高中不等式单元测试卷及答案
高中数学第一册不等式单元测试题(含答案)
不等式单元测试题一、单选题(共12题;共24分)1.(2020高二下·北京期中)若,,则()A. B. C. D.2.(2020高一下·邯郸期中)已知,且.下列不等式中成立的是()A. B. C. D.3.(2020高一下·成都期中)若,则一定有()A. B. C. D.4.(2020高一下·嘉兴期中)设、、,,则下列不等式一定成立的是()A. B. C. D.5.(2020高一下·吉林期中)下列命题中:① ,;② ,;③ ;④ ;正确命题的个数是()A. 1B. 2C. 3D. 46.(2020高一下·哈尔滨期末)已知,,则的最小值为()A. 8B. 6C.D.7.(2020高一下·太和期末)设正实数满足,则当取得最大值时,的最大值为()A. 1B. 4C.D.8.(2020高一下·丽水期末)已知实数满足,且,则的最小值为()A. B. C. D.9.(2020高一下·宜宾期末)若正数满足,则的最大值为()A. 5B. 6C. 7D. 910.(2020高一下·南昌期末)已知a,,且满足,则的最小值为()A. B. C. D.11.(2020高一下·丽水期末)不等式的解集是()A. 或B. 或C.D.12.(2020高一下·吉林期末)若a<0,则关于x的不等式x2-4ax-5a2>0的解是()A. x>5a或x<-aB. x>-a或x<5aC. 5a<x<-aD. -a<x<5a二、填空题(共4题;共4分)13.(2020高二下·西安期中)比较大小:________ .(用,或填空)14.(2020高一下·温州期末)已知正实数x,y满足,则的最小值是________.15.(2020高一下·宜宾期末)若正数满足,则的最小值为________.16.(2020高一下·哈尔滨期末)不等式的解集为________.三、解答题(共8题;共75分)17.(2020高一下·六安期末)已知函数.(1)当时,求函数的最小值;(2)若存在,使得成立,求实数a的取值范围.18.(2020高一下·大庆期末)已知关于x的不等式.(1)当时,解上述不等式.(2)当时,解上述关于x的不等式19.(2020高一下·太和期末)已知函数.(1)若对任意实数,恒成立,求实数a的取值范围;(2)解关于x的不等式.20.(2020高一下·宜宾期末)已知函数.(1)当时,解不等式;(2)当时,恒成立,求的取值范围.21.(2020高一下·萍乡期末)(1)解不等式;(2)解关于x的不等式:.22.(2020高一下·成都期末)已知定义在上的函数,其中为常数.(1)求解关于的不等式的解集;(2)若是与的等差中项,求a+b的取值范围.23.(2020高一下·南昌期末)已知汽车从踩刹车到停车所滑行的距离()与速度()的平方和汽车总质量积成正比关系,设某辆卡车不装货物以的速度行驶时,从刹车到停车走了.(Ⅰ)当汽车不装货物以的速度行驶,从刹车到停车所滑行的距离为多少米?.(Ⅱ)如果这辆卡车装着等于车重的货物行驶时,发现前面处有障碍物,这时为了能在离障碍物以外处停车,最大限制时速应是多少?(结果保留整数,设卡车司机发现障碍物到踩刹车需经过.参考数据:.)24.(2020高一下·重庆期末)已知函数.(1)当时,求不等式的解集;(2)若关于x的不等式的解集为R,求a的取值范围.答案解析部分一、单选题1.【答案】C【解析】【解答】,又,,所以,所以.故答案为:C【分析】采用作差法比较即可.2.【答案】B【解析】【解答】,且,,.故答案为:B.【分析】由和,得,根据不等式的性质可得选项.3.【答案】C【解析】【解答】由题可得,则,因为, 则, ,则有,所以,即故答案为:C【分析】由题,可得,且,即,整理后即可得到作出判断.4.【答案】C【解析】【解答】对于A,由,则,A不符合题意;对于B,若,则,B不符合题意;对于C,,因为,,所以,即,C符合题意;对于D,,因为,,所以,所以,即,D不符合题意;故答案为:C【分析】利用不等式的性质以及作差法比较大小逐一判断即可.5.【答案】C【解析】【解答】① ,由不等式的加法得,所以该命题正确;② ,是错误的,如:,满足已知,但是不满足,所以该命题错误;③ ,所以,所以该命题正确;④ 所以,所以该命题正确.故答案为:C【分析】①利用不等式的加法法则判断;②可以举反例判断;③利用不等式性质判断;④可以利用作差法判断.6.【答案】C【解析】【解答】∵,,∴,当且仅当即时,等号成立,所以的最小值为.故答案为:C【分析】结合题中的条件利用基本不等式求解的最小值即可.7.【答案】B【解析】【解答】因为,所以,且,则,即,取等号时有:,且;,当且仅当时取得最大值:,故答案为:B.【分析】先利用基本不等式分析取得最大值的条件,然后再去计算的最大值.8.【答案】B【解析】【解答】,当且仅当时取等号故答案为:B【分析】利用1的代换,结合基本不等式求最值.9.【答案】D【解析】【解答】依题意,当且仅当时等号成立,所以的最大值为9.故答案为:D【分析】利用基本不等式求得的最大值.10.【答案】C【解析】【解答】∵,∴.即.当且仅当时取等号.∴的最小值为故答案为:C【分析】利用a和b的关系进行代换,再利用基本不等式即可得出.11.【答案】C【解析】【解答】由得:,,,即不等式的解集为,故答案为:C【分析】由原不等式可化为,直接根据一元二次不等式的解法求解即可.12.【答案】B【解析】【解答】由有所以方程的两个实数根为,因为,所以所以由不等式得,或故答案为:B【分析】利用因式分解求出对应方程的实数根,再比较两个实数根的大小,从而得出不等式的解集.二、填空题13.【答案】<【解析】【解答】解:即故答案为:<【分析】利用作差法比较大小;14.【答案】【解析】【解答】将式子变形为,即,因为,,所以(当且仅当时,等号成立),所以有,即,故,所以,则的最小值是.故答案为:.【分析】由题易得,然后由基本不等式可得,最后可求得的最小值.15.【答案】16【解析】【解答】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:16【分析】利用基本不等式求得的最小值.16.【答案】{x|2<x<3}【解析】【解答】由,得,从而解得,所以,不等式的解集为,故答案为:.【分析】根据一元二次不等式的解法,即可求得原不等式的解集.三、解答题17.【答案】(1)解:因为,所以,因为,所以,所以当且仅当时,等号成立,所以当时,(2)解:存在,使得成立,等价于当时,由(1)知,所以,,所以.因为,所以,解得,所以实数a的取值范围为【解析】【分析】(1)变形为后,根据基本不等式可得结果;(2)转化为,等价于,等价于,等价于.18.【答案】(1)解:当时,代入可得,解不等式可得,所以不等式的解集为(2)解:关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【解析】【分析】(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对a分类讨论,即可由零点大小确定不等式的解集.19.【答案】(1)解:当时,恒成立;当时,要使对任意实数x,恒成立,需满足,解得,故实数a的取值范围为(2)解:由不等式得,即.方程的两根是,.①当时,,不等式的解为或;②当时,不等式的解为;③当时,不等式的解为;④当时,,不等式无解;⑤当时,,不等式的解为综上:①当时,不等式的解为或;②当时,不等式的解为;③当时,不等式的解为;④当时,,不等式解集为;⑤当时,不等式的解为【解析】【分析】(1)对a讨论,时不合题意;合题意;,利用判别式小于0解不等式,求交集即可得到所求范围;(2)先将不等式化为,再对参数a的取值范围进行讨论,利用一元二次不等式的解法分别解不等式即可.20.【答案】(1)解:当时,不等式为,即,该不等式解集为.(2)解:由已知得,若时,恒成立,,即,的取值范围为.【解析】【分析】(1)当是,解一元二次不等式求得不等式的解集.(2)利用判别式列不等式,解不等式求得的取值范围.21.【答案】(1)解:原不等式可化为且,由标根法(或穿针引线法)可得不等式的解集为(2)解:原不等式等价于.当时,;当时,,解集为空集;当时,.综上所述,当时,解集为;当时,解集为空集;当时,解集为【解析】【分析】(1)分式不等式用穿根法求解即可.(2)含参数的二次不等式求解,先求解对应方程的实数根,再结合二次函数图象对实数根的大小分类讨论解决即可.22.【答案】(1)解:,整理为,当时,不等式的解集是,当时,不等式的解集是,当时,不等式的解集是;(2)解:由条件可知,即,即,,,,即,解得:,所以a+b的范围是.【解析】【分析】(1)不等式转化为,然后分类讨论解不等式;(2)由条件转化为,再转化为关于a+b的一元二次不等式.23.【答案】解:(Ⅰ)滑行的距离为,汽车总质量为M,时速为,比例常数为k,根据题意可得,将,代入可得,所以,当时,代入上式,可得.(Ⅱ)卡车司机发现障碍物到踩刹车需经过.行驶的路程为,由,可得,解得,因为,所以.所以最大限制时速应是:【解析】【分析】(Ⅰ)设从刹车到停车滑行的距离为,时速为,卡车总质量为M,比例常数为k,然后根据条件求出k的值,得到函数的解析式.然后代入的速度行驶,汽车从刹车到停车所滑行的距离.(Ⅱ)再根据滑行距离到障碍物距离建立不等关系,解之即可求出所求最大限制时速.24.【答案】(1)解:当时,,,故解集为;(2)解:由题知,解得.【解析】【分析】(1)将代入,解二次不等式的解集即可;(2)令即可;。
《不等式》单元测试卷(含详解答案)
试卷第1页,总4页 不等式测试卷(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程序拍照发给老师检查。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[4,15]D .[1,15]3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .1524.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )A .()2,0-B .()(),02,∞∞-⋃+C .()0,2D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12- 7.不等式20ax x c -+>的解集为}{|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。
一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册
第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。
高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)
高一数学必修一第二章一元二次函数、方程和不等式单元测试试卷 (3)数学第二章测试卷A卷本试卷满分100分,考试时间80分钟。
一、单项选择题(本大题共5小题,每小题5分,共计25分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.若$a+b+c=0$,且$a<b<c$,则下列不等式一定成立的是A。
$ab<bc$B。
$ab<ac$XXX<bc$D。
$ab<bc$2.已知正数$a$、$b$满足$\frac{22}{1194}+\frac{a}{b}=1$,则$\frac{a}{b}+\frac{b}{a}$的最小值是A。
6B。
12C。
24D。
363.已知二次函数$f(x)=x^2+bx+c$的两个零点分别在区间$(-2,-1)$和$(-1,0)$内,则$f(3)$的取值范围是A。
$(12,20)$B。
$(12,18)$C。
$(18,20)$D。
$(8,18)$4.若$x>0$,$y>0$,且$\frac{2}{x+1}+\frac{1}{x+2y}=1$,则$2x+y$的最小值为A。
2B。
$\frac{2}{3}$C。
$2+\frac{2}{3}$D。
$3$5.关于$x$的不等式$(ax-1)<x$恰有2个整数解,则实数$a$的取值范围是A。
$-\frac{34}{43}<a\leq-\frac{3}{4}$或$\frac{4}{3}<a\leq\frac{43}{34}$B。
$-\frac{3}{4}<a\leq-\frac{2}{3}$或$\frac{2}{3}<a\leq\frac{3}{4}$C。
$-\frac{34}{43}\leq a<-\frac{3}{4}$或$\frac{4}{3}\leq a<\frac{43}{34}$D。
$-\frac{3}{4}\leq a<-\frac{2}{3}$或$\frac{2}{3}\leq a\leq\frac{3}{4}$二、多项选择题(本大题共2小题,每小题5分,共计10分。
不等式单元测试题及答案
第三章 章末检测(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若a <0,-1<b <0,则有( )A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a2.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( )A .有最大值eB .有最大值eC .有最小值eD .有最小值e 3.设M =2a (a -2),N =(a +1)(a -3),则( ) A .M >N B .M ≥N C .M <N D .M ≤N4.不等式x 2-ax -12a 2<0(其中a <0)的解集为( ) A .(-3a,4a ) B .(4a ,-3a ) C .(-3,4) D .(2a,6a )5.已知a ,b ∈R ,且a >b ,则下列不等式中恒成立的是( ) A .a 2>b 2B .(12)a <(12)bC .lg(a -b )>0 >1 6.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]7.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0-x +2, x >0,则不等式f (x )≥x 2的解集是( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]8.若a >0,b >0,且a +b =4,则下列不等式中恒成立的是( )>12 +1b ≤1 ≥2 ≤189.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y +2≥0,则目标函数z =|x +3y |的最大值为( )A .4B .6C .8D .1010.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定11.设M =⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1,且a +b +c =1 (其中a ,b ,c 为正实数),则M 的取值范围是( )C .[1,8)D .[8,+∞) 12.函数f (x )=x 2-2x +1x 2-2x +1,x ∈(0,3),则( )A .f (x )有最大值74 B .f (x )有最小值-1C .f (x )有最大值1D .f (x )有最小值113.已知t >0,则函数y =t 2-4t +1t的最小值为________________________________________________________________________. 14.对任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是________.15.若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是________.16.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.三、解答题(本大题共6小题,共70分)17.