高中数学_3.1不等关系和不等式课件(第二课时)_新人教A版必修5

合集下载

高中数学 3.1不等关系和不等式课件(第二课时) 新人教A版必修5

高中数学 3.1不等关系和不等式课件(第二课时) 新人教A版必修5

思考3:如果ai>bi(i=1,2,3,„, n),那么a1· a2„an>b1· b2„bn吗? ai>bi>0 (i=1,2,3,„,n)
Þ
a1· a2„an>b1· b2„bn
思考4:如果a>b,那么an与bn的大小关 系确定吗? a>b,n为正奇数
Þ
a n>b n
思考5:如果a>b,c<d,那么a+c与b +d的大小关系确定吗?a-c与b-d的大 小关系确定吗?
探究(一):不等式的基本性质
思考1:有一个不争的事实:若甲的身材 比乙高,则乙的身材比甲矮,反之亦然. 从数学的观点分析,这里反映了一个不 等式性质,你能用数学符号语言表述这 个不等式性质吗?

a>b b<a(对称性)
思考2:又有一个不争的事实:若甲的 身材比乙高,乙的身材比丙高,那么甲 的身材比丙高,这里反映出的不等式性 质如何用数学符号语言表述?
作业:
P75习题3.1A组:2,3. B组:2.
a >b ,c <d
Þ a -c >b -d
1 1 思考6: 若a>b,ab>0,那么 a 与 b
的大小关系如何?
1 1 a>b,ab>0 a b
理论迁移
例1
已知a>b>0,c<0,
c c 求证: . a b
例2
1 1 已知 0 a b
,x >y >0 ,
x y 求证: . xa y b
思考1:在等式中有移项法则,即a+b= c a=c-b,那么移项法则在不等式 中成立吗? a +b >c a >c -b
思考2:如果ai>bi(i=1,2,3,„, n),a1+a2+„+an与b1+b2+„+bn的 大小关系如何? ai>bi (i=1,2,3,„,n) Þ a1+a2+„+an>b1+b2+„+bn

人教A版高中数学必修课件:不等式与不等关系

人教A版高中数学必修课件:不等式与不等关系

推论 :
a c
b d
a
c bd (同向不等式的可加性)
性质4 : (乘法的单调性) a b,c 0 ac bc
推论1 :
(同向不等式的可乘性)
a b 0 c d 0 ac bd
推论2 : a b 0 an bn (n N*, n 2)
a b 0 n a n b(n N *, n 2)
(本小题满分10分)已知二次函数y=f(x)图象过原点, 且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.
人教A版高中数学必修5课件:3.1.2不 等式与 不等关 系(共2 3张PPT )
∵a>b>c,∴b-a<0,c-a<0,c-b<0. ∴(bc2+ca2+ab2)-(b2c+c2a+a2b)<0, 即bc2+ca2+ab2<b2c+c2a+a2b.
人教A版高中数学必修5课件:3.1.2不 等式与 不等关 系(共2 3张PPT )
人教A版高中数学必修5课件:3.1.2不 等式与 不等关 系(共2 3张PPT )
(可乘方性、可开方性)
例1:已知a>b>0,c<0,求证
c a
c b
例2.(1)如果a b 0, 那么 1 1 ab
变式a b 0那么 1
1
ab a
(2)如果a>b>c>0,那么 c
c
ab
变式a>b>c>0,那么 b c a-b a c
练习:已知c>a>b>0,
试比较 b 与 c 的大小? c-b c a
变式. 已知a,b,m,n∈R+,求证:am+n+bm+n≥ambn+anbm. 证明:(am+n+bm+n)-(ambn+anbm) =(am+n-ambn)+(bm+n-anbm)=(am-bm)(an-bn). ∵幂函数f(x)=xm,g(x)=xn在x∈R+上是增函数,由对

