2017年春季学期新版苏科版八年级数学下册第9章 第4节 矩形、菱形、正方形(5)

合集下载

【最新】苏科版八年级数学下册第九章《9.4 矩形、菱形、正方形(第2课时)》公开课课件.ppt

【最新】苏科版八年级数学下册第九章《9.4 矩形、菱形、正方形(第2课时)》公开课课件.ppt
2矩形的四个角都是直角 3矩形的对角线相等 4矩形既是轴对称图形又是中心对称图形 矩形的判定:1有一个角是直角是直角的平行四边形是 矩形 2对角线相等的平行四边形是矩形 3三个角是直角的四边形是矩形
如图,直线 l1∥l2 、A、C是直线l1上任 意两点,AB⊥l2 ,CD⊥ l2 ,垂足分别为B、 D,线段AB、CD相等吗?为什么?
A
D
B
C
已知:在四边形ABCD中,
∠A=∠B=∠C=90°
求证证明::四∵边∠A形=A∠BBC=D9是0°矩形。 A

D
∴ ∠A+∠B=180°
∴AD∥BC


同理可证:AB∥CD B
C
∴四边形ABCD是平行四边形
又∵ ∠A=90° ∴四边形ABCD是矩形
矩形的判定方法:
有三个角是直角的四边形是矩形 。
求证:四边形ABCD是矩形。 A
D
证明:∵ AB=CD, BC=BC, AC=BD
∴ △ABC≌ △DCB(SSS) B
C
∴ ∠ABC=∠DCB
∵ AB//CD ∴ ∠ABC+∠DCB=180°
∴ ∠ABC=∠DCB=90° 又∵ 四边形ABCD是平行四边形
∴四边形ABCD是矩形
矩形的判定方法:
对角线相等的平行四边形是矩形 。
课堂小结
1.矩形的判定定理 (1)对角线相等的平行四边形是矩形。 (2)有三个角是直角的四边形是矩形。 2.矩形的性质在证明中的应用。 (对角线相等和四个角都是直角) 3.线段和角转移的方法。
通过本节课的学习,你有哪 些收获?
矩形的定义:有一个角是直角的平行四边形是矩形 矩形的性质:1矩形具有平行四边形的一切性质

新苏科版八年级数学下册第九章《9-4 矩形、菱形、正方形(1) 》公开课课件

新苏科版八年级数学下册第九章《9-4 矩形、菱形、正方形(1) 》公开课课件
苏教版数学教材八年级下
§9.4 矩形、菱形、正方形 ——矩形的判定
温故而知新
矩形的定义
有一个角是直角的平行四边形叫做矩形 一个角是直角
平行四边形
矩形

矩形的对边平行且相等
矩 形 的 性 质

矩形的四个角都是直角
对角线
矩形的 两条对角线相等且互相平分
矩形判定1:有一个角是直角的平行四边形叫做矩形
八年级 数学
如果两条直线互相平行,那么 其中一条直线上任意两点到另 一条直线的距离相等,这个距 离称为平行线之间的距离. A C . . l1
l2
B D
学科网
平行线之间的距离处处相等.
两个正方形如图所示装置,边长分别 为m、n,求阴影部分的面积
如图:大、小两个正方形连在一起,且大正 方形面积为15,求阴影面积.
A D O B C
ABCD AC = BD
ABCD 是矩形
推论:对角线互相平分且相等的四边形是矩形
AO CO, BO DO AC BD
四边形ABCD 是矩形
学科网
• 矩形判定2:对角线相等的平行四边形是矩形
∵平行四边形ABCD,AC=BD ∴平行四边形ABCD是矩形
A O B C D
例1 如图,在△ABC中, ∠ACB=90o,点D是 AB的中点,DE、DF分别是∠BDC、∠ADC 的平分线.四边形FDEC是矩形吗?为什么?
C
F A D
E
B
如图:直线a与直线b平行.
A .
B
C .
D

l1 l2
(1)在直线L1上任意取两点A、C,分 别过点A、C作直线L2的垂线,垂足 分别为B、D; (2)分别度量点A、A’到直线b的距离, 你发现了什么? AB=CD

苏科版八年级下册数学课件:第9章中心对称图形复习

苏科版八年级下册数学课件:第9章中心对称图形复习
初中数学八年级上册 (苏科版)
中心对称图形(复习)
1.平行四边形与矩形、菱形、正方形的关系:
矩形
平行四边形
一组邻边相等、 一个角是直角
正方形
菱形
2.平行四边形与矩形、菱形、正方形的性质:


对角线
对称性
平行四边形 对边平行且相等 对角相等
互相平分 中心对称图形
矩形
对边平行且相等 四个角都是直角 互相平分且相等
1.已知:如图,四边形ABDE、ACFG是正方 形,EC、BG交于点M. (1) 求证:BG=CE (2)试猜想BG与CE的关系.
E
A
G
D
M
F
B
例题讲授 2.已知:如图,E为正方形ABCD的边BC的中
点,AE平分∠BAF.
求证:AF=BC+CF.
D
FC
D
FC
G
G
E
E
A
B
A
B
例题讲授
4.如图,在矩形ABCD中,AB=4cm, AD=12cm,点P在AD边上以每秒1cm的速度 从点A向点D运动,点Q在BC边上,以每秒4cm 的速度从点C出发,在CB间往返运动,两个点 同时出发,当点P到达点D时停止(同时点Q也 停止),在这段时间内,t为何值时,ABQP是 矩形?
4.平行四边形ABCD周长为16cm,AC、BD相 交于点O, OE⊥AC交AC于E,则△DCE的周 长是_8_c_m___
A
ED
O
B
C
5.A、B、C、D在同一平面内,从①AB∥CD;
② AB=CD;③BC∥AD;④BC=AD,这四个
条件中任意选两个,能使四边形ABCD是平行
四边形的选法有( B )种.

