SPARSE IMAGE RECONSTRUCTION USING SPARSE PRIORS
人脸识别 面部 数字图像处理相关 中英对照 外文文献翻译 毕业设计论文 高质量人工翻译 原文带出处
人脸识别相关文献翻译,纯手工翻译,带原文出处(原文及译文)如下翻译原文来自Thomas David Heseltine BSc. Hons. The University of YorkDepartment of Computer ScienceFor the Qualification of PhD. — September 2005 -《Face Recognition: Two-Dimensional and Three-Dimensional Techniques》4 Two-dimensional Face Recognition4.1 Feature LocalizationBefore discussing the methods of comparing two facial images we now take a brief look at some at the preliminary processes of facial feature alignment. This process typically consists of two stages: face detection and eye localisation. Depending on the application, if the position of the face within the image is known beforehand (fbr a cooperative subject in a door access system fbr example) then the face detection stage can often be skipped, as the region of interest is already known. Therefore, we discuss eye localisation here, with a brief discussion of face detection in the literature review(section 3.1.1).The eye localisation method is used to align the 2D face images of the various test sets used throughout this section. However, to ensure that all results presented are representative of the face recognition accuracy and not a product of the performance of the eye localisation routine, all image alignments are manually checked and any errors corrected, prior to testing and evaluation.We detect the position of the eyes within an image using a simple template based method. A training set of manually pre-aligned images of feces is taken, and each image cropped to an area around both eyes. The average image is calculated and used as a template.Figure 4-1 - The average eyes. Used as a template for eye detection.Both eyes are included in a single template, rather than individually searching for each eye in turn, as the characteristic symmetry of the eyes either side of the nose, provides a useful feature that helps distinguish between the eyes and other false positives that may be picked up in the background. Although this method is highly susceptible to scale(i.e. subject distance from the camera) and also introduces the assumption that eyes in the image appear near horizontal. Some preliminary experimentation also reveals that it is advantageous to include the area of skin justbeneath the eyes. The reason being that in some cases the eyebrows can closely match the template, particularly if there are shadows in the eye-sockets, but the area of skin below the eyes helps to distinguish the eyes from eyebrows (the area just below the eyebrows contain eyes, whereas the area below the eyes contains only plain skin).A window is passed over the test images and the absolute difference taken to that of the average eye image shown above. The area of the image with the lowest difference is taken as the region of interest containing the eyes. Applying the same procedure using a smaller template of the individual left and right eyes then refines each eye position.This basic template-based method of eye localisation, although providing fairly preciselocalisations, often fails to locate the eyes completely. However, we are able to improve performance by including a weighting scheme.Eye localisation is performed on the set of training images, which is then separated into two sets: those in which eye detection was successful; and those in which eye detection failed. Taking the set of successful localisations we compute the average distance from the eye template (Figure 4-2 top). Note that the image is quite dark, indicating that the detected eyes correlate closely to the eye template, as we would expect. However, bright points do occur near the whites of the eye, suggesting that this area is often inconsistent, varying greatly from the average eye template.Figure 4-2 一Distance to the eye template for successful detections (top) indicating variance due to noise and failed detections (bottom) showing credible variance due to miss-detected features.In the lower image (Figure 4-2 bottom), we have taken the set of failed localisations(images of the forehead, nose, cheeks, background etc. falsely detected by the localisation routine) and once again computed the average distance from the eye template. The bright pupils surrounded by darker areas indicate that a failed match is often due to the high correlation of the nose and cheekbone regions overwhelming the poorly correlated pupils. Wanting to emphasise the difference of the pupil regions for these failed matches and minimise the variance of the whites of the eyes for successful matches, we divide the lower image values by the upper image to produce a weights vector as shown in Figure 4-3. When applied to the difference image before summing a total error, this weighting scheme provides a much improved detection rate.Figure 4-3 - Eye template weights used to give higher priority to those pixels that best represent the eyes.4.2 The Direct Correlation ApproachWe begin our investigation into face recognition with perhaps the simplest approach,known as the direct correlation method (also referred to as template matching by Brunelli and Poggio [29 ]) involving the direct comparison of pixel intensity values taken from facial images. We use the term "Direct Conelation, to encompass all techniques in which face images are compared directly, without any form of image space analysis, weighting schemes or feature extraction, regardless of the distance metric used. Therefore, we do not infer that Pearson's correlation is applied as the similarity function (although such an approach would obviously come under our definition of direct correlation). We typically use the Euclidean distance as our metric in these investigations (inversely related to Pearson's correlation and can be considered as a scale and translation sensitive form of image correlation), as this persists with the contrast made between image space and subspace approaches in later sections.Firstly, all facial images must be aligned such that the eye centres are located at two specified pixel coordinates and the image cropped to remove any background information. These images are stored as greyscale bitmaps of 65 by 82 pixels and prior to recognition converted into a vector of 5330 elements (each element containing the corresponding pixel intensity value). Each corresponding vector can be thought of as describing a point within a 5330 dimensional image space. This simple principle can easily be extended to much larger images: a 256 by 256 pixel image occupies a single point in 65,536-dimensional image space and again, similar images occupy close points within that space. Likewise, similar faces are located close together within the image space, while dissimilar faces are spaced far apart. Calculating the Euclidean distance d, between two facial image vectors (often referred to as the query image q, and gallery image g), we get an indication of similarity. A threshold is then applied to make the final verification decision.d . q - g ( threshold accept ) (d threshold ⇒ reject ). Equ. 4-14.2.1 Verification TestsThe primary concern in any face recognition system is its ability to correctly verify a claimed identity or determine a person's most likely identity from a set of potential matches in a database. In order to assess a given system's ability to perform these tasks, a variety of evaluation methodologies have arisen. Some of these analysis methods simulate a specific mode of operation (i.e. secure site access or surveillance), while others provide a more mathematicaldescription of data distribution in some classification space. In addition, the results generated from each analysis method may be presented in a variety of formats. Throughout the experimentations in this thesis, we primarily use the verification test as our method of analysis and comparison, although we also use Fisher's Linear Discriminant to analyse individual subspace components in section 7 and the identification test for the final evaluations described in section 8. The verification test measures a system's ability to correctly accept or reject the proposed identity of an individual. At a functional level, this reduces to two images being presented for comparison, fbr which the system must return either an acceptance (the two images are of the same person) or rejection (the two images are of different people). The test is designed to simulate the application area of secure site access. In this scenario, a subject will present some form of identification at a point of entry, perhaps as a swipe card, proximity chip or PIN number. This number is then used to retrieve a stored image from a database of known subjects (often referred to as the target or gallery image) and compared with a live image captured at the point of entry (the query image). Access is then granted depending on the acceptance/rej ection decision.The results of the test are calculated according to how many times the accept/reject decision is made correctly. In order to execute this test we must first define our test set of face images. Although the number of images in the test set does not affect the results produced (as the error rates are specified as percentages of image comparisons), it is important to ensure that the test set is sufficiently large such that statistical anomalies become insignificant (fbr example, a couple of badly aligned images matching well). Also, the type of images (high variation in lighting, partial occlusions etc.) will significantly alter the results of the test. Therefore, in order to compare multiple face recognition systems, they must be applied to the same test set.However, it should also be noted that if the results are to be representative of system performance in a real world situation, then the test data should be captured under precisely the same circumstances as in the application environment.On the other hand, if the purpose of the experimentation is to evaluate and improve a method of face recognition, which may be applied to a range of application environments, then the test data should present the range of difficulties that are to be overcome. This may mean including a greater percentage of6difficult9 images than would be expected in the perceived operating conditions and hence higher error rates in the results produced. Below we provide the algorithm for executing the verification test. The algorithm is applied to a single test set of face images, using a single function call to the face recognition algorithm: CompareF aces(F ace A, FaceB). This call is used to compare two facial images, returning a distance score indicating how dissimilar the two face images are: the lower the score the more similar the two face images. Ideally, images of the same face should produce low scores, while images of different faces should produce high scores.Every image is compared with every other image, no image is compared with itself and nopair is compared more than once (we assume that the relationship is symmetrical). Once two images have been compared, producing a similarity score, the ground-truth is used to determine if the images are of the same person or different people. In practical tests this information is often encapsulated as part of the image filename (by means of a unique person identifier). Scores are then stored in one of two lists: a list containing scores produced by comparing images of different people and a list containing scores produced by comparing images of the same person. The final acceptance/rejection decision is made by application of a threshold. Any incorrect decision is recorded as either a false acceptance or false rejection. The false rejection rate (FRR) is calculated as the percentage of scores from the same people that were classified as rejections. The false acceptance rate (FAR) is calculated as the percentage of scores from different people that were classified as acceptances.For IndexA = 0 to length(TestSet) For IndexB = IndexA+l to length(TestSet) Score = CompareFaces(TestSet[IndexA], TestSet[IndexB]) If IndexA and IndexB are the same person Append Score to AcceptScoresListElseAppend Score to RejectScoresListFor Threshold = Minimum Score to Maximum Score:FalseAcceptCount, FalseRejectCount = 0For each Score in RejectScoresListIf Score <= ThresholdIncrease FalseAcceptCountFor each Score in AcceptScoresListIf Score > ThresholdIncrease FalseRejectCountF alse AcceptRate = FalseAcceptCount / Length(AcceptScoresList)FalseRej ectRate = FalseRejectCount / length(RejectScoresList)Add plot to error curve at (FalseRejectRate, FalseAcceptRate)These two error rates express the inadequacies of the system when operating at aspecific threshold value. Ideally, both these figures should be zero, but in reality reducing either the FAR or FRR (by altering the threshold value) will inevitably resultin increasing the other. Therefore, in order to describe the full operating range of a particular system, we vary the threshold value through the entire range of scores produced. The application of each threshold value produces an additional FAR, FRR pair, which when plotted on a graph produces the error rate curve shown below.False Acceptance Rate / %Figure 4-5 - Example Error Rate Curve produced by the verification test.The equal error rate (EER) can be seen as the point at which FAR is equal to FRR. This EER value is often used as a single figure representing the general recognition performance of a biometric system and allows for easy visual comparison of multiple methods. However, it is important to note that the EER does not indicate the level of error that would be expected in a real world application. It is unlikely that any real system would use a threshold value such that the percentage of false acceptances were equal to the percentage of false rejections. Secure site access systems would typically set the threshold such that false acceptances were significantly lower than false rejections: unwilling to tolerate intruders at the cost of inconvenient access denials.Surveillance systems on the other hand would require low false rejection rates to successfully identify people in a less controlled environment. Therefore we should bear in mind that a system with a lower EER might not necessarily be the better performer towards the extremes of its operating capability.There is a strong connection between the above graph and the receiver operating characteristic (ROC) curves, also used in such experiments. Both graphs are simply two visualisations of the same results, in that the ROC format uses the True Acceptance Rate(TAR), where TAR = 1.0 - FRR in place of the FRR, effectively flipping the graph vertically. Another visualisation of the verification test results is to display both the FRR and FAR as functions of the threshold value. This presentation format provides a reference to determine the threshold value necessary to achieve a specific FRR and FAR. The EER can be seen as the point where the two curves intersect.Figure 4-6 - Example error rate curve as a function of the score threshold The fluctuation of these error curves due to noise and other errors is dependant on the number of face image comparisons made to generate the data. A small dataset that only allows fbr a small number of comparisons will results in a jagged curve, in which large steps correspond to the influence of a single image on a high proportion of the comparisons made. A typical dataset of 720 images (as used in section 4.2.2) provides 258,840 verification operations, hence a drop of 1% EER represents an additional 2588 correct decisions, whereas the quality of a single image could cause the EER to fluctuate by up to 0.28.422 ResultsAs a simple experiment to test the direct correlation method, we apply the technique described above to a test set of 720 images of 60 different people, taken from the AR Face Database [ 39 ]. Every image is compared with every other image in the test set to produce a likeness score, providing 258,840 verification operations from which to calculate false acceptance rates and false rejection rates. The error curve produced is shown in Figure 4-7.Figure 4-7 - Error rate curve produced by the direct correlation method using no image preprocessing.We see that an EER of 25.1% is produced, meaning that at the EER threshold approximately one quarter of all verification operations carried out resulted in an incorrect classification. Thereare a number of well-known reasons for this poor level of accuracy. Tiny changes in lighting, expression or head orientation cause the location in image space to change dramatically. Images in face space are moved far apart due to these image capture conditions, despite being of the same person's face. The distance between images of different people becomes smaller than the area of face space covered by images of the same person and hence false acceptances and false rejections occur frequently. Other disadvantages include the large amount of storage necessaryfor holding many face images and the intensive processing required for each comparison, making this method unsuitable fbr applications applied to a large database. In section 4.3 we explore the eigenface method, which attempts to address some of these issues.4二维人脸识别4.1功能定位在讨论比较两个人脸图像,我们现在就简要介绍的方法一些在人脸特征的初步调整过程。
Sparse and Redundant Representation Modeling for Image Processing
Michael Elad
The Computer Science Department The Technion – Israel Institute of technology Haifa 32000, Israel Michal Aharon Guillermo Sapiro * Joint work with
3
Denoising By Energy Minimization
Many of the proposed denoising algorithms are related to the minimization of an energy function of the form
1 2 f(x) = x−y 2 2
y : Given measurements x : Unknown to be recovered
+ Pr(x)
Prior or regularization
Relation to measurements
This is in-fact a Bayesian point of view, adopting the Maximum-Aposteriori Probability (MAP) estimation. Clearly, the wisdom in such an approach is within the choice of the prior – modeling the images of interest.