人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用

人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用

第三章 不等式 3.1 不等关系与不等式 第2课时不等式的性质与应用A 级 基础巩固一、选择题1.若a >0,b >0,则不等式-b <1x <a 等价于( )A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a解析:由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ⇔x >1a ;(2)当x <0时,-b <1x <a ⇔x <-1b.综上所述,不等式-b <1x <a ⇔x <-1b 或x >1a .答案:D2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12a <0C .2b <2a <2D .a 2<ab <1答案:C3.已知实数x,y,满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-y 的取值范围是()A.[-7,26] B.[-1,20]C.[4,15] D.[1,15]答案:B4.已知a<b<0,那么下列不等式成立的是()A.a3<b3B.a2<b2C.(-a)3<(-b)3D.(-a)2<(-b)2解析:取a=-2.b=-1.验证知B,C,D均错,故选A.答案:A5.如下图所示,y=f(x)反映了某公司的销售收入y与销量x之间的函数关系,y=g(x)反映了该公司产品的销售成本与销售量之间的函数关系,当销量x满足下列哪个条件时,该公司盈利()A.x>a B.x<aC.x≥a D.0≤x≤a解析:当x<a时,f(x)<g(x);当x=a时,f(x)=g(x);当x>a 时,f(x)>g(x),故选A.答案:A二、填空题6.若x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y-a这四个式子中,恒成立的序号是________. 答案:②④7.若角α,β满足-π2<α<β<π3,则α-β的取值范围是________.答案:(-56π,0)8.设x >1,-1<y <0,试将x ,y ,-y 按从小到大的顺序排列如下________.答案:y <-y <x 三、解答题9.已知a >b >0,c <d <0,判断b a -c 与ab -d 的大小.解:因为a >b >0,c <d <0,所以-c >-d >0,所以a -c >b -d >0, 所以0<1a -c <1b -d,又因为a >b >0,所以b a -c <ab -d.10.已知0<x <1,0<a <1,试比较|log a (1-x )|和 |log a (1+x )|的大小.解:法一:|log a (1-x )|2-|log a (1+x )|2=[log a (1-x )+log a (1+x )]·[log a (1-x )-log a (1+x )]=log a (1-x )2log a 1-x 1+x.因为0<1-x 2<1,0<1-x1+x<1,所以log a (1-x 2)log a 1-x1+x>0.所以|log a (1-x )|>|log a (1+x )|.法二:⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log 1+x (1-x )|= -log 1+x (1-x )=log 1+x 11-x =log 1+x 1+x 1-x 2=1-log 1+x (1-x 2). 因为0<1-x 2<1,1+x >1, 所以log 1+x (1-x 2)<0. 所以1-log 1+x (1-x 2)>1. 所以|log a (1-x )|>|log a (1+x )|. 法三:因为0<x <1,所以0<1-x <1,1<1+x <2, 所以log a (1-x )>0,log a (1+x )<0. 所以|log a (1-x )|-|log a (1+x )|= log a (1-x )+log a (1+x )=log a (1-x 2). 因为0<1-x 2<1,且0<a <1, 所以log a (1-x 2)>0.所以|log a (1-x )|>|log a (1+x )|.B 级 能力提升1.对下列不等式的推论中: ①a >b ⇒c -a >c -b ; ②a >b +c ⇒(a -c )2>b 2; ③a >b ⇒ac >bc ;④a >b >c >0⇒(a -c )b >(b -c )b ;⑤a >b ,1a >1b ⇒a >0,b <0.其中正确的个数是( ) A .2 B .3 C .4 D .5 答案:A2.若-2<c <-1<a <b <1,则(c -a )(a -b )的取值范围为________.答案:(0,6)3.若二次函数f (x )的图象关于y 轴对称,且1≤f (1)≤2;3≤f (2)≤4,求f (3)的取值范围.解:由题意设f (x )=ax 2+c (a ≠0),则⎩⎪⎨⎪⎧f (1)=a +c ,f (2)=4a +c ,所以⎩⎨⎧a =f (2)-f (1)3,c =4f (1)-f (2)3,而f (3)=9a +c =3f (2)-3f (1)+4f (1)-f (2)3=8f (2)-5f (1)3,因为1≤f (1)≤2,3≤f (2)≤4, 所以5≤5f (1)≤10,24≤8f (2)≤32, 所以-10≤-5f (1)≤-5, 所以14≤8f (2)-5f (1)≤27, 所以143≤8f (2)-5f (1)3≤9,即143≤f (3)≤9.。

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

2.已知
a>b>0,求证:
a b>
b a.
证明:因为 a>b>0,所以 a> b >0.①又因为 a>b>0,两边同
乘正数a1b,得1b>1a>0.②
①②两式相乘,得
a b>
b a.
利用不等式性质求代数式的取值范围
已知-1<x<4,2<y<3. (1)求 x-y 的取值范围; (2)求 3x+2y 的取值范围. 【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以 -4<x-y<2. (2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x +2y<18.
A.ad>bc
B.ac>bd
C.a-c>b-d
D.a+c>b+d
解析:选 D.令 a=2,b=-2,c=3,d=-6,可排除 A,B,
C.由不等式的性质 5 知,D 一定成立.
若 x<1,M=x2+x,N=4x-2,则 M 与 N 的大小关系为 ________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M>N. 答案:M>N
1.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍 还要高.设太阳表面温度为 t ℃,那么 t 应满足的关系式是 ________. 解析:由题意得,太阳表面温度的 4.5 倍小于雷电的温度, 即 4.5t<28 000. 答案:4.5t<28 000