(10分)已知a >0,b >0,且a ≠b ,比较a 2b +b 2a与a +b 的大小.18.(12分)已知a ,b ,c ∈(0,+∞). 求证:(aa +b)·(bb +c)·(cc +a )≤18.19.(12分)若a<1,解关于x的不等式axx-2>1.20.(12分)求函数y=x+22x+5的最大值.21.(12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B 点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内(2)当DN的长为多少时,矩形花坛AMPN的面积最小并求出最小值.22.(12分)某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:第三章 不等式 章末检测答案(B)1.D [∵a <0,-1<b <0, ∴ab >0,ab 2<0. ∴ab >a ,ab >ab 2.∵a -ab 2=a (1-b 2)=a (1+b )(1-b )<0, ∴a <ab 2.∴a <ab 2<ab .] 2.C3.A [∵M -N =2a (a -2)-(a +1)(a -3) =(2a 2-4a )-(a 2-2a -3)=a 2-2a +3 =(a -1)2+2>0.∴M >N .] 4.B [∵x 2-ax -12a 2<0(a <0) ⇔(x -4a )(x +3a )<0 ⇔4a <x <-3a .]5.B [取a =0,b =-1,否定A 、C 、D 选项. 故选B.]6.D [∵x >1,∴x +1x -1=(x -1)+1x -1+1≥ 2x -1·1x -1+1=3.∴a ≤3.] 7.A [f (x )≥x 2⇔⎩⎪⎨⎪⎧x ≤0x +2≥x 2或⎩⎪⎨⎪⎧x >0-x +2≥x 2⇔⎩⎪⎨⎪⎧x ≤0x 2-x -2≤0或⎩⎪⎨⎪⎧x >0x 2+x -2≤0⇔⎩⎪⎨⎪⎧x ≤0-1≤x ≤2或⎩⎪⎨⎪⎧x >0-2≤x ≤1⇔-1≤x ≤0或0<x ≤1 ⇔-1≤x ≤1.]8.D [取a =1,b =3,可验证A 、B 、C 均不正确, 故选D.]9.C [可行域如阴影,当直线u =x +3y 过A (-2,-2)时,u 有最小值(-2)+(-2)×3=-8;过B (23,23)时u 有最大值23+3×23=83.∴u =x +3y ∈[-8,83].∴z =|u |=|x +3y |∈[0,8].故选C.]10.B [设甲用时间T ,乙用时间2t ,步行速度为a ,跑步速度为b ,距离为s ,则T=s 2a +s2b =s 2a +s 2b =s ×a +b 2ab ,ta +tb =s ⇒2t =2s a +b, ∴T -2t =s a +b 2ab -2s a +b =s ×a +b 2-4ab 2ab a +b =s a -b 22ab a +b>0,故选B.]11.D [M =⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1=⎝⎛⎭⎪⎫a +b +c a -1⎝ ⎛⎭⎪⎫a +b +c b -1⎝ ⎛⎭⎪⎫a +b +c c -1 =⎝⎛⎭⎪⎫b a +ca ·⎝⎛⎭⎪⎫a b +cb ·⎝⎛⎭⎪⎫a c +bc ≥2b a ·ca ·2ab ·c b ·2a c ·bc=8. ∴M ≥8,当a =b =c =13时取“=”.]12.D [∵x ∈(0,3),∴x -1∈(-1,2), ∴(x -1)2∈[0,4),∴f (x )=(x -1)2+1x -12-1≥2x -12·1x -12-1=2-1=1.当且仅当(x -1)2=1x -12,且x ∈(0,3),即x =2时取等号,∴当x =2时,函数f (x )有最小值1.] 13.-2 解析 ∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2.14.-2<a ≤2解析 当a =2时,-4<0恒成立,∴a =2符合. 当a -2≠0时,则a 应满足:⎩⎪⎨⎪⎧a -2<0Δ=4a -22+16a -2<0解得-2<a <2.综上所述,-2<a ≤2. 15.5≤a <7解析 先画出x -y +5≥0和0≤x ≤2表示的区域,再确定y ≥a 表示的区域.由图知:5≤a <7. 16.20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用之和为(400x·4+4x )万元,400x ·4+4x ≥160,当1 600x=4x 即x =20吨时,一年的总运费与总存储费用之和最小.17.解 ∵(a 2b +b 2a )-(a +b )=a 2b -b +b 2a -a=a 2-b 2b +b 2-a 2a =(a 2-b 2)(1b -1a )=(a 2-b 2)a -b ab =a -b 2a +b ab又∵a >0,b >0,a ≠b , ∴(a -b )2>0,a -b >0,ab >0,∴(a 2b +b 2a )-(a +b )>0,∴a 2b +b 2a>a +b .18.证明 ∵a ,b ,c ∈(0,+∞), ∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ac >0,∴(a +b )(b +c )(c +a )≥8abc >0. ∴abca +b b +c c +a ≤18 即(a a +b)·(b b +c)·(cc +a )≤18. 当且仅当a =b =c 时,取到“=”. 19.解 不等式ax x -2>1可化为a -1x +2x -2>0. ∵a <1,∴a -1<0,故原不等式可化为x -21-ax -2<0.故当0<a <1时,原不等式的解集为 {x |2<x <21-a},当a <0时,原不等式的解集为{x |21-a<x <2}. 当a =0时,原不等式的解集为∅.20.解 设t =x +2,从而x =t 2-2(t ≥0), 则y =t2t 2+1. 当t =0时,y =0; 当t >0时,y =12t +1t≤122t ·1t=24. 当且仅当2t =1t ,即t =22时等号成立.即当x =-32时,y max =24.21.解 (1)设DN 的长为x (x >0)米, 则AN =(x +2)米.∵DN AN =DC AM,∴AM =3x +2x , ∴S AMPN =AN ·AM =3x +22x,由S AMPN >32,得3x +22x>32.又x >0,得3x 2-20x +12>0, 解得:0<x <23或x >6,即DN 长的取值范围是(0,23)∪(6,+∞).(2)矩形花坛AMPN 的面积为 y =3x +22x=3x 2+12x +12x=3x +12x+12≥23x ·12x+12=24,当且仅当3x =12x,即x =2时,矩形花坛AMPN 的面积取得最小值24.故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米.22.解 设此工厂每天应分别生产甲、乙两种产品x 吨、y 吨,获得利润z 万元.依题意可得约束条件:⎩⎪⎨⎪⎧ 9x +4y ≤3604x +5y ≤2003x +10y ≤300x ≥0y ≥0作出可行域如图.利润目标函数z =6x +12y , 由几何意义知,当直线l :z =6x +12y 经过可行域上的点M 时,z =6x +12y 取最大值.解方程组⎩⎪⎨⎪⎧ 3x +10y =3004x +5y =200,得x =20,y =24,即M (20,24).答 生产甲种产品20吨,乙种产品24吨,才能使此工厂获得最大利润.。
一元二次函数、方程和不等式单元测试卷及答案解析
高一上学期数学单元测试卷一元二次函数、方程和不等式考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1.不等式≥的解集是 【 】(A)(B)(C)(D)2.设,,则M与N的大小关系是【】(A)(B)M ≥ N(C)(D)M ≤ N3.已知实数,则以下不等关系正确的是【】(A)(B)(C)(D)4. “”是“一元二次不等式恒成立”的【】(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5.已知,且,则的最小值为【】(A)5 (B)6 (C)7 (D)86.不等式组的解集为【】(A)(B)(C)(D)7.已知R,则下列说法中错误的是【】(A)≥(B)(C)(D)8.设正数满足,则当取得最大值时,代数式的最大值是【】(A)0 (B)1 (C)(D)3二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知不等式的解集为,则下列结论正确的是【】(A)(B)(C)(D)10.设为非零实数,且,则下列不等式恒成立的是【】(A)(B(C)(D)11.给出下列四个条件: ①; ②; ③; ④.其中能成为的充分条件的是【】(A)①(B)②(C)③(D)④12.若,且,则下列不等式恒成立的是【】(A)≥8 (B)≥(C)≥2 (D)≤1第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13.已知,同时成立,则应满足的条件是__________.14.若不等式的解集为,则__________,_________.(本小题第一空2分,第二空3分)15.已知函数对任意实数,函数值恒大于零,则实数的取值范围是_____________.16.已知,不等式≥0对一切实数恒成立.若R,成立,则的最小值为__________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)解下列不等式(组):(1);(2)≤.18.(本题满分12分)已知,且(1)求的最小值;(2)是否存在,使得的值为?并说明理由.19.(本题满分12分)已知命题R ,,命题R ,.(1)若命题为真命题,求实数的取值范围;(2)若命题为真命题,求实数的取值范围;(3)若命题至少有一个为真命题,求实数的取值范围.20.(本题满分12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D 在AN上,且对角线MN过点C,已知AB的长为3米,AD的长为2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.21.(本题满分12分)设.(1)若不等式≥对一切实数恒成立,求实数的取值范围;(2)解关于的不等式(R).22.(本题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q(万件)与广告费(万元)之间的关系式为(≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W(万元)与年广告费(万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少?高一上学期数学单元测试卷一元二次函数、方程和不等式答案解析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1.不等式≥的解集是 【 】(A)(B)(C)(D)答案 【 D 】解析本题考查一元二次不等式的解法,属于基础题.∵≥,∴0,∴≥0,解之得:≤0或≥2.∴原不等式的解集为.∴选择答案【 D 】.2.设,,则M与N的大小关系是【】(A)(B)M ≥ N(C)(D)M ≤ N答案 【 A 】解析本题考查作差法比较大小.利用作差法比较大小的一般步骤为:(1)作差;(2)变形: 对差进行变形.(3)判号: 判断差的符号(如果差中含有参数,则需要进行分类讨论).(4)定论: 根据差的符号作出大小判断.即: 作差变形判号定论.作差法的关键在于变形,常用的变形为:因式分解、配方、通分、分子或分母有理化等.∵,∴∵R,恒成立,∴.∴.∴选择答案【 A 】.3.已知实数,则以下不等关系正确的是【】(A)(B)(C)(D)答案 【 C 】解析本题宜采用特殊值法比较大小.∵,取∴.∵∴.∴选择答案【 C 】.4. “”是“一元二次不等式恒成立”的【】(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件答案 【 B 】解析本题考查充分必要条件的判断.方法总结 判断充分必要条件的基本思路(1)先确定条件是什么,结论是什么;(2)尝试用条件推结论,或由结论推条件;(必要时举出反例)(3)指出条件是结论的什么条件.若一元二次不等式恒成立,则有:.显然,由“”不能推出“一元二次不等式恒成立”,但是由“一元二次不等式恒成立”可以推出“”.∴“”是“一元二次不等式恒成立”的必要不充分条件.∴选择答案【 B 】.5.已知,且,则的最小值为【】(A)5 (B)6 (C)7 (D)8答案 【 A 】解析本题考查利用基本不等式求最值.注意利用基本不等式求最值时必须满足三个条件:一正、二定、三相等.∵,且∴.∴≥.当且仅当,即时,等号成立.∴的最小值为5.∴选择答案【 A 】.另解 ∵,∴.∴≥.当且仅当,即,等号成立.∴的最小值为5.∴选择答案【 A 】.6.不等式组的解集为【】(A)(B)(C)(D)答案 【 C 】解析本题考查一元二次不等式的解法.解不等式得:;解不等式得:.∴不等式组的解集为.∴选择答案【 C 】.7.已知R,则下列说法中错误的是【】(A)≥(B)(C)(D)答案 【 D 】解析本题考查不等式的基本性质.对于(A),当时,∵,∴;当时,显然.∴≥,故(A)正确;对于(B),∵,∴,∴.故(B)正确;对于(C),∵,∴.∵,∴.∴,∴.根据倒数法则,有.故(C)正确;对于(D),由不能得到,∴不一定成立.故(D)错误.∴选择答案【 D 】.8.设正数满足,则当取得最大值时,代数式的最大值是【】(A)0 (B)1 (C)(D)3答案 【 B 】解析本题考查基本不等式的应用.∵,∴.∵为正数∴≤.当且仅当,即时,等号成立.此时.∴∴当,即时,.∴选择答案【 B 】.二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知不等式的解集为,则下列结论正确的是【】(A)(B)(C)(D)答案 【 BCD 】解析本题考查一元二次不等式与对应一元二次方程之间的关系.要明白一元二次不等式的解集的端点值就是对应一元二次方程的实数根.∵不等式的解集为∴,方程的两个实数根分别为.由根与系数的关系定理可得:,∴,∴异号,异号且互为相反数.∵,∴,.∴.故(A)错误,(B)、(C)、(D)正确.∴选择答案【 BCD 】.10.设为非零实数,且,则下列不等式恒成立的是【】(A)(B)(C)(D)答案 【 CD 】解析本题考查不等式的基本性质.∵为非零实数,且,∴.对于(A),,当时,,即;当时, ,即.故不恒成立;对于(B),,∴的符号,即的大小关系取决于的符号,共有三种可能,特别地,当互为相反数时,,,此时,故不恒成立;对于(C),,故恒成立;对于(D),,故恒成立.(∵为非零实数,∴恒成立)∴选择答案【 CD 】.11.给出下列四个条件: ①; ②; ③; ④.其中能成为的充分条件的是【】(A)①(B)②(C)③(D)④答案 【 AD 】解析本题考查不等式的基本性质.对于(A),显然.∵,∴,∴.故是的充分条件;对于(B),当时,,∴.当时,,∴.故不是的充分条件;对于(C),,当,即时,.故不是的充分条件;对于(D),∵,∴,∴,∴.故是的充分条件.∴选择答案【 AD 】.12.若,且,则下列不等式恒成立的是【】(A)≥8 (B)≥(C)≥2 (D)≤1答案 【 AB 】解析本题考查基本不等式的应用.对于(A),∵,,∴≥,当且仅当时取等号,故(A)恒成立;(重要结论: ≤≤)对于(B),∵,,∴≤,当且仅当时取等号,∴≥.故(B)恒成立.对于(C),∵,,∴≤,故(C)不恒成立;对于(D),∵,,∴,≥,当且仅当,即时取等号.故(D)不恒成立.∴选择答案【 AB 】.第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13.已知,同时成立,则应满足的条件是__________.