高中数学必修五不等式课件
第三章3.1基本不等式-北师大版高一数学必修5课件(共21张PPT)

探究结果
1. 对于任意实数a,b,总有 a2 b2 2ab 如何证明?
当且仅当a=b时,等号成立.
特别地,如果 a 0,b 0 ,我们用 a , b 分别代替a,b,可得
a b 2 ab,即a b ab, 2
当且仅当a=b时,等号成立.
探究结果 1. 对于
a,b,总有 a2 b2 2ab
当且仅当a=b时,等号成立.
2. 如果a,b都是
,那么 a b ab 2
当且仅当a=b时,等号成立.
我们称上述不等式为
ab ,其中 2 称为a,b的算术
平均数, ab 称为a,b
. 因此,基本不等式又被称为
均值不等式.
探究结果 1. 对于
a,b,总有 a2 b2 2ab
当且仅当a=b时,等号成立.
当且仅当a=b时,等号成立.
文字语言可叙述为:两个非负实数的算术平均数不小于它们 的几何平均数.
从数列的角度看:两个正实数的等差中项不小于它们正的等 比中项.
课堂升华 几何解释
如图,AB是圆O的直径,AC=a,BC=b,过点C作CD⊥AB交圆O上半
圆于D. 由射影定理可知
D
CD ab, 而OD a b ,
同向相加可得 a b c ab ac bc, 当且仅当a b c时,等号成立.
例题讲解
例2 若a b 1,比较P lg a lg b,Q 1 (lg a lg b), 2
R lg a b 的大小关系. 2
解 因为a b 1,所以 lg a lg b 0,
由 ab a b , 2
证明 (方法2)
ab
2
ab 2ab
ab(b a) 2ab
11
ba
人教a版必修五课件:基本不等式(46页)

[点评]
比较式子的大小的方法:
(1)作差法.(2)利用基本不等式.(3)利用函数的单调 性.(4)利用中间值.(5)赋值法.
1 变式训练2 已知m=a+ (a>2),n=22-b2 a-2 (b≠0),则m,n之间的大小关系是( A.m>n C.m=n B.m<n D.不确定 )
解析:解答本题先根据基本不等式求出m的范围,再 根据指数函数的性质求出n的取值范围,再比较m,n的大 1 1 小.∵a>2,∴a-2>0,又∵m=a+ =(a-2)+ + a-2 a-2 2. ∴m≥2 1 a-2× +2=4,即m∈[4,+∞).由 a-2
第三章
不等式
3.4
a+b 基本不等式: ab≤ 2
第1课时
课前自主预习
基本不等式
课堂互动探究
随堂知能训练
课时作业
目标了然于胸,让讲台见证您的高瞻远瞩
1.探索并了解基本不等式的证明过程. 2.能利用基本不等式证明简单不等式.
课 前 自 主 预 习
课 前 预 习 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·明 确 目 标
b≠0得b2≠0,∴2-b2<2,∴22-b2<4,即n<4,∴n∈ (0,4).综上易得m>n.故选A.
答案:A
类型三 [例3]
利用基本不等式证明不等式 设a,b,c均为实数.
1 1 1 1 1 1 求证: + + ≥ + + . 2a 2b 2c b+c c+a a+b [分析] 要证明的不等式的两边都是三项的和式,很
几何 平均数. 的
高中数学必修5优质课件:基本不等式