高中数学 3.1不等关系与不等式(第2课时)课件 新人教A版必修5

高中数学 3.1不等关系与不等式(第2课时)课件 新人教A版必修5
因为 c d ,
所以 b+c>b+d. ② 由①、②得,a+c>b+d.
完整版ppt
6
(6)如果 a b 0, c d 0,那么 ac bd ;
(6)
a c
b,c d,b
0 0
ac bc
bc bd
ac
bd

(7)如果 a b 0 ,那么 an bn , (n N, n 2) ;
3.1 不等关系与不等式(题 1:等式的性质有哪些?请大家用符号表示出来.
①对称性: a b b a ; ②传递性 a b,b c a c ; ③加法法则: a b a c b c ; ④乘法法则: a b, c 0 ac bc .
完整版ppt
∴n a n b .
完整版ppt
8
例题 1.已知 a b 0, c 0 ,求证: c c . ab
证明:因为 a b 0 ,所以 ab 0, 1 0 . ab
于是 a 1 b 1 ,即 ab ab 11. ab
由 c 0 ,得
cc. ab
完整版ppt
9
问题 7:请大家思考还有其它证明方法吗? 请大家尝试一下.
完整版ppt
3
问题 3:上面得到的结论是否正确,需要我们给出证明.因为证明的不等式,是描述两个数之 间的大小关系,可以用什么方法比较呢? 可以用作差法比较
其原理是什么呢?
ab0a b; ab0a b; a b 0 a b.
完整版ppt
4
问题 4:请大家用作差法证明性质(4).
证明:因为 a b, c 0 ,
2
问题 2:根据等式的这些性质,你能猜想不等式的类似性质吗? 请大家加以探究.
(1)如果 a b ,那么 b a ;如果 b a ,那么 a b .即 ab ba.

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

为函数 y=1x在(-∞,0)上单调递减,a<b<0,所以1a>1b,
故 D 正确.
答案:D
5.若 x>1,y>2,则: (1)2x+y>________; (2)xy>________. 解析:(1)x>1⇒2x>2,2x+y>2+2=4;(2)xy>2. 答案:(1)4 (2)2
类型 1 用不等式(组)表示不等关系 [典例 1] 分别写出满足下列条件的不等式: (1)一个两位数的个位数字 y 比十位数字 x 大,且这 个两位数小于 30; (2)某电脑用户计划用不超过 500 元的资金购买单价 分别为 60 元的单片软件 x 片和 70 元的盒装磁盘 y 盒.根 据需要,软件至少买 3 片,磁盘至少买 2 盒. 解:(1)y>x>0,30>10x+y>9,且 x,y∈N*; (2)x≥3,y≥2,60x+70y≤500,且 x,y∈N*.
同向 5
可加性
ac>>db⇒a+c⑫>b+d
同向同正 6
可乘性
ac>>db>>00⇒ac⑬>bd
7
可乘方性 a>b>0⇒an>bn(n∈N,n≥1)
8
可开方性
nn
a>b>0⇒ a> b(n∈N,n≥2)
[思考尝试·夯基] 1.思考义是指 x 不小于 2.( ) (2)若 a<b 或 a=b 之中有一个正确,则 a≤b 正 确.( ) (3)若 a>b,则 ac>bc 一定成立.( ) (4)若 a+c>b+d,则 a>b,c>d.( )
解析:(1)正确.不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的.(2)正确.不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确,则 a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式 两端同乘以一个正数时,不等号方向不变,因此由 a>b, 则 ac>bc,不一定成立,故此说法是错误的.(4)错误.取 a=4,c=5,b=6,d=2,满足 a+c>b+d,但不满足 a >b,故此说法错误.

