广东省广州市越秀区2019年中考数学一模试卷【含答案及解析】
2019学年广东省中考一模数学试卷【含答案及解析】
2019学年广东省中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 如下图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()2. 下列运算正确的是()A.2x+6x=8x2 B.a6÷a2=a3 C.(-4x3)2=16x6 D.(x+3)2=x2+93. 下列说法正确的是()A.为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B.甲组数据的方差S甲2=0.03,乙组数据的方差是S乙2=0.2,则乙组数据比甲组数据稳定C.广州市明天一定会下雨D.某班学生数学成绩统计如下,则该班学生数学成绩的众数和中位数分别是80分,80分4. 成绩(分)60708090100人数4812115td5. 若不等式组有解,则实数a的取值范围是()A.a<-30 B.a≤-30 C.a>-30 D.a≥-306. 如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n) B.(m,n) C.(m,) D.(,)7. 将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C. D.8. 如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A. B. C. D.9. 二次函数y=mx2+x-2m(m是非0常数)的图象与x轴的交点个数为()A.0个 B.1个 C.2个 D.1个或2个10. 已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.-5≤s≤- B.-6<s≤- C.-6≤s≤- D.-7<s≤-11. 如图,一个半径为r的圆形纸片在边长为a的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题12. 环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.13. 分解因式:a4-4a2+4= .14. 一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)15. 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:16. x…-10123…y…105212…td17. )在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(-,0),则直线a的函数关系式为.18. 如图,反比例函数y=(x<0)的图象经过点A(-1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是.三、计算题19. 解方程(组)(1).(2).四、解答题20. 先化简,再求值:,其中x满足x2-x-1=0.21. 已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).22. 学校举办一项小制作评比活动.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的件数是12.请你回答:(1)本次活动共有件作品参赛;各组作品件数的众数是件;(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(3)小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.23. 某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24. 如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°.(1)尺规作图:作点C到直线AB的垂线段CE(不写作法,保留作图痕迹);(2)求海底C点处距离海面DF的深度.(结果精确到1米)25. 如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1)求证:PC是⊙O的切线;(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;(3)在满足(2)的条件下,AB=10,ED=4,求BG的长.26. 如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.27. 如图1,抛物线y=-x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的坐标为(2,0),tan∠BAO=2,以线段BC为直径作⊙M交AB于点D,过点B作直线l∥AC,与抛物线和⊙M的另一个交点分别是E,F.(1)求该抛物线的函数表达式;(2)求点C的坐标和线段EF的长;(3)如图2,连接CD并延长,交直线l于点N,点P,Q为射线NB上的两个动点(点P 在点Q的右侧,且不与N重合),线段PQ与EF的长度相等,连接DP,CQ,四边形CDPQ 的周长是否有最小值?若有,请求出此时点P的坐标并直接写出四边形CDPQ周长的最小值;若没有,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
广东省广州市越秀区育才中学2019年初三一模数学试卷含答案
2019年广东广州越秀区广州育才中学初三一模数学试卷一、选择题(本大题共10小题,每题3分,故30分)1.温度由-2℃上升7℃是( ).A .5℃B .-5℃C .9℃D .-9℃2.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.1的值是( )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间4.一个立体图形的三视图如图所示,则该立体图形是( )A .圆柱B .圆锥C .长方体D .球5.下列运算正确的是( )A .222()a b a b +=+B .()32639x x =C .347a a a ⋅=D 2=6.如图,O e 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若60A ∠=︒,85ADC ∠=︒,则C ∠的度数是( ).A .25︒B .27.5︒C .30︒D .35︒7.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ).A .10001000230x x -=+ B .10001000230x x -=+ C .10001000230x x -=- D .10001000230x x -=-8.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <9.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( ).A .12B .13C .49D .5910.定义新运算:1(0)(0)b b a b a b b⎧>⎪⎪⊕=⎨⎪-<⎪⎩,则函数2(0)y x x =⊕≠的图象大致是( ) A . B .C .D .二、填空题(本大题共6小题,每题3分,共18分)11.= .12.点(1,2)M 关于y 轴对称点的坐标为 .13.如图,在ABC △中,AB AC =,100BAC ∠=︒,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则BAE ∠= .14.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90︒的扇形,则此扇形的面积为 .15.已知23369x y a a -=-+,269x y a a +=+-,若x y …,则实数a 的值为 .16.如图,在矩形ABCD 中,3AB =,2CB =,点E 为线段AB 上的动点,将CBE △沿CE 折叠,使点B 落在矩形内点F 处,下列结论正确的是 (写出所有正确结论的序号) ①当E 为线段AB 中点时,AF CE ∥;②当E 为线段AB 中点时,95AF =;③当A 、F 、C 三点共线时,133AE -=; ④当A 、F 、C 三点共线时,CEF AEF △≌△.三、解答题(本大题共9小题,共102分)17.解不等式组:3152(1)6x x x x+>-⎧⎨+-<⎩,并把解集在数轴上表示出来.18.如图,点E 、F 在BC 上,BE CF =,AB DC =,B C ∠=∠.求证:A D ∠=∠.19.化简:2221432a a a a a a+⋅----,并求值,其中a 与2、3构成ABC △的三边,且a 为整数. 20.今年4月份,某校九年级学生参加了广州市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m 的值.(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流.请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.21.根据道路管理规定,在广州某段笔直公路上行驶的车辆,限速40千米/时;已知交警测速点M 到该公路A 点的距离为45MAB ∠=︒,37MBA ∠=︒(如图所示),现有一辆汽车由A 往B 方向匀速行驶,测得此车从A 点行驶到B 点所用的时间为2秒.(1)求测速点M 到该公路的距离.(2)通过计算判断此车是否超速.(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)22.如图,在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象与反比例函数(0)n y n x=≠的图象交于第二、四象限内的A 、B 两点,与x 轴交于点C ,点B 坐标为(,1)m -,AD x ⊥轴,且3AD =,3tan 2AOD ∠=. (1)求该反比例函数和一次函数的解析式.(2)点E 是x 轴上一点,且AOE △是等腰三角形,求E 点的坐标.23.如图,在ABC △中,AB AC =.(1)尺规作图:以AB 为直径作O e ,分别交BC 和AC 于点E 和F .(保留作图痕迹,不写做法)(2)过E 作EH AC ⊥,垂足为H①求证:EH 为O e 的切线.②连接OH ,若OH =1HC =,求O e 的半径长.24.已知抛物线2(2) 2 (0)y ax a x a =-++<(1)求证:抛物线与x 轴总有两个不同的交点.(2)设抛物线与x 轴的交点为点A 和点B (点A 在点B 的左侧),与y 轴交于点C .①若ABC △为直角三角形且90ACB ∠=︒,点(,)P m n 在直线1y x =-+上方的抛物线上,且APB ∠是锐角,求m 的取值范围.②设抛物线顶点为N ,在抛物线上是否存在一点D ,使以点N ,D ,O ,C 为顶点的四边形为平行四边形?若存在请求出a 的值;若不存在请说明理由.25.在ABC △中,90BAC ∠=︒,AB AC =.(1)如图1,若1AB =,12BD CD =::,求ABD △的面积.(2)如图2,若D 为线段BC 上任意一点,探究BD ,CD ,AD 三者之间的关系,并证明.(3)如图3,若1AB =,D 为ABC △内一点,求DA DB DC ++的最小值.2019年广东广州越秀区广州育才中学初三一模数学试卷一、选择题(本大题共10小题,每题3分,故30分)1.A2.A3.C4.A5.C6.D7.A8.B9.C 10.D二、填空题(本大题共6小题,每题3分,共18分)11.4 12.(-1,2) 13.40︒ 14.22m π 15.3 16.①②③ 三、解答题(本大题共9小题,共102分)17.14x <<.18.证明见解析.19.4a =时,原式1=.20.(1)50,18.(2)在51—56分数段.(3)23. 20.(1)10米.(2)超速了.22.(1)反比例函数:6y x =-;一次函数:122y x =-+.(2)1E ,2(E ,3(4,0)E -,413,04E ⎛⎫-⎪⎝⎭. 23.(1)画图见解析.(2)①证明见解析.②2.24.(1)证明见解析.(2)①20m -<<.②4a =-+或4a =--.25.(1)16. (2)2222BD CD AD +=,证明见解析.(3)42.。
广东广州越秀区2019中考数学模拟试卷一(解析版)
2019广东广州越秀区中考数学模拟试卷一一.选择题(共10小题,满分30分,每小题3分)1.|a|=1,|b|=4,且ab<0,则a+b的值为()A.3B.﹣3C.±3D.±52.在下图的四个立体图形中,从正面看是四边形的立体图形有()A.1个B.2个C.3个D.4个3.在下列四个银行标志中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个4.下列运算正确的是()A.x8÷x2=x6B.(x3y)2=x5y2C.﹣2(a﹣1)=﹣2a+1D.(x+3)2=x2+95.如果在实数范围内有意义,则x的取值范围是()A.x≠7B.x<7C.x>7D.x≥76.对于函数y=﹣2x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当时,y>0D.y值随x值的增大而增大7.一元二次方程kx2+4x+1=0有两个实数根,则k的取值范围是()A.k>4B.k≥4C.k≤4D.k≤4且k≠0 8.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度9.如图,⊙O是△ABC的外接圆,∠A=50°,则∠OCB等于()A.60°B.50°C.40°D.30°10.二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错误的是()A.a<0B.c>0C.b2﹣4ac>0D.a+b+c>0二.填空题(共6小题,满分18分,每小题3分)11.若一个样本的方差是s2=[(x1﹣32)2+(x2﹣32)2+…+(x n﹣32)2],则该样本的容量是,样本平均数是.12.58万千米用科学记数法表示为:千米.13.在⊙O中,半径为5,AB∥CD,且AB=6,CD=8,则AB、CD之间的距离为.14.如果反比例函数的图象经过点(﹣3,﹣4),那么函数的图象在第象限.15.如图,一次函数y=mx+n的图象与二次函数y=ax2+bx+c的图象交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.16.如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,下列结论正确的是.(写出所有正确结论的序号)①若∠PAB=30°,则弧的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在弧上的位置如何变化,CP•CQ为定值.三.解答题(共9小题,满分102分)17.解不等式组并把解在数轴上表示出来.18.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.19.如图,AC是矩形ABCD的一条对角线.(1)作AC的垂直平分线EF,分别交AB、DC于点E、F,垂足为O;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)求证:OE=OF20.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)21.如图,一架遥控无人机在点A处测得某高楼顶点B的仰角为60°,同时测得其底部点C的俯角为30°,点A与点B的距离为60米,求这栋楼高BC的长.22.如图,A,B为反比例函数y=图象上的点,AD⊥x轴于点D,直线AB分别交x轴,y轴于点E,C,CO =OE=ED.(1)求直线AB的函数解析式;(2)F为点A关于原点的对称点,求△ABF的面积.23.如图,AB是半圆O的直径,C,D是半圆O上的两点,弧AC=弧BD,AE与弦CD的延长线垂直,垂足为E.(1)求证:AE与半圆O相切;(2)若DE=2,AE=,求图中阴影部分的面积24.如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OE=,OG=1,求的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)25.如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.2018广东广州越秀区中考模拟试卷一--数学参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1﹣4=﹣3或a+b=﹣1+4=3,故选:C.【点评】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.2.【分析】找到从正面看所得到的图形比较即可.【解答】解:正方体的正视图是四边形;球的正视图是圆;圆锥的正视图是等腰三角形;圆柱的正视图是四边形;是四边形的有两个.故选:B.【点评】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.3.【分析】根据轴对称和中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,观察可知,第一个既是轴对称图形,也是中心对称图形;第二个是轴对称图形,不是中心对称图形;第三个不是轴对称图形,也不是中心对称图形;第四个是轴对称图形,也是中心对称图形.所以既是轴对称图形又是中心对称图形的有2个.故选:B.【点评】此题主要考查了中心对称与轴对称的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.