答案 或解析本题考查分式不等式的解法.∵,∴,整理得:.它同解于不等式.∵,∴.∴,∴或.∴应满足的条件是或.14.若不等式的解集为,则__________,_________.(本小题第一空2分,第二空3分)答案 .解析本题考查一元二次不等式与相应一元二次方程的关系.∵不等式的解集为∴,一元二次方程的两个实数根分别为.由根与系数的关系定理可得:,解之得:.∴.15.已知函数对任意实数,函数值恒大于零,则实数的取值范围是_____________.答案解析本题考查与一元二次函数、一元二次不等式有关的恒成立问题.本题即R恒成立.令,解之得:.当时,对R恒成立,符合题意;当时,,其解集不是R,不符合题意;当,时,则有:,解之得:.综上所述,实数的取值范围是.16.已知,不等式≥0对一切实数恒成立.若R,成立,则的最小值为__________.答案解析本题考查一元二次不等式恒成立问题、利用基本不等式求最值.∵不等式≥0对一切实数恒成立(显然,)∴,∴≥1.∵R,成立∴方程有实数根.∴≥0,∴≤1.∵≥1,≤1,∴.∵,∴.∴≥.当且仅当,即时,等号成立.∴的最小值为.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)解下列不等式(组):(1);(2)≤.解:(1)解不等式得:或;解不等式得:.∴原不等式组的解集为;(2)原不等式可化为.解不等式≥得:≥3或≤;解不等式18得:∴原不等式的解集为.18.(本题满分12分)已知,且.(1)求的最小值;(2)是否存在,使得的值为?并说明理由.解:(1)∵,∴≥,∴≤.当且仅当时,等号成立.∴≥≥.当且仅当,即时,等号成立.∴的最小值为;(2)∵∴≥当且仅当,即时,等号成立.∵≤∴≥.当且仅当时,等号成立.∴.∵∴不存在,使得的值为.19.(本题满分12分)已知命题R,,命题R,.(1)若命题为真命题,求实数的取值范围;(2)若命题为真命题,求实数的取值范围;(3)若命题至少有一个为真命题,求实数的取值范围.解:(1)∵命题为真命题∴R,恒成立.∴,解之得:.∴实数的取值范围为;(2)∵命题为真命题∴函数有部分图象位于轴下方,即函数图象与轴有两个不同的交点,也即一元二次方程有两个不相等的实数根.∴,解之得:或.∴实数的取值范围为;(3)∵命题至少有一个为真命题∴实数的取值范围为20.(本题满分12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D 在AN上,且对角线MN过点C,已知AB的长为3米,AD的长为2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.解:(1)设米,则米.∵∴△NDC∽△NAM.∴∴米.∵矩形AMPN的面积大于32平方米,∴,整理得:.解之得:或.∴DN 的长的范围为;(2)设矩形花坛AMPN的面积为平方米,则有:≥.当且仅当,即时,等号成立,取得最小值.∴(平方米).答:当DN的长为2米时,矩形花坛AMPN的面积最小,为24平方米. 21.(本题满分12分)设.(1)若不等式≥对一切实数恒成立,求实数的取值范围;(2)解关于的不等式(R).解:(1)∵≥对一切实数恒成立,∴R,≥0恒成立.当时,≥0,不符合题意;当时,则有:,解之得:≥.综上所述,实数的取值范围是;(2)∵(R)∴∴.当时,,解之得:,∴原不等式的解集为;当时,原不等式可化为.当时,,原不等式同解于,∴原不等式的解集为;当时,原不等式同解于:若,则,∴原不等式的解集为;若,则,,∴原不等式的解集为;若,则,∴原不等式的解集为.综上所述,当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为.22.(本题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q(万件)与广告费(万元)之间的关系式为(≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W(万元)与年广告费(万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少?解:(1)由题意可得,每年产品的生产成本为万元,每万件的销售价为:万元,即万元.∴该企业的年销售收入为万元.∴(≥0)(万元);(2)∵(≥0)∴≤.当且仅当,即时,等号成立.∴(万元).答: 当年广告费投入7万元时,企业年利润最大,最大年利润为48万元.。
不等式测试题及答案
不等式单元测试题及答案(1)一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x 的解集是( )A .{x |x ≥2}B .{x |x ≤2}C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2} 2.下列说法正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-38.若关于x 的函数y =x +m2x在(0,+∞)的值恒大于4,则( )A .m >2B .m <-2或m >2C .-2<m <2D .m <-2 9.已知定义域在实数集R 上的函数y =f (x )不恒为零,同时满足f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-1<f (x )<0 C .f (x )>1 D .0<f (x )<110.若x +23x -5<0,化简y =25-30x +9x 2-(x +2)2-3的结果为( )A .y =-4xB .y =2-xC .y =3x -4D .y =5-x二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0.18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z =x +3y 的最大值.20.(13分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a4元; (3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元.经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边;②矩形厂房利用旧墙的一面长x ≥14. 试比较①②两种方案哪个更好.不等式单元测试题及答案(1)1.解析:原不等式化为x 2-2x ≥0,则x ≤0或x ≥2. 答案:D2.解析:A 中,当c =0时,ac 2=bc 2,所以A 不正确;B 中,当a =0>b =-1时,a 2=0<b 2=1,所以B 不正确;D 中,当(-2)2>(-1)2时,-2<-1,所以D 不正确.很明显C 正确.答案:C3.解析:当x =y =0时,3x +2y +5=5>0,所以原点一侧的平面区域对应的不等式是3x +2y +5>0,可以验证,仅有点(-3,4)的坐标满足3x +2y +5>0.答案:A4.解析:x -1x +2>1⇔x -1x +2-1>0⇔-3x +2>0⇔x +2<0⇔x <-2.答案:A5.解析:M -N =2a (a -2)+3-(a -1)(a -3)=a 2≥0, 所以M ≥N . 答案:B6.解析:在平面直角坐标系中,画出不等式组表示的平面区域,如下图中的阴影部分.则平面区域是△ABC . 答案:A7.解析:画出可行域如下图中的阴影部分所示.解方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y =0.得A (2,1).由图知,当直线y =x -z 过A 时,-z 最大,即z 最小,则z 的最小值为2-1=1.答案:A8.解析:∵x +m 2x≥2|m |,∴2|m |>4.∴m >2或m <-2. 答案:B9.解析:令x =y =0得f (0)=f 2(0), 若f (0)=0,则f (x )=0·f (x )=0与题设矛盾. ∴f (0)=1.又令y =-x ,∴f (0)=f (x )·f (-x ),故f (x )=1f (-x ).∵x >0时,f (x )>1,∴x <0时,0<f (x )<1,故选D. 答案:D10.解析:∵x +23x -5<0,∴-2<x <53.而y =25-30x +9x 2-(x +2)2-3=|3x -5|-|x +2|-3=5-3x -x -2-3=-4x .∴选A.答案:A二、填空题(填空题的答案与试题不符)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是__________.解析:式子1kx 2+kx +1恒有意义,即kx 2+kx +1>0恒成立.当k ≠0时,k >0且Δ=k 2-4k <0,∴0<k <4;而k =0时,kx 2+kx +1=1>0恒成立,故0≤k <4,选C.答案:C12.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.解析:求原函数定义域等价于解不等式组⎩⎪⎨⎪⎧x -2≥0,x -3≠0,4-x >0,解得2≤x <3或3<x <4.∴定义域为[2,3)∪(3,4). 答案:[2,3)∪(3,4)13.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________. 解析:如下图中阴影部分所示,围成的平面区域是Rt △OAB .可求得A (4,0),B (0,4),则OA =OB =4,AB =42,所以Rt △OAB 的周长是4+4+42=8+4 2. 答案:8+4 214.已知函数f (x )=x 2-2x ,则满足条件⎩⎪⎨⎪⎧f (x )+f (y )≤0,f (x )-f (y )≥0的点(x ,y )所形成区域的面积为__________.解析:化简原不等式组⎩⎪⎨⎪⎧(x -1)2+(y -1)2≤2,(x -y )(x +y -2)≥0, 所表示的区域如右图所示,阴影部分面积为半圆面积. 答案:π 15.(2010·浙江高考)某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.解析:由已知条件可得,七月份销售额为500×(1+x %),八月份销售额为500×(1+x %)2,一月份至十月份的销售总额为3860+500+2[500(1+x %)+500(1+x %)2],可列出不等式为4360+1000[(1+x %)+(1+x %)2]≥7000.令1+x %=t ,则t 2+t -6625≥0,即⎝⎛⎭⎫t +115⎝⎛⎭⎫t -65≥0.又∵t +115≥0,∴t ≥65,∴1+x %≥65,∴x %≥0.2,∴x ≥20.故x 的最小值是20. 答案:20三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.解:e a -c -eb -d =e (b -d )-e (a -c )(a -c )(b -d )=(b -a )+(c -d )(a -c )(b -d )e .∵a >b >0,c <d <0,∴a -c >0,b -d >0,b -a <0,c -d <0.又e <0,∴e a -c -e b -d >0.∴e a -c >eb -d.17.(12分)解下列不等式:(1)-x 2+2x -23>0;(2)9x 2-6x +1≥0.解:(1)-x 2+2x -23>0⇔x 2-2x +23<0⇔3x 2-6x +2<0.Δ=12>0,且方程3x 2-6x +2=0的两根为x 1=1-33,x 2=1+33,∴原不等式解集为{x |1-33<x <1+33}.(2)9x 2-6x +1≥0⇔(3x -1)2≥0. ∴x ∈R .∴不等式解集为R .18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0. 解:当m =-3时,不等式变成3x -3>0,得x >1; 当-3<m <-2时,不等式变成(x -1)[(m +3)x-m ]>0,得x >1或x <mm +3;当m <-3时,得1<x <mm +3.综上,当m =-3时,原不等式的解集为(1,+∞);当-3<m <-2时,原不等式的解集为⎝⎛⎭⎫-∞,m m +3∪(1,+∞);当m <-3时,原不等式的解集为⎝⎛⎭⎫1,m m +3.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z =x +3y 的最大值.解:(1)由x ,y 取非负实数,根据线性约束条件作出可行域,如下图所示阴影部分.(2)作出直线l :x +3y =0,将直线l 向上平移至l 1与y 轴的交点M 位置时,此时可行域内M 点与直线l 的距离最大,而直线x +y -3=0与y 轴交于点M (0,3).∴z max =0+3×3=9.20.(13分)(2009·江苏苏州调研)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值. 解:(1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|) =⎩⎪⎨⎪⎧(30+t )(40-t ), 0≤t <10,(40-t )(50-t ), 10≤t ≤20. (2)当0≤t <10时,y 的取值范围是[1200,1225], 在t =5时,y 取得最大值为1225;当10≤t ≤20时,y 的取值范围是[600,1200], 在t =20时,y 取得最小值为600.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a4元;(3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元.经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边; ②矩形厂房利用旧墙的一面长x ≥14. 试比较①②两种方案哪个更好.解:方案①:修旧墙费用为ax4(元),拆旧墙造新墙费用为(14-x )a2(元),其余新墙费用为(2x +2×126x-14)a (元),则总费用为y =ax 4+(14-x )a 2+(2x +2×126x -14)a =7a (x 4+36x-1)(0<x <14),∵x 4+36x ≥2x 4·36x=6, ∴当且仅当x 4=36x即x =12时,y min =35a ,方案②:利用旧墙费用为14×a 4=7a2(元),建新墙费用为(2x +252x -14)a (元),则总费用为y =7a 2+(2x +252x -14)a =2a (x +126x )-212a (x ≥14),可以证明函数x +126x在[14,+∞)上为增函数,∴当x =14时,y min =35.5a . ∴采用方案①更好些.。
沪教版(2020)必修第一册《第二章 等式与不等式》2021年单元测试卷(1)(附答案详解)
沪教版(2020)必修第一册《第二章等式与不等式》2021年单元测试卷(1)一、单选题(本大题共4小题,共16.0分)1.已知α, b, c ∈ R,给出下列条件:①小> b2;②3< j (5)αc2 > be2,则使得Q > b成立的充分而不必要条件是()A.①B.②C.③D.①②③2.已知集合/ = {x∖x2 -2x-3<0},非空集合B = {x∣2 -α<x< l + α}, F ⊂λ,则实数Q的取值范围为()A. (-∞,2]B.弓,2]C. (-8,2)D. (1,2)3.若不等式/ + αx + 1 ≥ 0对于一切%∈ (0,三恒成立,则α的最小值是()A. 0B. -2C. 一:D. —324.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为y = :∕ - 300%+ 80000,为使每吨的平均处理成本最低,该厂每月处理量应为()A. 300吨B. 400吨C. 500吨D. 600吨二、填空题(本大题共11小题,共33.0分)5.设α =b+逐,b = √5 + V5,则α, b的大小关系为.6.己知a > 0, b > 0,则p =当—α与q = b —系的大小关系是 ________ .7.不等式/一5∣x∣-6< 0的解集是.8.若对任意实数χ∈[—1,1],不等式巾2一1>式巾+ 1)恒成立,则实数血的取值范围是_____ .9.己知关于欠的不等式巴色>0的解集为M,且2 0M,则α的取值范围是_________ .x+a10.关于x的不等式αx-b>O的解集为(l,+∞),则关于%的不等式三¥>0的解集为X—211.已知正实数α, b满足。