苏科版八年级数学下册第九章《9.4 矩形、菱形、正方形(2)》课件

苏科版八年级数学下册第九章《9.4 矩形、菱形、正方形(2)》课件

探索一:有3个角是直角的四边形是矩形吗?
A
D
B
C
判定1:有3个角是直角的四边形是矩形.
探索二:如图,平行四边形ABCD的对角
线AC与BD相等. 平行四边形ABCD是
矩形吗?
A
D
B
C
判定2:对角线相等的平行四边形是矩形.
矩形的判定方法
1.有一个角是直角的平行四边形是矩形. 2.对角线相等的平行四边形是矩形. 3.有三个角是直角的四边形是矩形.
矩形.
()
例1 已知:如图,在△ABC中,∠ACB=90°, D是AB的中点,DE、DF分别是△BDC、△ADC的 角平分线.求证:四边形DECF是矩形.
C
F
E
A
D
B
如图,直线 l1∥l2 、A、C是直线l1上任意两点,
AB⊥l2 ,CD⊥ l2 ,垂足分别为B、D,线段AB、
CD相等吗?为什么?
对于平行四边形,满足哪些条件就可以得到矩形? 对于任意四边形,满足哪些条件就可以得到矩形?
判断:
(1)有一个角是直角的四边形是矩形.( )
(2)四个角都相等的四边形是矩形. ( )
(3)对角线相等的四边形是矩形. ( )
(4)对角线相等且互相平分的四边形是矩形. ( )
(5)两组对边分别相等并且有一个角是直角的四边形是
初中数学 八年级(下册)
9.4 矩形、菱形、正方形(2)
复习提问
平行四 边形
矩形


对角线 对称性
对边平行
对角线互 中心对
且相等 对角相等 相平分
称图形
对边平行 四个角 对角线互相 中心对称图形 且相等 为直角 平分且相等 轴对称图形

苏科版八年级下数学9.4矩形、菱形、正方形(1)参考教案

苏科版八年级下数学9.4矩形、菱形、正方形(1)参考教案

9.4 矩形、菱形、正方形(1)学习目标:1.掌握矩形的定义、性质,并能加以应用。

2.用中心对称的观点对矩形性质进行探究、理解,在活动中发展学生的探究意识和有条理的表达能力。

学习重点:掌握矩形的定义、性质,并能灵活于解题。

知识要点:1.矩形定义:有一个角是直角的平行四边形叫做矩形。

2.矩形的性质:① 矩形具有平行四边形的所有性质;② 矩形的四个角都是直角;③ 矩形的对角线相等。

教学过程:一、新课导入生活中我们随处可见许许多多的长方形图片,如邮政明信片、国旗、门框、纸张、电脑显示器、黑板等,学习长方形可以帮助我们更好地认识周围的世界,解决日常生活中很多的实际问题……二、探索新知1. 试一试:如图所示的活动木框,将其直立在地面上推动某一个顶点,观察平行四边形的形状随内角的变化情况,你发现了什么?图 1角的大小改变了,但不管如何,仍然保持平行四边形的形状;当平行四边形的内角变化为直角时,我们称它为——矩形2.矩形的定义:有一个角是直角的平行四边形是矩形3.矩形性质:1.平行四边形所具有的性质,矩形都具有;ODCBA2.矩形既是中心对称图形,矩形又是轴对称图形; 矩形的四个角都是直角; 矩形的对角线相等。

三、典型例题例1.已知:如图,矩形ABCD 的两条对角线相 交于点O ,且 AC =2AB .求证:△AOB 是等边三角形.证明:∵四边形ABCD 是矩形 ∴AC=BD (矩形的对角线相等).AO=CO=AC/2,BO=DO=BD/2(矩形的对角线互相平分). ∵AC=2AB ,即AB=AC/2∴AO=BO=AB. ∴ΔAOB 是等边三角形.例2.如图,矩形ABCD 的对角线AC 、BD 相交于点O , AB=4,∠AOB=60°,求对角线AC 的长解:∵四边形ABCD 是矩形, ∴AC 与BD 相等且互相平分. ∴OA=OD , 又∵∠AOB=60°, ∴△AOB 是等边三角形 ∴OA=AB=4(cm )∴矩形的对角线AC=BD=2OA=8 ( cm ) .四、课堂小结随堂演练:1.矩形具有而一般平行四边形不具有的性质是( )A .对角线相等B .对边相等C .对角相等D .对角线互相平分 2.下面说法中正确的是 ( )ODCBAA .平行四边形的两条对角线的长度相等B .有一个角是直角的四边形是矩形C .矩形的两条对角线互相垂直D .矩形的对角线相等且互相平分3.矩形既是轴对称图形,又是中心对称图形:每一个矩形最少有 条对称轴;矩形对称中心是 的交点.4.如图,在矩形ABCD 中,点E 为边AB 中点,过点E 作直线EF 交对边CD 于点F ,若S AEFD :S BCFE =2:1,则DF : FC=( )A .5:1B .5:2C .4:1D .3:15.矩形ABCD 的对角线AC 、BD 相交于点O ,∠BOC =2 ∠AOB,如果对角线AC=10cm ,则AD=______cm.6.如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,求AB 的长。

新苏科版版八年级数学初二下册9.4 矩形、菱形、正方形 4、5课时PPT课件

新苏科版版八年级数学初二下册9.4  矩形、菱形、正方形 4、5课时PPT课件

探索一:四条边都相等的四边形是菱形吗?
A D
B
C
判定1:四边相等的四边形是菱形.
探索二:如图,平行四边形ABCD的对角线 AC与BD垂直,垂足为O. 那么,平行四边形 ABCD是菱形吗?
A
O B C
D
判定2:对角线互相垂直的平行四边形是菱形.
菱形的判定方法
1.有一组邻边相等的平行四边形是菱形.
别相交于点E、F.求证:四边形AFCE是菱形.
A
1 E D
O B F
2
C
例1
已知:如图,在四边形ABCD中,
AD∥BC,对角线AC的垂直平分线与边AD、BC分
别相交于点E、F.求证:四边形AFCE是菱形.
A
1 E D
O B F
2
C
课堂练习
1.如图,四边形ABCD的对角线相交于点O, △AOB、 △COB、△COD、△AOD是4个全等的三角形。四 边形ABCD是菱形吗?为什么?
平行四边形、矩形、菱形、正方形的关系
平行四边形
正 方 形
矩形
菱形
正方形同时具备矩形和菱形的性质.
平行四边形、矩形、菱形、正方形的性质 性质 图形 平行四 矩形 边形 菱形 正方形
对边平行且相等 四边相等 对角相等 四个角都是直角 对角线互相平分 对角线互相垂直 对角线相等