【分析】根据同底数幂的除法、积的乘方、多项式的乘法和完全平方公式进行计算后判断即可.【解答】解:A、x8÷x2=x6,正确;B、(x3y)2=x6y2,错误;C、﹣2(a﹣1)=﹣2a+2,错误;D、(x+3)2=x2+6x+9,错误;故选:A.【点评】此题考查同底数幂的除法、积的乘方、多项式的乘法和完全平方公式,关键是根据法则进行计算.5.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵在实数范围内有意义,∴x﹣7≥0,解得:x≥7.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.【分析】根据一次函数图象上点的坐标特征和一次函数的性质依次判断,可得解.【解答】解:当x=﹣1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、四象限,y随x的增大而减小,∴B、D选项错误,∵y>0,∴﹣2x+1>0∴x<∴C选项错误,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,一次函数性质,熟练掌握一次函数的性质是本题的关键.7.【分析】根据一元二次方程的定义和根的判别式的意义得到k≠0且△=42﹣4k≥0,然后求出两不等式的公共部分即可.【解答】解:根据题意得k≠0且△=42﹣4k≥0,解得k≤4且k≠0.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.8.【分析】找出两抛物线的顶点坐标,由a值不变即可找出结论.【解答】解:∵抛物线y=(x+1)2+2的顶点坐标为(﹣1,2),抛物线y=x2的顶点坐标为(0,0),∴将抛物线y=x2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y=(x+1)2+2.故选:B.【点评】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.9.【分析】首先根据圆周角定理可得∠BOC=2∠A=100°,再利用三角形内角和定理可得∠OCB的度数.【解答】解:∵∠A=50°,∴∠BOC=100°,∵BO=CO,∴∠OCB=(180°﹣100°)÷2=40°,故选:C.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【分析】根据二次函数的开口方向,与y轴的交点,与x轴交点的个数,当x=1时,函数值的正负判断正确选项即可.【解答】解:A、二次函数的开口向下,∴a<0,正确,不符合题意;B、二次函数与y轴交于正半轴,∴c>0,正确,不符合题意;C、二次函数与x轴有2个交点,∴b2﹣4ac>0,正确,不符合题意;D、当x=1时,函数值是负数,a+b+c<0,∴错误,符合题意,故选:D.【点评】考查二次函数图象与系数的关系;用到的知识点为:二次函数的开口向下,a<0;二次函数与y轴交于正半轴,c>0;二次函数与x轴有2个交点,b2﹣4ac>0;a+b+c的符号用当x=1时,函数值的正负判断.二.填空题(共6小题,满分18分,每小题3分)11.【分析】方差公式为:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],其中n是样本容量,表示平均数.根据公式直接求解.【解答】解:∵一个样本的方差是s2=[(x1﹣32)2+(x2﹣32)2+…+(x n﹣32)2],∴该样本的容量是40,样本平均数是32.故答案为40,32.【点评】本题主要考查方差的知识点,解答本题的关键是熟练运用方差公式,此题难度不大.12.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:根据58万=580000,用科学记数法表示为:5.8×105.故答案为:5.8×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.13.【分析】过O作OE⊥CD于E,OE交AB于F,连接OD、OA、根据垂径定理求出AF、DE,根据勾股定理求出OE、OF,分两种情形分别求解即可.【解答】解:过O作OE⊥CD于E,OE交AB于F,连接OD、OA、∵AB∥AC,∴OE⊥AB,∵OE⊥CD,OE过O,∴DE=CE=CD=4,在Rt△ODE中,由勾股定理得:OE==3,同理OF=4,分为两种情况:①如图1,EF=OE+OF=3+4=7;②如图2,EF=OF﹣OE=4﹣3=1.故答案为:1或7.【点评】本题考查了垂径定理和勾股定理的应用,用了分类讨论思想.14.【分析】让点的横纵坐标相乘即为反比例函数的比例系数,根据比例系数的符号即可判断反比例函数的两个分支所在的象限.【解答】解:设反比例函数解析式为y=,∵反比例函数的图象经过点(﹣3,﹣4),∴k=﹣3×(﹣4)=12,∴函数的图象在第一、三象限.故答案是:一、三.【点评】用到的知识点为:反比例函数的比例系数等于在它上面的点的横纵坐标的积;比例系数大于0,反比例函数的两个分支在一、三象限.15.【分析】写出抛物线在直线上方所对应的自变量的范围即可.【解答】解:当x<﹣1或x>4,所以关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.故答案为x<﹣1或x>4.【点评】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.16.【分析】①根据∠POB=60°,OB=6,即可求得弧的长;②根据切线的性质以及垂径定理,即可得到=,据此可得AP平分∠CAB;③根据BP=BO=PO=6,可得△BOP是等边三角形,据此即可得出PD=6;④判定△ACP∽△QCA,即可得到=,即CP•CQ=CA2,据此可得CP•CQ为定值.【解答】解:如图,连接OP,∵AO=OP,∠PAB=30°,∴∠POB=60°,∵AB=12,∴OB=6,∴弧的长为=2π,故①错误;∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴=,∴∠PAC=∠PAB,∴AP平分∠CAB,故②正确;若PB=BD,则∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴PD=OP=6,故③正确;∵AC=BC,∴∠BAC=∠ABC,又∵∠ABC=∠APC,∴∠APC=∠BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2(定值),故④正确;故答案为:②③④.【点评】本题主要考查了相似三角形的判定与性质,垂径定理,切线的性质以及弧长公式的综合应用,解决问题的关键是作辅助线,构造三角形,解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的弧.三.解答题(共9小题,满分102分)17.【分析】分别求出两个不等式的解集,再求其公共解集.【解答】解:解不等式2x﹣4<0,得:x<2,解不等式(x+8)﹣2>0,得:x>﹣4,则不等式组的解集为﹣4<x<2,将不等式组的解集表示在数轴上如下:【点评】本题考查一元一次不等式组的解法,求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.【分析】(1)先根据分式的混合运算顺序和运算法则计算可得;(2)根据x的值,可以求得题目中所求式子的值.【解答】解:(1)原式=+•=+=,当a=+1时,原式==1+;(2)∵x=2﹣,∴x2=(2﹣)2=7﹣4,∴(7+4)x2+(2+)x+=(7+4)(7﹣4)+(2+)(2﹣)+=1+1+=2+.【点评】本题考查分式与二次根式的化简求值,解答本题的关键是明确分式与二次根式化简求值的方法.19.【分析】(1)作AC的垂直平分线即可;(2)利用矩形的性质得到点O为对角线的交点,然后证明△BOE≌△DOF得到OE=OF.【解答】(1)解:如图,EF为所作;(2)证明:∵EF垂直平分AC,∴OA=OC,∵四边形ABCD为矩形,∴OB=OD,AB∥CD,∴∠E=∠F,在△BOE和△DOF中∴△BOE≌△DOF(AAS),∴OE=OF.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质.20.【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.21.【分析】根据解直角三角形的知识进行解答即可.【解答】解:由已知条件得:∠ABC=30°,∠BAC=60°+30°=90°,在Rt△ABC中,cos∠ABC=,∴(米),答:这栋楼高BC的长为40米.【点评】本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.22.【分析】(1)由已知线段相等,结合图形确定出三角形OCE与三角形ADE为全等的等腰直角三角形,设A(2a,a),代入反比例解析式求出a的值,确定出A与C坐标,利用待定系数法确定出直线AB解析式即可;(2)由A坐标确定出F坐标,三角形ABF面积=三角形BCF面积+三角形OCF面积+三角形AOC面积,求出即可.【解答】解:(1)∵CO=OE=ED,∴△OCE和△ADE为全等的等腰直角三角形,设A(2a,a),代入y=中,解得:a=1或a=﹣1(舍去),∴点A(2,1),C(0,﹣1),设直线AB解析式为y=kx+b,把A与C坐标代入得:,解得:,则直线AB的解析式为y=x﹣1;(2)∵点F为点A关于原点的对称点,∴F(﹣2,﹣1),联立得:,解得:或,即B(﹣1,﹣2),如图,连接FC,作AG⊥y轴,BH⊥FC,由F,C的坐标可得FC∥x轴,则S△ABF =S△BFC+S△FCO+S△OCA=(CF•BH+FC•OC+OC•AG)=(2×1+2×1+1×2)=3.【点评】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,两直线交点坐标,以及三角形面积,熟练掌握待定系数法是解本题的关键.23.【分析】(1)根据切线的判定证明AE⊥AB,可知:AE与半圆O相切;(2)作辅助线,构建直角三角形,先由勾股定理可得:AD==4,由直角三角形斜边中线的性质求得:ED=EF=DF=2,则△DEF是等边三角形,再求得△AOD是等边三角形,根据面积差可得阴影部分的面积.【解答】(1)证明:连接AC,…1分∵,∴,即,…2分∴∠CAB=∠ACD,∴AB∥CE,…3分∵AE⊥CD,∴∠AEC=90°,∴∠EAB=90°,∴AE⊥AB,…4分∵OA为半径,∴AE与半圆O相切;…5分(2)解:连接AD,取AD的中点F,连接EF、OD,∵Rt△ADE中,∠AED=90°,AE=2,DE=2,∴AD==4,…6分∵F是AD的中点,∴EF=AC=2,…7分∴ED=EF=DF=2,∴△DEF是等边三角形,∴∠EDA=60°,…8分由(1)知:AB∥CF∴∠DAO=∠EDA=60°,…9分∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,OA=AD=4,…10分∴S阴影=S四边形AODE﹣S扇形OAD=×(2+4)×2﹣=6﹣…12分【点评】此题考查了切线的判定、圆周角定理、等边三角的判定与性质、扇形面积公式等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.【分析】(1)连接AC,由四个中点可知OE∥AC、OE=AC,GF∥AC、GF=AC,据此得出OE=GF、OE=GF,即可得证;(2)①由旋转性质知OG=OM、OE=ON,∠GOM=∠EON,据此可证△OGM∽△OEN得==;②连接AC、BD,根据①知△OGM∽△OEN,若要GM=EN只需使△OGM≌△OEN,添加使AC=BD的条件均可以满足此条件.【解答】解:(1)如图1,连接AC,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OE∥AC、OE=AC,GF∥AC、GF=AC,∴OE∥GF,OE=GF,∴四边形OEFG是平行四边形;(2)①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴=,∴△OGM∽△OEN,∴==.②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=AC,∵AC=BD,∴OG=OE,∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴OG=OE、OM=ON,在△OGM和△OEN中,∵,∴△OGM≌△OEN(SAS),∴GM=EN.【点评】本题主要考查相似形的综合题,解题的关键是熟练掌握中位线定义及其定理、平行四边形的判定、旋转的性质、相似三角形与全等三角形的判定与性质等知识点.25.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB =S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2019年广东省广州市越秀区执信中学中考数学一模试卷- 解析版 (1)
2019年广东省广州市越秀区执信中学中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−5的绝对值等于()A. −5B. 5C. ±5D. 02.函数y=√x+2中,自变量x的取值范围是()A. x≠−2B. x≥−2C. x>−2D. x>23.方程4xx−2−1=32−x的解是()A. x=1B. x=−12C. x=13D. x=−534.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A. 15°B. 25°C. 30°D. 10°5.下列说法中,正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直且平分D. 对角线互相垂直,且相等的四边形是正方形6.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第()象限.A. 一B. 二C. 三D. 四7.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A. 55°B. 60°C. 65°D. 70°8.如图,梯形ABCD中,AD//BC,对角线AC、BD相交于O,AD=1,BC=4,△AOD面积为1,则梯形ABCD的面积为()A. 9B. 27C. 23D. 259. 若二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0)、(x 2,0),且x 1<x 2,图象上有一点M(x 0,y 0),在x 轴下方,则下列判断正确的是( )A. a(x 0−x 1)(x 0−x 2)<0B. a >0C. b 2−4ac ≥0D. x 1<x 0<x 210. 如图,矩形ABCD 中,AE ⊥BD 于点E ,CF 平分∠BCD ,交EA 的延长线于点F ,且BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;②∠DBC =30°;③AE =45√5;④AF =2√5,其中正确结论的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共6小题,共18.0分) 11. 分解因式:2x 2−4x =______.12. 如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8,E 是CB 的中点,则OE 的长等于______.13. 关于x 的一元二次方程x 2−x +m =0没有实数根,则m 的取值范围是______. 14.已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为______.15. 一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了______.(注:销售利润率=(售价−进价)÷进价)16.在△ABC 中,∠ACB =90°,AC =2,∠B =30°.过点C 做直线l//AB ,P 为直线l 上一点,且AP =AB ,则点P 到BC 所在直线的距离是______.三、计算题(本大题共1小题,共10.0分) 17. 已知T =(1−1x+1)÷xx 2−1(1)化简T ;(2)若x 满足x 2−x −2=0,求T 的值.四、解答题(本大题共9小题,共84.0分)18. 解不等式组{2(x +2)>3x3x−12≥−2并将它的解集在数轴上表示出来.19. 如图,在▱ABCD 中,点E ,F 分别AD ,BC 在上,且AE =CF ,EF ,BD 相交于点O ,求证:OE =OF .20. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7 乙:5,7,8,7,8,9,7,9,10,10 丙:7,6,8,5,4,7,6,3,9,5(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.(k为常数,且k≠0)的图象交于A(1,a),B两点.21.如图,一次函数y=−x+4的图象与反比例函数y=kx(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.22.如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,△ABC中,∠ABC=90°(1)在BC边上找一点P,作⊙P与AC,AB边都相切,与AC的切点为Q;(尺规作图,保留作图痕迹)(2)若AB=4,AC=6,求第(1)题中所作圆的半径;(3)连接BQ,第(2)题中的条件不变,求cos∠CBQ的值.24.