炉(。
+ 28)=4,则α + b的最小值为 .12.存在正实数%,使得不等式x ÷ - < m2 +∣m + 1成立,则实数τn的取值范围是_____X /1 ft13.已知x>0, y >0,且―+7=2,则2x+ y的最小值为.14.设a、b、c是三个正实数,且a + b + 2c =些,则翟•的最大值为_______ .a 3b+c15.若正数a, b, c满足空+唱=”+1,则竺与勺最小值是 _____________ .a b c c三、解答题(本大题共6小题,共5L0分)16.关于不等式组仆的整数解的集合为{一2},则实数k的取值{∆X+ (2∕c + 5)X + 5/c < U范围是 ____ .17. (1)比较/与/一χ + ι的大小;(2)证明:己知a > b > c,且a + b + c = O,求证:£ > £.18.对在直角坐标系的第一象限内的任意两点(a,b), (c,d)作如下定义:那么称点(a,b)是点(c,d)的“上位点”,同时点(c,d)是点(a,b)的“下位点”.(1)试写出点(3,5)的一个“上位点”坐标和一个“下位点”坐标;(2)设a、b、c、d均为正数,且点(a,b)是点(c,d)的上位点,请判断点P(Q+ c,b + d)是否既是点(a,b)的“下位点”又是点(c,d)的“上位点”,如果是请证明,如果不是请说明理由;(3)设正整数九满足以下条件:对任意实数m∈{t∣0 V t< 2020,t∈Z},总存在k∈N*,使得点(τι,k)既是点(2020,τn)的“下位点”,又是点(2021,τn + 1)的“上位点”,求正整数兀的最小值.19.已知/(%) = -3X2 + a(6 —a)x + 12.(1)若不等式f(x)>b的解集为(0,3),求实数a、b的值;(2)若a = 3时,对于任意的实数%∈都有f(x) ≥-3/+ (zn + 9)x + 10,求zn的取值范围.20.解关于%的不等式.(2)ax2 + ax + 1 < 0某公司有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a-a)万元Q > 0),剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则调整员工从事第三产业的人数应在什么范围?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,求α的取值范围.答案和解析1.【答案】C【解析】【分析】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键. 根据不等式的关系结合充分条件和必要条件的定义进行判断即可.【解答】解:①由Q2 >炉,得α , b关系不确定,无法得a>b成立,②当αVθ, b>0时,满足-< ,但Q > b不成立;a b③若加2 > be?,得c ≠ 0 ,贝∣J α > b ,反之不成立,即③是α > b成立的充分不必要条件,故选:C .2.【答案】B'2 —Q< 1 + α【解析】解:A = {x∖x2 - 2x - 3 < 0] = (-1,3),B QA,当B ≠。
高中数学必修第一册,第2章 一元二次函数、方程和不等式单元测试题1
第二章一元二次函数、方程和不等式一、选择题1.(2019·全国高一课时练)集合2}{0|A x x x =-<(),{|11}B x x =-<<,则A B = ()A .{|12}x x -<<B .{|1x x <-或2x >}C .{|01}x x <<D .{|0x x <或}2.(2019·全国高一课时练)已知c b a <<,且0ac <,下列不等式中,不一定成立的是()A .ab ac >B .()0c b a ->C .22cb ab <D .()0ac a c -<3.(2019·全国高一课时练)不等式20ax x c -+>的解集为{}21,x x -<<则函数2y ax x c =++的图像大致为()A. B.D.4.(2019·河南高一期末)设0a >,0b >,若21a b +=,则21a b+的最小值为A .B .8C .9D .10(2019·全国高一课时练)若01t <<,则关于x 的不等式()10t x x t ⎛⎫--> ⎪⎝⎭的解集为()A.1{|}x x t t<< B.1{}x xx t t<或 C.1{|}x xx t t或 D.1 {|}x t x t<<6.(2019·全国高一课时练)函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,若()1,1A -⊆,则a 的取值范围()A.1,2⎡⎫+∞⎪⎢⎣⎭B.1,4⎡⎫+∞⎪⎢⎣⎭C.11,42⎛⎫⎪⎝⎭D.11,42⎡⎤⎢⎣⎦7.(2019·辽河油田高级中学高一课时练)若关于x 的不等式2−4≥对任意x ∈[0,1]恒成立,则实数m 的取值范围是()A .m≤-3B .m≥-3C .-3≤m≤0D .m≤-3或m≥08.(2019江西高一联考)某市原来居民用电价为0.52元/kw h ⋅,换装分时电表后,峰时段(早上八点到晚上九点)的电价0.55元/kw h ⋅,谷时段(晚上九点到次日早上八点)的电价为0.35元/kw h ⋅.对于一个平均每月用电量为200kw h ⋅的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为()A .110kw h⋅B .114kw h⋅C .118kw h⋅D .120kw h⋅9.(2019广东揭阳三中高一课时练)在R 上定义运算:a b c d ⎛⎫ ⎪⎝⎭ =ad-bc,若不等式-1-21x a a x ⎛⎫⎪+⎝⎭ ≥1对任意实数x 恒成立,则实数a 的最大值为()A .-12B .-32C .12D .3210.(2019·新疆乌鲁木齐市第70中高一期末)正数,a b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是()A .[3,)+∞B .(,3]-∞C .(,6]-∞D .[6,)+∞二、填空题11.不等式2450x x --+≤的解集为________________.(用区间表示)12.(2019·全国高一课时练习)某公司一年需要购买某种原材料400吨,计划每次购买x 吨,已知每次的运费为4万元/次,一年总的库存费用为4x 万元,为了使总的费用最低,每次购买的数量x 为_____________;13.(2019·全国高一课时练)已知集合A ={t |t 2–4≤0},对于满足集合A 的所有实数t ,则使不等式x 2+tx-t >2x -1恒成立的x 的取值范围是14.(2019·河北高一期末)已知关于x 的不等式()224300x ax a a -+<>的解集为()12,x x ,则1212ax x x x ++的最小值是______.三、解答题15.(2019·黑龙江双鸭山一中高一期末)若不等式()21460a x x --+>的解集是{}31x x -<<.(1)求a 的值;(2)当b 为何值时,230ax bx ++≥的解集为R .16.(2019·山西省永济中学高一期末)如果用akg 糖制出bkg 糖溶液,则糖的质量分数为ab.若在上述溶液中再添加mkg 糖.(Ⅰ)此时糖的质量分数增加到多少?(请用分式表示)(Ⅱ)请将这个事实抽象为数学问题,并给出证明.17.(2019·安徽高一期末)已知关于x 的函数()()221f x x ax a R =-+∈.(Ⅰ)当3a =时,求不等式()0f x ≥的解集;(Ⅱ)若()0f x ≥对任意的()0,x ∈+∞恒成立,求实数a 的最大值.18.(2019·黑龙江高一期末)设函数()()()2230f x ax b x a =+-+≠.(1)若不等式()0f x >的解集(1,1)-,求,a b 的值;(2)若()12f =,①0,0a b >>,求14a b+的最小值;②若()1f x >在R 上恒成立,求实数a 的取值范围.第二章一元二次函数、方程和不等式(答案与解析)二、选择题1.(2019·全国高一课时练)集合2}{0|A x x x =-<(),{|11}B x x =-<<,则A B = ()A .{|12}x x -<<B .{|1x x <-或2x >}C .{|01}x x <<D .{|0x x <或}【答案】C【解析】由题意可得{|02}A x x =<<,{|11}B x x =-<<,所以{|01}A B x x =<< .故选C.2.(2019·全国高一课时练)已知c b a <<,且0ac <,下列不等式中,不一定成立的是()A .ab ac >B .()0c b a ->C .22cb ab <D .()0ac a c -<【答案】C【解析】因为c b a <<且0ac <,所以0a >,0c <,b R ∈.对于A ,因为0a >,c b <,所以ac ab <,即ab ac >一定成立.对于B ,因为b a <,所以0b a -<,所以()0cb a ->一定成立.对于C ,因为b R ∈,所以当0b =时,22cb ab <不成,故22cb ab <不一定成立.对于D ,因为c b a <<,0a >,0c <,所以0a c ->,()0aca c -<一定成立.故选C .3.(2019·全国高一课时练)不等式20ax x c -+>的解集为{}21,x x -<<则函数2y ax x c =++的图像大致为()A. B.D.【答案】C【解析】由题知-2和1是ax 2-x+c=0的两根,由根与系数的关系知-2+1=1a ,,−2×1=c a,∴a=-1,c=2,∴2y ax x c =++=-x 2+x+2=-(x-12)2+94,故选C 4.(2019·河南高一期末)设0a >,0b >,若21a b +=,则21a b+的最小值为A .B .8C .9D .10【答案】C【解析】由题意知,0a >,0b >,且21a b +=,则()212122()5925b a a b a b a b b a ++=+=++≥+=当且仅当22b a a b =时,等号成立,21a b+的最小值为9,故答案选C 。
人教B新版必修1《第2章 等式与不等式》单元测试卷.doc
C. (—1,0]D. (—1,0)B. 9xy — 6x 2y 2 = 3xy(3 — 2xy) |xy 2 + |%2y = - y)人教B 新版必修1《第2章 等式与不等式》单元测试卷一、选择题(本大题共12小题,共60.0分)1. 若a<0<b,则下列不等式恒成立的是()A. - >B. —a>bC. a 2 > b 2D. a 3 < b 3 a b 2, 已知a > 0, b < -1,则下列不等式成立的是()A 、 a 、 a a 、 寥B •彖〉一》>a3.不等式瘁_ * _ 2 > 0的解集是()A. (-j,l)C. (-00,-1) u (2,+oo) C. -三>&> aD. -三 >a>& b b z b b z B. (1,+8) D. (-00,-|) U (1,4-00)4. 已知集合M = {x| — 1 V x V 2}, N = (x\x(x + 3) < 0),则M nN =()A. [-3,2)B. (-3,2) 5, 下列各式的因式分解中正确的是()A. —a? + ab — CLC — —Q (Q + b — c)C. 3a 2x — 6bx + 3% = 3x(a 2 — 2b) *2 + X, X V 0inx ' n , g(x) = /(%) 一 ax,若g(x)有4个零点,则a 的取值范围为() ---------------------------------- ,X > U xA. (0,|)B. (0,土)C. (|,1)D. (土,1)7, 若不等式mx 2 + (m - l )x + m < 0的解集为空集,则实数m 的取值范围是()A. m < 一1 或m > -B. m > 1 1 1C. m > -D. —1 < m < - 8, 以方程x 2 + px + l = 0的两根为三角形两边之长,第三边长为2,则实数p 的取值范围是()A. —2\/2 < p < —2B. p < —2或p > 2C. -2V2 < p < 2V2D. p < -29, 某产品的总成本y (万元)与产量x (台)之间的函数关系式为y = 3000 + 20%- 0.1%2(0 < % < 240,x e N ),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低 产(量是()A.100 台B. 120 台C. 150 台D. 180 台10.设0 <a<b,则下列不等式中正确的是()A. a < b < Vab <B. a < Vab < - < b2 2C. a < y[ab < b <D. Vab < a < V b11.已知。
高中试卷-一元二次函数、方程和不等式(综合测试卷)(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!《一元二次函数、方程和不等式》综合测试卷一、单选题1.(2020·安徽蚌埠·高三其他(文))设集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =I ( )A .(2,2)-B .{2,0,2}-C .{2,4}D .{2,2}-【答案】D 【解析】{}2120{|43}B x x x x x =+-<=-<<,∴{2,2}A B =-I .故选:D .2.(2020·全国高一课时练习)若12,x x 是一元二次方程22630x x -+=的两个根,则12x x -的值为( )A B C .3D 【答案】B 【解析】3624120D =-=>,故方程必有两根,又根据二次方程根与系数的关系,可得1212332x x x x +==,,所以12x x -===故选:B .3.(2020·陕西西安·高三二模(理))已知a ,b 为非零实数,且0a b <<,则下列命题成立的是( )A .22a b <B .2211ab a b <C .22a b ab <D .b a a b<【答案】B 【解析】对于选项A,令1a =-,1b =时,221a b ==,故A 不正确;对于选项C,220a b ab >>,故C 不正确;对于选项D,令1a =-,1b =时,1b aa b=-=,故D 不正确;对于选项B,220a b ab >>,则22110ab a b<<故选:B4.(2020·全国高一课时练习)已知52x …,则()24524x x f x x -+=-有( )A .最大值54B .最小值54C .最大值1D .最小值1【答案】D 【解析】2245(2)1111()(2)1242(2)222x x x f x x x x x -+-+éù===-+´=ê---ëû…当且仅当122x x -=-即3x =时取等号,故选:D .5.(2019·宁波市第四中学高二期中)已知a R Î,则“0a >”是“12a a+³”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】当0a >时,112a a a a +=+³=,当且仅当1a a =,即1a =时取等号,当12a a +³时,可得12a a +≥或12a a+£-,得0a >或0a <,所以“0a >”是“12a a+³”的充分不必要条件,故选:A6.