Remove Additive Noise
?
2
2019年托福高频词汇表:sparse什么意思(附翻译及例句).doc
2019 年托福高频词汇表: sparse什么意思(附翻译及例句 )sparse 英[sp ɑ:s]美[spɑ:rs]adj. 稀疏的 ; 稀少的稀疏的 ; 稀疏 ; 稀少的 ; 成员稀少疏落词形变化:比较级: sparser比较级:sparsest派生词: sparsely sparseness sparsity双语例句1 . He was a tubby little man in his fifties, with sparsehair.他 50 来岁,头发稀疏,身材矮胖。
来自柯林斯例句2 . Many slopes are rock fields with sparse vegetation.很多山坡都是石头地,植被稀疏。
来自柯林斯例句3 . The sparse line of spectators noticed nothing unusual.那一排稀稀落落的观众没留意到任何不寻常之处。
来自柯林斯例句4 . Traffic was sparse on the highway.公路上车流稀少。
来自柯林斯例句5 . the sparse population of the islands那些岛上零星的人口来自《词典》网络释义-sparse1.稀疏的rebuff 断然拒绝 sparseadj.稀少的;稀疏的spar水疗2.稀疏...索引4.3获取相关矩阵的信息 4.4 改变矩阵的大小和形状 4.5 矩阵元素的移位和排序 4.6 对角矩阵 4.7 空矩阵,标量和向量 4.8 完全矩阵和稀疏 (sparse) 矩阵 4.9 多维数组第 5 章 M文件程序设计第 6 章程序调试和优化第7 章错误处理第8 章数据输入和输出第9 章使用数据工具箱函数第 10 章.3.稀少的rebuff 断然拒绝 sparseadj.稀少的;稀疏的spar水疗4 .成员稀少疏落名字释义—耿希炯...假借为“稀”。
稀少〖rare;scarce〗稀疏,成员稀少疏落。
人工智能领域中英文专有名词汇总
名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
基于非常稀疏随机投影的图像重建方法
2007,43(22)1引言新近,Donoho、Cand’es、Romberg和Tao从信号分解和逼近理论进一步发展了一种新的可压缩成像理论[1,2](或者称为压缩传感理论:CS)。
该理论的提出者之一,Donoho,美国科学院院士,斯坦福大学的统计学家在信号处理的众多领域,如信号稀疏分解、逼近理论、小波变换、图像压缩等都做出巨大贡献。
CS理论指出:利用随机测量矩阵可把一个稀疏(或可压缩)的高维信号投影到低维(相对于高维)的空间上,并证明了这样的随机投影包含了重建信号的足够信息,即利用信号的稀疏性(或可压缩性)先验条件,通过一定的线性或非线性的解码模型可以以很高的概率重建原始信号。
因此,CS理论的一个核心问题是:如何构建随机测量矩阵,使得随机投影能保持必要的原始信号的信息,并且测量的方法是非适应性的。
目前,文献已经对该问题做出了回答:CS随机测量矩阵一定要服从一定类型的不确定性原则UUP(UniformUncertaintyPrinciple)[3-6];其核心内容可由Cand’es和Tao[6]提出的一致不确定性原则也即限制等容性RIP(RestrictedIsometryProperty)来表述,同时他们还给出了两种满足该性质的随机测量矩阵:高斯测量矩阵和贝努里测量矩阵。
实验表明,他们给出的这两种测量矩阵在满足一定测量数目的条件下可以获得精确的重建结果。
关于测量矩阵的改进主要包括两个方面:寻找新的测量矩阵使得重建所需的测量数目尽可能的少;在保持适当测量数目的条件下,使得新的测量矩阵具有更好的性质,比如稀疏性,以简化重建过程中高维数据的投影计算。
本文将非常稀疏随机投影引入到可压缩成像理论中,提出了一种新的服从亚高斯分布的随机测量矩阵:非常稀疏投影矩阵。
利用非常稀疏随机投影分布的渐近正态性,证明了新的矩阵满足CS测量矩阵的必要条件。
同时,该矩阵由于其构成的非常稀疏性大大简化了图像重建过程中的投影计算,从而提高重建速度。
基于语义分割的遥感图像分类
基于语义分割的遥感图像分类遥感图像是近年来在各行各业中广泛使用的一种技术手段。
利用遥感图像可以对地球表面进行高精度的监测和识别,具有非常重要的应用价值。
然而,遥感图像的分类是一个非常复杂的问题,因为遥感图像中的信息量非常大,需要大量的计算和分析才能进行有效的分类。
为了解决这个问题,近年来涌现出了许多基于语义分割的遥感图像分类方法,这些方法将遥感图像分割为不同的区域,并将每个区域与其所属的类别进行关联,从而实现遥感图像的自动分类。
基于语义分割的遥感图像分类方法可以分为两大类:基于光谱信息的方法和基于空间信息的方法。
基于光谱信息的方法采用了传统的图像分类技术,通常使用机器学习算法(如SVM)来训练分类器,并使用像素级别的光谱信息作为输入特征。
然而,这种方法往往不能充分考虑遥感图像的空间信息特征,分类精度有限。
因此,近年来越来越多的研究者开始采用基于空间信息的方法来解决遥感图像分类问题。
基于空间信息的方法是指将遥感图像分割为不同的区域,然后对每个区域进行分类。
这种方法通常使用语义分割技术进行遥感图像分割,然后使用语义分割结果中的每个区域作为输入进行分类。
相比于基于光谱信息的方法,基于空间信息的方法具有更好的分类精度和鲁棒性。
目前,基于空间信息的方法已经成为遥感图像分类的主流方法之一。
目前,基于语义分割的遥感图像分类研究主要集中在以下几个方向上:1. 基于深度学习的遥感图像分类方法近年来,深度学习(如卷积神经网络)在遥感图像分类中的应用越来越广泛。
这种方法可以利用大量标记数据进行训练,并能够自动学习光谱、空间和语义信息,从而实现更高的分类精度。
基于深度学习的遥感图像分类方法已经在遥感图像分类竞赛中取得了很好的成绩,是当前遥感图像分类研究的热点方向之一。
2. 基于多尺度特征的遥感图像分类方法遥感图像中往往存在着多个尺度的信息,因此采用多尺度特征进行分类可以提高分类精度。
目前,基于多尺度特征的遥感图像分类方法已经成为遥感图像分类的主要方法之一。
光电英语词汇(I)
光电英语词汇(I)i/o 输入输出装置iabsorption 本徵吸收ic 积体电路ic memory 积体电路记忆体ice crystal 冰花状晶体iceland spar 冰岛晶icelnned spar 冰洲石icon 图像icon meter 光像测定器iconography 图解iconology 图像学iconometer 量影仪iconometry 量影学iconoscope 光电显管管icosagon 二十边形,二十角形icosahedron 二十面体icositetrahedron 二十四面体ideal blackbody 理想黑体ideal crystal 理想晶体ideal detector 理想探测器ideal dielectric 理想电介质ideal filter 理想滤波器ideal observer 理想观测堵ideal polarization rotator 理想偏振转体ideal radiator 理想辐射体ideal scanning 理想扫描ideal value 理想值ideally-reflecting 理想反射identical graduation 等分度〖www.整理该文章,版权归原作者、原出处所有。
〗identification 鉴定,证认identification friend or foe (iff)system 敌我识别器identification signal 识别信号identifier (1)鉴别器(2)鉴别剂(3)标识符(4)鉴定人identity (1)怛定(2)恒等式identity relation 恒等式idiochromatic 本质色的idiochromatism 本质色性idiolelectric 非导体idiophanism 自现干涉图idler (1)空转(2)无效,无动(3)闲频信号idler absorption 无效吸收idnetification testing 览定试验ifomration accumulation 信息储存ignition 点火,引燃ignition temperature 点火温度ignitor discharge 引燃放电iintrinsic jointloss 内禀联结损失iischromatic surface 等色表面illuminance 光照度illuminance meters 照度计illuminant (1)施照体(2)照明illuminated 受照illuminated body 受照体illuminated magnifier 受照放大(透)镜illuminated table 受照台illuminating angle 照射角illuminating beam 照明光束illuminating engineering society (ies)照明工程协会illuminating lens 照明透镜,聚光透镜illuminating poer 照明本领illumination (1)照明(2)照明学(3)照度illumination device 照明装置illumination distribution 照明分布,照度分布illumination factor 照明系数illumination level 照明水平illumination meter (illumionmeter)照度计illumination photometry 照度测量术,测光法illumination ray 照明光束illuminator (1)发光器(2)施照体illuminometer 照度计illusion (1)幻觉(2)幻影illustration (1)示例(2)例图imacon 依麦康变像管imacon camera 依麦康摄影机image 像,图像image analyzer 像分析器image analyzers 影像分析仪image angle 像角image attenuation 影像衷减image blurring 图像模糊image brightness 像亮明image centroid 像矩心image circle 像圈image comensation camera 像补偿式摄影机image comparison 像比较image conduct 传像管image conjugate 像共轭image construction (1)求像法(2)像结构image contrast 像对比image converter camera 变像管摄像机image converter high-seed camera 显像管式高速照相机image converter streak camera 变像管高速扫描照相机image converter tube 变像管image data-processing system 图像数据处理系统image deblurring 图像去模糊image defintion 图像清晰度image degradation 像劣化image description 图像绘制image device 成像器件image digitization 图像数字化image disk 像斑image display device 图像显示器image dissector 析像管image dissector camera 析像管摄像机image dissector tube 析像管image distance 像距image distortion 像畸变image element 像素,像点image emission platelet laser 图像发射薄片激光器image enbancemet 影像增强术image enconding 图像编码image enhancement laser 影像增强雷射image enhancenment 图像增强image error 成像误差image evaluation 像质评质image field 像场image field distrubution 像场分布image filterig 滤像image flattening optical system 平像场光学系统image focal point 像焦点image focus 像焦点image focusing electrode 像聚焦极image force 像力image formation 成像image formation by rays 光线成线image forming tube 成像管image frame 像幅,像帧image frequency (1)像频(2)帧频image frequency interference 像频干扰image funtion 像函数image height adjuster 像高调整器image iconoscope 光电像管image improvement 像改善image information 像信息image inktensifier 像亮化器image integrating 像集成image intensification vision aid 影像加强视力辅助器image intensifier 像增强器image intensifying plate 像亮化板image intensity distribution 像光强座分布image inverter 倒像器image jump 像跳动image lscon 影像分流管image luminance 像发光度image metascope 红外线示像器image modification 像修正image modtion compensation 像移补偿image motion 图像漂移[page]image multiplier 像伯增器image optics 成像光学image orientation 图像定像image orthicon 超正析像管image pattern 像图image persistence 像余辉,像暂留image photo counting distribution (ipd)像影计image pickup 摄像image pickup system 摄像系统image pickup tube 摄像管image plane 像平面image plane holography 像面全息术image plane scanning 像面扫描image point 像点image position sensor (ips)像位传感器image processing 像处理image processor 像处理器image projection 像投射image quality 像质image quality criteria 像质判据,像质标准image recognition 像辨认image recombination 像的复合image reconstruction 像重现image redundancy 备份像image repeater 像重复器image restoration 像复原image retaining panel 影像储存板image retention 图像残留image rotation prism 成像旋转棱镜image rotator 像旋转器image scale 图像比例尺image scanner lenses 影像扫描器镜头image scrambler 图像保密器,图像编码器image seeking method 寻像法image segmentation 图像分割image sensor 图像传感器image sensor type measurement instruments 影像感测器式量测设备image sharpening 图像清晰化image source 像源image space 像方,像空间image stabilizing otpica system 像稳定光学系统image storage screen 像存储屏image storage tube 图像存储管image subtraction 像减去image surface curvature 像面曲率image synchronization 像同步,影像同步image synthesis 图像综合image transducer 影像转送器image transform 图像变换image transformation 像变换image translator 图像转换装器,换像器image tube 移像摄像管image tube camera 像管照相机image vericon 移像正析摄像管image working distance 像运作距离image-carrring fiber 载像纤维,传像纤维image-enhancing equipment 增像装备image-forming system 成像系统image-motion compensation 像动补偿image-splitting eyepiece 分像目镜image-translating device 图像装换装置image-tube camera 电视摄像机imaged converter 变像管imager 成像器imagery 成像imagery retification 成像修正imagin 成像imagin detector 成像探测器imaginary axis 虚轴imaginary line 虚线imaginary number 虚数imaging mosaic 成像感光镶嵌幕imagon lens 伊梅冈镜头imbalance 不平衡imbedding material 嵌料imitation 模拟imitator 模拟器immeasurabilty 不可测量性immersed bolometer 浸没式热辐射计immersed detector 全浸探测器immersed detector element 浸没探测元件immersed focal-plane lens 浸没焦面透镜immersion gain 光学浸油增益immersion grating 浸没光栅immersion lens 浸没透镜immersion liquide 浸液immersion magnifier 浸没放大镜immersion micro objective 浸没显微镜immersion objective 浸没物镜immersion oil 浸油immersion refract meter 浸没式折射计immersion refractometer 油浸折射计immersion series 油浸镜头组immigratimg 移入immiscibilty 不溶混性immittance 导抗immunity (1)抗扰性(2)不敏感性immunofluorescence 免疫萤光impack ionization 碰撞电离impact (1)碰撞(2)突加impact agitation 碰撞骚动impact fluorescence 撞击萤光impact-broadening 碰撞展宽impactexcitation 碰撞激发impatt diode 冲渡二极体impedance 阻抗impedance coupling amplifier 阻抗耦合大器impedance matching 阻抗匹配impedance-coupled amplifier 阻抗耦合放大器imperfect earth 不良接地imperial standard wire gauge 英国标准线规impinging radiation 碰撞辐射,冲击幅射implement (1)仪器(2)工具implosinon 爆聚,向心爆炸imporsity (1)无孔性(2)不透气性impositor 幻灯放映机impregnation 浸渍,浸透improvement of photograph 照相像质改善impulison (1)脉冲(2)冲击impulsator 脉冲发生器impulse (1)冲量(2)脉冲impulse exictation 脉冲激发impulse