抛物线y=−x2+2x+3与y轴交于B,与x轴交于点D、A,点A在点D的右边,顶点为F,C(0,1)(1)直接写出点B、A、F的坐标;(2)设Q在该抛物线上,且S△BAF=S△BAQ,求点Q的坐标;(3)对大于1常数m,在x轴上是否存在点M,使得sin∠BMC=1?若存在,求出点M坐标;若不存在,m说明理由?25.已知AB是ʘO的直径,C,E是ʘO上的点,CD⊥AB于点D,EF⊥AB于点F,过点E作EG⊥OC于点,延长EG交OA于点H.(1)求证:HO⋅HF=HG⋅HE;(2)求证:CD=FG.答案和解析1.【答案】B【解析】解:∵|−5|=−(−5)=5,∴−5的绝对值等于5.故选:B.当a是负有理数时,a的绝对值是它的相反数−a,据此求出−5的绝对值等于多少即可.此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a 的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数−a;③当a是零时,a的绝对值是零.2.【答案】C【解析】解:根据题意得:x+2>0解得:x>−2.故选:C.二次根式有意义的条件就是被开方数大于或等于0;分式有意义的条件是分母不为0.依此即可求解.考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.【答案】D【解析】解:去分母得:4x−x+2=−3,,解得:x=−53经检验x=−5是分式方程的解,3故选:D.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.4.【答案】A【解析】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°−45°−120°=15°.故选:A.先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.5.【答案】C【解析】解:A错误,如等腰梯形即为一组对边平行,另一组对边相等的四边形,却不是平行四边形;B错误,由矩形的性质可知矩形的对角线互相平分且相等;C正确,由菱形的性质可知菱形的对角线互相垂直且平分;D错误,由正方形的性质及判定可知,对角线互相垂直,平分,且相等的四边形是正方形;根据平行四边形,矩形,菱形,正方形的性质及判定可分别对A,B,C,D四个答案分别进行判断.本题考查了平行四边形,矩形,菱形,正方形的性质及判定,解题关键是能够牢固掌握这些性质及判定.6.【答案】D【解析】解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选:D.先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限.7.【答案】C【解析】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°−70°−45°=65°,故选:C.根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.8.【答案】D【解析】解:∵AD//BC,∴△AOD∽△COB,∴ADBC =AOCO=14,,∴S△BOC=16,,,∴S△COD=S△AOB=4,∴梯形ABCD的面积为:4+4+16+1=25,故选:D.易证△AOD∽△BOC,根据相似三角形的性质可求出△BOC的面积,根据,,可求出S△COD=S△AOB=4,从而可求出梯形面积.本题考查相似三角形,解题的关键是熟练运用相似三角形的性质以及判定,本题属于中等题型.【解析】解:A、当a>0时,∵点M(x0,y0),在x轴下方,∴x1<x0<x2,∴x0−x1>0,x0−x2<0,∴a(x0−x1)(x0−x2)<0;当a<0时,若点M在对称轴的左侧,则x0<x1<x2,∴x0−x1<0,x0−x2<0,∴a(x0−x1)(x0−x2)<0;若点M在对称轴的右侧,则x1<x2<x0,∴x0−x1>0,x0−x2>0,∴a(x0−x1)(x0−x2)<0;综上所述,a(x0−x1)(x0−x2)<0,故本选项正确;B、a的符号不能确定,故本选项错误;C、∵函数图象与x轴有两个交点,∴△>0,故本选项错误;D、x1、x0、x2的大小无法确定,故本选项错误.故选:A.由于a的符号不能确定,故应分a>0与a<0进行分类讨论.本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论.10.【答案】C【解析】【分析】本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键,根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC=CDBC =12,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD=√BC2+CD2=2√5,根据相似三角形的性质得到AE=45√5;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°−∠ACB,推出∠EAC=2∠ACF,根据外角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2√5,故④正确.【解答】解:在矩形ABCD中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC=CDBC =12,∴∠DBC≠30°,故②错误;∵BD=√BC2+CD2=2√5,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴AEAD =ABBD,即AE4=25,∴AE=45√5;故③正确;∵CF平分∠BCD,∴∠BCF=45°,∴∠ACF=45°−∠ACB,∵AD//BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°−2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2√5,∴AF=2√5,故④正确;故选C.11.【答案】2x(x−2)【解析】解:2x2−4x=2x(x−2).故答案为:2x(x−2).首先找出多项式的公因式,然后提取公因式法因式分解即可.此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.12.【答案】4【解析】解:∵四边形ABCD是菱形,∴DO=OB,∵E是BC的中点,∴OE=12AB,∵AB=8,∴OE=4.故答案为4.根据菱形的性质得出OD=OB,根据三角形的中位线性质得出OE=12AB,代入求出即可.本题考查了菱形的性质和三角形的中位线定理的应用,关键是求出OE=12AB,此题比较简单.13.【答案】m >14【解析】解:根据方程没有实数根,得到△=b 2−4ac =1−4m <0, 解得:m >14. 故答案为:m >14.根据方程没有实数根,得到根的判别式小于0列出关于m 的不等式,求出不等式的解集即可得到m 的范围. 此题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.14.【答案】15πcm 2【解析】解:根据三视图得到圆锥的底面圆的直径为6cm ,即底面圆的半径为3cm ,圆锥的高为4cm , 所以圆锥的母线长=√32+42=5,所以这个圆锥的侧面积=12⋅2π⋅3⋅5=15π(cm 2).故答案为15πcm 2.先利用三视图得到底面圆的半径为3cm ,圆锥的高为4cm ,再根据勾股定理计算出母线长为5cm ,然后根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图. 15.【答案】40%【解析】解:设原来的售价是b ,进价是a ,b −aa×100%=47% b =1.47a . 由题意,b−(1+5%)a (1+5%)a×100%=40%.故答案为:40%.因为销售利润率=(售价−进价)÷进价,设原来的售价是b ,进价是a ,可得到用a 表示b 的关系式,然后根据现在由于进价提高了5%,而售价没变,可得到现在的利润率. 本题考查列代数式和理解题意的能力,关键是设出进价和售价两个未知数,以及知道销售利润率=(售价−进价)÷进价从而求出结果.16.【答案】1+√132或−1+√132【解析】解:①如图1,延长BC ,作PD ⊥BC ,交点为D ,延长CA ,作PE ⊥CA 于点E ,∵∠PDC =∠ACD =∠PEC =90°, ∴四边形CDPE 是矩形, ∴CD =PE ,PD =EC ,∵在△ABC 中,∠ACB =90°,AC =2,∠B =30°.∴AB =2AC =4, ∵CP//AB ,∴∠PCD =∠B =30°,∠DPC =60°, ∴CD =tan∠DPC ⋅PD =√3PD , 设PD =EC =m ,在直角△AEP 中,AE 2+EP 2=AP 2, ∴(m −2)2+(√3m)2=42, 解得m =1+√132,∴PD =1+√132.②如图2,作PD ⊥BC 于D ,PE ⊥AC ,交AC 延长线于E , ∵在△ABC 中,∠ACB =90°,AC =2,∠B =30°. ∴∠BAC =60°,B =2AC =4, ∵CP//AB ,∴∠PCE =∠BAC =60°,∴在直角△PEC 中,PE =tan60°⋅CE , 同理:四边形CDPE 是矩形, ∴CD =PE ,PD =EC , 设PD =EC =m ,在直角△AEP 中,AE 2+EP 2=AP 2, ∴(m +2)2+(√3m)2=42, 解得m =−1+√132.∴PD =−1+√132,故点P 到BC 所在直线的距离是1+√132或−1+√132.故答案为:1+√132或−1+√132.如图1,延长BC ,作PD ⊥BC ,交点为D ,延长CA ,作PE ⊥CA 于点E ,可得四边形CDPE 是矩形,则CD =PE ,PD =EC ;Rt △ABC 中,∠C =90°,AC =2,所以,可求出AC =2,AB =4,又因为AB =AP ;所以,在直角△AEP 中,可运用勾股定理求得DP 的长即为点P 到BC 的距离;如图2,延长AC ,做PD ⊥BC 交点为D ,PE ⊥AC ,交点为E ,可得四边形CDPE 是矩形,则CD =PE ,PD =EC ;Rt △ABC 中,∠C =90°,AC =2,所以,可求出AC =2,AB =4,又因为AB =AP ;所以,在直角△AEP 中,可运用勾股定理求得DP 的长即为点P 到BC 的距离本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答;考查了学生的空间想象能力.17.【答案】解:(1)T =x+1−1x+1⋅(x+1)(x−1)x=x −1;(2)由x 2−x −2=0,得到(x −2)(x +1)=0, 解得:x =2或x =−1(舍去), 则当x =2时,T =2−1=1.【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)把已知等式变形后代入计算即可求出T 的值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 18.【答案】解:解不等式2(x +2)>3x ,得:x <4, 解不等式3x−12≥−2,得:x ≥−1,∴不等式组的解集为−1≤x <4, 将解集表示在数轴上如下:【解析】分别求出每个不等式的解集,在根据“大小小大中间找”即可得答案.本题主要考查解一元一次不等式组的能力,熟练掌握解一元一次不等式组的基本步骤是解题的关键. 19.【答案】证明:∵四边形ABCD 是平行四边形, ∴AD//BC ,AD =BC , ∴∠ODE =∠OBF , ∵AE =CF ,∴DE =BF ,且∠DOE =∠BOF ,∠ODE =∠OBF , ∴△DOE≌△BOF(AAS),∴OE =OF【解析】先判断出DE =BF ,进而判断出△DOE≌△BOF 即可.本题考查了平行四边形的性质,全等三角形的判定和性质,证明△DOE≌△BOF 是本题的关键. 20.【答案】(1)2,6 ;(2)∵甲的方差是:110×[(9−8)2+2×(10−8)2+4×(8−8)2+2×(7−8)2+(5−8)2]=2;;∴S 甲2<S 乙2<S 丙2,∴甲运动员的成绩最稳定; (3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况, ∴甲、乙相邻出场的概率是46=23.【解析】解:(1)∵甲的平均数是8,∴甲的方差是:110×[(9−8)2+2×(10−8)2+4×(8−8)2+2×(7−8)2+(5−8)2]=2; 把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是6+62=6;故答案为:6,2; (2)见答案; (3)见答案.(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n 个数据,x 1,x 2,…x n 的平均数为x −,则方差S 2=1n [(x 1−x −)2+(x 2−x −)2+⋯+(x n −x −)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比. 21.【答案】解:(1)把点A(1,a)代入一次函数y =−x +4, 得:a =−1+4,解得:a =3, ∴点A 的坐标为(1,3).把点A(1,3)代入反比例函数y =kx , 得:3=k ,∴反比例函数的表达式y =3x ,联立两个函数关系式成方程组得:{y =−x +4y =3x , 解得:{x =1y =3,或{x =3y =1,∴点B 的坐标为(3,1);(2)作点B 作关于x 轴的对称点D ,交x 轴于点C ,连接AD ,交x 轴于点P ,此时PA +PB 的值最小,连接PB ,如图所示.∵点B 、D 关于x 轴对称,点B 的坐标为(3,1), ∴点D 的坐标为(3,−1).设直线AD 的解析式为y =mx +n , 把A ,D 两点代入得:{m +n =33m +n =−1,解得:{m =−2n =5,∴直线AD 的解析式为y =−2x +5.令y =−2x +5中y =0,则−2x +5=0, 解得:x =52,∴点P的坐标为(52,0).S△PAB=S△ABD−S△PBD=12BD⋅(x B−x A)−12BD⋅(x B−x P)=12×[1−(−1)]×(3−1)−12×[1−(−1)]×(3−52)=32.【解析】(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式、三角形的面积公式以及轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(2)找出点P 的位置.本题属于基础题,难度不大,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.22.【答案】解:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=CHAH,∴AH=CHtan37∘=xtan37∘,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH//BD,∴AHHD =ACCB,∵AC=CB,∴AH=HD,∴xtan37∘=x+5,∴x=5⋅tan37°1−tan37∘≈15,∴AE=AH+HE=15tan37∘+15≈35km,∴E处距离港口A有35km.【解析】本题考查了解直角三角形的应用--方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=CHtan37∘=xtan37∘,在Rt△CEH中,可得CH=EH=x,由CH//BD,推出AHHD =ACCB,由AC=CB,推出AH=HD,可得xtan37∘=x+5,求出x即可解决问题.23.【答案】解:(1)如图,⊙P即为所求.(2)在Rt△ABC中,∵AB=4,AC=6,∴BC=√AC2−AB2=2√5,∵PA平分∠BAC,PB⊥BA,PQ⊥AC,∴PB=PQ,设PB=PQ=r,∵S△ABC=S△ABP+S△ACP,∴12×4×2√5=12×4×r+12×6×r,∴r=4√55.(3)∵∠ABP=∠AQP=90°,AP=AP,PB=PQ,∴Rt△APB≌Rt△APQ(HL),∴AB=AQ,∵PB=PQ,∴PA垂直平分线段BQ,∴∠CBQ+∠ABQ=90°,∠BAP+∠APB=90°,∴∠CBQ=∠BAP,∴cos∠CBQ=cos∠BAP=ABAP =+(4√55)=4√305.【解析】(1)作∠BAC的平分线交BC于点P,作PQ⊥AC于Q,以P为圆心,PQ为半径作⊙P即可.(2)利用面积法求解即可.(3)证明∠CBQ=∠BAP,可得cos∠CBQ=cos∠BAP=ABAP,由此计算即可.本题考查作图−复杂作图,圆周角定理,切线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】解:(1)y=−x2+2x+3…①,令y=0,解得:x=3或−1,令x=0,则y=3,故点B(0,3),同理点F(1,4);(2)连接AB,过点F作直线m平行于直线AB交抛物线与点Q,在BA下方作直线n,使直线m、n与直线AB等距离,过点F作x轴的垂线交AB于点H、交直线n与点F′,直线n与抛物线交于点Q′、Q″,直线BA的表达式为:y=−x+3,则直线m的表达式为:y=−x+b,将点F坐标代入上式并解得:直线m的表达式为:y=−x+5…②,联立①②并解得:x=1或2(舍去1),故点Q(2,3);则点H(1,2),则FH=4−2=2,故直线n的表达式为:y=−x+3−2=−x+1…③,联立①③并解得:x=3±√172,故点Q坐标为(3+√172,−1−√172)或(3−√172,−1+√172),综上,点Q(2,3)或(3+√172,−1−√172)或(3−√172,−1+√172);(3)过点C作CH⊥MB于点H,设:OM=a,则MB=√a2+9,CM=√a2+1,S△BCM=12×BC×OM=12×CH×MB,则CH=BC×OMMB=√a2+9,sin∠BMC=CHCM =√a2+9√a2+1=1m,解得:a=±√4m2−10+√4m2−20m+9,即点M(√4m2−10+√4m2−20m+9,0)或(−√4m2−10+√4m2−20m+9,0).【解析】(1)y=−x2+2x+3,令y=0,解得:x=3或−1,即可求解;(2)连接AB,过点F作直线m平行于直线AB交抛物线与点Q,在BA下方作直线n,使直线m、n与直线AB等距离,过点F作x轴的垂线交AB于点H、交直线n与点F′,直线n与抛物线交于点Q′、Q″,即可求解;(3)由S△BCM=12×BC×OM=12×CH×MB,则CH=BC×OMMB=√a2+9,sin∠BMC=CHCM=√a2+9√a2+1=1m,即可求解.本题考查的是二次函数综合运用,涉及直线的平移、面积的计算等,其中(2),要注意分类求解,避免遗漏.25.【答案】证明:(1)∵EF⊥AB,EG⊥OC,∴∠OGH=∠EFH=90°又∵∠OHG=∠EHF(公共角),∴△OGH∽△EFH,∴OHEH =HGHF,即:HO⋅HF=HG⋅HE;(2)延长CD、EG、EF交⊙O于点P、N、M,连接MN,由垂径定理得:CD=DP,EG=NG,EF=MF,∴FG是△EMN的中位线,∴FG=12MN,由(1)得∠AOC=∠NEM,∴MN=CP,∴FG=CD.【解析】(1)根据相似三角形的判定,只要证明△OGH∽△EFH即可,由垂直得到直角相等,再加上公共角可证相似;(2)延长垂直于直径的弦CD、EF,可得D、F是CP、EM的中点,延长EG可证G是EN的中点,由三角形的中位线定理可得FG=12MN,再证MN=CP即可,由在同圆或等圆中,相等的圆周角所对的弦相等可以证出.考查圆周角定理、垂径定理、三角形中位线定理等知识,合理的转化和辅助线的做法是解决问题的捷径,巧妙的将所证的问题转化为其它线段相等.。