人教A版高中数学必修五课件3.1.1不等关系与比较大小

人教A版高中数学必修五课件3.1.1不等关系与比较大小

又因为a≠2,所以(a-2)2>0,
而(b+1)2≥0,所以(a-2)2+(b+1)2>0,所以M>-5.故选A.
4.b克糖水中有a克糖(b>a>0),若再添上m克糖(m>0),则糖水
就变甜了,试根据这个事Biblioteka 提炼一个不等式___________.
【解析】由题意 a 的比值越大,糖水越甜,若再添上m克糖
【例】已知a>0,b>0且a≠b,试比较aabb与abba的大小.
【审题指导】因为a>0,b>0,而且都是以幂的形式给出,
故可考虑利用作商法比较大小.
【规范解答】
aabb abba
aabbba
( a )ab , b
①当a>b>0时,a >1,a-b>0,∴( a )ab>1;
b
b
②当0<a<b时,
2.已知0<a< 1,且M= 1 1 , N= a b , 则M,N的大小
b
1a 1 b 1a 1 b
关系是( )
(A)M>N
(B)M<N
(C)M=N
(D)不能确定
【解析】选A.∵0<a< 1,∴1+a>0,1+b>0,1-ab>0,∴M-N=
b
1 1
a a

1 1
b b

方法二:由于|loga(1-x)|>0,|loga(1+x)|>0.
∴ loga 1 x =|log(1+x)(1-x)|
| loga (1 x) |
=-log(1+x)(1-x)=log(1+x) 1 .
1 x