第七页,编辑于星期日:二十三点 三十九分。
解得 x=1- 22,y= 2-1,∴当 x=1- 22,y= 2 -1 时,1x+1y有最小值 3+2 2.
法二:1x+1y=1x+1y·1=1x+1y(2x+y)=3+2yx+xy≥3 +2 xy·2yx=3+2 2,
以下同解法一.
第八页,编辑于星期日:二十三点 三十九分。
A.最大值为 0
B.最小值为 0
Байду номын сангаасC.最大值为-4
D.最小值为-4
解析:∵x<0,∴f(x)=--x+-1x-2≤-2-2=-4, 当且仅当-x=-1x,即 x=-1 时取等号. 答案:C
第二十二页,编辑于星期日:二十三点 三十九 分。
2.若 a>b>0,则下列不等式成立的是( ) A.a>b>a+2 b> ab B.a>a+2 b> ab>b C.a>a+2 b>b> ab D.a> ab>a+2 b>b
[解] (1)∵m,n>0 且 m+n=16, 所以由基本不等式可得 mn≤m+2 n2=1262=64, 当且仅当 m=n=8 时,mn 取到最大值 64.∴12mn 的最大值为 32.
第六页,编辑于星期日:二十三点 三十九分。
(2)∵x>3,∴x-3>0,x-4 3>0,于是 f(x)=x+x-4 3=x-3
基本不等式
【知识梳理】
1.重要不等式 当 a,b 是任意实数时,有 a2+b2≥ 2ab ,当且仅当 a=b 时,等号成立. 2.基本不等式
a+b (1)有关概念:当 a,b 均为正数时,把 2 叫做正 数 a,b 的算术平均数,把 ab 叫做正数 a,b 的几何平均数.
第一页,编辑于星期日:二十三点 三十九分。
第三页,编辑于星期日:二十三点 三十九分。
高中数学人教版必修五:基本不等式(共23张PPT)

ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
人教版A版高中数学必修5:基本不等式: ≤(a+b)_课件28

【证明】法一:∵a>0,b>0,a+b=1,∴1+1a=1+a+a b=
2+ba.同理,1+1b=2+ab.∴1+1a 1+1b =2+ba2+ab =5+2ba+ab≥5+4=9,当且仅当ba=ab,即 a=b 时取“=”. ∴1+1a1+1b≥9,当且仅当 a=b=12时等号成立.
则 y=14·2x(1-2x)≤142x+21-2x2=116,
当且仅当 2x=1-2x,即 x=14时取到等号,∴ymax=116. (2)∵x<3,∴x-3<0,∴3-x>0,∴f(x)=x-4 3+x=x-4 3+ (x-3)+3
=-3-4 x+(3-x)+3≤-2 3-4 x·(3-x)+3=-1,
基本不等式
1.基本不等式:
a+b ab≤ 2
基本不等式成立的条件是什么?等号成立的条件又是什么?
提示: a>0且b>0;a=b时取等号
a+2 b叫做 a,b 的算术平均数, ab叫做 a,b 的几何平均数.
2.常用的几个重要不等式
(1)a2+b2≥__2_a_b__(a,b∈R); (2)ab___≤___(a+2 b)2(a,b∈R); (3)a2+2 b2___≥___(a+2 b)2(a,b∈R); (4)ba+ab≥__2____(a,b 同号且不为零).
在利用基本不等式解决实际应用问题时,一定要注意问题中 所涉及变量的取值范围,即函数的定义域,分析在该范围内 是否存在使基本不等式的等号成立的变量值,若存在,则可 利用基本不等式求解,若使基本不等式的等号成立的变量值 不在函数定义域内,则应利用导数研究函数的单调性,根据 单调性求最值.
3.围建一个面积为 360 m2 的矩形场地, 要求矩形场地的一面利用旧墙(利用的旧 墙需维修),其他三面围墙要新建,在旧 墙对面的新墙上要留一个宽度为 2 m 的进出口,如图所示.已 知旧墙的维修费用为 45 元/m,新墙的造价为 180 元/m.设利 用的旧墙长度为 x(单位:m),修建此矩形场地围墙的总费用 为 y(单位:元). (1)将 y 表示为 x 的函数; (2)试确定 x,使修建此矩形场地围墙的总费用最少,并求出最 少总费用.
人教版高中数学必修五第三章不等式基本不等式第一课时教学课件共16张PPT

合作探究,成果展示
合作探究,成果展示
合作探究,成果展示
法二 :
合作探究,成果展示
c
【课堂小结】 本节课你的收获是什么?
【随堂检测 】
【作业布置 】
1.必做作业: 学案【巩固训练】
2.选作作业: 学案【拓展延伸】
(×)
反思总结: 使用基本不等式求最值应具备哪些条件?
利用
求最值时要注意下面三条:
(1)一正:各项均为正数.
(2)二定:两个正数积为定值,和有最小值. 两个正数和为定值,积有最大值.
(3)三相等:求最值时一定要考虑不等式是否能取“=”, 否则会出现错误.
合作探究,成果展示
【课堂探究一】运用基本不等式求最值
。
【知识梳理】 1.基本不等式 可变形为
(1)
(当且仅当
时取等号)
;
(2)
.
2.已知 x >0,y>0,
(1)若xy=p(p为定值),则当
(2)若x+y=s(s为定值),则当
时,x+y有最 值 .
时,xy有最 值.【回顾题组来自】225
3.判断下列命题正误,错误的请说明理由.
1
1
5
5
(×)
(×) (×)
人教版高中数学必修五 第三章不等式基本不等 式第一课时教学课件共
16张PPT
2020/9/19
【学习目标】
1、准确掌握应用基本不等式求最值应具备的三个条件。
2、灵活运用基本不等式求一些函数(或代数式)的最值 。
3、体会转化与化归、消元等数学思想方法的应用。
【学习重点】运用基本不等式求最值。
【学习难点】创造条件使用基本不等式求数式的最值
人教版必修五数学《基本不等式》PPT课件