2019年广东省中考数学学业模拟试卷(一)及参考答案
2019年广东省中考数学学业模拟试卷(一)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列实数中的无理数是()A.B.πC.0D.2.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨3.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是()A.B.C.D.4.(3分)数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.45.(3分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根6.(3分)在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm7.(3分)不等式组的解集是()A.x>1B.x<2C.1≤x≤2D.1<x<28.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.29.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°10.(3分)下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)比较大小:3.(填“>”、“=”或“<”)12.(4分)正五边形的一个外角等于°.13.(4分)分解因式:a2﹣4a=.14.(4分)如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.15.(4分)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是(结果保留π).16.(4分)为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.18.(6分)先化简,再求值:()•(x2﹣1),其中x=.19.(6分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?21.(7分)新学期开学初,王刚同学对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:时间分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5频数2025301510(1)王刚同学抽取样本的容量是多少?(2)请你根据表中数据补全图中的频数分布直方图;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?22.(7分)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知一次函数y=﹣2x+3与反比例函数的图象相交于A(﹣1,m)、B (n,﹣2)两点.(1)求反比例函数解析式及m、n的值;(2)求△AOB的面积;(3)观察图象,直接写出反比例函数值大于一次函数值时自变量x的取值范围.24.(9分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.25.(9分)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA 向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)2019年广东省中考数学学业模拟试卷(一)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列实数中的无理数是()A.B.πC.0D.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,0,是有理数,π是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.4【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据1,2,3,4,4,5中,4出现的次数最多,∴这组数据的众数是:4.故选:D.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.5.(3分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根【分析】代入一元二次方程中的系数求出根的判别式△=﹣8<0,由此即可得出结论.【解答】解:在方程x2﹣2x+3=0中,△=(﹣2)2﹣4×1×3=﹣8<0,∴该方程没有实数根.故选:D.【点评】本题考查了根的判别式,解题的关键是代入数据求出△的值.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号判断出方程根的个数是关键.6.(3分)在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm【分析】根据三角函数的定义求得BC和AB的比值,设出BC、AB,然后利用勾股定理即可求解.【解答】解:∵sin A==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),则BC=4x=8cm,故选:C.【点评】本题考查了三角函数与勾股定理,正确理解三角函数的定义是关键.7.(3分)不等式组的解集是()A.x>1B.x<2C.1≤x≤2D.1<x<2【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:∵解不等式①得:x<2,解不等式②得:x>1,∴不等式组的解集为1<x<2,故选:D.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.8.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.9.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④【分析】首先根据各图形的函数解析式求出函数与坐标轴交点的坐标,进而可求得各个阴影部分的面积,进而可比较出个阴影部分面积的大小关系.【解答】解:①:图中的函数为正比例函数,与坐标轴只有一个交点(0,0),由于缺少条件,无法求出阴影部分的面积;②:直线y=﹣x+2与坐标轴的交点坐标为:(2,0),(0,2),故S=×2×2阴影=2;③:此函数是反比例函数,那么阴影部分的面积为:S=xy=×4=2;④:该抛物线与坐标轴交于:(﹣1,0),(1,0),(0,﹣1),故阴影部分的三角形是等腰直角三角形,其面积S=×2×1=1;②③的面积相等,故选:A.【点评】此题主要考查了函数图象与坐标轴交点坐标的求法以及图形面积的求法,是基础题,熟练掌握各函数的图象特点是解决问题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.12.(4分)正五边形的一个外角等于72°.【分析】根据多边形的外角和是360°,即可求解.【解答】解:正五边形的一个外角==72°,故答案为:72.【点评】本题考查多边形的内角与外角,正确理解多边形的外角和是360°是关键.13.(4分)分解因式:a2﹣4a=a(a﹣4).【分析】由于原式子中含有公因式a,可用提取公因式法求解.【解答】解:a2﹣4a=a(a﹣4).故答案为:a(a﹣4).【点评】主要考查提公因式法分解因式,是基础题.14.(4分)如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90度.【分析】如图2,AB∥CD,∠AEC=90°,作EF∥AB,根据平行线的传递性得到EF∥CD,则根据平行线的性质得∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEC=90°【解答】解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.15.(4分)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是2π(结果保留π).【分析】根据题意有S阴影部分=S扇形BAD﹣S半圆BA,然后根据扇形的面积公式:S=和圆的面积公式分别计算扇形和半圆的面积即可.【解答】解:根据题意得,S阴影部分=S扇形BAD﹣S半圆BA,∵S扇形BAD==4π,S半圆BA=•π•22=2π,∴S阴影部分=4π﹣2π=2π.故答案为2π.【点评】此题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R 为圆的半径),或S=lR,l为扇形的弧长,R为半径.16.(4分)为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是1024.【分析】根据题意可得每次挑选都是去掉奇数,进而得出需要挑选的总次数进而得出答案.【解答】解:∵将这些金蛋按1﹣2018的顺序进行标号,第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,∴剩余的数字都是偶数,是2的倍数,;∵他将剩下的金蛋在原来的位置上又按1﹣1009编了号,又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋,∴剩余的数字为4的倍数,以此类推:2018→1009→504→252→126→63→31→15→7→3→1共经历10次重新编号,故最后剩余的数字为:210=1024.故答案为:1024.【点评】此题主要考查了推理与论证,正确得出挑选金蛋的规律进而得出挑选的次数是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣1+=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.18.(6分)先化简,再求值:()•(x2﹣1),其中x=.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【分析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.【解答】解:(1)如图,(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.【点评】本题考查了基本作图﹣作一个角等于已知角,同时还考查了全等三角形的性质和判定;熟练掌握五种基本作图:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?【分析】(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,根据题意可得,第一次比第二次单价低30元,据此列方程求解;(2)分别求出两次的盈利,然后求和.【解答】解:(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,由题意得,=150+30,解得:x=60,经检验:x=60是原分式方程的解,且符合题意,则x﹣10=60﹣10=50,答:第一次购买了60台电风扇,则第二次购买了50台电风扇;(2)两次获利:(250﹣150)×60+(250﹣150﹣30)×50=6000+3500=9500(元).答:商场获利9500元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.21.(7分)新学期开学初,王刚同学对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:时间分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5频数2025301510(1)王刚同学抽取样本的容量是多少?(2)请你根据表中数据补全图中的频数分布直方图;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?【分析】(1)求得各组的频数的和即可求得样本容量;(2)根据(1)即可直接补全直方图;(3)用总人数乘以对应的比例即可求解.【解答】解:(1)样本容量是20+25+30+15+10=100;(2);(3)样本中,暑假做家务的时间在40.5~100.5小时之间的人数为55人,∴该校有人在暑假做家务的时间在40.5~100.5小时之间.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(7分)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.【解答】解:(1)证明:在正方形ABCD中,∵AD=CD,∴∠DAE=∠DCG,∵DE=DG,∴∠DEG=∠DGE,∴∠AED=∠CGD.在△AED和△CGD中,∴△AED≌△CGD(AAS),∴AE=CG.(2)解法一:BE∥DF,理由如下:在正方形ABCD中,AB∥CD,∴∠BAE=∠DCG.在△AEB和△CGD中,∴△AEB≌△CGD(SAS),∴∠AEB=∠CGD.∵∠CGD=∠EGF,∴∠AEB=∠EGF,∴BE∥DF.解法二:BE∥DF,理由如下:在正方形ABCD中,∵AD∥FC,∴=.∵CG=AE,∴AG=CE.又∵在正方形ABCD中,AD=CB,∴=.又∵∠GCF=∠ECB,∴△CGF∽△CEB,∴∠CGF=∠CEB,∴BE∥DF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知一次函数y=﹣2x+3与反比例函数的图象相交于A(﹣1,m)、B (n,﹣2)两点.(1)求反比例函数解析式及m、n的值;(2)求△AOB的面积;(3)观察图象,直接写出反比例函数值大于一次函数值时自变量x的取值范围.【分析】(1)把A (﹣1,m )、B (n ,﹣2)代入一次函数y =﹣2x +3,可求m 、n 的值,再根据待定系数法求出反比例函数的解析式;(2)求出直线AB 与x 轴的交点的坐标,根据三角形的面积公式求出即可; (3)利用函数图象求出使反比例函数值大于一次函数值时自变量x 的取值范围. 【解答】解:(1)把A (﹣1,m )、B (n ,﹣2)代入一次函数y =﹣2x +3,得 m =2+3=5,﹣2=﹣2n +3,解得n =2.5, 设反比例函数解析式为y =,把A (﹣1,5)代入反比例函数得:k =﹣1×5=﹣5, 故反比例函数为y =﹣;(2)设直线AB 和x 轴的交点为C , 令y =0,则0=﹣2x +3, ∴x =1.5, ∴C (1.5,0), ∴OC =1.5,∴S △AOB =S △AOC +S △BOC =×1.5×5+×1.5×2=5.25;(3)反比例函数值大于一次函数值时自变量x 的取值范围为﹣1<x <0或x >.【点评】本题主要考查对一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解一元一次方程等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.24.(9分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.【分析】(1)利用角平分线的性质得出∠CBD=∠DBA,进而得出∠DAC=∠DBA;(2)利用圆周角定理得出∠ADB=90°,进而求出∠PDF=∠PFD,则PD=PF,求出PA=PF,即可得出答案;(3)利用勾股定理得出AB的长,再利用三角形面积求出DE即可.【解答】(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2,∴PD=PA,∵∠4+∠2=∠1+∠3=90°,且∠ADB=90°,∴∠3=∠4,∴PD=PF,∴PA=PF,即P是线段AF的中点;(3)解:连接CD,∵∠CBD=∠DBA,∴CD=AD,∵CD=3,∴AD=3,∵∠ADB=90°,∴AB=5,故⊙O的半径为2.5,∵DE×AB=AD×BD,∴5DE=3×4,∴DE=2.4.即DE的长为2.4.【点评】此题主要考查了圆的综合以及圆周角定理和勾股定理以及三角形面积等知识,熟练利用圆周角定理得出各等量关系是解题关键.25.(9分)如图,Rt △ABC 中,∠C =90°,BC =8cm ,AC =6cm .点P 从B 出发沿BA 向A 运动,速度为每秒1cm ,点E 是点B 以P 为对称中心的对称点,点P 运动的同时,点Q 从A 出发沿AC 向C 运动,速度为每秒2cm ,当点Q 到达顶点C 时,P ,Q 同时停止运动,设P ,Q 两点运动时间为t 秒.(1)当t 为何值时,PQ ∥BC ?(2)设四边形PQCB 的面积为y ,求y 关于t 的函数关系式;(3)四边形PQCB 面积能否是△ABC 面积的?若能,求出此时t 的值;若不能,请说明理由;(4)当t 为何值时,△AEQ 为等腰三角形?(直接写出结果)【分析】(1)先在Rt △ABC 中,由勾股定理求出AB =10,再由BP =t ,AQ =2t ,得出AP =10﹣t ,然后由PQ ∥BC ,根据平行线分线段成比例定理得出=,列出比例式=,求解即可; (2)根据S 四边形PQCB =S △ACB ﹣S △APQ =AC •BC ﹣AP •AQ •sin A ,即可得出y 关于t 的函数关系式;(3)根据四边形PQCB 面积是△ABC 面积的,列出方程t 2﹣8t +24=×24,解方程即可;(4)△AEQ 为等腰三角形时,分三种情况讨论:①AE =AQ ;②EA =EQ ;③QA =QE ,每一种情况都可以列出关于t 的方程,解方程即可.【解答】解:(1)Rt △ABC 中,∵∠C =90°,BC =8cm ,AC =6cm ,∴AB =10cm .∵BP =t ,AQ =2t ,∴AP =AB ﹣BP =10﹣t .∵PQ ∥BC ,∴=,∴=,解得t=;(2)∵S四边形PQCB =S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sin A∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【点评】本题考查了勾股定理,平行线的判定,四边形的面积,等腰三角形的判定,中心对称的性质,综合性较强,难度适中.运用分类讨论、方程思想是解题的关键.。
