个正方形的右下角,故选:D.二、填空题13.解:单项式﹣的次数是:3+1=4.故答案是:4.14.解:把x=﹣1代入方程mx﹣10=0得:﹣m﹣10=0,解得:m=﹣10,故答案为:﹣10.15.解:∵1<x<2,∴x﹣1>0,x﹣2<0,∴|x﹣1|+|x﹣2|=x﹣1+2﹣x=1.故答案为:1.16.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴a与b相对,c与﹣2相对,3与2相对,∵相对面上两个数之和相等,∴a+b=c﹣2=3+2,∴a+b=5,c=7,∴a+b+c=12,故答案为:12.17.解:∵两个多项式的和是a2+3a﹣1,其中一个多项式是a﹣2,∴另一个多项式是:a2+3a﹣1﹣(a﹣2)=a2+2a+1.故答案为:a2+2a+1.18.解:设进价为x元,则根据题意,得x(1+20%)(1﹣20%)=96,解得x=100,∵100﹣96=4,∴这次生意亏本4元,表示为﹣4元.故答案为:﹣4元.19.解:∵圆柱的底面半径为rcm,高是半径的3倍多lcm,∴高为(3r+1)cm,∴将玻璃杯水平放置时,水面形成的长方形的周长是2(2r+3r+1)=10r+2(cm),故答案为:(10r+2)cm.20.解:∵abc>0,∴a、b、c均为正或一正两负.①当a、b、c均为正时,原式=1+1+1+1=4;②当a、b、c一正两负时,原式=1﹣1﹣1+1=0,;故答案为:4或0.三、解答题21.解:(1)﹣32﹣(﹣﹣)÷=﹣9﹣(﹣﹣)×12=﹣9﹣6+10+7=2;(2)﹣﹣3.8﹣(﹣4.8)+1+1.6=﹣﹣3.8+4.8+1+1.6=()+(﹣3.8+4.8)+1.6=1+1+1.6=3.6.22.解:(1)去分母得:6﹣4﹣2x=3x,移项合并得:5x=2,解得:x=0.4;(2)方程整理得:﹣2x﹣4=2.5,去分母得:5x﹣15﹣4x﹣8=5,解得:x=28.23.解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.24.解:(1)如图所示:(2)2×(7+7+4)=36(cm2)答:该几何体的表面积(包含底面)为36cm2.故答案为:36cm2.25.解:(1)设旅游团成人的数量是x人,则儿童的数量是(26﹣x)人,由题意得:120x+80(26﹣x)=2640解得x=1426﹣x=26﹣14=12答:这个旅游团成人的数量是14人,儿童的数量是12人;(2)2640﹣14÷2×80=2080(元)答:共需门票2080元.26.解:(1)根据题意得:=﹣;(2)原式=1﹣+﹣+…+﹣=1﹣=;(3)方程整理得:x(1﹣+﹣+…+﹣)=2018,即x=2018,解得:x=2019.故答案为:(1)﹣.27.解:(1)﹣3+4=1.故点N所对应的数是1;(2)当点P在点M和点N之间时,点P到点M和点N的距离和的最小,最小值为PM+PN=4.(3)①设P点表示的数是x,(a)当点P在点M的左边,∵PM+PN=6,∴1﹣x﹣3﹣x=6,解得x=﹣4,∴点P表示的数是﹣4,(b)当点P在点N的右边,同理可得x﹣1+x+3=6,解得x=2,∴点P表示的数是2,综合以上可得点P表示的数是2或﹣4;(3)点P、Q同时出发向右运动,设运动时间为t秒,当P对应的数是2时,∵点P运动速度大于点Q的运动速度,∴只存在一种情况,∴2﹣1+3t=t+4,解得t=,故分为两种情况讨论:当P对应的数是﹣4时,(a)未追上时:(5+t)﹣3t=4,解得:t=;(b)追上且超过时:3t﹣(5+t)=4,解得:t=.答:经过秒或秒或秒后,P、Q两点相距4个单位长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟训练试题
文科数学(四)
本试卷分第I 卷和第Ⅱ卷两部分,共5页,满分为150分,考试用时120分钟,考试结束后将答题卡交回.
注意事项:
1.答卷前,考生务必用0.5毫米规格黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上.
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.
3.第Ⅱ卷必须用0.5毫米规格黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液、胶带纸、修正带和其他笔.
4.不按以上要求作答以及将答案写在试题卷上的,答案无效.
第I 卷(选择题,共50分)
一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中。
只有一项是符合题目要求的.
1.若非空集合{}{}3412,212A x a x a B x x =-≤≤-=-≤≤,则能使A B A ⋂=成立的实数a 的集合是 A. {}36a a ≤≤ B. {}16a a ≤≤ C. {}6a a ≤ D. ∅
2.设复数13,z i z =-的共轭复数是z z z
,则=
A. B. 5 C. 45 D.1
3.若02x π
<<,则tan 1x x >是sin 1x x >的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.若实数,x y满足不等式组
5,
230,2
10,
y
x y z x
y
x
y
≤
⎧
⎪
-+≤=+
⎨
⎪+-≥
⎩
则的最大值是
A.15
B.14
C.11
D.10
5.设α是空间中的一个平面,,,
l m n是三条不同的直线,则有下列命题:
①若,,,
m n l m l n l
ααα
⊂⊂⊥⊥⊥
,则;
②若//,//,,
l m m n n
λαα
⊥⊥
则;
③若//,,,//
l m m n l n
αα
⊥⊥则;
④若,,//
m n l n l m
αα
⊂⊥⊥,则.