(2020·全国高一课时练习)若方程()2250x m x m ++++=只有正根,则m 的取值范围是( )A .4m £-或4m ³B .54m -<£-C .54m -££-D .52m -<<-【答案】B【解析】方程()2250x m x m ++++=只有正根,则1()当()()22450m m D =+-+=,即4m =±时,当4m =-时,方程为()210x -=时,1x =,符合题意;当4m =时,方程为()230x +=时,3x =-不符合题意.故4m =-成立;2()当()()22450m m D =+-+>,解得4m <-或4m >,则()()()224502050m m m m ìD =+-+>ï-+>íï+>î,解得54m -<<-.综上得54m -<£-.故选B.7.(2020·荆州市北门中学高一期末)若110a b<<,则下列不等式:①a b ab +<;②||||a b >;③a b <;④2b aa b+>中,正确的不等式是( )A .①④B .②③C .①②D .③④【答案】A 【解析】由于110a b<<,所以0b a <<,由此可知:①0a b ab +<<,所以①正确.②b a >,所以②错误.③错误.④由于0b a <<,所以1b a >,有基本不等式得2b a a b +>=,所以④正确.综上所述,正确不等式的序号是①④.故选:A8.(2020·浙江高一课时练习)“关于x 的不等式2x 2ax a 0-+>的解集为R”的一个必要不充分条件是( )A .0a 1<<B .10a 3<<C .0a 1££D .a 0<或1a 3>【答案】C 【解析】因为关于x 的不等式220x ax a -+>的解集为R ,所以函数2()2f x x ax a =-+的图象始终落在x 轴的上方,即2440a a D =-<,解得01a <<,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集,对比可得C 选项满足条件,故选C.9.(2020·全国高一课时练习)将一根铁丝切割成三段,做一个面积为22m ,形状为直角三角形的框架,在下列4种长度的铁丝中,选用最合理共用且浪费最少的是( )A .6.5m B .6.8mC .7mD .7.2m【答案】C 【解析】设直角三角形的框架的两条直角边为x ,y (x >0,y >0)则xy =4,此时三角形框架的周长C 为:x +y =x +y∵x +y ≥2 4∴C =x +y ≥≈6.83故用7米的铁丝最合适.故选C .10.(2020·浙江高一单元测试)已知不等式()19a x y x y æö++ç÷èø≥对任意实数x 、y 恒成立,则实数a 的最小值为( )A .8B .6C .4D .2【答案】C 【解析】()11a ax yx y a x y y x æö++=+++ç÷èøQ .若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意;②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y æö++ç÷èø≥不恒成立;③当0a >时,())211111a ax y x y a a a x y y x æö++=+++³++=+=ç÷èø,当且仅当=y 时,等号成立.所以,)219³,解得4a ³,因此,实数a 的最小值为4.故选:C.二、多选题11.(2020·南京市秦淮中学高二期末)已知命题1:11p x >-,则命题成立的一个必要不充分条件是( )A .12x <<B .12x -<<C .21x -<<D .22x -<<【答案】BD 【解析】由1210(1)(2)01211x x x x x x ->Û<Û--<Û<<--,选项A 为命题12x <<的充要条件,选项B 为12x <<的必要不充分条件,选项C 为12x <<的既不充分也不必要条件,选项D 为12x <<的必要不充分条件,故选:BD.12.(2019·山东莒县·高二期中)已知a ÎZ ,关于x 的一元二次不等式260x x a -+£的解集中有且仅有3个整数,则a 的值可以是( ).A .6B .7C .8D .9【答案】ABC 【解析】设26y x x a =-+,其图像为开口向上,对称轴是3x =的抛物线,如图所示.若关于x 的一元二次不等式260x x a -+£的解集中有且仅有3个整数,因为对称轴为3x =,则2226201610a a ì-´+£í-´+>î解得58a <£,.又a ÎZ ,故a 可以为6,7,8.故选:ABC13.(2020·湖南高新技术产业园区·衡阳市一中高二期末)(多选)若0a b >>,则下列不等式中一定不成立的是( )A .11b b a a +>+B .11a b a b+>+C .11a b b a+>+D .22a b aa b b+>+【答案】AD 【解析】0a b >>Q ,则()()()()1110111b a a b b b b a a a a a a a +-++--==<+++,11b b a a +\>+一定不成立;()1111a b a b a b ab æö+--=--ç÷èø,当1ab >时,110a b a b +-->,故11a b a b +>+可能成立;()11110a b a b b a ab æö+--=-+>ç÷èø,故11a b b a +>+恒成立;()222022a b a b a a b b b a b +--=<++,故22a b aa b b+>+一定不成立.故选AD.14.(2020·浙江高一单元测试)已知,a b R +Î且1a b +=,那么下列不等式中,恒成立的有( ).A .14ab …B .1174ab ab +…C +D .112a b+…【答案】ABC 【解析】,,1a b R a b +Î+=Q ,2124a b ab +æö\=ç÷èø…(当且仅当12a b ==时取得等号).所以选项A 正确由选项A 有14ab £,设1y x x =+,则1y x x =+在104æùçúèû,上单调递减.所以1117444ab ab +³+=,所以选项B 正确22a b a b a b +=+++++=Q (当且仅当12a b ==时取得等号),+.所以选项C 正确.11333222222a b a b b a a b a b a b +++=+=+++=+Q …222a b =时等号成立),所以选项D 不正确.故A ,B ,C 正确故选:ABC 三、填空题15.(2020·荆州市北门中学高一期末)不等式221x x -³-的解集是________.【答案】[0,1)【解析】原不等式可化为2201x x --³-即01xx £-,所以()1010x x x ì-£í-¹î,故01x £<,所以原不等式的解集为[0,1).故答案为:[0,1).16.(2020·全国高一课时练习)设0,2p a æöÎç÷èø,0,2éùÎêúëûp b ,那么23b a -的取值范围是________.【答案】,6p p æö-ç÷èø【解析】因为0,2p a æöÎç÷èø,0,2éùÎêúëûp b ,所以()20,a p Î,,036bp éù-Î-êúëû,∴2,36bp a p æö-Î-ç÷èø.故答案为:,6p p æö-ç÷èø.17.(2020·全国高一课时练习)设a >0,b >0,给出下列不等式:①a 2+1>a ;②114a b a b æöæö++³ç÷ç÷èøèø;③(a +b )11a b æö+ç÷èø≥4;④a 2+9>6a .其中恒成立的是________.(填序号)【答案】①②③【解析】解析由于a 2+1-a =213024a æö-+>ç÷èø,故①恒成立;由于a +1a ≥2,b +1b≥2,∴114a b a b æöæö++³ç÷ç÷èøèø,当且仅当a =b =1时,等号成立,故②恒成立;由于a +b ,11a b +³故(a +b )11a b æö+ç÷èø≥4,当且仅当a =b 时,等号成立,故③恒成立;当a =3时,a 2+9=6a ,故④不恒成立.综上,恒成立的是①②③.故答案为:①②③四、双空题18.(2020·浙江瓯海·温州中学高三一模)《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足.问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少.问人数、猪价各多少?”.设,x y 分别为人数、猪价,则x =___,y =___.【答案】10 900【解析】由题意可得100100900x y x y -=ìí-=î,解得10y 900x ==,.故答案为10 90019.(2020·山东高三其他)已知正实数,a b 满足10ab b -+=,则14b a+的最小值是__________,此时b =_________.【答案】9 32【解析】由10ab b -+=可得1b a b-=,由10b a b -=>,得1b >,所以11444(1)511b b b b a b b +=+=+-+--,因为14(1)41b b +--…,所以149b a +…,当且仅当13,32a b ==时等号成立.故答案为:9;32.20.(2020·曲靖市第二中学(文))已知x >0,y >0,且x +2y =xy ,若x +2y >m 2+2m 恒成立,则xy 的最小值为_____,实数m 的取值范围为_____.【答案】8 (4,2)-【解析】∵x >0,y >0,x +2y =xy ,∴21x y+=1,∴121x y =+³,∴xy ≥8,当且仅当x =4,y =2时取等号,∴x +2y =xy ³8(当x =2y 时,等号成立),∴m 2+2m <8,解得﹣4<m <2.故答案为:8;(﹣4,2)21.(2020·山东威海·高三一模)为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为22400m 的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为228m ,月租费为x 万元;每间肉食水产店面的建造面积为220m ,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则x 的最大值为_________万元.【答案】161【解析】设蔬菜水果类和肉食水产类店分别为,a b ,(1)由题意知,0.852********.82400a b ´³+³´,化简得:48075510a b £+£,又+80a b =,所以48075(80)510a a £+-£,解得:4055a ££,40,41,,55a \=K 共16种;(2)由题意知0.80.980b ax x +³,0.8(80)72b b x x \+-³,0.880.8[1]88b x b b \£=+--,max 804040b =-=Q ,850.8(1)0.81324x \£+=´=,即x 的最大值为1万元,故答案为:16;1五、解答题22.(2020·全国高一课时练习)(1)已知0x >,求4y x x=+的最小值.并求此时x 的值;(2)设302x <<,求函数4(32)y x x =-的最大值;(3)已知2x >,求42x x +-的最小值;(4)已知0x >,0y >,且191x y+=,求x y +的最小值;【答案】(1)当2x =时,4y x x =+取得最小值4;(2)92;(3)6;(4)16【解析】(1)因为0x >,所以44y x x =+³=,当且仅当4x x =,即2x =时取等号;故当2x =时,4y x x=+取得最小值4;(2)302x <<Q ,320x \->.[]22(32)94(32)22(32)222x x y x x x x +-éù\=-=-=êúëûg ….当且仅当232x x =-,即34x =时,等号成立.Q 33(0,)42Î,\函数34(32)(0)2y x x x =-<<的最大值为92.(3)2x >Q ,20x \->()44222622x x x x \+=-+++=--…,当且仅当422x x -=-时取等号,即4x =时,42x x +-的最小值为6,(4)0x Q >,0y >,191x y +=,199()101016y x x y x y x y x yæö\+=++=++=ç÷èø….当且仅当9y x x y=时,上式等号成立,又191x y +=,4x \=,12y =时,()16min x y +=.点睛:利用基本不等式求函数最值是高考考查的重点内容,对不符合基本不等式形式的应首先变形,然后必须满足三个条件:一正、二定、三相等.同时注意灵活运用“1”的代换.23.(2020·全国高一课时练习)已知x ,y 都是正数.求证:()12y x x y+³;()2()()()2233338.x y x y x y x y +++³【答案】()1证明见解析;()2证明见解析.【解析】()1证明:由x ,y 都是正实数,可得2y x x y +³=(当且仅当x y =时取得等号);()2证明:由基本不等式可知()()()(()(22332x y x y x y xy +++³××()23388xy xy x y =×=,(当且仅当x y =时取得等号).24.(2020·全国高一课时练习)日常生活中,在一杯含有a 克糖的b 克糖水中,再加入m 克糖,则这杯糖水变甜了.请根据这一事实提炼出一道不等式,并加以证明.【答案】a a mb b m+<+,0a b <<,0m >,证明见解析【解析】由题知:原来糖水的浓度为100%a b´,加入m 克糖后的浓度为100%+´+a m b m,0a b <<,0m >.因为这杯糖水变甜了,所以100%100%+´<´+a a m b b m,整理得:a a m b b m +<+,0a b <<,0m >.因为()()-++-=-=+++a b m a a m a a m b b m b b m b b m ,又因为0a b <<,0m >,所以0a b -<,()0-<m a b ,()0+>b b m ,所以()()0-<+a b m b b m ,即证a a m b b m+<+.25.(2020·全国高一课时练习)如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系).【答案】a 2+b 2≥2ab.【解析】如图,设大正方形四个角上的直角三角形的两个直角边分别为,a b ,则大正方形的面积为2()a b +,四个矩形的面积和为4ab ,显然,大正方形的面积大于等于四个矩形的面积和,所以2()4,a b ab +³所以a 2+b 2≥2ab.26.(2020·浙江高一课时练习)已知关于x 的不等式2260(0)kx x k k -+<¹.(1)若不等式的解集是{|3x x <-或2}x >-,求k 的值.(2)若不等式的解集是1x x k ìü¹-íýîþ∣,求k 的值.(3)若不等式的解集是R ,求k 的取值范围.(4)若不等式的解集是Æ,求k 的取值范围.【答案】(1)25k =-;(2)k =(3)k <(4)k ³.【解析】(1)由不等式的解集为{3xx <-∣或2}x >-可知k 0<,且3x =-与2x =-是方程2260kx x k -+=的两根,2(3)(2)k\-+-=,解得25k =-.(2)由不等式的解集为1x x k ìü¹-íýîþ∣可知204240k k <ìíD =-=î,解得k =.(3)依题意知20,4240,k k <ìíD =-<î解得k <.(4)依题意知20,4240,k k >ìíD =-£î解得k ³.27.(2020·宁夏兴庆·银川一中高一期末)解关于x 的不等式()222ax x ax a R -³-Î.【答案】当0a =时,不等式的解集为{}|1x x £-;当0a >时,不等式的解集为2{|x x a³或1}x £-;当20a -<<时,不等式的解集为2{|1}x x a ££-;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为2{|1}x x a-££.【解析】原不等式可化为()2220ax a x +--³,即()()210ax x -+³,①当0a =时,原不等式化为10x +£,解得1x £-,②当0a >时,原不等式化为()210x x a æö-+³ç÷èø,解得2x a³或1x £-,③当0a <时,原不等式化为()210x x a æö-+£ç÷èø.当21a >-,即2a <-时,解得21x a-££;当21a=-,即2a =-时,解得1x =-满足题意;当21a<-,即20a -<<时,解得21x a ££-.综上所述,当0a =时,不等式的解集为{}|1x x £-;当0a >时,不等式的解集为2{|x x a³或1}x £-;当20a -<<时,不等式的解集为2{|1}x x a ££-;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为2{|1}x x a -££.。