2019年最新广东省中考数学模拟试卷及答案解析
2019年最新广东省中考数学模拟试卷及答案解析广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.数字1的倒数是()。
A。
-2.B。
2.C。
1.D。
-12.下列图案中既是中心对称图形,又是轴对称图形的是()。
A。
B。
C。
D。
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为xxxxxxxx00人,这个数用科学记数法表示为()。
A。
44×10^8.B。
4.4×10^9.C。
4.4×10^8.D。
4.4×10^104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()。
A。
32,31.B。
31,32.C。
31,31.D。
32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()。
A。
35°。
B。
45°。
C。
50°。
D。
55°6.下列运算正确的是()。
A。
2a+3b=5ab。
B。
a^2·a^3=a^5.C。
(2a)^3=6a^3.D。
a^6+a^3=a^97.一元二次方程x^2-4x+2=0的根的情况是()。
A。
有两个不相等的实数根。
B。
有两个相等的实数根C。
只有一个实数根。
D。
没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()。
A。
10.B。
13.C。
17.D。
13或179.不等式组的解集在数轴上表示正确的是()。
A。
B。
C。
D。
10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC-CD-DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm^2),则y关于x的函数图象是()。
2019年广东省广州市越秀区中考数学一模试卷
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2019年广东省广州市越秀区中考数学一模试卷2019 年广东省广州市越秀区中考数学一模试卷一、选择题(共10 小题,每小题 3 分,满分 30 分) 1、(2006韶关)点 P(5,﹣ 3)关于原点对称的点的坐标是() A、(﹣ 5, 3) B、(﹣ 5,﹣ 3) C、(3,﹣ 5) D、(﹣ 3,﹣ 5) 2、(2006韶关)据统计,今年五一黄金周来韶关旅游的游客人数为476 000 人.用科学记数法表示游客人数,正确的是() A、476103 C、 4.76105 3、(2006韶关)下列计算正确的是()A、 a3a2=a6B、 47.6104 D、 0.476106 B、(﹣ a3)2=a6C、D、4、(2006韶关)已知函数 y=mx 与在同一直角坐标系中的图象大致如图,则下列结论正确的是() A、 m>0, n>0 C、 m<0,n>05、(2006韶关)已知⊙O 的半径为 5cm,如果圆心 O 到直线 l 的距离为 5.5cm,那么直线 l和⊙O 的位置关系是() A、相交 B、相切 C、相离 D、相交或相离6、(2006韶关)设 x1,x2是方程 x2﹣ x﹣ 1=0 的两根,则 x12+x22=() A、﹣ 3 B、﹣ 1 C、 1 D、 37、如图,⊙O 的半径为 5,弦 AB 的长为 6, M 是 AB 上的动点,则线段 OM 长的最小值为() B、m>0, n<0 D、 m<0, n<0 A、 2 C、 48、(2009河南)如图所示,在平面直角坐标系中,点 A、 B 的坐标分别为(﹣ 2,0)和(2,B、 3 D、 5 0).月牙①绕点 B 顺时针旋转 90得到月牙②,则点 A 的对应点 A的坐标为() A、(2, 2) C、1/ 25(4, 2) 9、如图,梯形 ABCD 的对角线 AC、 BD 相交于点 O,△A D O 的面积记作 S1,△B C O 的面积记作 S2,△A B O 的面积记作 S3,△C D O 的面积记作 S4,则下列关系正确是() B、(2, 4) D、(1, 2) A、 S1=S2 C、 S1+S2=S4+S3 10、(2006韶关)如图,已知△A B C 的周长为 1,连接△A B C 三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,,依此类推,则第 10 个三角形的周长为() B、S1S2=S3S4 D、 S2=2S3 A、 B、 C、 D、二、填空题(共 6 小题,每小题 3 分,满分 18 分) 11、(2006韶关)计算:2﹣ 2+ (2006﹣)0﹣ |﹣|= _________ . 12、一家鞋店在 6 月份销售的某种童鞋 20 双,其中各种尺码的鞋的销量如表所示:这组数据的中位数是 _________ 22223童鞋0 2 4 8 0 的尺码销量(双) 5 5 4 3 3 13、如图,四边形 ABCD 中, A B C =A D C =90, AD=3, CD=4, E 是 AC 的中点,则BE= _________ . 14、将量角器按如图所示的方式放置在三角形纸板上,使点 C 在半圆上.点 A、 B 的读数分别为 86、 30,则 A C B 的大小为_________ .15、当c= _________ 时,关于x 的方程2x2+8x+c=0 有实数根.(填一个符合要求的数即可) 16、(2009潍坊)已知边长为 a 的正三角形 ABC,两顶点 A、 B 分别在平面直角坐标系的 x轴、y 轴的正半轴上滑动,点 C 在第一象限,连接OC,则 OC 的长的最大值是 _________ .三、解答题(共 9 小---------------------------------------------------------------最新资料推荐------------------------------------------------------ 题,满分 102 分) 17、(2009河南)先化简,然后从中选取一个你认为合适的数作为 x 的值代入求值. 18、(2009漳州)如图,点 D 在⊙O 的直径 AB 的延长线上,点 C 在⊙O 上, AC=CD,D =30.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为 3,求的长.(结果保留) 19、(2009防城港)解不等式组:,并把解集在数轴上表示出来. 20、(2009定西) 2008 年 5 月 12 日,四川省汶川县发生了里氏 8.0 级大地震,兰州某中学师生自愿捐款,已知第一天捐款 4800 元,第二天捐款 6000 元,第二天捐款人数比第一天捐款人数多 50 人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少人?均捐款多少元? 21、小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为 1, 2, 3, 5的四张牌给小莉,将数字为 4, 6, 7, 8 的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则. 22、如图,小3/ 25明的父亲在相距 2 米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是 2.5 米,绳子自然下垂呈抛物线状,身高 1 米的小明距较近的那棵树 0.5 米时,头部刚好接触到绳子,(1)选取合适的点作为原点,建立直角坐标系,求出抛物线的解析式;(2)求绳子的最低点距地面的距离. 23、已知等腰三角形的一边长是 10 米,面积是 30 平方米,求这个三角形另两边的长. 24、(2010贵阳)某商场以每件 50 元的价格购进一种商品,销售中发现这种商品每天的销售量 m(件)与每件的销售价 x(元)满足一次函数,其图象如图所示.(1)每天的销售数量 m(件)与每件的销售价格 x(元)的函数表达式是_________ .(2)求该商场每天销售这种商品的销售利润 y(元)与每件的销售价格 x(元)之间的函数表达式;(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加? 25、如图,已知矩形,在 BC 上取两点 E, F(E 在F 左边),以 EF 为边作等边三角形 PEF,使顶点 P 在 AD 上, PE,PF 分别交 AC 于点 G,H.(1)求△PEF 的边长;(2)在不添加辅助线的情况下,当 F 与 C 不重合时,先直接判断△A PH 与△C FH 是如下关系中的哪一种:然后证明你的判断.①△A PH 与△C FH 全等;②△A PH 与△C FH 相似;③△A PH 与△C FH 成中心对称;④△A PH 与△C FH 成轴对称;(3)若△PEF 的边 EF 在线段 BC 上移动.试猜想:---------------------------------------------------------------最新资料推荐------------------------------------------------------ PH 与 BE 有何数量关系?并证明你猜想的结论.答案与评分标准一、选择题(共 10 小题,每小题 3 分,满分 30 分) 1、(2006韶关)点 P(5,﹣ 3)关于原点对称的点的坐标是()A、(﹣ 5, 3) B、(﹣ 5,﹣ 3) C、(3,﹣ 5) D、(﹣ 3,﹣ 5)考点:关于原点对称的点的坐标。
(完整版)2019年广东省广州一中中考数学模拟试卷(1)(解析版)
2019年广东省广州一中中考数学模拟试卷(1)一、选择题(每小题4分,共40分)1.下列几何图形中,不可能既是轴对称图形又是中心对称图形的是()A.圆B.正三角形C.线段D.矩形2.二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到函数解析y=x2﹣2x+1,则b与c分别等于()A.2,﹣2B.﹣8,14C.﹣6,6D.﹣8,183.已知四边形S1的两条对角线相等,但不垂直,顺次连结S1各边中点得四边形S2,顺次连结S各边中点得四边形S3,以此类推,则S2019为()A.是矩形但不是菱形B.是菱形但不是矩形C.既是菱形又是矩形D.既非矩形又非菱形.4.α、β都是钝角,甲、乙、丙、丁四位同学计算(α+β)的结果依次为50°、26°、72°和90°,其中有正确的结果,那么算得正确的是()A.甲B.乙C.丙D.丁5.某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系6.两个物体A,B所受压强分别为P A(帕)与P B(帕)(P A,P B为常数),它们所受压力F(牛)与受力面积S(平方米)的函数关系图象分别是射线L A,L B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤P B7.已知a、b都是有理数,且|a|=a,|b|≠b,则ab=()A.负数B.正数C.负数或零D.非负数8.若关于x的方程=﹣1的解是负数,则a的取值范围是()A.a<﹣2B.a>﹣2C.a>﹣2q且a≠0D.a≠09.有理数a,b,c,满足:a≥3,b≤﹣2,c≥5,且a﹣b+c=10,则a+3b+c的值是()A.1B.2C.3D.510.在锐角△ABC中,三个内角的度数都是质数,则这样的三角形()A.只有一个且为等腰三角形B.至少有两个且都为等腰三角形C.只有一个但不是等腰三角形D.至少有两个,其中有非等腰三角形二、填空题(每小题4分,共60分)11.2003年6月1日,举世瞩目的三峡工程正式下闸蓄水,26台机组年发电量将达到84 700 000 000千瓦时,用科学记数法应表示为千瓦时.12.使分式方程产生增根的m=.13.在Rt△ABC中,∠C=90°,a,b分别是∠A、∠B的对边,如果sinA:sinB=2:3,那么a:b等于.14.将一个四边形的纸片一刀剪去一个角后,所得的多边形的内角之和是.15.观察下面各组数:(3,4,5)、(5,12,13)、(7,24,25)、(9,40,41)、(11,60,61)…,发现:4=(32﹣1)÷2,12=(52﹣1)÷2,24=(72﹣1)÷2…,若设某组数的第一个数为k,则这组数为(k,,).16.当时,关于x的一元二次方程(a﹣2)x2+(﹣2a+1)x+a=0有实根.17.Rt△ABC内的点P到三边的距离均为d,斜边为c,则直角三角形的面积为.18.如果表示正方形ABCD各边长的代数式如图所示,那么,阴影部分的面积是.19.如图,在正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,点P是BD上的一动点,则PE+PC的最小值是.20.如图,在四边形ABCD中,AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,则∠DAB的度数是°.21.苹果的零售价格是每千克5元,一次购买10千克以上按批发价,批发价格是零售价格的8折,买15千克苹果应该付元.22.圆的半径为5cm,其内接梯形的两底分别为6cm和8cm,则梯形的面积S=.23.如图所示,是用火柴棒摆成的一序列“井”字型图案,按这种方式摆下去,当每边上摆201(即n=201)根时,需要的火柴棒的总根数是根.24.设n为自然数,记1?2?3?…?n=n!,问和数1!+2!+3!+…+2018!+2019!的个位数字是.25.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是.2019年广东省广州一中中考数学模拟试卷(1)参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A.圆既是轴对称图形,又是中心对称图形,不符合题意;B.等边三角形是轴对称图形,不是中心对称图形,符合题意;C.线段既是轴对称图形,又是中心对称图形,不符合题意;D.矩形既是轴对称图形,又是中心对称图形,不符合题意;故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】先把得到新的图象的解析式进行变形,再将新抛物线y=(x﹣1)2向下平移3个单位,再向右平移2个单位得到原抛物线的顶点式解析式,再化为一般式即可得出答案.【解答】解:∵得到函数解析y=x2﹣2x+1∴y=(x﹣1)2∴将新二次函数y=(x﹣1)2向下平移3个单位,再向右平移2个单位,得到的解析式为y=(x﹣1﹣2)2﹣3,即y=x2﹣6x+6又∵y=x2+bx+c∴b=﹣6,c=6故选:C.【点评】题考查了二次函数图象和几何变换,熟练掌握二次函数的平移的规律:左加右减,上加下减是本题的关键,注意要先把新函数图象变成顶点式,再进行求解.3.【分析】如果四边形对角线互相垂直,则它的中点四边形为矩形;如果四边形对角线相等,则它的中点四边形为菱形,据此解题即可.【解答】解:∵四边形S1的两条对角线相等,但不垂直,∴根据三角形的中位线定理,顺次连接S1各边中点所得的四边形的四边相等,则所得的四边形是菱形但不是矩形,∵菱形S2的对角线互相垂直平分,∴顺次连接S2各边中点得矩形S3,又矩形S3的对角线相等,但不垂直,∴顺次连接S3各边中点得菱形S4,…可以发现四边形S n,当n为奇数(n>1)时,为矩形;当n为偶数时,为菱形但不是矩形.则S2019为菱形但不是矩形.故选:B.【点评】本题考查了中点四边形,熟练理解中点四边形的意义是解题的关键.4.【分析】根据钝角的取值范围,确定(α+β)的取值范围,即可求解.