√ √ √

√ √ √ √ √
9.4
矩形、菱形、正方形(4)
复习提问
边 角 对角线 对称性
平行四 边形
菱形
对边平行 对角线互 中心对 对角相等 相平分 且相等 称图形 对边平行 对角线互相 中心对称图形 且四条边 对角相等 垂直平分 轴对称图形 都相等 菱形的面积等于两对角线积的一半.

【最新】苏科版八年级数学下册第九章《9.4 矩形、菱形、正方形(第1课时)》公开课课件.ppt

【最新】苏科版八年级数学下册第九章《9.4 矩形、菱形、正方形(第1课时)》公开课课件.ppt

木门
纸张
电脑显示屏
想一想
矩形是特殊的平行四边形。
矩形是中心对称图形吗?是轴对称图形吗?
矩形是中心对称图形,对称中心是对角线的交点。
矩形是轴对称图形,一共有2条对称轴。
A
D
O
矩形具有平行四边形
B
C 的一切性质
问题探究
1.画一个矩形ABCD。
2.从边、角、对角线三方面进行考 虑,你能发现矩形有什么特有的性 质吗?请以小组的形式讨论总结。
证明:∵四边形ABCD是矩形
A
D
∴AC=BD(矩形的对角线相等).
AO=CO=AC/2,BO=DO=BD/2(矩形的 对角线互相平分).
O
∵AC=2AB,即AB=AC/2
B
C
∴AO=BO=AB.
∴ΔAOB是等边三角形.
例 2 如图,矩形ABCD的两条对角线AC,BD
相交于点O,∠AOD=120°,AB=4. 求矩形对
(A)2 (B)4 (C)6 (D)8
A
D

B
C
7.如图,在矩形ABCD中,AB=3, BC = 4 , BE⊥AC于E.试求出AC、BE的长.
解:在矩形ABCD中,∠ABC = 90°,
AC = AB2 BC2
A
D
E
= 32 42
B
C
= 25 = 5(勾股定理).
又∵
S△ABC =
1 2
AB·BC=
利用矩形性质你在矩形中还发现了哪些基本图形?
A
D
O
B
C
A
D
O
B
C
◆ 两对全等的等腰三角形.
A
D

新苏科版八年级数学下册第九章《9.4正方形》公开课课件

新苏科版八年级数学下册第九章《9.4正方形》公开课课件

下面大家自己完成证明
5:如图1,正方形ABCD中,对角线的交点为O.
(1)E是AC上的一点,过点A作AG⊥BE于G,AG、BD交 于点F.求证:OE=OF. (△AOF≌△BOE (AAS) ) (2)若点E在AC上的延长线上(如图2),过点A做 AG⊥BE交EB的延长线于G,AG的延长线交BD于点F,其 它条件不变,OE=OF还成立吗?若成立,请给予证明; 若不成立,请说明理由. (△AOF≌△BOE (AAS) )
3.满足下列条件的四边形是不是正方形?为 什么?
(1) 对角线互相垂直且相等的平行四边形;
(2) 对角线互相垂直的矩形; (3) 对角线相等的菱形;
(4) 对角线互相垂直平分且相等的四边形
已知:正方形ABCD中,点E、F、G 、H分别在 AB 、BC 、CD 、DA上,且AE=BF=CG=DH,试判 断四边形EFGH是正方形吗?为什么?
∵CE⊥AF ∴∠ADC=∠AEM=90° 又∵∠CMD=∠AME ∴∠1=∠2 又∵CD=AD,∠ADF=∠MDC ∴Rt△CDM≌Rt△ADF (AAS) ∴DM=DF∴∠DMF=∠DFM
∵ ∠MDF= Байду номын сангаас0°∴∠MFD=45°
4.求证:矩形的四个角的平分线 所围成的四边形是正方形.
A F B E H G C D
3 2 1
6、如图(5),在AB上取一点C,以AC、 BC为正方形的一边在同一侧作正方形 AEDC和BCFG连结AF、BD延长BD交 AF于H。 求证:(1) △ACF≌△DCB (2) BH⊥AF
证明:
5、已知:如图(4)在正方形ABCD中,F为CD 延长线上一点,CE⊥AF于E,交AD于M, 求证:∠ 证明: MFD=45°

苏科版数学八年级下册第九章 9.4 矩形、菱形、正方形(解答题)专练(详细答案)

苏科版数学八年级下册第九章 9.4 矩形、菱形、正方形(解答题)专练(详细答案)