人教版必修五数学《基本不等式》PPT课件•课程介绍与目标•基本不等式概念及性质•基本不等式证明方法•基本不等式应用举例目录•拓展与提高:含参数的基本不等式问题•课程总结与回顾01课程介绍与目标人教版必修五数学教材基本不等式章节内容概述与前后知识点的联系教材版本及内容概述教学目标与要求知识与技能目标掌握基本不等式的形式、性质和应用方法,能够运用基本不等式解决简单的最值问题。
过程与方法目标通过探究、归纳、证明等过程,培养学生的数学思维和逻辑推理能力。
情感态度与价值观目标让学生感受数学的美和严谨性,培养学生的数学兴趣和数学素养。
本节课共分为引入、新课、巩固练习、小结四个部分。
课程安排时间分配重点与难点引入部分5分钟,新课部分30分钟,巩固练习部分15分钟,小结部分5分钟。
本节课的重点是基本不等式的形式、性质和应用方法;难点是运用基本不等式解决复杂的最值问题。
030201课程安排与时间02基本不等式概念及性质不等式定义及表示方法不等式的定义用不等号连接两个解析式所组成的数学式子。
不等式的表示方法常见的不等号有“<”、“>”、“≤”、“≥”和“≠”,用于表示两个量之间的大小关系。
对称性传递性可加性同向正值可乘性基本不等式性质探讨01020304当a=b 时,a<b,b>a 同时成立,反之亦然。
若a>b 且b>c ,则a>c ;若a<b且b<c ,则a<c 。
同向不等式可以相加,即若a>b 且c>d ,则a+c>b+d 。
若a>b>0且c>d>0,则ac>bd 。
特殊情况下的基本不等式均值不等式对于任意两个正数a和b,有√(ab)≤(a+b)/2,当且仅当a=b 时取等号。
柯西不等式对于任意两组实数a1, a2, …, an和b1, b2, …, bn,有(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)≥(a1b1+a2b2+...+anbn)^2,当且仅当ai/bi为常数时取等号。
含参数的一元二次不等式的解法微课课件

原不等式解集为
xk4k28kxk
k28k
4
k 8
(3)当 (4)当
xk4k28kxk4k28k
k 8时,不等式解集为
x x 2
时,不等式解集为
(2)当
时8,不k等式0解集为
综上所述, (1)当
k0
时,不等式解集为
x x 0
(5)当
k 时 ,0不等式解集为
xk4k28kxk4k28k
a
(2)当 a0 时,有:
(a)当 (b)当 (c)当
1 1 a
即 a 1
时,原不等式的解集为:
{x | 1 x 1} a
1 1 即 a 1 时,原不等式的解集为:
a
1 1 即 0a1 时,原不等式的解集为: {x | 1 x 1}
a
a
ቤተ መጻሕፍቲ ባይዱ
x
01
a2x(a1)x10.
02
综上所述,
例3:解关于 的不等式:
人教版高中数学必修五第三章
含 参 数 的 一 解元 法二 次 不 等 式 的
授课人:广东省阳东广雅中学
杨学武
温故知新
a x 2 + b x + c > 0 或 a x 2 + b x + c < 0 (a > 0 )
根据二次函数的图
象以及不等号的方
向,写出不等式的
0
(2)求对应方程的根:
1 一.
因式分解求方程的根,
m m 0 时 , 不 等 式 的 解 集 为 { x |x 2 或 x 2 }
m
课堂小结
对含参数的一元二次不 等式解法,其分类讨论 的依据