高中数学新人教A版必修5第三章 3.1 不等关系与不等式

高中数学新人教A版必修5第三章  3.1   不等关系与不等式

不等关系与不等式预习课本P72~74,思考并完成以下问题 (1)如何用不等式(组)来表示不等关系?(2)比较两数(或式)的大小有哪些常用的方法?(3)不等式的性质有哪几条?[新知初探]1.不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式.2.比较两个实数a ,b 大小的依据3.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇒a +c >b +c ; 推论(同向可加性):⎭⎬⎫a >bc >d ⇒a +c >b +d ;(4)可乘性:⎭⎬⎫a >b c >0⇒ac >bc ;⎭⎬⎫a >bc <0⇒ac <bc ; 推论(同向同正可乘性):⎭⎬⎫a >b >0c >d >0⇒ac >bd ;(5)正数乘方性:a >b >0⇒a n >b n (n ∈N *,n ≥1); (6)正数开方性:a >b >0⇒n a >nb (n ∈N *,n ≥2).[点睛] (1)在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.(2)要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)不等式x ≥2的含义是指x 不小于2( )(2)若a <b 或a =b 之中有一个正确,则a ≤b 正确( ) (3)若a >b ,则ac >bc 一定成立( ) (4)若a +c >b +d ,则a >b ,c >d ( )解析:(1)正确.不等式x ≥2表示x >2或x =2,即x 不小于2,故此说法是正确的. (2)正确.不等式a ≤b 表示a <b 或a =b .故若a <b 或a =b 中有一个正确,则a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式两端同乘以一个正数时,不等号方向不变,因此由a >b ,则ac >bc 不一定成立,故此说法是错误的.(4)错误.取a =4,c =5,b =6,d =2,满足a +c >b +d ,但不满足a >b ,故此说法错误.答案:(1)√ (2)√ (3)× (4)×2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-aD .a >b >-a >-b解析:选C 法一:∵A 、B 、C 、D 四个选项中,每个选项都是唯一确定的答案,∴可用特殊值法.令a =2,b =-1,则有2>-(-1)>-1>-2, 即a >-b >b >-a .法二:∵a +b >0,b <0,∴a >-b >0,-a <b <0, ∴a >-b >0>b >-a ,即a >-b >b >-a .3.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2bD.b a <a b解析:选C 因为a <b ,故b -a >0, 所以1a 2b -1ab 2=b -a a 2b 2>0,故1a 2b >1ab 2. 4.当m >1时,m 3与m 2-m +1的大小关系为________. 解析:∵m 3-(m 2-m +1)=m 3-m 2+m -1=m 2(m -1)+(m -1) =(m -1)(m 2+1).又∵m >1,故(m -1)(m 2+1)>0. 答案:m 3>m 2-m + 1用不等式(组)表示不等关系[典例] 某家电生产企业计划在每周工时不超过40 h 的情况下,生产空调、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时如下表:家电名称 空调 彩电 冰箱 工时(h)121314若每周生产空调x [解] 由题意,知x ≥0,y ≥0,每周生产冰箱(120-x -y )台.因为每周所用工时不超过40 h ,所以12x +13y +14(120-x -y )≤40,即3x +y ≤120;又每周至少生产冰箱20台, 所以120-x -y ≥20,即x +y ≤100. 所以满足题意的不等式组为⎩⎪⎨⎪⎧3x +y ≤120,x +y ≤100,x ≥0,x ∈N *,y ≥0,y ∈N *.1.将不等关系表示成不等式的思路 (1)读懂题意,找准不等式所联系的量.(2)用适当的不等号连接. (3)多个不等关系用不等式组表示.2.用不等式(组)表示不等关系时应注意的问题在用不等式(组)表示不等关系时,应注意必须是具有相同性质,可以进行比较时,才可用,没有可比性的两个(或几个)量之间不能用不等式(组)来表示.[活学活用]1.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t ℃,那么t 应满足的关系式是________.解析:由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000. 答案:4.5t <28 0002.一辆汽车原来每天行驶x km ,如果该汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程将超过2 200 km ,用不等式表示为________.解析:因为该汽车每天行驶的路程比原来多19 km ,所以汽车每天行驶的路程为(x +19)km ,则在8天内它的行程为8(x +19)km ,因此,不等关系“在8天内它的行程将超过2 200 km ”可以用不等式8(x +19)>2 200来表示.答案:8(x +19)>2 200不等式的性质[典例] (1)已知b <2a,3d <c ,则下列不等式一定成立的是( ) A .2a -c >b -3d B .2ac >3bd C .2a +c >b +3dD .2a +3d >b +c(2)下列说法不正确的是( ) A .若a ∈R ,则(a 2+2a -1)3>(a -2)3 B .若a ∈R ,则(a -1)4>(a -2)4 C .若0<a <b ,则⎝⎛⎭⎫13a >⎝⎛⎭⎫13bD .若0<a <b ,则a 3<b 3[解析] (1)由于b <2a,3d <c ,则由不等式的性质得b +3d <2a +c ,故选C.(2)对于A ,因为(a 2+2a -1)-(a -2)=a 2+a +1=⎝⎛⎭⎫a +122+34>0,所以a 2+2a -1>a -2,则(a 2+2a -1)3>(a -2)3,故A 选项说法正确;对于B ,当a =1时,(a -1)4=0,(a -2)4=1,所以(a -1)4>(a -2)4不成立;对于C 和D ,因为0<a <b ,所以由指数函数与幂函数的性质知C 、D 选项说法正确,故选B.[答案] (1)C (2)B1.利用不等式判断正误的2种方法(1)直接法:对于说法正确的,要利用不等式的相关性质或函数的相关性质证明;对于说法错误的只需举出一个反例即可.(2)特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.[活学活用]1.已知a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>|b |c解析:选C 因为a >b >c ,且a +b +c =0,所以a >0,c <0,所以ab >ac . 2.若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0.又a >b >0,∴a -c >b -d >0,则(a -c )2>(b -d )2>0,即1(a -c )2<1(b -d )2. 又e <0,∴e (a -c )2>e(b -d )2.数式的大小比较[典例] (1)已知x <1,比较x 3-1与2x 2-2x 的大小; (2)已知a >0,试比较a 与1a 的大小. [解] (1)(x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1) =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34.∵x <1,∴x -1<0.又⎝⎛⎭⎫x -122+34>0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0. ∴x 3-1<2x 2-2x .(2)因为a -1a =a 2-1a =(a -1)(a +1)a, 因为a >0,所以当a >1时,(a -1)(a +1)a >0,有a >1a ;当a =1时,(a -1)(a +1)a =0,有a =1a ; 当0<a <1时,(a -1)(a +1)a <0,有a <1a .综上,当a >1时,a >1a ; 当a =1时,a =1a ; 当0<a <1时,a <1a .1.作差法比较两个数大小的步骤及变形方法 (1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④对数与指数的运算性质;⑤分母或分子有理化;⑥分类讨论.2.作商法比较大小的步骤及适用范围 (1)作商法比较大小的三个步骤. ①作商变形; ②与1比较大小; ③得出结论.(2)作商法比较大小的适用范围. ①要比较的两个数同号;②比较“幂、指数、对数、含绝对值”的两个数的大小时,常用作商法. [活学活用]若m >2,比较m m 与2m 的大小.解:因为m m 2m =⎝⎛⎭⎫m 2m ,又因为m >2,所以m 2>1,所以⎝⎛⎭⎫m 2m >⎝⎛⎭⎫m 20=1,所以m m >2m.用不等式性质求解取值范围 [典例] 已知1<a <4,2<b <8,试求2a +3b 与a -b 的取值范围. [解] ∵1<a <4,2<b <8,∴2<2a <8,6<3b <24. ∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2.又∵1<a <4,∴1+(-8)<a +(-b )<4+(-2), 即-7<a -b <2.故2a +3b 的取值范围是(8,32),a -b 的取值范围是(-7,2).同向不等式具有可加性与可乘性,但是不能相减或相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.1.在本例条件下,求ab 的取值范围. 解:∵2<b <8,∴18<1b <12,而1<a <4,∴1×18<a ·1b <4×12,即18<a b <2.故ab 的取值范围是⎝⎛⎭⎫18,2.不等式两边同乘以一个正数,不等号方向不变,同乘以一个负数,不等号方向改变,求解中,应明确所乘数的正负.2.已知-6<a <8,2<b <3,求ab 的取值范围. 解:∵-6<a <8,2<b <3. ∴13<1b <12, ①当0≤a <8时,0≤ab <4;②当-6<a <0时,-3<ab <0. 由①②得:-3<ab <4.故ab的取值范围为(-3,4). 利用不等式性质求范围,应注意减少不等式使用次数. 3.已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围.解:设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b ,解得λ1=53,λ2=-23.又-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23,所以-113≤a +3b ≤1.故a +3b 的取值范围为⎣⎡⎦⎤-113,1.层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( )A .M >NB .M <NC .M =ND .不确定解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.两种药片的有效成分如下表所示:应满足怎样的不等关系?用不等式的形式表示出来.解:设提供A 药片x 片,B 药片y 片,由题意可得:⎩⎪⎨⎪⎧2x +y ≥12,5x +7y ≥70,x+6y ≥28,x ≥0,x ∈N ,y ≥0,y ∈N.10.(1)若a <b <0,求证:b a <a b ; (2)已知a >b ,1a <1b,求证:ab >0.证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab, ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab.(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy -1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.某厂技术科组织工人参加某项技能测试,某职工参加完测试后对自己的成绩进行了如下估计:理论考试成绩x 超过85分,技能操作成绩y 不低于90分,答辩面试成绩z 高于95分,用不等式组表示为( )A.⎩⎪⎨⎪⎧ x >85y ≥90z ≥95B.⎩⎪⎨⎪⎧ x ≥85y >90z >95C.⎩⎪⎨⎪⎧ x >85y ≥90z >95D.⎩⎪⎨⎪⎧x ≥85y >90z ≥95 解析:选C x 超过85分表示为x >85,y 不低于90分表示为y ≥90,z 高于95分,表示为z >95,故选C.5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1.∴1+a >0,1-a >0.即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1, ∴11+a≥1-a . 答案:11+a ≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1;②若1b -1a=1,则a -b <1; ③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a -b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1. 对于③,取特殊值,a =9,b =4时,|a -b |>1.对于④,∵|a 3-b 3|=1,a >0,b >0,∴a ≠b ,不妨设a >b >0.∴a 2+ab +b 2>a 2-2ab +b 2>0,∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2.即a 3-b 3>(a -b )3>0,∴1=|a 3-b 3|>(a -b )3>0,∴0<a -b <1,即|a -b |<1.因此正确.答案:①④7.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解:因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1), 所以当a >b 时,x -y >0,所以x >y ;当a =b 时,x -y =0,所以x =y ;当a <b 时,x -y <0,所以x <y .8.已知x ,y 为正实数,且1≤lg(xy )≤2,3≤lg x y ≤4,求lg(x 4y 2)的取值范围.解:由题意,设a =lg x ,b =lg y ,∴lg(xy )=a +b ,lg x y =a -b ,lg(x 4y 2)=4a +2b .设4a +2b =m (a +b )+n (a -b ),∴⎩⎪⎨⎪⎧ m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1. 又∵3≤3(a +b )≤6,3≤a -b ≤4,∴6≤4a +2b ≤10,∴lg(x 4y 2)的取值范围为[6,10].。