9.4 矩形、菱形、正方形(解答题)1.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD 的延长线于点F,求证:DF=BE.3.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.4.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.6.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.7.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE 的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.8.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.9.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.10.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.11.如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E 关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.12.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.(直接填写结果)13.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)14.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.15.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.16.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.17.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.18.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.20.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.21.如图,将平行四边形ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.22.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.23.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.24.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.25.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;=2S△ECF,求BE.(2)若AB=2,S△ABE26.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.27.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由28.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知EO=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.29.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.30.如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.答案与解析1.(2021•安顺)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.2.(2021•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【分析】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.3.(2021•荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.4.(2021•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE ≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.5.(2021•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.6.(2021•枣庄)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【分析】(1)根据锐角三角函数求出∠FPG,最后求出∠EPF.(2)先判断出Rt△PME≌Rt△PNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出AP最大和最小值.【解答】解:(1)过点P作PG⊥EF于点G,如图1所示.∵PE=PF=6,EF=6,∴FG=EG=3,∠FPG=∠EPG=∠EPF.在Rt△FPG中,sin∠FPG===,∴∠FPG=60°,∴∠EPF=120°.(2)过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.在Rt△PME和Rt△PNF中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF,∴ME=NF.又AP=10,∠PAM=∠DAB=30°,∴AM=AN=APcos30°=10×=5,∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=10.(3)如图,当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P′,P之间运动,∴P′O=PO=3,AO=9,∴AP的最大值为12,AP的最小值为6,【点评】此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线.7.(2021•三明)如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.【分析】(1)利用平行四边形的判定证明即可;(2)利用菱形的判定证明即可.【解答】证明:(1)∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)∵∠ACB=90°,∠A=30°,E为AB的中点,∴CB=AB,CE=AB.∴CB=CE.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定与性质,利用平行四边形的判定以及菱形的判定是解题关键.8.(2021•抚顺)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点评】本题考查了等腰三角形的性质,平行四边形的判定,菱形的判定的应用,能得出四边形ABCD是平行四边形是解此题的关键.9.(2021•沈阳)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【分析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.10.(2021•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明△AED ≌△ABD,推出DF⊥AC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED.∵AF∥CD,∴四边形ADCF是平行四边形.由题意知,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.11.(2021•德阳)如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.【分析】(1)根据直角三角形的性质得到CE=AB=EA,根据轴对称的性质得到AE=AF,CE=CF,得到CE=EA=AF=CF,根据菱形的判定定理证明结论;(2)根据菱形的性质得到OA=OC,OE=OF,根据三角形中位线定理求出OE,得到答案.【解答】(1)证明:∵∠ACB=90°,点E是AB边的中点,∴CE=AB=EA,∵点F是点E关于AC所在直线的对称点,∴AE=AF,CE=CF,∴CE=EA=AF=CF,∴四边形CFAE为菱形;(2)解:∵四边形CFAE为菱形;∴OA=OC,OE=OF,∴OE=BC=5,∴OF=5.【点评】本题考查的是菱形的判定和性质、轴对称的性质,掌握四条边相等的四边形是菱形、菱形的对角线垂直且互相平分是解题的关键.12.(2021•梅州)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是菱形;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ABC=120°.(直接填写结果)【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明.(2)根据菱形的性质首先证明△AOB是含有30°的直角三角形,由此即可解决问题.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为,120.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,想到利用特殊三角形解决问题,属于中考常考题型.13.(2021•贺州)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.14.(2021•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.15.(2021•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt △CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.16.(2021•遵义)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD 的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.17.(2021•广州)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.18.(2021•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(2021•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ ,由折叠性质得:△ANM ≌△ADM ,∴∠DMA=∠AMQ ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ ,∴MQ=AQ ,设NQ=x ,则AQ=MQ=1+x ,∵∠ANM=90°,∴∠ANQ=90°,在Rt △ANQ 中,由勾股定理得:AQ 2=AN 2+NQ 2,∴(x +1)2=32+x 2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S △NAB =S △NAQ =×AN•NQ=××3×4=;(3)过点A 作AH ⊥BF 于点H ,如图2所示:∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠HBA=∠BFC ,∵∠AHB=∠BCF=90°,∴△ABH ∽△BFC , ∴=, ∵AH ≤AN=3,AB=4,∴当点N 、H 重合(即AH=AN )时,AH 最大,BH 最小,CF 最小,DF 最大,此时点M 、F 重合,B 、N 、M 三点共线,如图3所示:由折叠性质得:AD=AH ,∵AD=BC ,∴AH=BC ,在△ABH 和△BFC 中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.20.(2021•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21.(2021•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.22.(2021•兰州)阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【分析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.【解答】解:(1)是平行四边形,证明:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形,(3)当AC⊥BD时,四边形EFGH为矩形;理由如下:同(2)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点评】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.23.(2021•台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【分析】(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH 和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.【解答】证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.。

八年级数学下册第9章中心对称图形—平行四边形9.4矩形、菱形、正方形学案(无答案)苏科版(new)

八年级数学下册第9章中心对称图形—平行四边形9.4矩形、菱形、正方形学案(无答案)苏科版(new)

矩形【学习目标】1.掌握矩形的性质和判定,会证明一个四边形是矩形,并能够运用矩形的性质进行有关线段或角的计算或证明.2.能够结合三角形的知识,解决有关矩形与等腰三角形相、直角三角形相关的问题.3.探索与平行四边形有关的面积问题、最值问题、动点类问题等.【知识点】1.有一个角是的平行四边形叫做矩形.2.矩形的性质:矩形的四个角;矩形的对角线.3.矩形的判定:有个角是直角的四边形是矩形;对角线的平行四边形是矩形.【例题精讲】一、矩形与特殊等腰三角形问题例1.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于E,若∠EAO=15°,则∠BOE的度数为A.85° B.80°C.75° D.70°例2.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为A.6 B.5C.23 D.33例3.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,G为MN的中点,GH⊥MN交CD于点H,且DM=a,GH=b,则CN的值为(用含a、b的代数式表示)A.2a+b B.a+2bC.a+b D.2a+2b例4.如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F,G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,则AB=.二、矩形与面积问题例5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为A.12 B.10C.8 D.6例6.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上不与A、D重合的一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为.例7.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是平方厘米.三、矩形与勾股定理例8.如图,在矩形ABCD中,AB=8,AD=6,P、Q分别是AB和CD上的任意一点,且AP=CQ,线段EF是PQ的垂直平分线,交BC于F,交PQ于E,设AP=x,BF=y,则y与x的函数关系式为.例9.如图,P是矩形ABCD内一点,若PA=3,PB=4,PC=5,则PD=.例10.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1 恰好在∠BCD的平分线上时,则C A1的长为.例11.如图,在矩形ABCD中,AB=6,BC=8,AC与BD相交于O,E为DC的一点,过点O作OF⊥OE交BC于F,记22d=+,则关于d的正DE BF确的结论是A.d=5 B.d<5C.d≤5 D.d≥5例12.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=8,BC=3,运动过程中,点D到点O的最大距离为.例13.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C 重合),PE⊥AB于E,PF⊥AC于F,M为EF终点,设AM的长为x,则x的取值范围是A.4≥x>2.4B.4≥x≥2。