function 脉冲函数impulse register 脉冲寄存器impulse response 脉冲响应impulse-code modulation 脉冲编碥调制impulser 脉冲发生器,脉冲传感器impurity 杂质impurity absorption 杂质吹收impurity absorption edge (1)杂质吸收限(20杂质吸收边缘impurity activation 杂质激活impurity level 杂质能级impurity lons 杂质,杂子impurity photoconductor 杂质光电导体impurity scattering 杂质散射impurity-doped germanium detector 锗掺杂探测器imurity-to-impurity transition 杂质-杂质跃迁in parallel 并联in phase 同相(的)in series 串联in-cavity (intra-cavity)内共振in-line (1)并行(2)同轴in-line frauhofer hologram 同轴夫琅和费全息图in-line holography 同轴全息术in-phae 同相的in-phase amplitude detection 同相信号振幅探测[page] in-site measurement 现场测量in-step condition 同步条件inaccuracy 不准确,不精密inactivity (1)不活动性(2)不旋光性(3)不放射性(4)无功率incadnescent mantle 白炽灯纱罩incandescence 白炽incandescent body 白炽体incandescent bulb 白炽灯照incandescent cathode 白炽阴极incandescent lamp 白炽灯,钨丝灯incandescent lighting 白炽灯照明inch 英寸inch screw thread 英制螺纹incidence (1)入射(2)入射角incidence matrix 入射矩阵incidence point 入射点incident angle 入射角incident beam 入射光incident flux 入射通量incident illumination 入射照明incident image 入射像incident intensity 入射强度incident light 入射光incident light illuminator 入射光照明器incident light meter 入射光计incident power 入射功率incident radiation 入射辐射incident ray 入射线incident wave 入射波incident wavefront 入射波前incident-particle distribution 入射粒子分布incircle 内切圆incision 切开inclination (1)倾角(2)倾向inclination angle 倾角inclination factor 倾斜因子inclination joint 倾斜接头inclination of image 像倾斜incline level 斜度测量水准器,倾斜针inclined mirror 斜交镜,倾斜反射镜inclined plane 斜面inclined ray 倾斜射线inclinometer (1)磁倾计(2)倾斜计included angle 夹角inclusion (1)包含(2)掺杂(3)掺杂物,夹杂物incoding ray 入射光incoherence 非相干性incoherenet-to-coherent optical converte 非相干-相干光转换器incoherent 不相干的incoherent circular source 非相干环性源incoherent disturbance 非相干扰动incoherent fiber bundle 不相干光纤束incoherent holography 不相干全像术incoherent illumination 非相干照相incoherent imageing 非相干成像incoherent interphase boundary 非相干相间边界incoherent light 非相干光incoherent optical information processing 非相千光信息处理incoherent quasimonchormatic soure 非相干准单色光源incoherent scatter 非相干散射incoherent source 非相干光源incoherent to coherent devices (itc)光影像转换元件(itc)incoherent to coherent devices (itc)光影像转换元件(itc)incoherent-light holography 非相干光全息术incoherent-system 非相干系统incoheret reception 非相干接收incomplete radiator 不完全辐射体increased transmission 增透膜increased transmission lens 增透处理increasing wave (1)增加(2)增量increment 耐温耐湿试验incribed angle 内接角incubation test 刻痕,凹槽inculating crystal 籽晶indcution heater 感应加热器indcution motor 感应电动机inddex dial 指度盘indentaiton hardness 压头indentation 压痕硬度indenter 独立激发共振腔independent variable 测不准原理independently excited cavity 独立模式indeterminate princiiple (1)折射率(2)指数(3)指标(4)分度头(5)变址(6)索引index 分度卡盘index dip 折射率倾角index ellipsoide 折射率椭球index error 分度误差index gagae 分度规index glass 分度镜,标镜index guide beam 折射率导向光束index hand 指针index law 指数津index line 分度线,刻度线index liquid 折射率液index mark 分度符号,分度线index microscopoe 指标显微镜index mirror 标镜,分度镜index of idffraction 衍射指数index of refletion 反射率index of refraction 折射率index of refratcion 折射率index plate 标盘,分度盘index profile 折射率截面index-dispersion relation 折射率-色散关系index-gradient optical fiber 折射率陡度光学纤维index-matching material 配率材料index-matching oil 折射率匹配油indexer 分度器indexing (1)分度(2)分度法(3)指数(4)转位(5)变址indexing disc 分度盘indexing head 分度头indexing register 变址寄存器indexing table 分度台indicating calliper 指示卡规indicating device 指示器indicating gague 指示规indicating lamp 指示灯indicating mechanism 指示机构indicating micrometer 指示测微计,指示干分尺indicating range 指示范围,显示范围indication error 示值误差indication lag 指示滞差indication of measuring instrument 测量器示值indication ragne 指示范围indicator (1)指示器(2)指示剂(3)示功器indicator tube 指示管indicatrix (1)指示量(2)指标(3)折射率椭球(4)特性曲线indictrix of diffusion 漫射指示量indifferent equilibrium 随遇平衡indifferent gas 惰性气indiffused crystal waveguide 非漫射晶体波导indigo 靛青indine absorption 碘吸收indirect action receiver 间动式受话器indirect address 间接位址indirect emission 间接发射indirect glare 间接眩光indirect lighting 间接照明indirect measurement 间接测量indirect observation 间接观测[page]indirect radiative transition 间接辐射转变indirect reflection 间接反射indirect scanning 间接扫描indirect transition 间接跃迁indirectly excited antena 间接激发天线indirectly heated cathode 间热式阴极indistinctenss 不清晰度indistinguishability 不可分辨性indium 铟indium (in)铟indium antimonide 锑化铟indium antimonide detector 锑化铟探测器indium arsenide 砷化铟indium arsenide detector 砷化铟探测器indium laser 铟激光器indium tin oxid 氧化铟锡indside recess 内凹座indsie micrometer 内径测微计inducced transition cross section 感生跃迁截面induced absorption band 感应吸收带induced action (1)感应作用(2)感应辐射induced electromotive force 感应电动势induced emission 感应发射induced test 感应试验induced transition 感生跃迁inductance 电感inductance filter 电感滤波器induction 感应induction coil 感应线圈induction current 感应电流induction field 感应场induction force 感应力induction frequency converter 感应转频器induction reactance 感抗inductive pressure transducers 电感性压力转能器inductivity 感应率inductor (1)感应体(2)感应器(3)感应线圈inductor alternator 感应器交流发电机inductormeter 电感计inductosyn 感应同步器industrial instrument 工业仪表industrial instrumentation 工业测量仪表industrial microscope 工业用显微镜industrial television 工业用电视industrial tv camera 工电视摄像机inelastic collision 非弹性碰撞inelastic optical scattering 非弹性光散射inelastic scattering amplitude 非弹性散射振幅inelastic scattering excitation 非弹性散激发inensdity transmission coefficient 光强透射系数inependent mode 自变量,独立变量inerse bandwith 逆带宽inert gas laser 惰性气体激光器inertia (1)惯性(2)惯量inertia of photo 感光惰性inertia-mass 惯性质量inertial effect 惯性效应inertial error 惯性误差inertial laser sensor 惯性激光传感器inertial navigation 惯性导航ineterceptor 窃听器inexactness 不精确性infidelity 失真,不保真infiltration 渗入,渗透infinite (1)无穷的,无限的(2)无穷大infinite ray 平行射线,平行光线infinite series 无穷级数infinite-strip curve mirror 无限带状曲面镜infinitesimal (1)无穷小的,无限小的(2)无穷小infinitesimal calculus 微积分infinitesimal geometry 微积分几何infinity (1)无穷,无限(2)无穷大infintie object point 无限远物点inflammability 可燃性,易燃性inflexibilty 非挠性inflexion (inflection)(1)拐折(2)偏转inflexion point (1)拐折点(2)偏转点influence (1)影响,作用(2)感应,效应influence electricity 感应电information (1)信息,情报(2)数据information bit 信息位information capacity 信息容量information carrier 信息载体information channel 信息通道,信道information coding 信息编码information content of photgraph 照相信息容量information data 信息数据information density 信息密度information display 信息显示information generator 信息源,信息发生器information processing 信息处理系统information theory 信息论information transmission 信息传输information-handing system 信息处理系统information-yielding sytem 信息形成系统informative apttern 信息图infra focal image 红外焦像infra-accoustic frequency 亚声频率infra-red (ir)红外infra-red absorption 红外吸收infra-red absorption spectorscopy 红外吸收光谱学infra-red acquisition (1)红外探测(2)红外捕获infra-red activation 红外瞄准激光器infra-red aids 红外瞄准望远镜infra-red aimed laser 红外放大infra-red analyzer 红外反潜技术infra-red anti-submarine technique 红外光束跟踪器infra-red beam folower 红外双筒望远镜infra-red bincocular 红外双筒潜望镜infra-red bincocular-type periscope 红外照相机infra-red camera 红外元件infra-red cell 红外回旋共振infra-red cyclotron resonance 红外假目标infra-red decoy 红外采测装置infra-red detection device 红外探测器infra-red detector 红外色散infra-red dispersion 红外早期预警infra-red early-warning 红外发射infra-red emission 红外发射光谱infra-red emitter 红外发射源infra-red engineering 红外工怀infra-red excitation 红外激发infra-red extinction spectrum 红外消光光谱infra-red eye (1)红外摄像装置(2)红外寻的器infra-red filter 红外滤光器infra-red flyubgspot telescope 红外扫描望眼镜infra-red fourier transform spectrometry 红外傅里叶变换光谱测定法infra-red frequency 红外频率infra-red fuse discrimination 红外引信鉴别[page] infra-red gas analyzer 红外气体分析器infra-red generator 红外发生器infra-red glass 红外玻璃infra-red guidance systme 红外导系统infra-red heating 红外加热infra-red helium-cooled bolometer 红外氦冷却辐射热计infra-red heterodyne spectroscopy 红外外差光谱学infra-red holography 红外全息术infra-red homing guidance 红外寻的制导infra-red identification 红外鉴别infra-red image converter 红外变像管infra-red image metascope 红外成像指示器infra-red image seeker 红外图像寻的器infra-red imaging array 红外成像阵列infra-red inspection 红外检查,红外探伤infra-red interference filter 红外干涉滤光片infra-red jamming 红外干扰infra-red lamp 红外灯infra-red laser 红外激光器infra-red leak detector 红外检漏器infra-red mapping 红外测绘infra-red microscope 红外显微镜infra-red modulator 红外调制器infra-red night-vision system 红外夜视系统infra-red photo 红外照片infra-red photography 红外照相术,红外摄影infra-red photon 红外光子infra-red phyrometer 红外高温计infra-red quantum converter 红外量子转换器infra-red radar 红外雷达infra-red radiation 红外辐射infra-red radiometry 红外辐射测量术infra-red rangefinder 红外测距仪infra-red rapid-scan monochromator 红外速扫描色仪infra-red ray (ir)红外线infra-red ray drying 红外线乾燥infra-red ray gas analyser 红外线气体分析器infra-red reconnaissance equipment 红外侦察设备infra-red reference body 红外参考体infra-red region 红外区infra-red remote sensing technique 红外遥感技术infra-red response camera tube 红外响应摄像管infra-red scanner 红外扫描器infra-red sean geometry 红外扫描几何图infra-red search system 红外搜索系统infra-red searchlight 红外探照灯infra-red sensing system 红外传感系统infra-red sensor 红外传感器infra-red sight head 红外瞄准头infra-red spectrometer 红外分光计infra-red spectrophotometer 红外分光光度计infra-red spectroradiometer 红外光谱辐射计infra-red spectroscopy 