【解答】解:∵α、β都是钝角,∴90°<α<180°,90°<β<180°,∴20°<(α+β)<40°,∴26°在此范围内,故选:B.【点评】本题考查角的分类,角的范围.能够准确用不等式确定(α+β)的范围是解题的关键.5.【分析】利用扇形统计图的特点,可以得到各类所占的比例,但总数不确定,不能确定每类的具体人数.【解答】解:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A、B、C都错误,故选:D.【点评】本题考查了扇形统计图的知识,扇形统计图直接反映部分占总体的百分比大小.解题的关键是能够读懂扇形统计图并从中整理出进一步解题的有关信息.6.【分析】这是一道学科综合题.压强P=,由图象知受力面积相同时压力F B>F A,故有P A<P B.【解答】解:由图象知受力面积相同时压力F B>F A,故选A.【点评】学科综合题考查综合运用知识的能力,反映学生在理科方面的水平.7.【分析】先根据绝对值的性质判断a、b的值,再由a、b的取值判断ab的值.【解答】解:∵|a|=a,∴a≥0,又∵|b|≠b,∴b<0,∴ab≤0,则ab为负数或0,故选:C.【点评】本题考查了绝对值的概念,解题时牢记概念是关键.8.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【解答】解:分式方程去分母得:2x+a=﹣x﹣2,即x=,根据分式方程解为负数,得到<0,解得:a>﹣2故选:B.【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.9.【分析】由b≤﹣2,得﹣b≥2,又因为a≥3,c≥5,所以要使a﹣b+c=10等式成立,a、﹣b、c都为正数且同时取最小值时,可求出字母a、b、c值,代入求出代数式的值.【解答】解:∵b≤﹣2,∴﹣b≥2,又∵a﹣b+c=10,a≥3,c≥5,∴a=3,b=﹣2,c=5,∴a+3b+c=3+3×(﹣2)+5=2,故选:B.【点评】本题考查了在不等式和等式限制条件下求代数式值的问题,难点是确定a、b、c的值.10.【分析】首先列举出90以内的质数,根据三角形内角和定理可知有1个角为2°,另外2角的和为178°,即可得出三角形有且仅有一个,这是一个等腰三角形,然后根据最短边的长为1,分腰为1与底为1两种情况进行讨论,据此即可解答.【解答】解:90以内的质数有:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89质数除2以外均为奇数,三个奇数相加亦为奇数,而三角形内角和的度数为180,是偶数,所以必有一个角的度数为2,不妨设∠A=2°,那么∠B+∠C=178°=89°+89°,△ABC为锐角三角形,如果不取∠B=∠C=89°,则必有一角>90°,与锐角矛盾所以满足条件的三角形有且仅有一个:{2°,89°,89°};这是一个等腰三角形,当腰为1时,底边远小于1(不符合题意,舍去),当底为1时,腰长远大于1,所以满足条件的[互不全等]的三角形有且仅有1个.故选:A.【点评】此题综合考查等腰三角形的判定.抓住“2”是无数个质数中唯一的一个偶数,利用“偶质数2”的这一性质求解.二、填空题(每小题4分,共60分)11.【分析】用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:84 700 000 000=8.47×1010,故答案为:8.47×1010.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出a的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,当x=3时,m=3,故a的值可能是3.故答案为:3.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.【分析】根据正弦的定义得到sinA=,sinB=,再由sinA:sinB=2:3得到:=2:3,然后利用比例性质化简即可.【解答】解:在Rt△ABC中,∠C=90°,a,b分别是∠A、∠B的对边,c为∠C对的边,∴sinA=,sinB=,∵sinA:sinB=2:3,∴:=2:3,∴a:b=2:3.故答案为2:3.【点评】本题考查了互余两角三角函数的关系:在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sinA=(90°﹣∠A);②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin(90°﹣∠A).也考查了锐角三角函数的定义.14.【分析】分四边形剪去一个角,边数减少1,不变,增加1,三种情况讨论求出所得多边形的内角和,即可得解.【解答】解:剪去一个角,若边数减少1,则内角和=(3﹣2)?180°=180°,若边数不变,则内角和=(4﹣2)?180°=360°,若边数增加1,则内角和=(5﹣2)?180°=540°,故答案为:180°或360°或540°.【点评】本题考查了多边形的内角与外角,要注意剪去一个角有三种情况.15.【分析】根据所给各组数为:(3,4,5)、(5,12,13)、(7,24,25),其中4=(32﹣1)÷2,12=(52﹣1)÷2,24=(72﹣1)÷2…,即可得出答案.【解答】解:观察体重所给各组数可得:设某组数的第一个数为k,则这组数为(k,,).故答案为:,.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.16.【分析】由关于x的一元二次方程(a﹣2)x2+(﹣2a+1)x+a=0有实数根,则a﹣2≠0,即a ≠2,且△≥0,即△=(﹣2a+1)2﹣4(a﹣2)a=4a+1≥0,然后解两个不等式得到a的取值范围.【解答】解:由题意知,△=(﹣2a+1)2﹣4a(a﹣2)≥0且a﹣2≠0,解得:a≥﹣且a≠2,故答案为:a≥﹣且a≠2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程的定义.17.【分析】设Rt△ABC的两条直角边为a,b,由题意,Rt△ABC内切圆半径为d,可得,即a+b=2d+c,所以a+b+c=2d+2c,根据三角形面积等于三角形周长与内切圆半径积的一半,即可得出直角三角形的面积.【解答】解:设Rt△ABC的两条直角边为a,b,∵Rt△ABC内的点P到三边的距离均为d,即内切圆半径为d,∴,即a+b=2d+c,∴a+b+c=2d+2c,∴直角三角形的面积为:.故答案为:d2+cd.【点评】本题考查三角形面积的计算,三角形内切圆的概念和性质,解题的关键是掌握三角形面积与内切圆半径之间的关系.18.【分析】先根据正方形的边长都相等,构造方程组求出x和y的值,进而得到正方形的边长,观察图形得到阴影部分面积与△ADC面积相等.【解答】解:根据正方形的性质可得,解得.所以正方形的边长为2x+3y﹣1=4.把阴影部分进行重新组合正好是△ADC的面积,即×4×4=8.故答案为8.【点评】本题只要考查了正方形的性质以及三角形面积问题,解题的关键是对阴影部分进行转化,使其成为规则图形.19.【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【解答】解:如图连接AE交BD于P点,则AE就是PE+PC的最小值,∵正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,∴AB=12,∴AE==13,∴PE+PC的最小值是13.故答案为:13.【点评】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用,找出最短路径作法是解题关键.20.【分析】由已知可得AB=BC,从而可求得∠BAC的度数,再根据已知可求得AC:CD:DA=2:3:1,从而发现其符合勾股定理的逆定理,即可得到∠ADC=90°,从而不难求得∠DAB 的度数.【解答】解:∵AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,∴AB=BC,∴∠BAC=∠ACB=45°,∴AB:BC:AC=2:2:2=1:1:,∴AC:CD:DA=2:3:1,∵AC2+AD2=CD2∴∠DAC=90°,∴∠DAB=45°+90°=135°.【点评】此题主要考查学生对勾股定理的逆定理的理解及运用能力.21.【分析】先确定批发价为5×0.8,然后把批发价乘以15千克即可得到总费用.【解答】解:5×0.8×15=70,所以买15千克苹果应该付60元.故答案为60.【点评】本题考查了列代数式:利用所买物品的费用等于单位价格乘以所买物品的数量列代数式.22.【分析】首先过圆心作上或下底的垂线,利用垂径定理和勾股定理得到圆心到上下底的距离.然后通过圆心的位置分类讨论,确定梯形的高,最后求出面积.【解答】解:四边形ABCD是圆O的内接等腰梯形,AD∥BC,如图,AD=6,AB=8,OA=5.过O点作AD的垂线,E为垂足,且交BC于F点.因为AD∥BC,所以EE⊥BC,则EF平分AD、BC.AE=3,BF=4连OA,OB.在△OAE中,OE==4同理可得OF=3;(1)当圆心O在梯形内.如图①梯形的高为EF,EF=3+4=7.所以S梯形ABCD=(6+8)×7=49(cm2).(2)当圆心O在梯形外.如图②梯形的高为EF,EF=4﹣3=1.所以S梯形ABCD=(6+8)×1=7(cm2).故答案为:49cm2或7cm2.【点评】此题考查梯形的问题,熟练掌握垂径定理和勾股定理.掌握分类讨论的思想在几何中的运用.记住梯形的面积公式.23.【分析】设每边上摆2k+1根时,需要a k根火柴棒(k为正整数),根据图形,根据各图形中火柴棒总根数的变化可得出变化规律“a k=12k(k为正整数)”,找出当k=100时每边上摆201根,再代入k=100即可求出结论.【解答】解:设每边上摆2k+1根时,需要a k根火柴棒(k为正整数),观察图形,可知:a1=12=3×4×1,a2=24=3×4×2,a3=36=3×4×3,…,∴a k=12k(k为正整数).∵2k+1=201,∴k=100,∴a100=12×100=1200.故答案为:1200.【点评】本题考查了规律型:图形的变化类,根据各图形中火柴棒总根数的变化找出变化规律“a k =12k(k为正整数)”是解题的关键.24.【分析】根据题意可以前几个和数,从而可以发现数字的变化规律,从而可以解答本题.【解答】解:∵1!=1,1!+2!=1+1×2=3,1!+2!+3!=1+1×2+1×2×3=9,1!+2!+3!+4!=1+1×2+1×2×3+1×2×3×4=33,1!+2!+3!+4!+5!=1+1×2+1×2×3+1×2×3×4+1×2×3×4×5=153,1!+2!+3!+4!+5!+6!=1+1×2+1×2×3+1×2×3×4+1×2×3×4×5+1×2×3×4×5×6=873,∴和数1!+2!+3!+…+2018!+2019!的个位数字是3,故答案为:3.【点评】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化规律.25.【分析】根据θ的范围即可求得km+的范围,从而求得m的取值范围.【解答】解:∵0°<θ<30°,∴sin0°<sinθ<sin30°,即0<km+<,∴﹣<km<,∴<m<﹣.故答案是:<m<﹣.【点评】本题主要考查了特殊角0°与30°的正弦值,以及正弦函数随角度的增大而增大.。
2019年广东中考真题数学试题(解析版)(含考点分析)
{来源}2019年广东省中考数学试卷 {适用范围:3. 九年级}{标题}2019年广东省中考数学试卷考试时间:100分钟 满分:120分{题型:1-选择题}一、选择题:本大题共10 小题,每小题 3 分,合计30分.{题目}1.(2019年广东第1题)-2的绝对值是 A.2 B.-2 C.21D.2{答案}A{解析}本题考查了绝对值的性质,根据绝对值的性质,-2的绝对值是2,因此本题选A . {分值}3{章节:[1-1-2-4]绝对值 } {考点:绝对值的性质} {类别:常考题} {难度:1-最简单}{题目}2.(2019年广东第2题)某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105C.221×103D.0.221×106{答案}B{解析}本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.因此本题选B . {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}3.(2019年广东第3题)如图,由4个相同正方体组合而成的几何体,它的左视图是{答案}A{解析}本题考查了三视图的知识,理解左视图是从物体的左边看得到的视图是解题的关键了,因此本题选A . {分值}3{章节: :[1-29-2]三视图} {考点:简单组合体的三视图} {类别:常考题} {难度:1-最简单}{题目}4.(2019年广东第4题)下列计算正确的是主视方向 A B C DA.b 6÷b 3=b 2B.b 3·b 3=b 9C.a 2+a 2=2a 2D.(a 3)3=a 6{答案}C{解析}本题考查整式的运算,根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;合并同类项法则,幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解. 本题选C{分值}3{章节:[1-15-2-3]整数指数幂}{考点:同底数幂的除法}{考点:同底数幂的乘法}{考点:合并同类项}{考点:幂的乘方} {类别:常考题} {难度:2-简单}{题目}5.(2019年广东第题)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是{答案}C{解析}本题考查了中心对称图形,轴对称图形,根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.因此本题选C . {分值}3{章节:[1-23-2-2]中心对称图形}{考点:轴对称图形}{考点:中心对称图形} {类别:常考题} {难度:1-最简单}{题目}6.(2019年广东第6题)数据3、3、5、8、11的中位数是A.3B.4C.5D.6{答案}C{解析}本题考查了中位数的定义,根据中位数的定义可知中位数是5,因此本题选C . {分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:1-最简单}{题目}7.(2019年广东第7题)实教a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是 A.a>bB.|a|<|b|C. a+b>0D.ba <0A B C D{答案}D{解析}本题考查了实数与数轴,实数的大小比较,通过数轴可知a<b,|a|>|b|,a+b<0,因此本题选D.{分值}3{章节:[1-6-3]实数}{考点:实数与数轴}{考点:实数与绝对值、相反数}{考点:实数的大小比较}{类别:常考题}{难度:3-中等难度}{题目}8.(2019年广东第8题)化简24的结果是A.-4B.4C.D.2{答案}B42 ,因此本题选B.{解析}本题考查了二次根式的化简,根据二次根式的性质化简可得4{分值}3{章节:[1-16-1]二次根式}{考点:二次根式的定义}{类别:常考题}{难度:2-简单}{题目}9.(2019年广东第9题)已知x1、x2是一元二次方程了x2-2x=0的两个实数根,下列结论错误..的是A.x1≠x2B.x12-2x1=0C.x1+x2=2D.x1·x2=2{答案}D{解析}本题考查了一元二次方程根及根与系数的关系,根据一元二次方程根与系数的关系可得x1+x2=2,x1·x2=0,因此本题选D.{分值}3{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:根与系数关系}{类别:常考题}{难度:2-简单}{题目}10.(2019年广东第10题)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.S △则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④AFN:S△ADM =1:4.其中正确的结论有 A.1个 B.2个C.3个D.4个{答案}C{解析}本题考查了正方形的性质、全等三角形的性质和判定、相似三角形的性质和判定、对顶角、内错角,根据正方形的性质、中点性质及对顶角易证:①△ANH≌△GNF,若②∠AFN=∠HFG,因为∠HFG=∠AHF,所以∠AFN=∠AHF,所以AF=AH,又因为AG=AH=2,则AG=AF=FG=2,而△AGF是等腰直角三角形,所以结论不成立;根据正方形的性质、中点性质及对顶角易证:△AHK∽△MFK,31==KF HK MF AH ,易得③FN=2NK ;因为S △AFN 2FGAN ⋅=,S △ADM=2DM AD ⋅,AN=1,FG=DM=2,AD=4,得④S △AFN :S △ADM =1:4.因此本题选C{分值}3{章节:[1-18-2-3] 正方形}{考点:全等三角形的性质}{考点:全等三角形的判定ASA,AAS}{考点:相似三角形的性质} {考点:相似三角形的判定(两角相等)}{考点:正方形的性质} {类别:易错题} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题4分,合计24分.{题目}11.(2019年广东第11题)计算10120193-⎛⎫+= ⎪⎝⎭.{答案}4{解析}本题考查了整式的乘法中的零指数幂和负指数幂,根据任何不为零的数的零次方等于1和-1次方等于底数的倒数可得原式134=+=. {分值}4{章节: [1-15-2-3]整数指数幂}{考点: 零次幂}{考点:同底数幂的除法} {类别:常考题} {难度:1-最简单}{题目}12.(2019年广东第12题)如图,已知a//b ,∠l=75°,则∠2 = .{答案}105°{解析}本题考查了对顶角相等和平行线的性质,根据a//b ,则∠1的对顶角与∠2互补,因此∠2=180°-∠1=105°. {分值}4{章节:[1-5-3]平行线的性质}{考点:相交}{考点:两直线平行同旁内角互补} {类别:常考题} {难度:2-简单}{题目}13.(2019年广东第13题)一个多边形的内角和是1080°,这个多边形的边数是 .{答案}8{解析}本题考查了多边形的内角和求解公式,根据多边形内角和公式()21801080n -=g ,可求得8n =,因此边数为8.{分值}4{章节:[1-11-3]多边形及其内角和} {考点:多边形的内角和} {类别:常考题} {难度:2-简单}{题目}14.(2019年广东第14题)已知x=2y+3,则代数式4x-8y+9的值是 .{答案}21{解析}本题考查了等式的性质和代数式求值,先通过23x y =+可得23x y -=,再通过等式的性质,两边同时乘以4得:()4212x y -=,即4812x y -=,48912921x y -+=+=. {分值}4{章节:[1-3-1-2]等式的性质}{考点:等式的性质}{考点:代数式求值} {类别:整体代入思想方法}{类别:常考题} {难度:3-中等难度}{题目}15.(2019年广东第15题)如图,某校教学楼AC 与实验楼BD 的水平间距CD=153米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号)。