苏科版八年级数学下册课件:9.4矩形、菱形、正方形(5)正方形2(共35张PPT)

苏科版八年级数学下册课件:9.4矩形、菱形、正方形(5)正方形2(共35张PPT)
直角三角形.
7.如图,E是正方形ABCD的边BC延长线上的有
一点,且CE=AC.求∠E的度数.
A
D
B
C
E
8.已知:如图,四边形ABCD是正方形,以对角线
AC为一边作菱形AEFC.求∠FAB的度数.
DC
F
A
BE
9.已知:如图, E、F是正方形ABCD的对角 线AC 上的两点,且AE=CF.
求证:四边形BEDF是菱形.
(2)若正方形A’B’C’D’绕点O任意旋转某个角度后 ,OE=OF吗?
A O (A')
D
F
D'
B
E
C
A O (A')
B
E
B'
D
F D'
C
B'
C'
C'
练习 :如图,将n个边长都为1cm的正方形按如图
所示摆放,点A1、A2、…、An分别是正方形的中心, 则n个这样的正方形重叠部分的面积和为( )
A.
(1)A、B、C的对应点分别是什么?
(2)△ABC可通过怎样的变换得到△ADC?
A
(3)从对称性看,四边形
ABCD是什么图形? B
O
D
正方形实际是等腰直角三角形
绕其底边上的中点旋转180°
而形成的中心对称图形.
C
四边形ABCD有哪些特点?
四边形ABCD是中心对称图形,又是轴对称图形;
是平行四边形
A
A
D
F
OE
B
C
平行四边形
矩正菱 形方形

挑战第二关 具备什么条件的平行四边形是正方形?
正方形的判别方法:

沪科版初中数学初二数学下册《矩形菱形正方形》教案及教学反思

沪科版初中数学初二数学下册《矩形菱形正方形》教案及教学反思

沪科版初中数学初二数学下册《矩形菱形正方形》教案及教学反思一、教学目标1.掌握矩形、菱形、正方形的概念及特征。

2.能够辨认并绘制矩形、菱形、正方形。

3.能够求解矩形、菱形、正方形的周长和面积。

4.能够利用矩形、菱形、正方形进行简单的数学推理。

二、教学内容1.矩形、菱形、正方形的定义及特征。

2.矩形、菱形、正方形的绘制方法。

3.矩形、菱形、正方形的周长和面积计算。

4.利用矩形、菱形、正方形进行简单的数学推理。

三、教学重点1.掌握矩形、菱形、正方形的概念及特征。

2.能够求解矩形、菱形、正方形的周长和面积。

四、教学难点1.能够利用矩形、菱形、正方形进行简单的数学推理。

2.能够辨认并绘制矩形、菱形、正方形。

五、教学方法1.板书法2.讲解示范法3.互动探究法4.解决问题法六、教学过程1.引入新知识1.出示几张矩形、菱形、正方形图片,请同学们来辨认,并分别说出它们的特征。

2.通过让同学们互相辨认,引入矩形、菱形、正方形的定义及特征。

2.学习新知识1.让同学们分别绘制矩形、菱形、正方形,并检查绘制是否正确。

2.学习矩形、菱形、正方形的周长和面积计算方法,包括公式和计算步骤。

3.掌握新知识1.通过多个实例的联系,巩固同学们掌握矩形、菱形、正方形的概念及特征。

2.让同学们利用矩形、菱形、正方形进行简单的数学推理,巩固计算方法的掌握。

4.拓展应用1.利用矩形、菱形、正方形解决生活中的实际问题。

2.让同学们根据自己的想象绘制各种形状,并计算周长和面积,拓展应用知识。

七、教学反思本节课是初二数学下册中的一节重点课程,本次教学主要目标是帮助同学们掌握矩形、菱形、正方形的定义及特征,能够辨认并绘制这些图形,求解它们的周长和面积,以及能够利用它们进行简单的数学推理。

这次教学我主要采用了板书法、讲解示范法、互动探究法和解决问题法,通过多个实例和练习,提高了同学们的掌握能力。

在教学难点上,我采用了解决问题法和互动探究法,让同学们自己去想去发现,提高了他们的思维能力和应用能力。

苏科版数学八年级下册第九章 9.4 矩形、菱形、正方形(选择、填空题)专练(详细答案)

苏科版数学八年级下册第九章 9.4 矩形、菱形、正方形(选择、填空题)专练(详细答案)