红外光谱学infra-red spectrum 红外光谱infra-red suppression 红外抑制infra-red surveillance system 红外监视系统infra-red telemeter 红外测距仪infra-red telescope 红外望远镜infra-red television camera 红外电视摄像infra-red temperature profile radiometer 红外温度断面辐射计infra-red thermal imaging system 红外热成像系统infra-red thermograph 红外温度记录仪infra-red tracing system 红外跟踪系统infra-red tracker 红外跟踪装置infra-red tracking 红外跟踪infra-red transmittance 红外透射比infra-red transmitting filter 红外透射滤光片infra-red tv tracker 红外电视跟踪器infra-red vidcion 红外摄像管infra-red waves 红外波infra-red windows 红外窗infra-red-sensitive film 红外感光胶片infra-red-transmitting glass 红外透射玻璃infra-red-transmitting semiconductor 红外传输半导体infra-red-transmitting window 透红外窗infraared jjammiing 红外干扰infracord spectrohoptometer 红外记录分光光度计infranics 红外电子学infrared 红外(线)infrared (not for communication)leds 红外线二极体(非通信用) infrared absorbing/reflecting filters 红外吸收/反射滤光镜infrared absorption 红外吸收infrared alarm system 红外警报系统infrared astronomy 红外天文学infrared beacon 红外标向波infrared binoculars 红外双目镜infrared bolometer 红外辐射热(测定)计infrared camera 红外照相机infrared crystals 红外线晶体infrared detector 红外探测器infrared detectors 红外线检测器infrared films and plates 红外线底片及感光板infrared filter 红外滤光器infrared gas density meters 红外线气体浓度感测器infrared glass 红外线玻璃infrared homing 红外归向infrared image tube 红外像管infrared instruments 红外仪infrared lens 红外透镜infrared lenses 红外线透镜infrared light sources 红外线光源infrared materials 红外线材料infrared optical material 红外光学材料infrared phosphor 红外磷光体infrared photoconductor 红外光电导体infrared photodetector arrays 红外光探测器列infrared photography 红外照相术infrared photomicrogaphy 红外显微照相术infrared radiation 红外线辐射infrared radiation souirce 红外辐射源infrared reflectance spectroscopy 红外反射光谱学infrared reflectors 红外反射器infrared scanner 红外扫描器infrared searchlight 红外探照infrared signal generator 红外信号器infrared spectrophotometer 红外分光光度计infrared spectroscopy 红外分谱学[page] infrared thermal detector 红外热探测器infrared thermistor 红外热阻器infrared thickness gauges 红外线厚度计infrared transmitting filters 红外透过滤光镜infrared vidicon 红外视像摄管infrared window 红外窗infrared-emitting diode 红外发射二极体infrasil 红外硅infrmoation retrieval 保息检索infromation storage 信心存储inhomogencity 不均匀性inhomogeneous (1)不均匀的(2)非齐次的inhomogeneous broadening 非均匀加宽inhomogeneous brodadening 非均匀展宽inhomogeneous dispersion 非均匀色散inhomogeneous equation 非齐次方程inhomogeneous layer 非均匀镀层inhomogeneous pumping 非均匀抽运inhomogeneous wave 非均匀波initial acceeleration 起始加速度initial amplitude 初振幅initial bias 初始起置initial cavity photon flux 共振腔初始光子通量initial data 原始数据initial inverson 初始反转initial level 初始能级initial phase 初相initial photo density 初始光子密度initial point 原点,起始点initial population 起始粒子数反转initial reading 初读数initial state 初态initial value 初值,始值initial velocity current 初速电流initiatic signal 起始信号initiatin laser 引爆激光器initiating technique of chemical laser 化学激光器引发技褒initiation (1)激磁(2)起爆(3)起动injection 注入injection equipment 液晶注入装置injection laser 注入式激光器injection laser diode 注入电射二极体injection lelctroluminescence 注入电致发光injection locking technique 注频同步技术injection luminescence 注入发光injection luminescent diode 注入式发光二极管injection molding equipment 射出成形机injection pumping 注入式抽运injection syringe 注入器injection-lock ring amplifier 注入锁定环形放大器injector laser 注入式激光器inkjet plain paper facsimiles 喷墨普通纸传真机inlead 引入线inleakage 漏泄,渗入inlet (1)输入(2)入口(3)引入线inlet port 入口inmspiration 吸气,进气inner diameter 内径inner face 内表面inner hyperboloide 内双曲面inner shell 内壳层inner surface interference microscope 内表面干涉显微镜inner wall 内壁inner-adjustabel focus collimator 内调焦平行光管inner-shelll exiciation 内壳层激发inoized donor 离子化施主inorganic compoun 无机化合物inorganic liquide laser 无机液体激光器input (1)输入(2)输入端input amplifier 输入放大器input attenuation 输入衷器input beam 输入光束input circlult 输入电路input coupler 输入耦合器input impedance 输入阻抗input stage 输入级input terminal 输入端input transformer 输入变压器input transformer less 无输入变压器式inquiry display terminal 查询显示终端机inreasing trasmission treatment 增长波inscattering 内散射inscattering correction 内散射改正insensibility 不灵敏性insepction gage 检验量规insepction window 检查窗insert drawing 插图insert filler 惰性填料insert gas 惰性气体inserted pin 插销inserter 插件insertion gain 插入增益insertion loss 介入损失inset 嵌入物inside calipers 内测循规inside calipers micrometer 内微测微计inside dial indicator 内径测微指示计inside diameter 内径inside lead gauae 内螺纹导程仪inside radius 内半径inside vapor-phase oxidation (ivpo)内汽相氧化法insolation 曝晒insolubility 不溶性inspecting microscope 检验用显微镜inspection glass 检验用玻璃inspection mirror 检验面镜inspection of optical crystal 光学晶体检验inspection thermometer 检查用温度计inspectro (1)检验员(2)检验器insrument bord (1)仪表盘(2)配电盘instability 不稳定性,不安定性instability therory 不稳家理论installation (1)装置(2)安装,装配installation diagram 安装图,装配图installation microscope 安装显微镜instant 瞬时instant photography 瞬时摄影instant reset 瞬时复位instantaneity 瞬时性,即时性instantaneous amplitude 瞬时振幅instantaneous exposure 瞬时曝光instantaneous image 瞬时像instantaneous position 瞬时位置instantaneous power 瞬时功率instantaneous value 瞬时值instanteanous error measurement 瞬时误差测定instat return mirror mechanism 瞬时回镜机构instoscope 目视曝光计instrction 指令instruction (1)指令(2)说明instruction code 指令码instruction register 指令寄存器instructon set 指令系统instrument (1)仪器(2)工具instrument analysis 仪器分析instrument effect 仪器效应instrument error 仪器误差instrument for determing the optical transfer fuction 光学传递数测定仪instrument glass dial 仪器玻璃刻度盘instrument head 测量头,测量端[page]instrument light 仪表照明指示灯instrument panel 仪表操纵板instrument stand 仪器座instrument suppotr 仪器支instrument transformer 仪器变压器instrumental error 仪器误差instrumental optics 仪器光学instrumentla fucction 仪器功能insufficiency 不充分性insulated body 绝缘体insulated paper 绝缘纸insulating blanket 绝缘垫层insulating coating 绝缘涂层insulating substrate 绝缘衬底insulation (1)绝缘(2)隔离insulation power factor 绝缘功率因数insulation resistance 绝缘电阻insulator (1)绝缘体,绝缘子(2)隔热体insytrumentation (1)测量仪表,测试设备(2)仪表化intake (1)进口(2)吸入(3)吸入量inteaction 相互作用intechangable prism 可换棱镜intechanglabel objective 可换物镜intecption (1)阻断(2)窃听,监听integer (1)整数(2)总体,整体integeral (1)积分(2)积分的integerated twin-guie laser 集成孪生波导激光器integral calculus 积分学integral constant 积分常数integral density 积分密度integral equation 积分方程integral light counter 积分光量计integral line-breadth 积分谱线宽度integral photography 立体照相,积分照相integral relation 积分关系式integral value 积分值integralization 整化integrand 被积函数integraph 积分仪integrated absoption 积分吸收integrated automation 全盘自动化integrated brightness 累积亮度integrated circuit (ic)集成电路integrated console 联控台integrated device 集成器件integrated electrooptics 集成电光学integrated feedback laser 集成馈激光器integrated interferometric reflector 集成干涉反光镜integrated lasers 累积雷射integrated optical bolometer for radiation 集成光学辐射热测量计integrated optical circuit (ioc)累积光路integrated optical switch 集光学开关integrated optical waveguide coupler 集成光学波导耦合器integrated optics 集成光学integrated package 集成组件,集成块integrated radiance 积分辐射integrated sphere 累计球,积分球integratedf optical circuit 集成光路integrating amplifier 积分放大器。
遥感影像语义理解
遥感影像语义理解基于⾃适应深度稀疏语义建模的⾼分辨率遥感影像场景分类:为了挖掘⾼分辨率遥感场景更具区分性的语义信息,提出了⼀种将稀疏主题和深层特征⾃适应相融合的深度稀疏语义建模(ADSSM)框架。
⾸先,为了从影像中发现本质底层特征,ADSSM框架集成了基于中层的稀疏主题模型FSTM和基于⾼层的卷积神经⽹络CNN。
基于稀疏主题和深度特征视觉信息的互补性,设计了三种异质性稀疏主题和深度场景特征来描述⾼分辨率遥感影像的复杂的⼏何结构和空间模式。
其中, FSTM可以从影像中获取局部和显著性信息,⽽CNN则更多关注的是全局和细节信息。
稀疏主题和深度特征的集成为⾼分辨率遥感场景提供了多层次的特征描述。
其次,为了改善稀疏主题和深度特征的融合,针对稀疏主题和深度特征之间的差异性,提出了⼀种⾃适应特征标准化策略。
在ADSSM中,挖掘的稀疏主题和深度特征各⾃进⾏⾃适应的标准化,以增强代表性特征的重要性。
基于⾃适应融合特征的表达,ADSSM框架可以减少复杂场景的混淆。
ADSSM框架在UCM、Google、NWPU-RESISC45以及OSRSI20四个数据集上的结果表明提出的⽅法相较于⽬前公认的⾼精度场景分类⽅法来说有了较⼤的提升。
资源共享1.公开数据集(1)SIRI-WHU ⾕歌影像数据集 (The Google image dataset of SIRI-WHU, 更新⽇期:2019.12.10).该数据集包括12个类别,主要⽤于科研⽤途。
以下各个类别中均包含200幅影像:农场、商业区、港⼝、闲置⽤地、⼯业区、草地、⽴交桥、停车场、池塘、居民区、河流、⽔体每⼀幅影像⼤⼩为200*200,空间分辨率为2⽶。
该数据集获取⾃⾕歌地球,由武汉⼤学RS-IDEA研究组(SIRI-WHU)搜集制作,主要覆盖了中国的城市地区。
当您发表的结果中⽤到了该数据集,请引⽤以下⽂献:[1]Q. Zhu, Y. Zhong, L. Zhang, and D. Li, "Adaptive Deep Sparse Semantic Modeling Framework for High Spatial Resolution Image Scene Classification," IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6180-6195. DOI: 10.1109/TGRS.2018.2833293.[2]Q. Zhu, Y. Zhong, B. Zhao, G.-S. Xia, and L. Zhang, "Bag-of-Visual-Words Scene Classifier with Local and Global Features for High Spatial Resolution Remote Sensing Imagery," IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 747-751. DOI:10.1109/LGRS.2015.2513443 2016.(2)SIRI-WHU USGS标注影像数据集 (The USGS image dataset of SIRI-WHU, 更新⽇期:2019.12.10).该数据集包括4个场景类别:农场、森林、居民区、停车场,其主要⽤于科研⽤途。
计算光谱成像联合色差矫正及超分辨技术研究
文提出了基于分段线性近似点扩散函数的色差矫正方法。通过仿真实验验证,本文提
出的色差矫正方法能够有效减少色差对重建图像质量的影响,从而提高了光谱图像的
重建质量。
此外,针对 CASSI 系统重建图像分辨率低的问题,本文另辟蹊径,提出了联合
poor imaging quality and low resolution. Based on this, some papers put forward specific
solutions for better reconstruction quality, such as multi-frame observation and an
图 1.3
编码快照光谱成像系统示意图 ............................................................................. 4
图 1.4
DD-CASSI 系统[15] ................................................................................................. 4
process is divided into two stage: the observation process and the data restoration process.