高中数学必修五第三章《不等式》单元测试题含答案
高中数学必修五第三章单元测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0D .a 2-b 2<03.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .PMC .MP D .∁U M ∩P =∅4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0)C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0)D .(-4,0]10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C.4 D.1 211.函数y=3x2+6x2+1的最小值是( )A.32-3 B.-3 C.6 2 D.62-312.设a>0,b>0.若3是3a与3b的等比中项,则1a+1b的最小值为( )A.8 B.4C.1 D.1 4二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是________.14.函数y=13-2x-x2的定义域是________.15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm2(图中阴影部分),上下空白各2 dm,左右空白各1 dm,则四周空白部分面积的最小值是________dm2.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1. 求证:(1-a )(1-b )(1-c )≥8abc .20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/时)与汽车的平均速度v(千米/时)之间的函数关系为y=144v(v>0).v2-58v+1 225(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f(x)和g(x),当甲公司投入x万元作宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于g(x)万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f(0)=10,g(0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?高中数学必修五第三章单元测试题《不等式》参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③答案 B2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0 D .a 2-b 2<0 答案 C解析 由a -|b |>0⇒|b |<a ⇒-a <b <a ⇒a +b >0,故选C.3.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .P MC .MP D .∁U M ∩P =∅答案 C4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)答案 B解析 ∵x -1x -4<0⇔(x -1)(x -4)<0,∴1<x <4,即B ={x |1<x <4},∴A ∩B =(3,4),故选B.5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0) C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x 答案 D解析 y =x 2+2x 的值域为(-∞,-2]∪[2,+∞);y =x +2x +1=x +1+1x +1>2(x >0);y =sin x +csc x =sin x +1sin x>2(0<sin x <1);y =7x +7-x ≥2(当且仅当x =0时取等号).6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)答案 B7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]答案 C解析 画可行域如图:当直线y =x -z 过A 点时,z min =-1. 当直线y =x -z 过B 点时,z max =2. ∴z ∈[-1,2].8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )答案 C9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0) D .(-4,0]答案 D10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C .4D.12答案 D 11.函数y =3x 2+6x 2+1的最小值是( ) A .32-3B .-3C .6 2D .62-3答案 D 12.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为( ) A .8B .4C .1D.14 答案 B解析 3是3a 与3b 的等比中项⇒3a ·3b =3a +b =3⇒a +b =1,∵a >0,b >0,∴ab ≤a +b 2=12⇒ab ≤14. ∴1a +1b =a +b ab =1ab ≥114=4. 二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.答案 (23,+∞) 14.函数y =13-2x -x2的定义域是________. 答案 {x |-3<x <1}15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm 2(图中阴影部分),上下空白各2 dm ,左右空白各1 dm ,则四周空白部分面积的最小值是________dm 2.答案 56解析 设阴影部分的高为x dm ,宽为72xdm ,则四周空白部分面积是y dm 2,由题意,得y =(x +4)(72x +2)-72=8+2(x +144x )≥8+2×2x ×144x =56.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.答案 (-∞,4)解析 由题意得当x >0时,恒有m <x +4x 成立.设f (x )=x +4x,x >0,则有f (x )=x +4x ≥2x ×4x =4,当且仅当x =4x ,即x =2时,等号成立.所以f (x )=x +4x ,x >0的最小值是4.所以实数m 的取值范围是(-∞,4).三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.答案 (1)(2,+∞) (2)[1,2]18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值. 答案 16解析 由于x >0,y >0,1x +9y=1, 所以x +y =(x +y )(1x +9y )=y x +9x y+10 ≥2y x ·9x y +10=16. 当且仅当y x =9x y 时,等号成立,又由于1x +9y=1. 所以当x =4,y =12时,(x +y )min =16.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1.求证:(1-a )(1-b )(1-c )≥8abc .证明 ∵a 、b 、c 都是正数,且a +b +c =1,∴1-a =b +c ≥2bc >0,1-b =a +c ≥2ac >0,1-c =a +b ≥2ab >0.∴(1-a )(1-b )(1-c )≥2bc ·2ac ·2ab =8abc .∴原不等式成立.20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?解析 设A 厂工作x 小时,B 厂工作y 小时,总工作时数为t 小时,则目标函数t =x +y ,x ,y 满足⎩⎪⎨⎪⎧ x +3y ≥40,2x +y ≥20,x ≥0,y ≥0.可行域如图所示,而符合题意的解为此内的整点,于是问题变为要在此可行域内,找出整点(x ,y ),使t =x +y 的值最小.由图知当直线l :y =-x +t 过Q 点时,纵截距t 最小.解方程组⎩⎪⎨⎪⎧ x +3y =40,2x +y =20,得Q (4,12).答:A 厂工作4小时,B 厂工作12小时,可使所费的总工时最少.21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =144v v 2-58v +1 225(v >0). (1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?思路分析 (1)利用基本不等式求最大车流量,(2)转化为解不等式.解析 (1)依题意,有y =144v +1 225v-58≤1442 1 225-58=12, 当且仅当v =1 225v,即v =35时等号成立, ∴y max =12,即当汽车的平均速度v 为35千米/时,车流量最大为12.(2)由题意,得y =144v v 2-58v +1225>9. ∵v 2-58v +1225=(v -29)2+384>0,∴144v >9(v 2-58v +1225).∴v 2-74v +1225<0.解得25<v <49.即汽车的平均速度应在(25,49)内.22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f (x )和g (x ),当甲公司投入x 万元作宣传时,若乙公司投入的宣传费小于f (x )万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x 万元作宣传时,若甲公司投入的宣传费小于g (x )万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f (0)=10,g (0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?解析 (1)f (0)=10表示当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投入10万元宣传费;g (0)=20表示当乙公司不投入宣传费时,甲公司要避免新产品的开发有失败的风险,至少要投入20万元宣传费.(2)设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,依题意,当且仅当⎩⎪⎨⎪⎧ y ≥f x =14x +10, ①x ≥g y =y +20, ②成立,双方均无失败的风险.由①②得y ≥14(y +20)+10⇒4y -y -60≥0, ∴(y -4)(4y +15)≥0.∵4y +15>0,∴y ≥4.∴y ≥16.∴x ≥y +20≥4+20=24.∴x min =24,y min =16.即要使双方均无失败风险,甲公司至少要投入24万元,乙公司至少要投入16万元.。
峡山中学高中数学不等式单元测试题(含有详细答案哦)
峡山中学高中数学不等式(理科)测试题一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1. 已知a <0,-1<b <0,那么(C) A .2a ab ab >>B .2ab ab a >>C .2ab ab a >>D .2ab a ab >>2.“0>>b a ”是“222b a ab +<”的(A)A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 3.不等式b ax >的解集不可能...是(D) A .φB .RC .),(+∞abD .),(ab --∞4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于(C) A .-14 B .14 C .-10 D .105.不等式||x x x <的解集是(C) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是(A) A .}8|{<a a B .}8|{>a aC .}8|{≥a aD .}8|{≤a a7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为(A) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是(D)A .y x+xyB .4522++x x C .tan x +cot xD .xx -+229.设变量满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-,12,1,0y x y x y x 则目标函数z =5x +y 取得最大值时的点的坐标是( D )A .)21,21(B .)31,31(C .(0,1)D .(1,0)10.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在函数1mx y n n=--的图像上,其中mn >0,则n m 21+的最小值为(A) A .8 B .6C .4D .211.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式2(1)()0x f x -<的解集是(D)A .{|10}x x -<<B .{|2,12}x x x <-<<或C .{|2112}x x x -<<<<或D .{|210,12}x x x x <--<<<<或或12.已知不等式()()25x ay x y xy ++≥对任意正实数,x y 恒成立,则正实数a 的最小值为(B) A .16625B .16C .254D .18二、填空题(每小题4分,共16分)13.不等式|21|1x x --<的解集是_____{|02}x x <<________.14.函数121lg+-=x x y 的定义域是____)21,1(-_________. 15.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =_____20________吨.16.已知0()1,0x x f x x ≥⎧=⎨-<⎩,,则不等式3)2(≤+x f 的解集___]3,(-∞_________.三、解答题(共74分)17. 解不等式122log 1815x x x ⎛⎫≤-⎪-+⎝⎭解:原不等式等价于:21582≥+-x x x0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x∴原不等式的解集为]6,5()3,25[18.(本小题满分12分) (理)已知a R ∈,解关于x 的不等式12>-x ax.解:不等式12>-x ax 可化为022)1(>-+-x x a . (1)当1<a 时,01<-a ,则原不等式可化为0212<---x a x , ①若10<<a 时,原不等式的解集为}122|{ax x -<<; ②若0=a 时,原不等式的解集为φ;③若0<a 时,原不等式的解集为}212|{<<-x ax . (2)当a =1时,022>-x ,原不等式的解集为}2|{>x x ; (3)当a >1时,0212>---x a x ,由于a -12<0<2, 原不等式的解集为}212|{>-<x a x x 或 19.