9.4 矩形、菱形、正方形(选择、填空题)一.选择题1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.43.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)4.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A .4.8B .5C .6D .7.27.如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=,EF=2,∠H=120°,则DN 的长为( ) A .B .C .﹣D .2﹣8.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个9.如图,在矩形ABCD 中,AD=6,AE ⊥BD ,垂足为E ,ED=3BE ,点P 、Q 分别在BD ,AD 上,则AP +PQ 的最小值为( ) A .2B .C .2D .310.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于( )A .1:B .1:2C .2:3D .4:911.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE :EC=2:1,则线段CH 的长是( ) A .3B .4C .5D .612.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或613.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对14.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.7515.如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G 分别在AB、BC、FD上.若BF=,则小正方形的周长为()A.B.C.D.16.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:=13S ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH,其中结论正确的有()△DHCA.1个 B.2个 C.3个 D.4个二.填空题17.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.18.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.19.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.21.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.22.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.23.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.24.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为.25.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.26.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2021B2021C2021的顶点B2021的坐标是.27.如图,在平面内,四边形ABCD和BEFG均为正方形,则AG:DF:CE=.28.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.29.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.30.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.答案与解析一.选择题1.(2021•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.(2021•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,=,∵S菱形ABCD∴,∴DH=,故选A.【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱=是解此题的关键.形ABCD3.(2021•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.4.(2021•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.5.(2021•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.6.(2021•宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2【分析】首先连接OP ,由矩形的两条边AB 、BC 的长分别为6和8,可求得OA=OD=5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =OA•PE +OD•PF 求得答案.【解答】解:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB•BC=48,OA=OC ,OB=OD ,AC=BD=10, ∴OA=OD=5,∴S △ACD =S 矩形ABCD =24, ∴S △AOD =S △ACD =12,∵S △AOD =S △AOP +S △DOP =OA•PE +OD•PF=×5×PE +×5×PF=(PE +PF )=12, 解得:PE +PF=4.8. 故选:A .【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.7.(2021•资阳)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣ D.2﹣【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证CG=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:延长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG 是梯形MCDN 的中位线,∴DN +CM=2PG=,∴DN=﹣; 故选:C .【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.8.(2021•眉山)如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②在△EOB 和△CMB 中,对应直角边不相等;③可证明∠CDE=∠DFE ;④可通过面积转化进行解答.【解答】解:①∵矩形ABCD 中,O 为AC 中点,∴OB=OC ,∵∠COB=60°,∴△OBC 是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,但BO≠BM,故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE =S△COF,∵S△COF =2S△CMF,∴S△AOE :S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE :S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.9.(2021•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2 D.3【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD 的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,∴AE=3,DE=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3,故选D.【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.10.(2021•南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.11.(2021•毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D 落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【分析】根据折叠可得DH=EH,在直角△CEH中,设CH=x,则DH=EH=9﹣x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.12.(2021•徐州)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6【分析】根据题意列方程,即可得到结论.【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(62+92+x2)﹣6×3,解得x=3,或x=6,故选D.【点评】本题考查了正方形的性质,图形的面积的计算,准确分识别图形是解题的关键.13.(2021•陕西)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON ≌△M′ON′.由此即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.14.(2021•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75【分析】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.【点评】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.15.(2021•呼和浩特)如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为()A.B.C.D.【分析】先利用勾股定理求出DF,再根据△BEF∽△CFD,得=求出EF即可解决问题.【解答】解:∵四边形ABCD是正方形,面积为24,∴BC=CD=2,∠B=∠C=90°,∵四边形EFGH是正方形,∴∠EFG=90°,∵∠EFB+∠DFC=90°,∠BEF+∠EFB=90°,∴∠BEF=∠DFC,∵∠EBF=∠C=90°,∴△BEF∽△CFD,∴=,∵BF=,CF=,DF==,∴=,∴EF=,∴正方形EFGH的周长为.故选C.【点评】本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,属于中考常考题型.16.(2021•昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:=13S ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH,其中结论正确的有()△DHCA.1个 B.2个 C.3个 D.4个【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;③同②证明△EHF≌△DHC即可;④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,=×HM×CD=3x2,S△EDH=×DH2=13x2,则S△DHC=13S△DHC,故④正确;∴3S△EDH故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.二.填空题(共14小题)17.(2021•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.18.(2021•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AD=6.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.19.(2021•盐城)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【分析】延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,由菱形的性质和已知条件得出∠MFD=30°,设MD=x,则DF=2x,FM=x,得出MG=x+1,由勾股定理得出(x+1)2+(x)2=(2﹣2x)2,解方程得出DF=0.6,AF=1.4,求出AH=AF=0.7,FH=,证明△DCB是等边三角形,得出BG⊥CD,由勾股定理求出BG=,设BE=y,则GE=2﹣y,由勾股定理得出()2+y2=(2﹣y)2,解方程求出y=0.25,得出AE、EH,再由勾股定理求出EF即可.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.【点评】本题考查了菱形的性质、翻折变换的性质、勾股定理、等边三角形的判定与性质等知识;本题综合性强,难度较大,运用勾股定理得出方程是解决问题的关键.20.(2021•哈尔滨)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根=BC•FG即可解决问题.据2•S△ABC【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.21.(2021•巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=15度.【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.22.(2021•包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=22.5度.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.23.(2021•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= 2a.【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.24.(2021•湖北襄阳)如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为.【分析】先根据ASA判定△AFO≌△BEO,并根据勾股定理求得BE的长,再判定△BFM∽△BEO,最后根据对应边成比例,列出比例式求解即可.【解答】解:∵正方形ABCD∴AO=BO,∠AOF=∠BOE=90°∵AM⊥BE,∠AFO=∠BFM∴∠FAO=∠EBO在△AFO和△BEO中∴△AFO≌△BEO(ASA)∴FO=EO∵正方形ABCD的边长为2,E是OC的中点∴FO=EO=1=BF,BO=2∴直角三角形BOE中,BE==由∠FBM=∠EBO,∠FMB=∠EOB,可得△BFM∽△BEO∴,即∴FM=故答案为:【点评】本题主要考查了正方形,解决问题的关键的掌握全等三角形和相似三角形的判定与性质.解题时注意:正方形的对角线将正方形分成四个全等的等腰直角三角形.25.(2021•南京)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.26.(2021•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2021B2021C2021的顶点B2021的坐标是(21008,0).【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2021的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2021÷8=252∴B2021的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2021的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.27.(2021•安徽自主招生)如图,在平面内,四边形ABCD和BEFG均为正方形,则AG:DF:CE=1::1.【分析】连接BD、BF,可证明△ABG∽△DBF,可求得AG:DF,连接CE,可证明△ABG≌△CBE,可求得AG=CE,可求得答案.【解答】解:连接BD、BF和CE,∵四边形ABCD和BEFG均为正方形,∴==,且∠ABD=∠GBF=45°,∴∠ABG+∠GBD=∠GBD+∠DBF,∴∠ABG=∠GBD,∴△ABG∽△DBF,∴,又∴AB=BC,BG=BE,∠ABC=∠GBE=90°,∴∠AGB+∠GBC=∠GBC+∠CBE,∴∠AGB=∠CBE,在△ABG和△CBE中∴△ABG≌△CBE(SAS),∴AG=CE,∴AG:CE=1:1,∴AG:DF:CE=1::1,故答案为:1::1.【点评】本题主要考查相似三角形和全等三角形的判定和性质,构造全等或相似三角形是解题的关键.28.(2021•湖北校级自主招生)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE 的最小值为.【分析】连接CM,先证明四边形CDME是矩形,得出DE=CM,再由三角形的面积关系求出CM的最小值,即可得出结果.【解答】解:连接CM,如图所示:∵MD⊥AC,ME⊥CB,∴∠MDC=∠MEC=90°,∵∠C=90°,∴四边形CDME是矩形,∴DE=CM,∵∠C=90°,BC=3,AC=4,∴AB===5,当CM⊥AB时,CM最短,此时△ABC的面积=AB•CM=BC•AC,∴CM的最小值==,∴线段DE的最小值为;故答案为:.【点评】本题考查了矩形的判定与性质、勾股定理、直角三角形面积的计算方法;熟练掌握矩形的判定与性质,并能进行推理论证与计算是解决问题的关键.29.(2021•丹东)如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为6.【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【解答】解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3=6,故答案为:6.【点评】本题主要考查了正方形的性质,角平分线的性质等,利用等角对等边是解答此题的关键.30.(2021•天津)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM。