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.

人教版高中数学必修五不等式3.1不等关系与不等式(1)优秀课件

人教版高中数学必修五不等式3.1不等关系与不等式(1)优秀课件

二、实数的运算性质与大小顺序间的关系
结论
对于任意两个实数,,如果,那么是正数;如 果,那么是负数;如果,那么等于。它们的逆命 题也正确,这就是说
上面等价符号的左式反映的是实数的大小顺序,右式 反映的则是实数的运算性质,合起来就成为实数的运算性 质与实数大小顺序之间的关系。它是不等式这一章的理论 基础。
大数对应的点位于小数对应的点的右边 思考3:如果两个实数的差是正数,那么这两 个实数的大小关系如何?反之成立吗?如何用数 学语言描述这个原理?
二、实数的运算性质与大小顺序间的关系
思考4:如果两个实数的差等于零,那么这两 个实数的大小关系如何?反之成立吗?如何用数 学语言描述这个原理?
思考5:如果两个实数的差是负数,那么这两 个实数的大小关系如何?反之成立吗?如何用数 学语言描述这个原理?
人教版高中数学必修五不等式3.1不 等关系与不等式(1)优秀课件
实例分析
实际生活中
长短
轻重
大小
高矮
实例分析 各远侧横 不近成看 同高峰成 低岭
一、用不等式表示不等关系
探究 现实世界和日常生活中,既有相等关系,又
存在着大量的不等关系,在数学中,我们怎样来 表示这些不等关系?
1、今天的天气预报说:明天早晨最低温度为 7℃,明天白天的最高温度为13℃;
一、用不等式表示、用不等式表示不等关系
1、不等式的定义
2、用不等式表示不等关系
一、用不等式表示不等关系
问题1
分析:
一、用不等式表示不等关系
问题2
分析:
(3)截得两种钢管的数量都不能为负。
一、用不等式表示不等关系
二、实数的运算性质与大小顺序间的关系
思考2:任何一个实数都对应数轴上的一个点, 那么大数与小数所对应的点的相对位置关系如何?