In the observation stage, the measurements are obtained by coding and sampling of the
图 1.5
HSI Classification by Exploiting the Spectral-Spatial Correlations in the Sparse Coefficients
Hyperspectral Image Classification by Exploiting the Spectral-Spatial Correlations in the Sparse CoefficientsDan Li u, Sh u tao Li, and Ley u an Fan gColle g e of Electrical and Information En g ineerin g,H u nan University, Chan g sha, 410012, China{liudan1,shutao_li,leyuan_fang}@ Abstract. This paper proposes a novel hyperspectral ima g e (HSI) classificationmethod based on sparse model, which incorporates the spectral and spatial in-formation of the sparse coefficient. Firstly, a sparse dictionary is b u ilt by u sin gthe trainin g sampl es and the sparse coefficient is obtained thro ug h the sparserepresentation method. Secondly, a probability map for each class is establishedby s u mmin g the sparse coefficients of each class. Thirdly, the mean filterin g isapplied on each probability map to exploit the spatial information. Finally, wecompare the probabil ity map to find the maxim u m probabil ity for each pixeland then determine the class label of each pixel. Experimental res u l ts demon-strate the effectiveness of the proposed method.Keywords: Hyperspectral ima g e classification, sparse representation, spectral-spatial information, mean filter.1IntroductionHyperspectral ima g e (HSI) is formed by tens to h u ndreds of contin u o u s and s u bdivided spectral bands while reflectin g interested tar g et areas sim u ltaneo u sl y. In HSI, different materials have different spectral information, which can be u sed for classification.Many m u ltispectral ima g e classification methods, s u ch as s u pport vector machines (SVMs) [1], [2], ne u ral network [3], and adaptive artificial imm u ne network [4], have been applied to HSI classification. Generally, these methods have obtained g ood per-formance.Researchers show that HSI contains rich spatial information and the pixel s in a small nei g hborhood have similar spectral characteristics. If the pixels are in a small nei g hbor, they sho u ld belon g to the same material. Therefore, Some methods [5], [6], [7] have combined spectral information and spatial information, and the classification acc u racy has been improved. In partic u l ar, the se g mentation based method [8] first se g ment the HSI into many local re g ion with similar spectral characteristics and then cl assify each re g ion. After u sin g the spatial information, the cl assifiers can obtain improved performance.Recentl y, sparse representation has become a powerf u l tool to solve some prob-lems, s u ch as face reco g nition [9], tar g et detection [10], [11], remote sensin g ima g e S. Li et al. (Eds.): CC P R 2014, P art I, CCIS 483, pp. 151–158, 2014.© Sprin g er-Verla g Berlin Heidelber g 2014152 D. Li u , S. Li, and L. Fan gf u sion [12] and medical imag e reconstr u ction [13], [14]. Recently, the sparse repre-sentation method has also been extended to HSI classification [7], [15], [16]. Basical-l y, the previo u s sparse representation based HSI cl assification methods u til ize the reconstr u ction error for the classification. In this paper, we propose a novel method that can combines the spatial information and spectral information in the sparse coef-ficients for the cl assification. Firstl y, we u se the trainin g sampl es to constr u ct the trainin g dictionary and then u til ize the sim u ltaneo u s ortho g onal matchin g p u rs u it (SOM P ) to obtain the sparse coefficient of each spectral pixel. Differ from other sparse representation based methods which u ses the resid u al to determine the pixel ’s class, the proposed method first employs the coefficients to constr u ct several proba-bility maps. S u bseq u ently, we exploit the spatial information by filterin g every map and g ain a probabil ity map for each cl ass. Final l y, we can determine the pixel ’s class by comparin g the probability maps.The rest of this paper is constr u cted as follows. Section 2 introd u ces the proposed cl assification method. Section 3 shows the experimental res u lts and concl u sions are g iven in the section 4.2 The Proposed Classification MethodFi g . 1 shows the schematic of the proposed classification method. It is constr u cted by fo u r steps: Firstl y, the sparse representation method is adopted to obtain the sparse coefficients. Then, the coefficients bel on g in g to each cl ass are s u mmed to obtain probability map for each pixel. S u bseq u entl y, a mean filterin g is cond u cted on each probabil ity map to expl oit the spatial information. Final l y, cl assification is accom-plished by comparin g the maps. The details of each step are ill ustrated in the follows.x x x 4x x }}}Fig. 1. The scheme of the proposed classification methodHyperspectra l Ima g e Classification by Exploitin g the Spectral-Spatial Correlations 153 Step 1: In HSI, every spectral pixel can be re g arded as a vector i x and the trainin g pixels constr u ct a matrix =12n D [d ,d ,...,d ]which is called dictionary. Every pixel canbe represented by the dictionary.1212...n i i i n i i ααα=+++=x d d d D α (1)In the eq u ation (1), 12,,...,n d d d is cal l ed atom and 12[,,...,]n i i i i ααα=αis cal ed sparse coefficient vector. The sparse coefficient vector can be obtained by solvin g the optimization problem.200ˆar g min s u bject to i i i i K =−≤αx A αα (2)where 0K is the maxim u m val u e of the sparsity level. This optimization problem is aN P -hard and cannot be sol ved directl y. However, it can be sol ved by g reedy al g o-rithms approximately, s u ch as s u bspace p u rs u it (S P ) [17], ortho g onal matchin g p u r-s u it (OM P ) [18] and Sim u ltaneo u s OM P (SOM P ) [7]. In this paper, the SOM P isadopted to obtain the sparse coefficient vector ˆi αfor each spectral pixel i x . Step 2: In the sparse coefficient vector ˆi α, there are onl y a few nonzero sparse coefficients. The lar g er the nonzero coefficients val u es in one specific class, the more probability the test pixel belon g s to this class. We denote the nonzero coefficients in one cl ass as the ,i m α, where {1,2,...,}m M ∈, and M is the total n u mber of cl asses.Then, we s u m the nonzero coefficients ,i m αfor each class of each spectral pixel,(),,s u m ,{1,2,...,},and {1,2,...,}s um i m i m m M i N =∈∈αα (3) where N is the total n u mber of spectral pixels in the HSI. In each class, the s u mmed coefficients ,s um i m αfor al l the spectral pixel s in the HSI can constr u ct one probabil itymap m z .Step 3: As disc u ssed above, one coefficient in a class probability map m z can be re-g arded as the l ikel ihood for the correspondin g pixel bel on g in g to this cl ass. If the probability map m z is directly u sed for determinin g the class of each pixel, the spatialinformation in the probability map is not exploited. To exploit the spatial information, a mean filterin g operation is cond u cted on each m z ,()meanfilterin g ,{1,2,...,}m e an f m m z z m M =∈ (4)where the window for mean operation is selected to 3×3.Step 4: the cl ass l abel of each pixel i x is obtained by comparin g the coefficients in the fil tered probabil ity maps,,1,...,ˆmax (),{1,2,...,}m e an f i m i i m Mm z i N ==∈x (5) where max is the operation to comp u te the max coefficient amon g different maps.154 D.Li u, S. Li, and L. Fan g3Experimental ResultsThis section tests the effectiveness of the proposed classification method on two real HSIs (Indian pines and Salinas scene). The classification res u lts of the proposed me-thod are compared with those obtained by SVM [19], SVM-CK [20], OM P [7] and SOM P [7]. SVM [19] is desi g ned for the classification of the spectral pixel witho u t u tilizin g the spatial information. SVM-CK [20] is a method that incorporates spatial information via a composite kernel. OM P and SOM P are two sparse representation based methods.In o u r first experiment, we u sed Airborne Visible/Infrared Ima g in g Spectrometer (AVIRIS) ima g e Indian pines as testin g HSI. This ima g e is a widely u sed data set and was taken over Indiana’s Indian P ine test site in J u ne 1992. The Indian P ines has a size of 145×145×220, with 220 spectral bands. Beca u se 20 bands is water absorp-tion, these bands are removed. There are 16 g ro u nd-tr u th classes and the size is from 20 to 2455 pixels (the total pixels are 10249).We chose 10% of the samples for each class as trainin g sample and the remainder as testin g sampl es. For each method, we did five experiments and avera g ed the re-s u l ts. The n u mber of the trainin g sample and the testin g sample is presented in Table 1.In this table, we can see the overall acc u racy (OA), avera g e acc u racy (AA) and the kappa coefficient by u sin g different methods (the SOM P-P is denoted as o u r method). Table 1. Trainin g sets, testin g sets and cl assification acc u racy (%) obtained from different methods for the Indian P ines ima g el ass Train Test SVM SVM-CK OM P SOM P SOM P-P Cl fa 6 40 77.73 91.25 55.1292.26 95.04Al faCorn-N 144 1284 77.35 92.79 61.60 93.46 97.77Corn-M 84 746 78.56 93.98 58.62 90.22 97.4042.2187.32 95.1168.75Corn 24 21387.28Grass-M 50 433 88.87 94.90 87.29 95.20 94.04Grass-T 75 655 89.12 99.51 95.30 96.12 96.57 Grass-P 3 25 95.37 85.20 85.20 87.10 87.14Hay-W 49 429 95.09 99.91 96.44 99.10 99.8767.65Oats 2 1883.33 36.67 55.78 0Soybean-N 97 875 78.64 90.33 71.10 93.45 93.47Soybean-M 247 2208 81.19 96.25 74.11 95.10 99.20Soybean-C 62 531 79.74 89.04 51.05 87.49 97.61Wheat 22 183 92.26 99.07 96.85 88.20 97.76 Woods 130 1135 92.72 98.63 91.85 99.00 100B u ildin g s 38 348 69.79 92.64 41.67 83.05 97.7291.51 99.35stone 10 83 97.96 90.24 91.9093.6673.3894.82OA - -82.9197.4983.17AA - -92.77 71.06 89.83 91.010.6960.9310.8050.941k - -0.971Hyperspectra l Ima g e Classification by Exploitin g the Spectral-Spatial Correlations 155 The Table 1 shows the trainin g sets, testin g sets and classification maps obtained by SVM, SVM-CK, OM P, SOM P and SOM P-P and the res u lt is the avera g e of five experiments. From the Tabl e 1, we can see that o u r al g orithm has the best perfor-mance in terms of overall acc u racy and kappa coefficient. As for its avera g e acc u racy, it is only a little worse than the classifier SVM-CK.