(本小题满分12分)设a 、b 、c 为△ABC 得三条边,求证:ab+bc+ac 222a b c ≤++<2(ab+bc+ac )见教材复习参考题B 组.20. 对任意[,]22x ππ∈-,函数x x a a x f 2cos sin )4(221)(--+-=的值恒大于零,求a 的取值范围.325≤a 21.(本小题满分12分)如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器.已知喷水器的喷水区域是半径为5m 的圆.问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?解:设花坛的长、宽分别为xm ,ym ,根据要求,矩形花坛应在喷水区域内,顶点应恰好位于喷水区域的边界.依题意得:25)2()4(22=+y x ,(0,0>>y x )问题转化为在0,0>>y x ,100422=+y x 的条件下,求xy S =的最大值.法一:100)2(2222=+≤⋅⋅==y xy x xy S ,由y x=2和100422=+y x 及0,0>>y x 得:25,210==y x 100max =∴S法二:∵0,0>>y x ,100422=+y x ,41002x x xy S -==∴=10000)200(41)4100(2222+--=-⋅x x x∴当2002=x ,即210=x ,100max =S由100422=+y x 可解得:25=y .答:花坛的长为m 210,宽为m 25,两喷水器位于矩形分成的两个正方形的中心,则符合要求.22.(本小题满分14分)已知函数b ax x x f ++=2)(.(1)若对任意的实数x ,都有a x x f +≥2)(,求b 的取值范围; (2)当]1,1[-∈x 时,)(x f 的最大值为M ,求证:1+≥b M ;(3)若)21,0(∈a ,求证:对于任意的]1,1[-∈x ,1|)(|≤x f 的充要条件是.142a b a -≤≤- 解(1)文:由题得022≥++b x x 恒成立1044≥⇔≤-=∆⇔b b 理:对任意的R x ∈,都有⇔+≥a x x f 2)(对任意的R x ∈,0)()2(2≥-+-+a b x a x 0)(4)2(2≤---=∆⇔a b a)(1412R a b a b ∈≥⇔+≥⇔ ∴),1[+∞∈b .(2)证明:∵,1)1(M b a f ≤++=,1)1(M b a f ≤+-=- ∴222+≥b M ,即1+≥b M .(3)证明:由210<<a 得,0241<-<-a∴)(x f 在]2,1[a --上是减函数,在]1,2[a-上是增函数.∴当1||≤x 时,)(x f 在2ax -=时取得最小值42a b -,在1=x 时取得最大值b a ++1.故对任意的]1,1[-∈x ,.1414111|)(|22a b a a b b a x f -≤≤-⇔⎪⎩⎪⎨⎧-≥-≤++⇔≤。
《不等式》 单元测试7
《不等式》 单元测试7一、选择题1.如果0,0a b <>,那么,下列不等式中正确的是( ) (A )11a b< (B<(C )22a b < (D )||||a b > 2.“a >b >0”是“ab <222b a +”的( )(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件 3.不等式112x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .(,0)-∞⋃(2,)+∞4.下列结论正确的是( ) A .当2lg 1lg ,10≥+≠>xx x x 时且 B .21,0≥+>x x x 时当C .x x x 1,2+≥时当的最小值为2 D .当xx x 1,20-≤<时无最大值 5.若x ,y 是正数,则22)21()21(xy y x +++的最小值是( ) A .3 B .27 C .4 D .29 6.若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a7.设f (x )= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 ( ) (A)(1,2)⋃(3,+∞) (B)(10,+∞) (C)(1,2)⋃ (10 ,+∞) (D)(1,2)8.若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有( )(A )2∈M ,0∈M ; (B )2∉M ,0∉M ; (C )2∈M ,0∉M ; (D )2∉M ,0∈M 9.若b a c b a >∈,R 、、,则下列不等式成立的是( ) (A )b a 11<. (B )22b a >. (C )1122+>+c bc a .(D )||||c b c a >. 10.若,,0a b c >且222412a ab ac bc +++=,则a b c ++的最小值是( )(A) (B )3 (C )2 (D11.已知函数f(x)=ax 2+2ax+4(0<a<3),若x 1<x 2,x 1+x 2=1-a,则( )A.f(x 1)<f(x 2)B.f(x 1)=f(x 2)C.f(x 1)>f(x 2)D.f(x 1)与f(x 2)的大小不能确定12.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( )(A )3-1 (B) 3+1 (C) 23+2 (D) 23-2 二 填空题13.不等式0121>+-x x的解集是 . 14.已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 .15.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为16.已知实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,则2y x -的最大值是_________.三、解答题17.设函数)32lg()(-=x x f 的定义域为集合M ,函数121)(--=x x g 的定义域为集合N .求: (1)集合M ,N ;(2)集合N M I ,N M Y .18已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为(1,3). (1)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; (2)若)(x f 的最大值为正数,求a 的取值范围.19.设f(x)=3ax 22.0bx c a b c ++++=若,f(0)>0,f(1)>0,求证:(Ⅰ)a >0且-2<ba<-1;(Ⅱ)方程f(x)=0在(0,1)内有两个实根.20.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x . (Ⅰ)求函数g (x )的解析式;(Ⅱ)若h (x )=g (x )-λf (x )+1在[-1,1]上是增函数,求实数λ的取值范围 .《不等式》 单元测试7参考答案一选择题1A 2A 3D 4B 5C 6D 7C 8A9C 10A 11A 12D8解:选(A )方法1:代入判断法,将2,0x x ==分别代入不等式中,判断关于k 的不等式解集是否为R ; 方法2:求出不等式的解集:x k )1(2+≤4k +4422min 222455(1)2[(1)2]252111k x k x k k k k +⇒≤=++-⇒≤++-=-+++; 二填空题13解:应用结论: .不等式等价于(1-2x)(x+1)>0,也就是,所以,从而应填.14解:设直线 l 为,则有关系. 对应用2元均值不等式,得,即ab ≥8 .于是,△OAB 面积为.从而应填4.15 916解析:实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,在坐标系中画出可行域,得三个交点为A(3,0)、B(5,0)、C(1,2),则2y x -的最大值是0. 三解答题17本小题主要考查集合的基本知识,考查逻辑思维能力和运算能力.满分12分.解:(Ⅰ)};23|{}032|{>=>-=x x x x M}13|{|}013|{}0121|{<≥=≥--=≥--=x x x x x x x x N 或(Ⅱ)};3|{≥=⋂x x N M }231|{><=⋂x x x N M 或.18本小题主要考查二次函数、方程的根与系数关系,考查运用数学知识解决问题的能力.满分12分.解:(Ⅰ)).3,1(02)(的解集为>+x x f Θ因而且.0),3)(1(2)(<--=+a x x a x x f.3)42(2)3)(1()(2a x a ax x x x a x f ++-=---=①由方程.09)42(06)(2=++-=+a x a ax a x f 得 ②因为方程②有两个相等的根,所以094)]42([2=⋅-+-=∆a a a ,即 .511.01452-===--a a a a 或解得由于51.1,0-==<a a a 将舍去代入①得)(x f 的解析式.535651)(2---=x x x f(Ⅱ)由aa a a a x a a x a ax x f 14)21(3)21(2)(222++-+-=++-= 及.14)(,02aa a x f a ++-<的最大值为可得由⎪⎩⎪⎨⎧<>++-,0,0142a a a a 解得 .03232<<+---<a a 或 故当)(x f 的最大值为正数时,实数a 的取值范围是).0,32()32,(+----∞Y 19解:本题主要考查二次函数的基本性质与不等式的应用等基础知识。
人教A数学必修5第十单元单元测试卷:基本不等式(有答案)
人教A数学必修5第十单元单元测试卷:基本不等式一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选项符合题意)1. 若x,y是正数,且1x +4y=1,则xy有()A.最小值16B.最小值116C.最大值16 D.最大值1162. 当x∈R且x≠0时,下列不等式恒成立的是()A.x+1x ≥2 B.x+1x≤−2 C.|x|x2+1≥12D.|x+1x|≥23. 已知a>−3,b>−4,(a+3)(b+4)=25,则a+b的最小值是()A.2B.3C.5D.104. 若0<a<1,0<b<1且a≠b,则a+b,2√ab,a2+b2,2ab中最大的是()A.a+bB.2√abC.a2+b2D.2ab5. 已知正数x,y满足x2+2xy−3=0,则2x+y的最小值是()A.1B.3C.6D.126. 已知点P(x, y)在经过A(3, 0),B(1, 1)两点的直线上,则2x+4y的最小值为()A.2√2B.4√2C.16D.47. 当0<x<π2,函数f(x)=1+cos2x+8sin2xsin2x的最小值为()A.2B.2√3C.4D.4√38. 在腰长为10cm的等腰直角三角形中作一个内接矩形,使它的一边在斜边上,另外两个顶点在两个腰上,则矩形面积的最大值为()A. 25cm2B. 5cm2C. 10cm2D. 8cm29. 已知向量a →=(3, −2),b →=(x, y −1)且a → // b →,若x ,y 均为正数,则3x +2y 的最小值是( ) A.53 B.83C.8D.2410. 无字证明是指利用图象而无需文字解释就能不证自明的数学命题,由于其不证自明的特性,这种证明方式被认为比严格的数学证明更为优雅与条理,观察此图象,同学们能无字证明的结论是( )A.a 2+b 2≥a +bB.4ab ≥a 2+b 2C.a +b >2√abD.a 2+b 2≥2ab11. 在实数集R 中定义一种运算“∗”,对任意a ,b ∈R ,a ∗b 为唯一确定的实数,且具有性质:(1)对任意a ∈R ,a ∗0=a ;(2)对任意a ,b ∈R ,a ∗b =ab +(a ∗0)+(b ∗0). 则函数f(x)=(e x )∗1e x 的最小值为( ) A.2 B.3 C.6 D.812. 已知与两坐标轴正半轴都相交的直线xa+yb =1恒过定点(2,5),则使不等式lg a +lg b ≥m 恒成立的m 的最大值为( ) A.1 B.2 C.1+2lg 2 D.2+2lg 2二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)已知x >2,则函数y =x 2−4x+8x−2的最小值为________.若函数f(x)=x +m 2x在(0, +∞)上的最小值为4,则m 的值为________.已知正实数x,a1,a2,y成等差数列,正实数x,b1,b2,y成等比数列,则√b1b2a1+a2的取值范围是________.若a,b∈R,ab>0,则a 4+4b4+1ab的最小值为________.三、解答题(本大题共4小题,共40分,解答应写出文字说明、证明过程或演算步骤) 回答下列问题:(1)求证:4a−3+a≥7(其中a>3);(2)已知a,b,c∈(0,+∞),且a+b+c=1,求证:1a +1b+1c≥9.已知函数f(x)=log4(4x+1)−(k−1)x(x∈R,k为常数)为偶函数.(1)求常数k的值;(2)当x取何值时,函数f(x)的值最小?并求出f(x)的最小值.如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为xm,宽为ym.(1)若菜园面积为72m2,则x,y为何值时,可使所用篱笆总长最小?(2)若使用的篱笆总长度为30m,求1x +2y的最小值.设x,y满足约束条件{2x−y+2≥0,8x−y−4≤0,x≥0,y≥0,若目标函数z=ax+by(a>0, b>0)的最大值为8.(1)求1a +1b的最小值;(2)求a2+16b2−4ab的最小值.四、附加题(本大题共2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤)某厂家拟在2018年举行促销活动,经调查测算,该产品的年销售量(也是该厂的年产量)x万件与年促销费用m(m≥0)万元满足x=3−km+1(k如果不搞促销活动,则该产品的年销售量只能是1万件.预计2018年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)设2018年该产品的利润为y万元,将y表示为m的函数;(2)该厂家2018年的促销费用投入多少万元时获得的利润最大?已知函数f(x)=xx+1(x≠−1).(1)求f(x)的单调区间;(2)若a>b>0,且c=1(a−b)b ,求证:f(a2)+f(c)>45.参考答案与试题解析人教A数学必修5第十单元单元测试卷:基本不等式一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选项符合题意)1.【答案】A【考点】基本不等式在最值问题中的应用基本不等式【解析】由题意可得1x +4y=1≥2√4xy=4√1xy,可得1xy≤116,即xy≥16,从而得到结论.【解答】解:由于x,y是正数,且1x +4y=1,∴1x+4y=1≥2√4xy=4√1xy,∴1xy≤116,∴xy≥16,当且仅当1x =4y=12时,等号成立,∴xy有最小值为16,故选A.2.【答案】D【考点】不等式恒成立问题【解析】此题暂无解析【解答】解:因为x∈R且x≠0,所以当x>0时,x+1x≥2(当且仅当x=1时取等号),当x<0时,−x>0,所以x+1x =−(−x+1−x)≤−2(当且仅当x=−1时取等号),所以排除A,B;又x2+1≥2|x|,所以|x|x2+1≤12(当且仅当|x|=1时取等号),所以排除C;因为|x+1x|≥|2|=2,所以D正确. 故选D.3.【答案】B【考点】基本不等式在最值问题中的应用基本不等式【解析】此题暂无解析【解答】解:由a>−3,b>−4,可得a+3>0,b+4>0,则a+b=(a+3)+(b+4)−7≥2√(a+3)(b+4)−7=3,当且仅当a+3=b+4=5,即a=2,b=1时取等号.故选B.4.【答案】A【考点】基本不等式在最值问题中的应用基本不等式【解析】此题暂无解析【解答】解:由基本不等式,可知a+b≥2√ab,a2+b2≥2ab,又0<a<1,0<b<1,所以a+b>a2+b2,所以最大的一个是a+b.故选A.5.【答案】B【考点】基本不等式在最值问题中的应用【解析】此题暂无解析【解答】解:由x2+2xy−3=0,得y=3−x 22x =32x−12x,所以2x+y=32x+32x≥2×32=3(当且仅当x=1时,等号成立).故选B.6.【答案】B【考点】基本不等式在最值问题中的应用 直线的点斜式方程 斜率的计算公式【解析】由点P(x, y)在经过A(3, 0),B(1, 1)两点的直线上可求得直线AB 的方程,即点P(x, y)的坐标间的关系式,再利用基本不等式可求得2x +4y 的最小值. 【解答】解:由A(3, 0),B(1, 1)可求直线AB 的斜率k AB =−12, ∴ 由点斜式可得直线AB 的方程为:x +2y =3.∴ 2x +4y =2x +22y ≥2√2x ⋅22y =2√2x+2y =2√23=4√2, 当且仅当x =2y =32时取等号. 故选B . 7.【答案】 C【考点】二倍角的正弦公式 二倍角的余弦公式 基本不等式同角三角函数间的基本关系 【解析】 此题暂无解析 【解答】解:因为0<x <π2,所以tan x >0. 所以f(x)=1+cos 2x+8sin 2xsin 2x=2cos 2x+8sin 2x 2sin x cos x=1+4tan 2x tan x =1tan x +4tan x≥2√1tan x⋅4tan x =4,当且仅当tan x =12时取等号, 所以函数f(x)=1+cos 2x+8sin 2xsin 2x的最小值为4.故选C . 8. 【答案】 A【考点】等腰三角形的性质基本不等式在最值问题中的应用 基本不等式【解析】本题考察基本不等式的运用。