2019年广州中考数学试卷解析(含答案)
2019年广州中考数学试卷解析(含答案)广东省广州市2019年中考数学试卷(解析版)一、选择题.(2019广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.如图所示的几何体左视图是()A.B.C.D.【分析】根据几何体的左视图的定义判断即可.【解答】解:如图所示的几何体左视图是A,故选A.【点评】本题考查了由几何体来判断三视图,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.据统计,2019年广州地铁日均客运量均为6590000人次,将6590000用科学记数法表示为()A.6.59×104B.659×104C.65.9×105D.6.59×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6590000用科学记数法表示为:6.59×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【分析】最后一个数字可能是0~9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为故选A..【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.下列计算正确的是()A.B.xy2÷D.(xy3)2=x2y6C.2【分析】分别利用二次根式加减运算法则以及分式除法运算法则和积的乘方运算法则化简判断即可.【解答】解:A、B、xy2÷C、2+3无法化简,故此选项错误;=2xy3,故此选项错误;,无法计算,故此选项错误;D、(xy3)2=x2y6,正确.故选:D.【点评】此题主要考查了二次根式加减运算以及分式除法运算和积的乘方运算,正确掌握相关运算法则是解题关键.6.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320tB.v=C.v=20tD.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.△7.如图,已知ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3B.4C.4.8D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC=故选:D.=5.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD 的长是解题关键.8.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0B.a﹣b>0C.a2+b>0D.a+b>0【分析】首先判断a、b的符号,再一一判断即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,a2+b>0,故C正确,a+b不一定大于0,故D错误.故选C.【点评】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.9.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大C.图象的顶点坐标为(﹣2,﹣7)B.当x=2时,y有最大值﹣3D.图象与x轴有两个交点【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=﹣又∵a=﹣<0+x﹣4可化为y=﹣(x﹣2)2﹣3,∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.【点评】本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.10.定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0B.1C.2D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b⋆b﹣a⋆a=b (1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.ab=m.本题属于基础题,【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.二.填空题.(本大题共六小题,每小题3分,满分18分.)11.分解因式:2a2+ab=a2a+b【分析】直接把公因式a提出来即可.【解答】解:2a2+ab=a(2a+b).故答案为:a(2a+b).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.代数式有意义时,实数x的取值范围是x9.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,9﹣x≥0,解得,x≤9,故答案为:x≤9.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13.如图,ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB △F分别落在边AB,BC上,的方向平移7cm得到线段EF,点E,则△EBF的周长为13 cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.14.分式方程的解是x=1【分析】根据解分式方程的方法可以求得分式方程本题得以解决.【解答】解:的解,记住最后要进行检验,方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.15.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12,OP=6,则劣弧AB的长为8π.【分析】连接OA、OB,由切线的性质和垂径定理易得AP=BP=数的定义可得∠AOP=60°,利用弧长的公式可得结果.【解答】解:连接OA、OB,∵AB为小⊙O的切线,∴OP⊥AB,∴AP=BP=∵∴∠AOP=60°,=,,==8π.,由锐角三角函∴∠AOB=120°,∠OAP=30°,∴OA=2OP=12,∴劣弧AB的长为:故答案为:8π.【点评】本题主要考查了切线的性质,垂径定理和弧长公式,利用三角函数求得∠AOP=60°是解答此题的关键.16.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是①②③.【分析】首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.【解答】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在RT△ADE和RT△GDE中,,∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故①正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=∴BE>AE,∴AE<,AE,∴CB+FG<1.5,故④错误.故答案为①②③.【点评】本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.三、解答题17.解不等式组并在数轴上表示解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.19.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组甲乙丙研究报告918179小组展示807483答辩788590(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?【分析】(1)根据表格可以求得各小组的平均成绩,从而可以将各小组的成绩按照从大到小排列;(2)根据题意可以算出各组的加权平均数,从而可以得到哪组成绩最高.【解答】解:(1)由题意可得,甲组的平均成绩是:乙组的平均成绩是:(分),(分),丙组的平均成绩是:(分),(分),(分),(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:由上可得,甲组的成绩最高.【点评】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件.20.已知A=(1)化简A;(a,b≠0且a≠b)(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.【分析】(1)利用完全平方公式的展开式将(a+b)2展开,合并同类型、消元即可将A进行化解;(2)由点P在反比例函数图象上,即可得出ab的值,代入A化解后的分式中即可得出结论.【解答】解:(1)A=,=,=,=.(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.【点评】本题考查了分式的化解求值以及反比例函数图象上点的坐标特征,解题的关键是:(1)将原分式进行化解;(2)找出ab值.本题属于基础题,难度不大,解决该题型题目时,先将原分式进行化解,再代入ab求值即可.21.如图,利用尺规,在ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取△AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【分析】利用尺规作∠EAC=∠ACB即可,先证明四边形ABCD是平行四边形,再证明CD∥AB即可.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.【点评】本题考查尺规作图、平行四边形的判定和性质等知识,解题的关键是学会利用尺规作一个角等于已知角,属于基础题,中考常考题型.22.如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30A′处,m到达(1)求A,B之间的距离;(2)求从无人机A′上看目标D的俯角的正切值.【分析】(1)解直角三角形即可得到结论;,CE=AA′=30(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,于是得到A′E=AC=60,在Rt△ABC中,求得DC=AC=20,然后根据三角函数的定义即可得到结论..【解答】解:(1)由题意得:∠ABD=30°,∠ADC=60°,在Rt△ABC中,AC=60m,∴AB===120(m);(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,则A′E=AC=60,CE=AA′=30,==.在Rt△ABC中,AC=60m,∠ADC=60°,∴DC=∴DE=50AC=20,,∴tan∠AA′D=tan∠A′DC=答:从无人机A′上看目标D的俯角的正切值是【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.23.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到到结论.或,代入数据即可得【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BCE相似,∴∴==或或,,,或CE=,∴BE=2,CE=∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.24.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.【分析】(1)根据题意得出△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,得出1﹣4m≠0,解不等式即可;(2)y=m(x2﹣2x﹣3)+x+1,故只要x2﹣2x﹣3=0,那么y的值便与m无关,解得x=3或x=﹣1(舍去,此时y=0,在坐标轴上),故定点为(3,4);,因此(3)由|AB|=|xA﹣x B|得出|AB|=|﹣4|,由已知条件得出≤<4,得出0<|﹣4|≤|AB|最大时,||=,解方程得出m=8,或m=(舍去),即可得出结果.【解答】(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠;=(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,∴y=m(x2﹣2x﹣3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x2﹣2x﹣3=0时,y与m无关,解得:x=3或x=﹣1,当x=3时,y=4,定点坐标为(3,4);当x=﹣1时,y=0,定点坐标为(﹣1,0),∵P不在坐标轴上,∴P(3,4);=|AB|=|xA﹣x B|=(3)解:==||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,,|=,∴0<|﹣4|≤∴|AB|最大时,|解得:m=8,或m=(舍去),,∴当m=8时,|AB|有最大值此时△ABP的面积最大,没有最小值,则面积最大为:|AB|yP=××4=.【点评】本题是二次函数综合题目,考查了二次函数与一元二次方程的关系,根的判别式以及最值问题等知识;本题难度较大,根据题意得出点P的坐标是解决问题的关键.上,且不与点B,D重合),25.如图,点C为△ABD的外接圆上的一动点(点C不在∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(△3)若ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM 2三者之间满足的等量关系,并证明你的结论.【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.【解答】解:(1)∵=,∴∠ACB=∠ADB=45°,∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径;(2)在CD的延长线上截取DE=BC,连接EA,∵∠ABD=∠ADB,∴AB=AD,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,∴∴AC=CE,AC=CD+DE=CD+BC;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,由对称性可知:∠AMB=ACB=45°,∴∠FMA=45°,∴△AMF是等腰直角三角形,∴AM=AF,MF=AM,∵∠MAF+∠MAB=∠BAD+∠MAB,∴∠FAB=∠MAD,在△ABF与△ADM中,,∴△ABF≌△ADM(SAS),∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,∴BM2+2AM2=DM2.【点评】本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,综合程度较高,解决本题的关键就是构造等腰直角三角形.。
2019届广东省中考模拟考试(一)数学试卷【含答案及解析】
A. 1 B.-1 C.4 D.-4
CF交AB于B,已知/2=29。,则上1的度数是(
6.在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它 们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁
2=0.25.三月份苹果价格最稳定的超市是(
A.甲B•乙C•丙D•丁
BCB'的度数为(
8.用配方法解一元二次方程x2-6x=-5的过程中,配方正确的是()
A.(x+3)2=1B.(x-3)2=1C.(x+3)2=4 D. (x-3)2=4
9.如图是一个3X2的长方形网格,组成网格的小长方形长为宽的2倍,△AB的顶点都
是网格中的格点,贝Vcos/ABC的值是()
A. — B .-C .-D .-
5555
10. 若mn<0,则正比例函数y=mx与反比例函数在同一坐标系中的大致图象可能是()
、填空题
12.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年
发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里.