(a)(b)(c)(d)(e)(f)(g)Fig. 2. Indian P ines: (a) Train samples, (b)Test samples, and the classification res u lts obtainedby (c) SVM, (d) SVM-CK, (e) OM P, (f) SOM P, (g) SOM P-PTable 2. Trainin g sets, testin g sets and cl assification acc u racy (%)obtained from different methods for the Salinas scene ima g eCl ass TrainTestSVMOM P SOM P SOM P-P Weed_1 20198999.8898.68100 100 Weed_2 37368998.5298.7899.7299.95Fall ow 20195692.4894.5598.70 98.41Fallow plow 14 1380 97.46 99.35 96.93 99.69Fallow smooth 27 2651 97.19 93.26 97.45 99.24 St u bbl e 40391999.9899.7299.97100 Cel ery 36354398.1499.4099.55100 Grapes 1131115876.1172.8384.5094.12Soil 62614198.6397.4199.37100 Corn 33324589.2988.1495.2498.04Lett u ce 4wk 11 1057 92.82 96.18 99.26 100Lett u ce 5wk 19 1908 96.16 99.77 96.73 99.73 Lett u ce 6wk 9 907 94.99 98.05 92.53 99.15Lett u ce 7wk 11 1059 94.85 90.87 97.40 99.43 Vineyard u ntrained 73 7195 71.90 57.77 85.24 83.15Vineyard trellis 18 1789 98.87 95.06 98.91 98.92 OA --89.1686.4893.4796.21AA --93.5992.5396.1398.11k --0.8900.8490.92740.958156 D.Li u, S. Li, and L. Fan gIn the Fi g. 3, (a) and (b) are an example of the trainin g and testin g samples. (c) is the classification map obtained from SVM, similarly, (d), (e), (f) are the classification maps of SVM-CK, OM P, SOM P and SOM P-P respectively.In o u r second experiment, we u se the HSI Salinas scene which was collected by 224-band over Sal inas Val ey and Cal ifornia. The size of the Sal inas ima g e is 512×217×224.Al so, beca u se 20 bands is water absorption which is the same as Indian P ines, the n u mber of bands is red u ced to 204. There are 16 g ro u nd-tr u th classes containin g ve g etables, bare soils, and vineyard fields and the size is from 916 to11271 pixels (the total pixels are 54129).We chose 1% of the samples for each class as trainin g sample and the rest as test-in g sample. The n u mber of the trainin g sample and the testin g sample is presented in Table 2. In this table, we can see the overall acc u racy (OA), avera g e acc u racy (AA) and the kappa coefficient by u sin g different methods (the SOM P-P is o u r method). It is easy to see that the performance of the proposed methods is fine. The Fi g. 2 shows the classification maps.Fig. 3. Salinas scene: (a) Train samples, (b) Test samples, and the classification res u lts obtained by(c) SVM, (d) OM P, (e) SOM P, (f) SOM P-P4ConclusionsIn this paper, we have proposed a novel HSI cl assification method base on sparse representation. Differ from other traditional sparse classification technolo g ies which expl oit the sparse coefficient and resid u al to cl assify directl y, this method u ses the sparse coefficient to constr u ct probability maps and then exploits the spatial informa-tion in the maps for classification. Experimental res u lts show that the proposed me-thod has better performance than several well-known classifiers.Hyperspectra l Ima g e Classification by Exploitin g the Spectral-Spatial Correlations 157 Acknowledgement. This work was s u pported in part by the National Nat u ral Science Fo u ndation of China u nder Grant No. 61172161, the National Nat u ral Science Fo u n-dation for Distin gu ished Yo u n g scholars of China u nder Grant No. 61325007.References1.G u altieri, J.A., Cromp, R.F.: S u pport Vector Machines for Hyperspectral Remote Sensin gClassification. In: P roc. S P IE, vol. 3584, pp. 221–232 (1998)2.Mel g ani, F., Br u zzone, L.: Cl assification of Hyperspectral Remote Sensin g Ima g e withS u pport Vector Machines. IEEE. Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004) 3.Ratle, F., Camps, G.V., Weston, J.: Semis u pervised Ne u ral Networks for Efficient Hyper-spectral Ima g e Classification. IEEE Trans. Geosci. Remote Sens. 48(5), 2271–2282 (2010) 4.Zhon g, Y., Zhan g, L.: An Adaptive Artificial Imm u ne Network for S u pervised Classifica-tion of M u ti-/Hyperspectra Remote Sensin g Ima g ery. IEEE Trans. Geosci. Remote Sens. 50(3), 894–909 (2012)5.Rand, R.S., Keenan, D.M.: Spatial l y smooth partitionin g of hyperspectral ima g ery u sin gspectral/spatial meas u res of disparity. IEEE Trans. Geosci. Remote Sens. 41(6), 1479–1490 (2003)6.Kan g, X., Li, S., Fan g, L.: Extended Random Walker-Based Classification of Hyperspec-tral Ima g es. IEEE Trans. Geosci. Remote Sens., 1–10 (May 2014)7.Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral Ima g e Classification Usin g Dictio-nary-Based sparse Representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)8.Driesen, J., Thoonen, G., Sche u nders, P.: Spatial Hyperspectral Ima g e Cl assification byP rior Se g mentation. In: IEEE Geosci. Remote Sens. Symp., vol. 3, pp. 709–712 (2009)9.John, W., Yan g, A.Y., Arvind, G., Sastry, S.S., Ma, Y.: Rob u st Face Reco g nition viaSparse Representation. IEEE Trans. P attern Anal. 31(2), 210–227 (2009)10.Chen, Y., Nasrabadi, N.M., Tran, T.D.: Sparse Representation for Tar g et Detection inHyperspectral Ima g ery. IEEE Jo u rnal of Selected Topics in Si g nal P rocessin g 5(3), 629–640 (2011)11.Fan g, L., Li, S., H u, J.: M u ltitemporal ima g e chan g e detection with compressed sparse re-presentation. IEEE Ima g e P rocessin g, 2673–2676 (2011)12.Li, S., Yin, H., Fan g, L.: Remote Sensin g Ima g e F u sion via Sparse Representations OverLearned Dictionaries. IEEE Trans. Geosci. Remote Sens. 51(9), 4779–4789 (2013)13.Fan g, L., Li, S., Kan g, X., Benediktsson, J.A.: Spectral-Spatial Hyperspectral Ima g e Clas-sification via M u l tiscal e Adaptive Sparse Representation. IEEE Trans. Geosci. Remote Sens., 1–12 (2014)14.Fan g, L., Li, S., Ryan, M., Qin g, N., Anthony, K.: Fast Acq u isition and Reconstr u ction ofOptical Coherence Tomo g raphy Ima g e via Sparse Representation. IEEE Trans. Med. Im-a g. 32(11), 2034–2049 (2013)15.Fan g, L., Li, S., Kan g, X., Benediktsson, J.: Spectral-Spatial Hyperspectral Ima g e Classifi-cation via M u ltiscale Adaptive Sparse Representation. IEEE Trans. Geosci. Remote Sens., 1–12 (2014)16.Fan g, L., Li, S., Kan g, X.: Spectral-Spatial Hyperspectral Ima g e Classification via M u ltis-cal e Adaptive Sparse Representation. IEEE Trans. Geosci. Remote Sens. 52(12), 7738–7749 (2014)17.Dai, W., Mil enkovic, O.: S u bspace Pu rs u it for Compressive Sensin g Si g nal Reconstr u c-tion. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)158 D.Li u, S. Li, and L. Fan g18.Tropp, J., Gilbert, A.: Si g nal recovery from random meas u rements via ortho g onal match-in g p u rs u it. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)19.G u altieri, J.A., Cromp, R.F.: S u pport Vector machines for Hyperspectral Remote Sensin gClassification. In: P roc. S P IE, vol. 3584, pp. 221–232 (1998)20.Fa u vel, M., Chan u ssot, J., Benediktsson, J.A.: Adaptive P ixel Nei g hborhood Definition forthe Classification of Hyperspectral Ima g es with S u pport Vector Machines and Composite Kernel. In: P roc. IEEE Int. Conf. Ima g e P rocess., pp. 1884–1887 (2008)。
A Discriminative Classifier Learning Approach to Image Modeling and Spam Image Identificati
1. INTRODUCTION
Text-based learning filters have grown in sophistication and effectiveness in filtering email spam [3, 5, 17]. In response, spammers have adopted a number of countermeasures to circumvent these text-based filters. Currently, one of the most popular spam construction techniques involves embedding text messages into images and sending either pure image-based spam or a combination of images and text (typically legitimate-looking text with legitimate content). This strategy, usually called “imagespam,” has been successful in bypassing text-based spam filters, posing a new challenge for spam researchers [24]. Attempts to use optical character recognition (OCR) techniques to convert spam images back to text for processing by text-based filters have been foiled [15]. An effective response by spammers is the application of CAPTCHA1 (Completely Automated Public Turing test to tell Computers and Humans Apart) techniques, which are designed to preserve readability by humans but capable of effectively confusing the OCR algorithms [7, 20]. In this paper,
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
基于图像稀疏表示的红外小目标检测算法