数学:3.1.1《不等关系与不等式》(新人教a版必修5)

数学:3.1.1《不等关系与不等式》(新人教a版必修5)
作差比较法其一般步骤是: 作差→变形→判断符号→确定大小.
例1.比较x2-x与x-2的大小。 解:(x2-x)-(x-2)=x2-2x+2
=(x-1)2+1,
因为(x-1)2≥0, 所以(x2-x)-(x-2)>0, 因此x2-x>x-2.
例2.当p,q都是正数且p+q=1时,试比 较代数式(px+qy)2与px2+qy2的大小。 解:(px+qy)2-(px2+qy2)
p q 读作“p等价于q或q等价于p”。
上述结论可以写成:
a b 0 a b a b 0 a b
a b 0 a b
判断两个实数大小的依据是: a b ab 0
a b ab 0 a b ab 0
作差比较法
这既是比较大小 ( 或证明大小 ) 的基本方 法,又是推导不等式的性质的基础.
3.1.1 不等关系与不等式
在考察事物之间的数量关系时,经常
要对数量的大小进行比较,我们来看下
面的例子。 国际上常用恩格尔系数(记为n)来衡 量一个国家和地区人民的生活水平的高低。 它的计算公式是
食品消费额 n 100% 消费支出总额

有关机构还制定了各种类型的家庭应达 到的恩格尔系数的取值范围:
40
5、某品牌酸奶的质量检查规定,酸奶中脂肪的 含量f应不少于2.5%,蛋白质的含量p应不少于 2.3%,用不等式可以表示为:( )
A. f ≥p ≥ 2.3%
f ≥ 2.5% C. p ≥ 2.3%
某人为自己制定的月支出计划中,规定
=p(p-1)x2+q(q-1)y2+2pqxy. 因为p+q=1,所以p-1=-q,q-1=-p, 因此(px+qy)2-(px2+qy2) =-pq(x2+y2-2xy)=-pq(x-y)2,