则上述命题中正确的是
A.①②
B.②③
C.③④
D.①④
6.按1,3,6,10,15,…的规律给出2014个数,如图是计算这2014个数的和的程序框图,那么框图中判断框①处可以填入
A. 2014
i≥ B. 2014
i> C. 2014
i≤ D. 2014
i<
7.春节期间,“厉行节约,反对浪费”之风悄然吹开.某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下列联表:
()()()()()22n ad bc k a b c d a c b d -=++++.参照附表,得到的正确结论是 A.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”
8.二次函数()20y kx x =>的图象在点()
2,n n a a 处的切线与x 轴交点的横坐标为1,n a n +为正整数,113
a =,若数列{}n a 的前n 项和为n S ,则5S = A. 531123⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
B. 511133⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
C. 521132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
D. 531122⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
9.如图,在平面直角坐标系xOy 中,椭圆2
212
x y +=的左、右焦点分别为12,F F .设A,B 是椭圆上位于x 轴上方的两点,且
直线1AF 与直线2BF 平行,2AF 与1BF 交于点P ,且
1222AF BF =+
,则直线1AF 的斜率是 A. 3 B. 2 C. 22 D.1
10.已知定义域为R 的奇函数()f x 的导函数为()0f x x '≠,当时,()()0f x f x x '+
>,若()1111,22,ln ln ,,2222a f b f c f a b c ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭,则的大小关系正确的是 A. a c b <<
B. b c a <<
C. a b c <<
D. c a b << 第II 卷(非选择题 共100分)
注意事项:
将第II卷答案用0.5mm规格的黑色签字笔答在答题卡的相应位置上.
二、填空题:本大题共5小题,每小题5分,共25分.
11. 已知双曲线
22
22
1
x y
a b
-=的渐近线方程为3
y x
=±,则它的离心率为__________.
12.如图所示是一个几何体的三视图,则这个几何体外接球的表面积为_________.
13.设,a b为单位向量,若向量c满足()
c a b a b c
-+=-,则的最大值是_________.
14.已知函数()
2
2014
1
41,01,
2
log, 1.
x x
f x
x x
⎧⎛⎫
--+≤≤
⎪ ⎪
=⎨⎝⎭
⎪>
⎩
,若()()(),,,
f a f b f c a b c
==互不相等,则a b c
++的取值范围是__________.
15.定义在R上的函数()
f x满足条件:存在常数()
0,
M f x M x
>≤
使对一切实数x恒成立,则称函数()
f x为“V型函数”.现给出以下函数,其中是“V型函数”的是______.
①()2
1
x
f x
x x
=
++
;②()
()
()()
20,
10;
x
x x
f x
f x x
⎧⋅≤
⎪
=⎨
->
⎪⎩
③()
f x是定义域为R的奇函数,且
对任意的()()
121212
,2
x x f x f x x x
-≤-
,都有成立.
三、解答题:本大题共6小题,满分75分.解答须写出文字说明、证明过程或演算步骤.
16. (本小题满分12分)
已知函数()()
2
2cos23sin cos
f x x x x x R
=+∈.
(I )当0,2x π⎡⎤∈⎢⎥⎣⎦
时,求函数()f x 的单调递增区间; (II )设ABC ∆的内角A,B,C 的对应边分别为(),,3,2a b c c f C ==,且,若向量()1,sin m A =与向量()2,sin n B =共线,求,a b 的值.
17. (本小题满分12分)
某校从高一年级期末考试的学生中抽出60名学生,其成绩
(均为整数)的频率分布直方图如图所示.
(I )估计这次考试的平均分;
(II )假设在[]90,100段的学生的成绩都不相同,且都在94
分以上,现用简单随机抽样方法,从95,96,97,98,99,
100这个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.
(思路分析:可以利用组中值估算抽样学生的平均分)
18. (本小题满分12分)
如图,111111ABCDEF A B C D E F -是底面半径为1的圆柱的内接
正六棱柱(底面是正六边形,侧棱垂直于底面),过FB 作圆柱的截面交下底面于111,=13C E FC 已知.
(I )证明四边形11BFE C 是平行四边形;
(II )证明1FB CB ⊥;
(III )求三棱锥1A A BF -的体积
19. (本小题满分12分)
已知等差数列{}n a 的公差0d ≠,首项114133,,a a a a =,且成等比数列,设数列{}n a 的前n 项和为()n S n N +∈.
(I )求n n a S 和;
(II )若()(){}3,13,n n n n n n n n
a S a
b b S a S ≤⎧⎪=⎨>⎪⎩数列的前n 项和n T ,求证1132460n T ≤<. 20. (本小题满分13分)
已知A,B 为抛物线2
:4C y x =上的两个动点,点A 在第一象限,点B 在第四象限,12,l l 分别过点A,B 且与抛物线C 相切,P 为12,l l 的交点.
(I )若直线AB 过抛物线C 的焦点F ,求证动点P 在一条定直线上,并求此直线方程; (II )设C,D 为直线12,l l 与直线x=4的交点,求PCD ∆面积的最小值.
21. (本小题满分14分)
已知函数()()2ln 1,2ln 1f x x x x g x x x =-+=--. (I )()()()()4,h x f x g x h x =-试求的单调区间;
(II )若1x ≥时,恒有()()af x g x a ≤,求的取值范围.。