第30卷第2期2011年4月红外与毫米波学报J.Infrared Millim.WavesVol.30,No.2April ,2011文章编号:1001-9014(2011)02-0156-07收稿日期:2010-06-12,修回日期:2010-12-17Received date :2010-06-12,revised date :2010-12-17基金项目:国家自然科学基金(60772097);航空科学基金(2008ZC57)作者简介:赵佳佳(1982-),男,河南沁阳人,博士研究生,主要从事红外图像处理工作,E-mail :zhaojiajia1982@gmail.com.基于图像稀疏表示的红外小目标检测算法赵佳佳1,唐峥远1,杨杰1,刘尔琦2,周越1(1.上海交通大学图像处理与模式识别研究所,上海200240;2.中国航天科工集团公司第三研究院,北京100074)摘要:基于超完备字典的图像稀疏表示是一种新的图像表示理论,利用超完备字典的冗余性可以有效地捕捉图像的各种结构特征,从而实现图像的有效表示.针对红外小目标检测问题,提出了一种基于图像稀疏表示的检测方法,该方法采用二维高斯模型生成样本图像,继而构造超完备目标字典,然后依次提取测试图像的图像子块并计算其在超完备字典中的表示系数,背景和目标的表示系数有着显著的差异,最后通过一个量化指标来判别该子图像块是否含有小目标,实验结果证实了所提方法的有效性.关键词:图像稀疏表示;红外小目标;目标检测中图分类号:TP391.4文献标识码:AInfrared small target detection based on image sparse representationZHAO Jia-Jia 1,TANG Zheng-Yuan 1,YANG Jie 1,LIU Er-Qi 2,ZHOU Yue 1(1.Institute of Image Processing and Pattern Recognition ,Shanghai Jiao Tong University ,Shanghai 200240,China ;2.Institute of the Third Academy ,CASIC ,Beijing 100074,China )Abstract :The sparse representation based on over-complete dictionary is a new image representation theory.The redun-dancy of over-complete dictionary can enable it effectively to capture the geometrical characteristics of the images.In thispaper ,a novel detection method based on image sparse representation was introduced.The over-complete target dictionaryis first constructed with atoms which are produced by two-dimensional Gaussian model.Then the sub-image blocks of thetest image are extracted successively and the corresponding coefficients are calculated with the constructed over-completetarget dictionary.There is a significant difference between the coefficients of objective and background.Whether the sub-image block contains small target or not can be determined by the index of sparse concentration.Experimental results dem-onstrated the effectiveness of the proposed method.Key words :image sparse representation ;infrared small target ;object detection PACS :07.57.Kp引言利用红外成像技术实现目标检测是红外制导的关键技术之一,同时也是军事武器系统的自动化、智能化、现代化的重要标志之一,因此国内外许多科研机构的学者一直致力于该项技术的研究.由于红外传感器受到大气、海面辐射、作用距离以及探测器噪声等因素影响,使得远距离的目标在红外图像上尺寸较小,甚至呈现点状;此外,图像的信噪比较低,加上背景通常情况下比较复杂,目标很容易被噪声和背景杂波所淹没,使得红外小目标的检测变得更加困难.实时鲁棒的小目标检测技术尚未完全突破,仍是机器视觉和图像处理领域的热门研究课题.当前,基于单帧的红外小目标检测算法可以分为两类:基于图像滤波的检测算法和基于机器学习的检测算法.基于图像滤波的检测算法,首先对红外图像的背景起伏分量进行估计,也称为背景估计,然后将原始图像与背景起伏分量相减,以得到包含目标成分和噪声成分的图像,接着通过阈值处理或其他方法得到目标的位置,代表方法包括Max-Mean [1],Max-Median [1],Top-Hat [2],TDLMS [3].基于机器学习的检测算法,则是将目标检测问题转化为模式分类问题,然后根据不同的学习算法对目标模型和背景模型进行训练,利用得到的目标模型和背2期赵佳佳等:基于图像稀疏表示的红外小目标检测算法景模型对输入的测试图像进行分类判别,即依次提取输入图像的子图像,然后根据判别规则判定该子图像块含有目标与否,其中,具有代表性的方法有PCA[4],PPCA[5].提出了一种基于超完备稀疏表示的红外小目标检测算法,与其他基于机器学习的算法相比,该算法不需要对目标模型和背景模型进行训练,而是通过求解一个线性规划问题来完成目标检测的任务.1图像的稀疏表示对图像进行表示时,人们通常使用完备的正交基,因为完备的正交基可以使表示简单直观,而且表示是唯一的.近几年随着多尺度几何分析和压缩传感技术在图像处理领域的兴起,人们发现使用超完备基来表示图像会更加有效,能够得到更加稀疏的表示.与完备的正交基不同,超完备基的基底通常是冗余的,即基底的个数大于基元素的维数,超完备基又被称为超完备字典,基元素被称为字典的原子.稀疏表示使得图像的能量只集中于较少的原子,而这些具有非零表示系数的原子揭示了图像的主要特征和内在结构.目前,稀疏表示已广泛应用到图像处理和模式识别领域,如图像恢复、图像压缩、人脸识别等[6].图像在超完备字典中的稀疏表示可按照以下模型进行描述:NˑM的矩阵D为超完备字典,通常情况下M≥N,y∈R N为图像的向量展开形式,求解图像y在超完备字典D中的最稀疏表示等同于求解min‖x‖s.t.y=Dx,(1)其中,‖x‖0表示向量x的L0范数,定义为向量x 的非零元素个数,由于L0范数的非凸性,使得式(1)的求解变成了NP难的组合优化问题.最初,Mallat通过迭代的贪婪算法(匹配追踪算法)来求解式(1),随后,Donoho等人用L1范数取代L0范数,将式(1)转化为求解式(2):min‖x‖1s.t.y=Dx,(2)显然,式(2)是一个凸优化问题,可以通过线性规划算法来求解.Donoho[7]证明,当信号和超完备字典满足一定条件时,式(1)和式(2)是等价的,即式(1)的解可以通过求解式(2)来得到.在红外小目标检测问题中,首先,必须构造一个超完备的目标字典,然后将测试图像按照原子的大小进行分块提取,计算该图像子块在超完备目标字典下的表示系数,若该图像子块含有红外小目标,则其在字典下的表示系数是稀疏的,即只有少量系数值较大,其他值均接近于0;若该图像子块没有包含目标,为背景图像,则其在字典下的表示系数是均匀分布的,且每一个系数值均很小,也就是说,该图像子块包含目标与否,其在字典中的表示系数有着显著的差异,因此,只需通过一个量化指标来描述这种差异,然后对该指标进行阈值操作,就可以将目标和背景区分开来.2构造超完备字典图像稀疏表示理论中的一个关键问题就是如何设计有效的超完备字典.利用超完备字典表示图像的基本思想最早由Mallat提出,他采用超完备的Gabor 字典对图像进行稀疏表示.随后,人们又提出了多种构造超完备字典的方法,这些方法可以归为以下两个类别:第一类方法通过将标准的正交基进行级联来得到超完备字典,常用的标准正交基包括:傅里叶基、小波基、曲波基以及Gabor基等.第二类方法是用训练样本来构造超完备字典,这类方法又被称为稀疏编码,一方面可以通过学习算法来生成字典,如Elad[8]利用K-SVD算法来生成具有通用性的字典,另外也可以针对具体问题,直接用训练样本构造字典,如John Wright[9]直接以人脸图像作为原子来构造超完备字典.第二类方法生成的字典能够抓住图像的几何结构特征,且构造方法可以根据应用需求,更加灵活,因此,选择该类方法来构造超完备目标字典.在基于学习的红外小目标检测方法[4,5]中,人们普遍使用二维高斯模型来对红外小目标进行建模,通过调节模型中的参数,生成目标子空间.采用该模型来生成红外目标样本图像,继而构造超完备目标字典.设生成的样本图像大小为mˑm,二维高斯模型如下I(i,j)=Imaxexp-12(i-x)2σ2[(x+(j-y)2σ2])y,(3)其中,I max是目标中心像素值(灰度峰值);σx为水平散布参数,σy为垂直散布参数,这两个参数控制着目标像素的散布特性;以样本图像的左上角为原点,(x,y)为目标图像的中心坐标,(i,j)为样本图像的其它像素坐标.通过调节(x0,y0),I max,σx和σy四个参数来生成不同位置,不同亮度,不同形状的红外小目标样本图像.将得到的每一幅样本图像均展开为m2ˑ1的一维列向量,然后将这些向量组成为一个矩阵:D=[s1,s2,…,sn]∈R m2ˑn,(4)设样本的数目为n,称该矩阵D为超完备字典,矩阵中的每一列s i为超完备字典中的一个原子.图1751红外与毫米波学报30卷图1超完备字典示意图(a )超完备字典中原子的三维显示图(b )原子的能量谱平面图(c )超完备字典中的部分原子Fig.1Diagram of the over-complete target dictionary (a )three-dimensional display of atom (b )the energy spectrum of atom(c )part of the over-complete dictionary是生成的样本图像及超完备字典示意图,其中,图1(a )是根据式(3)生成的目标样本三维显示图,图1(b )是对应的能量谱平面图,图1(c )为生成的部分字典.3基于稀疏表示的检测算法根据以上构造的红外目标超完备字典,将输入的测试图像进行分块,然后计算各图像子块在字典下的表示系数,通过定量比较各图像子块的表示系数的差异,来判断该图像子块是否含有小目标,从而完成目标检测的任务.具体的步骤如下:(1)利用m ˑm (与字典中原子具有相同的大小)的滑动窗口,从上到下、从左到右依次提取测试图像的图像子块,并将其展开为m 2ˑ1维列向量.(2)计算图像子块在超完备字典中的表示系数.图像子块在超完备字典中的表示系数可以通过优化式(1)或者式(2)来求解,但是,由于在红外小目标检测问题中,图像子块往往包含不同程度的噪声,使得直接利用式(1)或式(2)求解得到的结果不理想.因此,为了消除噪声的干扰,得到更加稳定的解,利用改进的模型来求解图像子块在字典中的表示系数min ‖α‖1s.t.‖D α-x ‖2≤ε,(5)其中,x ∈R m 2是图像子块的向量表示,D ∈R m 2ˑn是红外小目标超完备字典,求得的n ˑ1维列向量α为图像子块x 在超完备字典中的表示系数.参数ε为图像子块的标准差,描述了不同子块中噪声的强度.图2表示系数的差异(a )目标在字典中的表示系数(b )背景在字典中的表示系数Fig.2The difference of representation coefficients (a )small target in the dictionary ,and (b )background in the dictionary8512期赵佳佳等:基于图像稀疏表示的红外小目标检测算法(3)根据定义的稀疏程度指标,计算测试图像的稀疏程度指标矩阵.若图像子块中含有小目标,则求得的表示系数α比较稀疏,即只有少量数值比较大,其他值均很小;若图像子块为背景,则求得的表示系数α数值均比较小.图2(a )为测试图像(见图4(a ))中包含目标的图像子块的表示系数;图2(b )为某个背景图像块的表示系数,由图中可以看出,图像子块中是否含有目标,其在超完备字典中的表示系数有着显著的差异,我们通过定义稀疏程度指标(Sparsity Index ,SI )来定量的描述表示系数的差异图3(a )原始测试图像(b )原始图像的三维显示图(c )检测结果(d )检测结果的三维显示图Fig.3(a )Original test images (b )3-d display of test images (c )detection results (d )3-d display of detection resultsSI (x )k ·max i ‖δi (x )‖1/‖x ‖1-1k -1∈[0,1],(6)其中,k 表示样本类别的个数,i =1,2,…,k ,δi (x )表示x 中属于第i 个位置的系数.将图像子块在字典中的表示系数α代入式(6),得到该图像子块的SI 值.显然,含有目标的子图像块的SI 值接近于1,而不含目标的背景子块的SI 值接近于0.将得到的SI 值赋给滑动窗口在原始测试图像的中心位置,则最终得到一个新的矩阵,我们称之为稀疏程度指标矩阵,该矩阵与原始测试图像具有相同的尺寸(不考虑边界效应),矩阵的元素值介于[0,1]之间.(4)对稀疏程度指标矩阵进行阈值处理,得到目标的精确位置.稀疏程度指标矩阵中,目标所在位置具有接近于1的数值,其他位置数值均接近于0,因此,通过简单的阈值操作即可得到目标的精确位置SI (x )≥τ,(7)其中τ为阈值,τ∈[0,1],可以根据实际情况进行设定.式(7)是根据设定的阈值对稀疏程度指标矩阵进行二值化处理,处理结果中,数值1所在的位置即为目标的所在位置.4实验结果及分析为了验证算法的有效性,选择多幅含红外图像来进行实验,并将算法的检测结果与基于Max-Median 、Top-Hat 、TDLMS 、PCA 的检测算法进行了比较.实验中,根据二维高斯模型生成的目标样本大小为16ˑ16,构造的超完备字典D 的大小为D ,稀疏表示系数利用l 1-magic 工具箱[10]来求解,阈值τ取0.6.图3包含了三幅典型的红外测试图像,分别为陆地、天空和海天背景,其中,包含的小目标数目分别为一个、两个和三个.从原始图像的三维显示可以看到,小目标几乎被背景杂波和噪声所湮没,特别是第三幅图像,由于背景复杂,目标几乎呈点状.图3(c )和图3(d )分别为文中检测算法的检测结果及951红外与毫米波学报30卷图4(a )原始测试图像(b )Max-Median 检测结果(c )Top-Hat 检测结果(d )TDLMS 检测结果(e )PCA 检测算法结果(f )SR 检测结果Fig.4(a )The original test image (b )the detection result of Max-Median (c )the detection result of Top-Hat (d )the detectionresult of TDLMS (e )the detection result of PCA (f )the detection result of SR其对应的三维显示图,从检测结果可以看到,所提算法能够很好的抑制背景,凸出目标,在归一化的图像中,背景最大值不超过0.3,而目标均在0.8以上,只需简单的阈值操作即可将目标检测出来.为了进一步验证所提出的算法的性能,将该算法与四种典型的红外小目标检测算法进行了比较.各种检测算法的检测结果见图4.从图4的检测结果可以看到,相比于其他几种检测算法,所提SR 算法能够更好地将背景进行抑制.为了对各种检测算法的性能进行定量比较,选择局部信噪比(Local Signal-to-Noise Ratio ,LSNR )和局部信噪比增益(Local Signal-to-Noise Ratio Gain ,LSNRG )两个量化指标来对五种检测算法进行客观的分析和比较.LSNR 定义如下:LSNR =S area N area,(8)其中,S area 表示局部信号值,实验中取目标区域内像素灰度的极大值;N area 表示局部背景值,实验中取背景区域的极大值.较大的LSNR 表明该局部区域内,目标相对于背景杂波而言更为显著,因而检测的效果也更好.LSNRG 的定义如下:612期赵佳佳等:基于图像稀疏表示的红外小目标检测算法表1客观评价指标值Table1The values of all evaluation indexesLSNR LSNRGTarget M-Med Top-Hat TDLMS PCA SR M-Med Top-Hat TDLMS PCA SR 11.30941.70731.37041.52634.37501.51141.97071.58181.76185.0500 21.17131.47151.22841.26323.10711.10041.38261.15411.18682.9193 31.08291.28461.10491.60151.96431.24281.47431.26821.83812.2545 41.23761.68291.26541.49623.57141.38121.87821.41231.66983.9858 51.26521.60161.37041.15043.78571.13591.43791.23031.03283.3987 61.23201.55281.37651.91732.21431.24441.56841.39031.93652.2364 71.25971.60161.30251.43612.67861.20591.53331.24691.37482.5643 81.22101.55281.29631.35342.66071.30501.65971.38551.44652.8437 91.27621.83741.43211.48872.94641.10641.59291.24161.29072.5544 101.40882.07321.57411.71434.55361.23731.82081.38241.50563.9992LSNRG=LSNRoutLSNRin,(9)其中LSNRG in和LSNRG out分别是在进行目标检测前后目标区域的LSNR.较大的LSNRG表明目标检测算法对于LSNR的提升越明显,因而检测性能也越好.表1显示了使用不同检测算法对测试图像(图4(a))进行检测后的LSNR和LSNRG值,指标最优值均以下划线指出.从表1可以看到,在各种检测算法中,文中算法得到的LSNR和LSNRG均为最大,说明SR算法的性能最优,这也与前面的主观评价结果一致.LSNR和LSNRG两个指标从检测结果的局部区域对各种算法进行了比较,为了能够对各种算法进行更加综合的评价,选择目标检测中常用的ROC (Receiver Operating Characteristic)曲线来对各种检测算法进行综合的分析.ROC曲线是检测概率和虚警概率的函数曲线,通过不断变动检测阈值,来得到相应的虚警率和检测率,曲线以下包含的面积越大,则该算法性能越好.图5给出了各种检测算法的ROC曲线图,从图中可以看到当虚警率接近于0%的时候,SR的检测概率依然为100%,而其他算法则均达不到100%.从三维显示图的主观效果,到量化指标以及ROC曲线的客观评价结果,均证明了所提算法是一种有效的检测算法.5结论根据图像的稀疏表示理论,提出了一种新的红外小目标检测算法.与以往的用完备的正交基来表示图像不同,稀疏表示理论认为利用超完备的字典能更加有效地表示图像.首先根据二维高斯模型构造了红外目标的超完备字典,然后,计算测试图像的图像子块在超完备字典中的表示系数,图像子块中图5各种算法的ROC曲线图Fig.5The ROC curves of all kinds of algorithms含有目标与否,其表示系数显著不同,根据这一事实来完成目标检测的任务.最后将提出的算法与其他经典的检测算法进行了比较,实验结果验证了算法的有效性.由于文中直接采用l1-magic工具箱来求解稀疏表示系数,因此,为了进一步提高算法的实时性,可以考虑采用更加快速的算法来求解l1范数最小化问题.REFERENCES[1]Deshpande S D,Er M H,Venkateswarlu R,et al.Max-mean and max-median filters for detection of small targets [J].Proc.SPIE,1999,3809:74—83.[2]Li J C,Shen Z K,Lan T.Detection of spot target in infra-red clutter with morphological filter[J].IEEE Aerospace and Electronics,1996,1:168—172.[3]Cao Y,Liu R M,Yang J.Small target detection using two-dimensional least mean square(TDLMS)filter based on neighborhood analysis[J].International Journal of Infrared and Millimeter Waves,2008,29(2):188—200.