高中数学第三章不等式3.1不等关系与不等式第1课时不等关系与不等式的性质课件新人教A版必修5-推荐ppt版本

高中数学第三章不等式3.1不等关系与不等式第1课时不等关系与不等式的性质课件新人教A版必修5-推荐ppt版本

• 单击此处编辑母版文本样式
– 第二级
• 第三级<

– 第四级
» 第五级
大 >
不等式
<
• 单击此处编>辑母版文本样式
– 第二级<
• 第三级
>
– 第四>级
» 第五级
>
(4)性质4:①如果a>b,c>0那么ac___>___bc. ②如果a>b,c<0,那么ac___<___bc. (5)性质5:如果a>b,c>d,那么a+c___>___b+d. (6)性质6:如果a>b>0,c>d>0,那么ac___>___bd. (7)性质7:如果a>b>0,那么an__>____bn,(n∈N,n≥2).
(8)性质8:如果a>b>0,那么n a___>___n b,(n∈N,n≥2).
• 单击此处编辑母版文本样式
A
– 第二级
• 第三级
[解析] M-– N第=四x2级+x+1=(x+12)2+34>0, ∴M>N,故选A».第五级
• 单击此处编辑母版文本样式 C – 第二级
• 第三级
– 第四级 » 第五级
命题方向3 ⇨不等式性质的应用
例题 3 对于实数a、b、c,有下列结论:
①若a>b,则ac<bc;
②若ac2>bc2,则a>b;
③若a<b<0,则a2>ab>b2;
④若c>a>b>0,则c-a a>c-b b;
⑤若a>b,1a>1b,则a>0,b<0.
其中正确结论的个数
A.2
B.3
C.4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的大小关系如何?
1 1 a>b,ab>0 a b
理论迁移
例1
已知a>b>0,c<0,
c c 求证: . a b
例2
1 1 已知 0 a b
,x>y>0,
x y 求证: . xa y b
例3 立.
若a<b<0,判断下列结论是否成
1 1 (1) a b
(3) a b
思考2:如果ai>bi(i=1,2,3,„, n),a1+a2+„+an与b1+b2+„+bn的 大小关系如何? ai>bi (i=1,2,3,„,n) a1+a2+„+an>b1+b2+„+bn
思考3:如果ai>bi(i=1,2,3,„, n),那么a1·2„an>b1·2„bn吗? a b ai>bi>0 (i=1,2,3,„,n)
2 2
1 1 (2) a b a
(4)ac2<bc2
例4
给出三个不等式:
c d ①ab>0,② , ③bc>ad, a b
以其中任意两个作条件,余下一个做结 论,可组成几个正确命题.
小结作业
1.不等式的8条基本性质,就是不等式的 运算法则,是分析、研究和解决不等式 问题的逻辑依据,在此基础上还可引伸 出许多其他性质,学习上要求掌握基本 性质,了解拓展性质.
探究(一):不等式的基本性质
思考1:有一个不争的事实:若甲的身材 比乙高,则乙的身材比甲矮,反之亦然. 从数学的观点分析,这里反映了一个不 等式性质,你能用数学符号语言表述这 个不等式性质吗?

a>b b<a(对称性)
思考2:又有一个不争的事实:若甲的 身材比乙高,乙的身材比丙高,那么甲 的身材比丙高,这里反映出的不等式性 质如何用数学符号语言表述?
3.1 不等关系与不等式
第二课时
问题提出
1.反映实数大小关系的基本原理是什么? a-b>0 a>b
a=b a-b<0 a<b
a-b=0
2.用“差比法”比较两个代数式大小的 一般步骤如何?
作差→变形→判断符号
3.对不等式的认识仅停留在上述层面上 是不够的,为了深入研究各种背景下的 不等关系,我们必须建立相关的不等式 理论,这是我们需要进一步研究的问题.
Þ
a>b,b>c
a<b,b<c

a>c;
a<c(传递性)
思考3:再有一个不争的事实:若甲的年 薪比乙高,如果年终两人发同样多的奖 金或捐赠同样多的善款,则甲的年薪仍 然比乙高,这里反映出的不等式性质如 何用数学符号语言表述?
Û
a>b
a+c>b+c(可加性)
思考4:还有一个不争的事实:若甲班的 男生比乙班多,甲班的女生也比乙班多, 则甲班的人数比乙班多. 这里反映出的 不等式性质如何用数学符号语言表述?
a>b,c>d
a+c>b+d(同向可加性)
思考5:如果a>b,c>0,那么ac与bc的 大小关系如何?如果a>b,c<0,那么 ac与bc的大小关系如何?为什么? a>b,c>0 ac>bc; a>b,c<0 ac<bc 思考6:如果a>b>0,c>d>0,那么 ac与bd的大小关系如何?为什么?
作业:
P75习题3.1A组:2,3. B组:2.
a>b>0,c>d>0
ac>bd
n
a
思考7:如果a>b>0,n∈N*,那么an与 bn的大小关系如何?
a>b>0
n
an>bn (n∈N*)
n
b
思考8:如果a>b>0,n∈N*,那么 n a
a b
与 b 的大小关系如何? a>b>0
n

n
a>
n
b(n∈N*)
探究(二):不等式的拓展性质
思考1:在等式中有移项法则,即a+b= c a=c-b,那么移项法则在不等式 中成立吗? a+b>c a>c-b
2.上述不等式性质都是可以证明的结论, 反映实数大小关系的基本原理是证明不 等式性质的理论基础.
3.在不等式的基本性质中,有些条件与 结论是等价的,有些是不等价的,在不 等式的乘法、乘方、开方运算性质中, 还要附加大于0的条件,应用时必须认准. 4.不等式的8条基本性质还可作适当变 通,如a≥b,b>c a>c; a≥b,c>0 ac≥bc; a<b,c<0 ac>bc等等.
a1·2„an>b1·2„bn a bБайду номын сангаас
思考4:如果a>b,那么an与bn的大小关 系确定吗? a>b,n为正奇数

an>bn
思考5:如果a>b,c<d,那么a+c与b +d的大小关系确定吗?a-c与b-d的大 小关系确定吗?
a>b,c<d
a-c>b-d
1 1 思考6: 若a>b,ab>0,那么 a 与 b
相关文档
最新文档