针旋转45°,则这两个正方形重叠部分的面积是
14.如图,A(2,1),B( 1,-1),以O为位似中心,按比例尺1:2,把厶AO放大, 则点A的对应点A'的坐标为
15.如图,直线y1=k1x+b和直线y2=k2x+b分别与 轴交于A(—1,0)和B(3,0)两 点•则不等式组k1x+b>k2x+b>0的解集为.
2019-2020学年最新广东省广州市中考一模数学试题及答案解析
2019-2020学年最新广东省广州市中考一模数学试题及答案解析2.8,则两种小麦的高度差异的度量指标——标准差的比值为()。
答案:s甲/s乙=3/212.已知函数f(x)=2x-3,则f(-1/2)的值为()。
答案:f(-1/2)=-413.已知等差数列{an}的公差为d,首项为a1,若a1+a2+a3=6,a2+a3+a4=8,则a4-a1的值为()。
答案:a4-a1=8d14.已知函数f(x)=2x+3,g(x)=x-1,则f(g(2))的值为()。
答案:f(g(2))=715.已知函数f(x)=x^2-2x,则f(3a-1)的值为()。
答案:f(3a-1)=9a^2-12a+116.如图,在△ABC中,AB=AC,D是BC的中点,E是AB的中点,F是DE的中点,则△AEF与△ABC的关系是()。
答案:△AEF与△ABC全等1.如果种小麦的生长值为15.8,则小麦的生长情况比较均匀。
2.计算:sin30°=0.5,(-3a^2)^2=9a^4.3.方程 (-5)^2/12=x 的解为 x=25/3.4.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为12π cm。
5.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴,y轴的正半轴上,A的坐标为(3,0),OB的长度为4,D为OB的中点,若E为边OA上的一个动点,当三角形CDE的周长最小时,则点E的坐标为(2,0)。
6.XXX用火柴棒摆成如图所示的三个“中”字形图案,依次规律,第n个“中”字形图案需要根火柴棒。
7.解不等式组:3x-1>2(x+1)。
=。
x>3x-3≤1.=。
x≤4解集为[3,4],在数轴上表示为一个闭区间[3,4]。
8.如图,四边形ABCD中,XXX,∠XXX∠CDA,证明:四边形ABCD为平行四边形。
证明:连接AC,由XXX,得∠ABC=∠ACD,∠XXX∠ACB,因此∠ABC=∠CDA,又因为AB=CD,所以三角形ABC≌三角形CDA,于是AC=BD,又因为AC//BD,所以四边形ABCD为平行四边形。
广州市越秀区数学一模试卷
广州市越秀区一模综合测验九年级数学问卷本试卷共5页,25小题,满分150分.考试时间120分钟.可以使用计算器,用2B 铅笔画图,所有答案都要写在答卷上,答在问卷上的答案无效.一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-3的绝对值是( * ).A. 3 B .-3 C . 31 D . 31 2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( * ).A . B. C . D .3.某小组7位学生的中考体育测试成绩(满分60分)依次为57,60,59,57,60,58,60,则这组数据的众数与中位数分别是( * ).A .60,59B .60,57C .59,60D .60,584.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法错误..的是( * ). A .90ABC ∠=︒ B .AC BD =C .OA AD = D .OA OB =(第4题图) (第6题图)5.下列命题中,属于假命题的是( * ).A .半圆(或直径)所对的圆周角是直角.B .对顶角相等.C .四条边相等的四边形是菱形.D .对角线相等的四边形是平行四边形.6.如图,在△ABC 中,DE ∥BC ,AD =6,BD =3,AE =4,则EC 的长为( * ).A.1 B .2 C.3 D. 47.如图,△ABC 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( * ).A. 2.6B. 2.5C. 2.4D. 2.38.由若干个边长为1cm 的正方体堆积成的一个几何体,它的三视图如图,则这个几何体的表面积是( * ).A .15cm 2B .18cm 2C .21cm 2D .24cm 29.如图,正方形ABCD 的边长AB=4,分别以点A ,B 为圆心,AB 长为半径画弧,两弧交于点E ,则弧CE 的长是( * ). A. π32 B. π C. π34 D. π38 10.等腰三角形三边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2-6x +n -1=0的两根,则n 的值为( * ).A. 9B. 10C. 9或10D. 8或10(第7题图) ( 第8题图 ) (第9题图 )二、填空题(本大题共6小题,每小题3分,满分18分.)11.若代数式1-x 有意义,则实数x 的取值范围是 * .12.如图,已知∠1=75°,如果CD ∥BE ,那么∠B = * .13.分解因式:mb ma 63-= * . 14.如图,了若干名学生(每名学生分别选了一项球类运动),并根据 (第12题图)调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 * 名.15. 如图,△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =5,BC =6,则sin C = * .16.已知正六边形ABCDEF 在直角坐标系内的位置如图所示,A (-2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B 的坐标是___*__.(第14题图 ) (第15题图) ( 第16题图)CA B E A D C 1CE A D C A E 20%10%30%40%其他乒乓球篮球羽毛球x y A B三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分)解方程:0982=--x x .18.(本小题满分9分)已知:如图,在平行四边形ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,求证:OE=OF.19.(本小题满分10分) (第18题图) 解一元一次不等式组⎪⎩⎪⎨⎧≤-->+131221x x ,并在数轴上表示出其解集. 20.(本小题满分10分)小强的钱包内有10元钱、20元钱和50元钱的纸币各1张,(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率.21.(本小题满分12分)广州火车南站广场计划在广场内种植A ,B 两种花木共 6600棵,若A 花木数量是B花木数量的2倍少600 棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40 棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?22.(本小题满分12分)如图,一次函数y=kx+b(k ≠0)与反比例函数xm y =(0≠m )的图象有公共点A (1,a )、 D (-2,-1).直线l 与x 轴垂直于点N (3,0),与一次函数和反比例函数的图象分别交于点B 、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x 在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC 的面积.( 第22题图)23.(本小题满分12分)F OE B D A C如图,等腰三角形ABC 中,AC=BC=10,AB=12,(1)动手操作:利用尺规作以BC 为直径的⊙O ,⊙O 交AB 于点D ,⊙O 交AC 于点E ,并且过点D 作DF ⊥AC 交AC 于点F.(2)求证:直线DF 是⊙O 的切线;(3),连接DE ,记△ADE 的面积为1S ,四边形DECB 的面积为2S ,求21S S 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省广州市越秀区2019年中考数学一模试卷【含答
案及解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. ﹣3的绝对值是()
A. 3
B. ﹣3
C.
D. -
2. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()
A. B. C. D.
3. 某小组7位学生的中考体育测试成绩(满分60分)依次为57,60,59,57,60,58,60,则这组数据的众数与中位数分别是()
A. 60,59
B. 60,57
C. 59,60
D. 60,58
4. 如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()
A. ∠ABC=90°
B. AC=BD
C. OA=OB
D. OA=AD
5. 下列命题中,假命题是()
A. 半圆(或直径)所对的圆周角是直角
B. 对顶角相等
C. 四条边相等的四边形是菱形
D. 对角线相等的四边形是平行四边形
6. 如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()
A. 1
B. 2
C. 3
D. 4
7. 如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()
A. 2.6
B. 2.5
C. 2.4
D. 2.3
8. 由若干个边长为1cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是()
A、15cm2
B、18cm2
C、21cm2
D、24cm2
9. 如图,正方形ABCD的边长AB=4,分别以点A、B为圆心,AB长为半径画弧,两弧交于点E,则CE弧的长是()
A. B. π C. D.
10. 等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为
()
A. 9
B. 10
C. 9或10
D. 8或10
二、填空题
11. 若式子有意义,则实数x的取值范围是_______.
12. 如图,已知∠1=75°,如果CD∥BE,那么∠B=_______.
13. 分解因式:3ma﹣6mb=_______.
14. 某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了
一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球
的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为___名.
15. 如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=5,BC=6,则sinC=___.
16. 已知,正六边形ABCDEF在直角坐标系内的位置如图所示,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B的坐标是________.
三、解答题
17. 解方程:x2﹣8x﹣9=0.
18. 已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,求证:OE=OF.
19. 解一元一次不等式组,并在数轴上表示出其解集.
20. 小强的钱包内有10元钱、20元钱和50元钱的纸币各1张.
(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;
(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率.
21. 广州火车南站广场计划在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
22. 如图,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,
a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.
(1)求一次函数与反比例函数的解析式;
(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;
(3)求△ABC的面积.
23. 如图,等腰三角形ABC中,AC=BC=10,AB=12.
(1)动手操作:利用尺规作以BC为直径的⊙O,⊙O交AB于点D,⊙O交AC于点E,并且过点D作DF⊥AC交AC于点F.
(2)求证:直线DF是⊙O的切线;
(3)连接DE,记△ADE的面积为S1,四边形DECB的面积为S2,求的值.
24. 如图,已知抛物线y=x2﹣(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与
抛物线交于A、B两点,与x、y轴分别交于D、E两点.
(1)求m的值;
(2)求A、B两点的坐标;
(3)当﹣3<x<1时,在抛物线上是否存在一点P,使得△PAB的面积是△ABC面积的2倍?若存在,请求出点P的坐标;若不存在,请说明理由.
25. 在平面直角坐标系中,O为原点,点B在x轴的正半轴上,D(0,8),将矩形OBCD
折叠,使得顶点B落在CD边上的P点处.
(1)如图①,已知折痕与边BC交于点A,若OD=2CP,求点A的坐标.
(2)若图①中的点 P 恰好是CD边的中点,求∠AOB的度数.
(3)如图②,在(I)的条件下,擦去折痕AO,线段AP,连接BP,动点M在线段OP上(点M与P,O不重合),动点N在线段OB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E,试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度(直接写出结果即可).
参考答案及解析第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】
第25题【答案】。