[4]Liu Z J,Chen C Y,Shen X B,et al.Detection of small ob-jects in image data based on the nonlinear principal compo-nent analysis neural network[J].Optical Engineering,2005,44(9)093604(1-9).(下转166页)161红外与毫米波学报30卷3结论为了抑制地空探测系统中可能出现的云层和人工建筑物复杂杂波对弱小目标检测性能的影响,采用贝叶斯最大后验估计,设计了基于剪切波变换和高斯尺度混合模型的背景抑制方法.利用基于模拟和真实的图像序列的几组实验验证了所提方法的抑制性能.实验结果表明,所提方法可较好地实现对红外地空探测系统中可能出现的云层和人工建筑物所引起的强边缘的抑制,展示了基于剪切波变换的高斯尺度混合模型作为一种新的多尺度几何分析工具在红外图像处理中的应用潜力.在细节特征的抑制上仍不能让人满意,如何减轻甚至消除残留的强边缘背景是下一步值得研究的课题和今后的研究方向.REFERENCES[1]Chen J Y,Reed I S.A detection algorithm for optical tar-gets in clutter[J].IEEE Trans.on Aerospace and Electronic Systems,1987,23(1):46—59.[2]Silverman J,Caefer C E,Vickers V E.Temporal filtering for point target detection in staring IR imagery;II.Recur-sive variance filter[J].Proc.SPIE.1998,3373:45—53.[3]Lin J N,Nie X,Unbehauen R.Two-dimensional LMS a-daptive filter incorporating a local-mean estimator for image processing[J].IEEE Transactions on Circuits and Systems:Analog and DigitalL Signal Processing,1993:40(7):417—428.[4]Li H,Wei Y T,Li L Q,et al.Infrared moving target de-tection and tracking based on tensor locality preserving pro-jection[J].infrared physics&technology.2010,53(2):77—83.[5]Porat B,Friedlander B.A frequency domain algorithm to multiframe detection and estimation of dim targets[J].IEEE Trans.Pattern Anal.Mach.Intell.1990,12(4):398—401.[6]DelMarco S,Agaian S.The design of wavelets for image en-hancement and target detection[J].Proc.SPIE,2009,7351:[7]LI Hong,ZHENG Cheng-Yong,GAO Jing-Li.Weak and small object detection based on wavelet multiscale analysis and fisher algorithm[J].J.Infrared Millim.Waves(李红,郑成勇,高景丽.基于小波多尺度分析及Fisher分割的红外弱小目标检测.红外与毫米波学报),2003,22(5):353—356.[8]LIU Ru-Ming,LIU Er-Qi,YANG Jie,et al.Detect infrared point targets based on kernel fukunaga-Koontz transform [J].J.Infrared Millim.Waves(刘瑞明,刘尔琦,杨杰,等.核Karhunen-Loeve变换红外小目标检测.红外与毫米波学报),2008,27(1):47—50.[9]Zhang BY,Zhang TX,Cao ZG,et al.Fast new small target detection algorithm based on a modified partial differential equation in infrared clutter[J].SPIE optical engineering.2007,46(10):106401—1 6.[10]Guo K,Labate D.Optimally sparse multidimensional rep-resentation using shearlets[J].SIAM J.Math Anal.2008,39(1):298—318.[11]Portilla J,Strela V,Wainwright M J,et al.Image denois-ing using scale mixtures of gaussians in the wavelet domain[J].IEEE Transactions on Image Processing,2003,12(11):1338—1351.[12]BAI Jing,HOU Biao,WANG Shuang,et al.SAR image denoising based on lifting directionlet domain Gaussianscale mixtures model[J].Chinses journal of computers(白静,侯彪,王爽,等.基于提升Directionlet域高斯混合尺度模型的SAR图像噪声抑制.计算机学报),2008,31(7):1234—1241.[13]QIN Han-Lin,LIU Shang-Qian,ZHOU Hui-Xin,et al.Background suppression for dim small target with Gaborkernel non-local means[J].Infrared and Laser Engineer-ing(秦翰林,刘上乾,周慧鑫,等.采用Gabor核非局部均值的弱小目标背景抑制.红外与激光工程),2009,38(4):737—櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚741.(上接161页)[5]Cao Y,Liu R M,Yang J.Infrared Small Targets Detection Using PPCA[J].International Journal of Infrared and Mil-limeter Waves,2008,29(4):385—395.[6]Plumbley M D,Abdallah S A,Blumensath T,et al.Musi-cal audio analysis using sparse representations[J].Pro-ceedings in Computational Statistics,2006,2:104—117.[7]Donoho D,Huo X.Uncertainty principles and ideal atomic decomposition[J].IEEE Trans.on Information Theory,2001,47(7):2845—2862.[8]Elad M,Aharon M.Image denoising via sparse and redun-dant representation over learned dictionaries[J].IEEE Trans.on Image Processing,2006,15(12):3736—3745.[9]Wright J,Yang A Y,Ganesh A,et al.Robust Face Recog-nition via Sparse Representation[J].IEEE Trans.on Pat-tern Analysis and Machine Intelligence,2009,31(2):210—227.[10]Candes E J,Tao T.Decoding by linear programming[J].IEEE Trans.on Information Theory,2005,51(12):4203—4215.661。
傅里叶叠层成像 gs算法重建
傅里叶叠层成像(Fourier ptychographic imaging)是一种基于干涉测量的非扫描成像技术,可以用于获取高分辨率的三维图像。
GS算法(Gerchberg-Saxton algorithm)是一种迭代算法,用于重建复杂的光学系统产生的衍射图像。
在傅里叶叠层成像中,通过多次改变样品的位置和旋转角度,并记录每次测量的相位信息,可以得到一系列的相位分布图。
这些相位分布图可以被看作是一个复杂的光学系统的传递函数,而GS算法可以用来重建这个传递函数,从而得到样品的三维图像。
具体来说,GS算法的基本思想是将待重建的图像表示为一系列的基元图像(elemental images),然后通过迭代更新这些基元图像来逐步逼近真实的图像。
在傅里叶叠层成像中,每个基元图像可以表示为一个二维的相位分布图,而整个图像则可以看作是这些基元图像的叠加。
GS算法的具体步骤如下:
1. 初始化:随机生成一组初始基元图像。
2. 更新:根据当前的基元图像计算新的相位分布图,并根据新的相位分布图计算出新的基元图像。
3. 判断:判断新的基元图像是否满足收敛条件,如果满足则停止迭代;否则返回第2步继续迭代。
4. 输出:将最终的基元图像叠加起来得到重建的三维图像。
需要注意的是,GS算法是一种迭代算法,其收敛速度和精度受到多种因素的影响,如初始值的选择、迭代次数的控制等。
因此,在使用GS算法进行傅里叶叠层成像时需要仔细调整参数并进行实验验证。
图像处理中的稀疏表示技术研究
图像处理中的稀疏表示技术研究近年来,随着计算机技术的不断发展,图像处理技术也日新月异。
而稀疏表示技术(sparse representation)作为一种基础的图像处理技术已经引起了越来越多的关注。
稀疏表示技术是指通过寻找图像中特定区域内具有显著性的特征点并将其表示为稀疏信号的方式来进行图像处理。
这种处理方法可以有效地消除图像噪声,提高图像的清晰度和对比度,增强图像的边缘、轮廓等特征,所以在计算机视觉、遥感图像、医学图像等领域都得到了广泛的应用。
本文将从稀疏表示技术的概念、原理、方法和应用等方面进行论述和探究。
一、稀疏表示技术的概念和原理稀疏表示技术是指将一个向量或矩阵表示为尽可能少的基向量的线性组合的过程。
在图像处理中,可以将图像看成是由许多小区域构成的,而每个小区域中可含有若干个像素。
稀疏表示技术的原理是,在图像中找到一些局部基组,通过这些基组的线性组合,来构建整幅图像的表达式。
将图像表示为少量的基向量的线性组合,可以有效地减少噪声的影响,提高图像的清晰度和对比度。
二、稀疏表示技术的方法1.基于字典学习的稀疏表示方法字典学习是稀疏表示方法中常用的一种方法。
它通过学习一个基向量集合(字典),从而快速计算出稀疏表示的系数。
在该方法中,需要构造一个符合实际情况的稀疏基向量集合。
通常的方法是利用训练数据集,通过正交匹配追踪(OMP)、坐标下降(CD)或梯度下降(GD)等算法来学习一个合适的基向量集合。
2.基于降噪的稀疏表示方法基于降噪的稀疏表示方法是一种常见的图像降噪技术,它通过在空间域或频域内对图像进行降噪处理,从而实现对图像的修复和增强。
常用的稀疏表示方法包括小波变换(wavelet transform)、图像块表示(image patch representation)等。
三、稀疏表示技术的应用稀疏表示技术已经得到广泛的应用,其中最为重要的应用领域之一是图像降噪和增强。
通过对图像进行稀疏表示,可以将图像中的噪声去除,从而提高图像的质量。
稀疏恢复和傅里叶采样
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Leslie A. Kolodziejski Chair, Department Committee on Graduate Students
2
Sparse Recovery and Fourier Sampling by Eric Price
Submitted to the Department of Electrical Engineering and Computer Science on August 26, 2013, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Department of Electrical Engineering and Computer Science August 26, 2013
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piotr Indyk Professor Thesis Supervisor
稀疏总结
稀疏表示在目标检测方面的学习总结1,稀疏表示的兴起大量研究表明视觉皮层复杂刺激的表达采用的是稀疏编码原则,以稀疏编码为基础的稀疏表示方法能较好刻画人类视觉系统对图像的认知特性,已引起人们极大的兴趣和关注,在机器学习和图像处理领域得到了广泛应用,是当前国内外的研究热点之一.[1]Vinje W E ,Gallant J L .Sparse coding and decorrelation in pri- mary visual cortex during natural vision [J].Science ,2000,287(5456):1273-1276.[2]Nirenberg S ,Carcieri S ,Jacobs A ,et al .Retinal ganglion cells act largely as independent encoders [J ].Nature ,2001,411(6838):698-701.[3]Serre T ,Wolf L ,Bileschi S ,et al .Robust object recognition with cortex-like mechanisms[J].IEEE Transactions on PatternAnalysis and Machine Intelligence ,2007,29(3):411-426.[4]赵松年,姚力,金真,等.视像整体特征在人类初级视皮层上的稀疏表象:脑功能成像的证据[J].科学通报,2008,53(11):1296-1304.图像稀疏表示研究主要沿着两条线展开:单一基方法和多基方法.前者主要是多尺度几何分析理论,认为图像具有非平稳性和非高斯性,用线性算法很难处理,应建立适合处理边缘及纹理各层面几何结构的图像模型,以脊波(Ridgelet)、曲波(Curvelet)等变换为代表的多尺度几何分析方法成为图像稀疏表示的有效途径;后者以Mallat 和Zhang 提出的过完备字典分解理论为基础,根据信号本身的特点自适应选取能够稀疏表示信号的冗余基。
SparseBasedImage...
DOI: 10.4018/jssci.2011010101
Corresponding to the different kinds of image representation methods, many classification algorithms were studied (Csurka et al., 2004; Fergus, Perona, & Zisserman, 2003; Jing et al., 2004; Li & Perona, 2005; Sivic & Zisserman, 2003; Zhang et al., 2007). Image classification models can be divided into two classes. One class is generative models. The representative work is constellation model (Fergus, Perona, & Zisserman, 2003) which is a probabilistic model for object categories. The basic idea of this model is that an object is composed of several parts that are selected from the detected keypoints, with the appearance of the parts, scale, shape and occlusion modeled by probability density functions. A Bayesian hierarchical model was proposed (Li & Perona, 2005) for natural scene categories recognition, which learns the distribution of the visual words in each category.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
is considered, where: N (·; µ, Σ) is the Gaussian density with mean µ and covariance matrix Σ; and H ∈ RN ×M . The problem we consider is as follows. Suppose that y , H, σ are known and model (1) is given. Knowing that θ is sparse, how can θ be optimally estimated? If H had full column rank, (HT H) would be invertible, and (1) could be written as y = θ + w , w ∼ N (w ; 0, σ 2 H† (H† )T ) (2)
ased risk estimator (SURE) [4] to select the hyperparameter for the L1 estimator. The other two methods rely on the sparse prior used in the empirical Bayes denoising (EBD) method of [5], which is a weighted average of a Laplacian p.d.f. and an atom at zero (LAZE). Marginal maximum likelihood (MML) and maximum a posteriori (MAP) were used to learn the hyperparameter for these two other methods. A simulation study was conducted comparing the three proposed methods to SBL. For the range of signal to noise ratios (SNR) considered, the proposed methods have better performance than SBL. 2. PROBLEM FORMULATION Denote the observation by y , which typically corresponds to a 2dimensional or 3-dimensional array. By enumerating the elements of the array lexicographically, one can equivalently represent the image by a vector. Without loss of generality, take y ∈ RN . Let θ be the parameters of interest (e.g., the original image) that one would like to estimate from y . Again, without loss of generality, let θ ∈ RM . Consider the conditional p.d.f. of y given θ, i.e., p(y |θ). Suppose that we would like to estimate θ under the condition that it is sparse, i.e., most of the values of θi are zero. In this paper, a linear model for y given by y = Hθ + w, w ∼ N (w; 0, σ 2 I), (1)