八年级数学下册 9.4《矩形、菱形、正方形》矩形的性质、判定学案(新版)苏科版

八年级数学下册 9.4《矩形、菱形、正方形》矩形的性质、判定学案(新版)苏科版

八年级数学下册 9.4《矩形、菱形、正方形》矩形的性质、判定学案(新版)苏科版9、4矩形、菱形、正方形矩形的性质、判定一、概念:1、定义:有一个角是直角的平行四边形叫做矩形、(矩形也叫长方形)2、矩形的性质:(1)矩形是特殊的平行四边形,它具有平行四边形的一切性质(是中心对称图形,对角线的交点是它的对称中心;对边相等、对角相等、对角线互相平分、)(2)矩形的特殊性质:①矩形是轴对称图形;②矩形的四个角都是直角,对角线相等、3、矩形的判定:(1)有一个角是直角的平行四边形叫做矩形、(定义)(2)三个角是直角的四边形是矩形、(3)对角线相等的平行四边形是矩形、(归纳:证明四边形是矩形的方法有(1)三个角是直角(2)先证明是平行四边形,再证明有一个角是直角或者对角线相等)二、例题讲解例1、如图,矩形ABCD的对角线AC、BD相交于点O,AB=4 cm,∠AOB=60求对角线AC的长、例2、如图,矩形ABCD的两条对角线交于点O,且AC=2AB、求证:△AOB是等边三角形、例3、如图,在矩形ABCD中,点E在AD上,EC平分∠BED、(1)△BEC是否为等腰三角形?为什么?(2)若AB=1,∠ABE=45,求BC的长、例4、如图,矩形ABCD中,对角线AC、BD相交于点O,点E、F、G、H分别在OA、OB、OC、OD上,且AE=BF=CG=DH、探索四边形EFGH的形状并说明理由、例5、如图,四边形ABCD是平行四边形,CA垂直平分BE,试判断四边形EACD的形状,并说明理由、ABCDEFGHMN例6、已知如图,AB∥CD,GM、GN、HM、HN、分别平分∠AGH、∠BGH、∠CHG、∠DHG,试判断四边形GMHN的形状,并说明理由。

【9、4矩形、菱形、正方形(3)(4)菱形的性质、判定】一、概念:1、定义:有一组邻边相等的平行四边形叫做菱形、2、菱形的性质:(1)菱形是特殊的平行四边形,它具有平行四边形的一切性质(是中心对称图形,对角线的交点是它的对称中心;对边相等、对角相等、对角线互相平分、)(2)菱形的特殊性质:①菱形是轴对称图形;②菱形的四条边相等,对角线互相垂直、3、菱形的判定:(1)有一组邻边相等的平行四边形叫做菱形、(定义)(2)四边相等的四边形是菱形、(3)对角线互相垂直的平行四边形是菱形、(归纳:证明四边形是菱形的方法有(1)四边相等(2)先证明是平行四边形,再证明有一组邻边相等或者对角线互相垂直)二、例题讲解例1、如图,在菱形ABCD中,对角线AC、BD的长分别为、,AC、BD相交于点O。

八年级数学下册9.4矩形、菱形、正方形(第4课时)教案(新版)苏科版

八年级数学下册9.4矩形、菱形、正方形(第4课时)教案(新版)苏科版

9.4矩形、菱形、正方形(4)
一、教学目标:
知识目标:掌握四边形是菱形的条件,经历探索四边形是菱形的条件,在活动中发展学生的探究意识和有条理地表达能力
能力目标:培养学的逻辑推理能力。

培养学生有条理地表达能力
情意目标:1.通过实际生活的例证,加深对菱形的的认识,并以此激发学生的探索精神.
2.通过对菱形判定条件的探索学习,体会它的内在美和应用美.
二、教学重点和难点:重点:探索四边形是菱形的判定方法.
难点:培养学生有条理地表达能力
三、教学方法:引导与自主探索相结合
四、教学过程:
四、板书设计:
9.4矩形、菱形、正方形(4)
菱形的判定方法:例题学生板演区
1、例1、例2
2、
五、教后感:。

【苏科版】八年级下数学:9.4《矩形、菱形、正方形(4)》参考教案

【苏科版】八年级下数学:9.4《矩形、菱形、正方形(4)》参考教案
2.一张矩形纸片纸对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()
A、三角形B、矩形
C、菱形D、梯形
3.画一个菱形,使它的两条对角线长分别是4cm和2cm.
提炼总结:
证明一个四边形是菱形的方法有:
(1)
(2)先证明是平行四边形,再证法正确的是()
证明:∵AD∥BC,∴∠1=∠2.
∵EF垂直平分AC,
∴OA=OC,∠AOE=∠COF.
∴ΔAOE≌ΔCOF.∴OE=OF.
∴四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形).
展示交流:
1.下列条件中,能判定四边形是菱形的是()
A、对角线垂直B、两对角线相等
C、两对线互相平分D、两对角线互相垂直平分
课题
9.4矩形、菱形、正方形(4)
自主空间
教学目标
掌握菱形的判别条件并能应用于菱形的判定,在操作和观察、分析过程中发展主动探究习惯和初步的审美意识,进一步了解和体会说理的基本方法
教学重、难点
菱形的判定定理的综合应用
教学流程
预习导航
问题:
我们知道,菱形的四条边相等,对角线互相垂直。反之,如果一个四边形的四条边相等,或一个平行四边形的对角线互相垂直,那么这个四边形是不是菱形呢?
1.如图,四边形ABCD中,AB=BC=CD=DA,判断四边形ABCD的形状并说明理由.
证明:∵AB=CD,AD=BC
∴四边形ABCD是平行四边形
又∵AB=AD,
∴ ABCD是菱形
合作探究
2.如图,平行四边形ABCD中,AC⊥BD,判断四边形ABCD的形状并说明理由.
证明:∵四边形ABCD是平行四边形
A、菱形的对角线相等

苏科版八年级数学下册第九章《9.4矩形、菱形、正方形》优课件(1)

苏科版八年级数学下册第九章《9.4矩形、菱形、正方形》优课件(1)
9.4矩形(1)
知识回顾:
平行四边形的性质
A
D
O
B
C
边:对边平行且相等.
角:对角相等邻角互补.
对角线:对角线互相平分.
特殊的平行四边形
图片欣赏
木门
纸张
电脑显示器
矩形是特殊的平行四边形。
细心观察平行四边形内角的变化
A
B
C
(1)矩形的定义:
B
C
有一个角是直角的平行四边形叫做矩形。
解:∵矩形ABCD
∴ AC=BD=2AO=2BO(矩形的对角线互相平分且相等)
又∵ ∠AOB=60°(有一个角是600的等腰三角形是
等边三角形)
A
D
∴ △AOB为正三角形.
∴ AB=OA=OB=4cm
4 60°
∴ AC=BD=2OB=2×4=8cm
O
B
C
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年2月16日星期三2022/2/162022/2/162022/2/16 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/162022/2/162022/2/162/16/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/162022/2/16February 16, 2022 •4、享受阅读快乐,提高生活质量。2022/2/162022/2/162022/2/162022/2/16
数学语言
∴∠A=∠B=∠C=∠D=90° ∵四边形ABCD是矩形
∴∠A=∠B=∠C=∠D=900

苏教科版初中数学八年级下册第9章 第9课时 矩形、菱形、正方形(4)

苏教科版初中数学八年级下册第9章 第9课时 矩形、菱形、正方形(4)

苏教科版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!苏科版初中数学和你一起共同进步学业有成!第9课时矩形、菱形、正方形(4)1.下列命题中正确的是( )A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形2.如图,若要使平行四边形ABCD成为菱形,则需要添加的条件是( )A.AB=CD B.AD=BC C.AB=BC D.AC=BD3.如果□ABCD满足条件_______(填写一个合适的条件),那么它的对角线AC、BD就互相垂直.4.如图所示,DE是□ABCD的∠ADC的平分线,EF∥AD,交DC于F.则四边形AEFD的形状是_______.5.如图,□ABCD的两条对角线AC、BD相交于点O,AB AO=2,OB=1,则AC、BD的位置关系是_______,四边形ABCD是菱形的理由是_______.6.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8.求MD的长.7.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A.BA=BCB.AC、BD互相平分C.AC=BDD.AB∥CD8.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( ) A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形9.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D.已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是( )A.3公里B.4公里C.5公里D.6公里10.如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形,其中,正确的有_______(填写序号).11.(2013.潍坊)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件_______,使ABCD成为菱形(只需添加一个即可).12.(2013.乌鲁木齐)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别与BC、CD交于E、F,EH⊥AB于H,连接FH.求证:四边形CFHE是菱形.13.如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,那么四边形DEBF是菱形吗?请证明你的结论.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形、菱形、正方形(5)
1.正方形具有而菱形不一定具有的性质是( )
A.对角线互相垂直B.对角线互相平分
C.对角线相等D.对角线平分一组对角
2.下列判断中正确的是( )
A.四边相等的四边形是正方形
B.四角相等的四边形是正方形
C.对角线互相垂直的平行四边形是正方形
D.对角线互相垂直平分且相等的四边形是正方形
3.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE',连接EE',则EE'的长等于_______.
4.如图,过正方形ABCD的顶点B作直线l,过A、C作l的垂线,垂足分别为E、F.若AE=1,CF=3,则AB的长度为_______.
5.如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是_______.
6.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO 并延长到点E,使OE=OD,连接AE、BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.
7.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )
A.∠D=90°B.AB=CD C.AD=BC D.BC=CD
8.如图所示,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有( )
A.1个B.2个C.3个D.4个
9.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME =MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
A 1 B.3C 1 D 1
10.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是_______.
11.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是_______.
12.如图①,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC、DC于点E、F,连接EF.
(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;
(2)在图①中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;
(3)如图②.将Rt△ABC沿斜边AC翻折得到Rt△ADC,E、F分别是BC、CD边上
的点,∠EAF=1
2
∠BAD,连接EF,过点A作AM⊥EF于点M.试猜想AM与AB之间
的数量关系,并证明你的猜想.
参考答案
1.C 2.D 345.2 6.略
7.D8.A9.D 10.10 11.15°或75°12.(1) EF=BE+DF.(2)AM=AB;(3)AM=AB.。

相关文档
最新文档