高二数学必修五单元测试03不等式(A卷)(解析版).doc
班级_________ 姓名_____________ 学号____________ 分数 ___________ 《必修五单元测试三不等式》测试卷(A卷)(测试时间:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.在不等式x + 2y-1>0表示的平面区域内的点是()A. (1,-1)B. (0,1)C. (1,0)D. (-2,0)【答案】B【解析】试题分析:・・・1+2><(_1)_1〈0;0+2><1_1血1 + 2><0-1 = 0;-2 + 2><0-1<0,二可知点(0丄)在不等式x+2y-l >0表示的平面区域內.故B正确.2.已知集合A = [xeN\x2-5x + 4<0], B = {x\x2-4 = o],下列结论成立的是()A. Be A B_. A\J B = A C. Ar\B = A D. AcB = {2}【答案】D【解析】由已知得A = {123,4}, B = {-2,2},则AcB = {2},故选D.x>l3.区域{y>\构成的儿何图形的面积是()x+y<3A. 2B. 1C. 一D.-4 2【答案】D【解析】画出不等式组表示的区域如图,结合图形对知区域三角形的面积是S=-xlxl=l,应选答案D.2 24.[2018届河南省中原名校高三上学期第一次质】若a<b<0,则下列不等关系屮,不能成立的是1 ] ] ] 1 1A. ->-B. -------------------- >-C. a3 <b3D. a2 > b2a b a~b a【答案】B【解析]Va<b<0,.\a<a - b<0由y =丄在(一a,0)上单调递减知:一-— < 丄x a~b a因此B不成立.故选:B.5.不等式乞二L>0的解集是()x + 3A. _,+8B. (4,+00)、2(J 、C. (-00, -3)U(4, +oo)D. (-00,-3)u —,+oo【答案】D【解析】分式不等式可转换为二次不等式:(2兀一1)(兀+3)>0,(\ \据此可得不等式的解集为:(-00,-3)u -,+a)>本题选择D选项.6.已知关于兀的不等式x2-4x>m对任意XG(O,1]恒成立,则有()A. m <一3B. m >—3C. —3 < m < 0D. m > ~4【答案】A【解析1 vx2-4x> w对任意xe[O3l]恒成立,令/(x)=x2-4x s xe[0a l], v f(x)的对称轴为x = 2 ,二/ (x)在[0 J]单调递减,二当* 1时取到最小值为-3 ,:.实数w的取值范围是w<-3,故选A.X>1x + y<47.【2018届四川省南充市高三零诊】若实数俎y满足lx-2y-lS0 ,贝ljz = 2x + y的最大值为()A. 2B. 5C. 7D. 8【答案】C【解析】作出可行域:学@科网rf]Z = 2x +儿可得:y=- 2x + z,平行移动丿=-2兀+ z,由图象可知当直线经过点A时,直线的纵截距最大, 即z最大;易得A(3, 1),带入目标惭数z = 2咒+儿得:z = 2x3 + l = 7,即z = 2兀+ y的最大值为7故选:C.8.已知/(兀)=0?+加,且满足:15/(1)53,-1</(-1)<1,则/(2)的取值范围是()A. [0,12] B. [2,10] C. [0,10] D. [2,12]【答案】B【解析】・・・/(兀)=血2+加且15/(1)53, -1</(-1)<1, :.\<a + b<3, -\<a-b<\,JV+V =4 x— 3/(2)= 4a + 2b,令4d + " = x(Q+b) + y(a—b),可得{7-,解得{—,即x-y=2 y=l4a + 2/? = 3(Q+b)+(o—b), ・・・353(d+b)59, 253(a+b)+(d—b)510,则/(2)的取值范围是[2,10],故选B.F — r — 69.不等式一<0的解集为()兀—1A. {兀|兀(一2或»1}B. {兀| 兀<一2或vxv3}C. {兀|-2v兀〈1或x〉3}D. {%|-2VJVV1或lcxv3}【答案】B【解析】不等式即:(〒)(节2)<0(-1)转化为高次不等式:(x-3)(x+2)(x-l)<0利用数轴穿根法解得x < —2或1 v尢v 3 ,本题选择B选项.点睛:解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.10.若a,bER且必>0,则下列不等式中,恒成立的是()11 2 b a9 9.—— +「> ~严= —d—二2A. a + b > 2ab g a + b > Q a b ^Jab D. Q b'【答案】D【解析】对于选项A,当a = b时不成立;对于选项巧当a<0.b<0或a = b > 0时不成立;对于选项C, 当aV0,b<0时不成立:对于选项D,因为ab>0,所以;>0^>0,由基本不等式有恒成立, 故选D.y>0尤-y + 1 二011.[2018届广东省茂名市五大联盟学校高三9月】设绘y满足约束条件U + y-3<0,贝ijz = x-3y的最大值为()A. 3B. -5C. 1D. -1【答案】Ax - y +1 > 0 y = _x —z —z画出不等•式组k + 表示的区域如图,则问题转化为求动直线 3 B 在y 上的截距B 的最小值 1 1的问题,结合图形可知:当动直线一孑经过点P (3,0)^, z nlax = 3-3x0 = 3,应选答案A .12. [2018届云南省师范大学附属中学高三月考一】若直线ax + by-2 = Q (d>0』>0)始终平分圆第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填•在答题纸上)13.【2018届江苏省泰州屮学高三上学期开学】已知点PU ,y )满足<-XI y>>-+ y Xy z ~~ _贝I 」X 的最大值为 __________【解析】画出满足条件的半面区域,如图示:由z【答案】D【解析】x 2+y 2-2x-2y = 2 的周长,则眾的最小值为(3-2^2 43-2^2 ~2-D.【解析】直线平分圆周,则直线过圆心(1」),所以有G + b = 2,-!- +丄二丄(d + b) — 2ci b 2、)"(1 1)• -I 2G b )b = y[2a 时取“二”),故选 D.y咒表示过平面区域的点Qy)与(°,°)的直线的斜率,显然直线过力仃,3)时,z取得最大值,x故答案为:3.14. [2018届河南省中原名校高三上学期第一次联考】某学生计划用不超过50元钱购买单价分别为6元、7元的软皮和硬皮两种笔记本,根据需要软皮笔记本至少买3本,硬皮笔记本至少买2本,则不同的选购方式共有. _________ 种.【答案】7.(6x + 7y < 50% > 3沖2【解析】根据题意,设买x本软皮笔记本,y本硬皮笔记本,则有I ,32y <——当x=3时,7 ,可取的值.为2、3、4;26y < —当x=4时,7,可取的值为2、3;20y <——当x=5时,一7,可取的值为2;14y <——当X二6时,7,可取的值为2;共7种不同的选购方式;故答案为:7.15.若不等式x2-ax-b< 0的解集为何2VXV3},则不等式bx2-ax-l>0的解集为_____________________【答案】【解析】.••不等式x2-ax-b<0的解集为{x|2<x<3})・・・2,3是一元二次方程x2-ax-b = 0的两个实数根,2 +3 = a[2 x 3 =- b ,解得。
一元一次不等式单元检测 (简单)基础巩固 答案
第三章、一元一次不等式单元测试(难度:简单)参考答案与试题解析一.选择题(共10小题)1.在下列数学表达式:①﹣2<0,②2y﹣5>1,③m=1,④x2﹣x,⑤x≠﹣2,⑥x+1<2x ﹣1中,是不等式的有()A.2个B.3个C.4个D.5个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≠,所以不等式有:①②⑤⑥,等式有:③.故选:C.【点评】本题主要考查对不等式的意义的理解和掌握,能根据不等式的意义进行判断是解此题的关键.2.把不等式组(b<a<0)的解集表示在数轴上,正确的是()A.B.C.D.【分析】先根据b<a<0,在数轴上表示﹣a和﹣b,再把不等式组的解集在数轴上表示出来,找出符合条件的选项即可.【解答】解:∵b<a<0,∴﹣b>﹣a>0,∴不等式组的解集表示在数轴上为.故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.已知a<b,则下列不等式一定成立的是()A.<B.﹣2a<﹣2b C.a﹣1>b﹣1D.a+3>b+3【分析】根据不等式的性质分析判断.【解答】解:A、不等式a<b的两边同时除以3,不等号的方向不变,即,故此选项符合题意;B、不等式a<b的两边同时乘﹣2,不等号的方向改变,即﹣2a>﹣2b,故此选项不符合题意;C、不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,故此选项不符合题意;D、不等式a<b的两边同时加上3,不等号的方向不变,即a+3<b+3,故此选项不符合题意.故选:A.【点评】本题主要考查了不等式的性质.解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.把一些书分给同学,设每个同学分x本.若____;若分给11个同学,则书有剩余.可列不等式8(x+6)>11x,则横线的信息可以是()A.分给8个同学,则剩余6本B.分给6个同学,则剩余8本C.分给8个同学,则每人可多分6本D.分给6个同学,则每人可多分8本【分析】根据不等式表示的意义解答即可.【解答】解:由不等式8(x+6)>11x,可得:把一些书分给几名同学,如果分给8个同学,则每人可多分6本;若每人分11本,则有剩余.故选:C.【点评】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.5.用适当的符号表示“x的2倍加上5不大于x的3倍减去4”,正确的是()A.2(x+5)≤3(x﹣4)B.2(x+5)<3(x﹣4)C.2x+5<3x﹣4D.2x+5≤3x﹣4【分析】根据题意列出不等式即可.【解答】解:“x的2倍加上5不大于x的3倍减去4”表示为:2x+5≤3x﹣4.故选:D.【点评】本题考查了由实际问题抽象出一元一次不等,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.6.每年的6月5日为世界环境日.中国生态环境部将“共建清洁美丽世界”作为今年环境日的主题,旨在促进全社会增强生态环境保护意识,投身生态文明建设.某校学生会积极响应国家号召,组织七年级和八年级共100名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1800个,至少需要多少名八年级学生参加活动?设参加活动的八年级学生x名,由题意得()A.15x+20(100﹣x)≥1800B.15x+20(100﹣x)>1800C.20x+15(100﹣x)≥1800D.20x+15(100﹣x)≤1800【分析】设至少需要x名八年级学生参加活动,则参加活动的七年级学生为(100﹣x)名,由收集塑料瓶总数不少于1800个建立不等式即可.【解答】解:设八年级有x名学生参加活动,则七年级参加活动的人数为(100﹣x)名,根据题意,得:15(100﹣x)+20x≥1800,故选:C.【点评】本题考查了列一元一次不等式解实际问题的运用和解一元一次不等式,解答时由收集塑料瓶总数不少于1800个建立不等式是解题的关键.7.已知关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为()A.﹣6<m≤﹣3或3<m≤6B.﹣6≤m<﹣3或3≤m<6C.﹣6≤m<﹣3D.﹣6<m≤﹣3【分析】分别求出每一个不等式的解集,根据不等式组的整数解的情况列出关于m的不等式,解之即可.【解答】解:由3x﹣m<0,得:x<,又x>﹣4,且不等式组所有整数解的和为﹣5,∴不等式组的整数解为﹣3、﹣2或﹣3、﹣2、﹣1、0、1,∴﹣2<≤﹣1或1<≤2,解得﹣6<m≤﹣3或3<m≤6,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.已知关于x的不等式组的解集中至少有5个整数解,则整数a的最小值为()A.2B.3C.4D.5【分析】表示出不等式组的解集,由解集中至少有5个整数解,确定出a的范围,进而求出整数a的最小值即可.【解答】解:不等式组整理得:,解得:﹣<x<a,∵不等式组解集中至少有5个整数解,即至少5个整数解为﹣1,0,1,2,3,∴a>3,则整数a的最小值为4.故选:C.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.9.若定义一种新的取整符号[],即[x]表示不超过x的最大整数.例如:[2.3]=2,[−1.6]=−2,则下列结论正确个数是()①[﹣2.1]+[0.1]=﹣3;②[x]+[−x]=0;③方程x﹣[x]=的解有无数多个;④若[x+1]=2,则x的取值范围是3≤x<4;A.1B.2C.3D.4【分析】①根据取整函数的定义,直接求出值;②取特殊值验证,证实或证伪;③在0到1的范围内,找到一个特殊值,进而可以找到无数个解;④把方程问题转化为不等式问题;【解答】解:对于①,[﹣2.1]+[0.1]=﹣3+0=﹣3,正确;对于②,由[0.5]+[﹣0.5]=0﹣1=﹣1,不正确;对于③,当x=,1,2,...时,方程均成立,正确;对于④,由[x+1]=2,得2≤x+1<3,即1≤x<2,不正确;故选:B.【点评】本题考查取整函数与一元一次不等式.解题的关键在于能够把取整函数的等式,转化为一元一次不等式问题去解决.10.已知关于x的不等式组有且只有三个整数解,且关于y的一元一次方程ay﹣4=2y有整数解,则所有满足条件的整数a值之和是()A.﹣1B.0C.1D.2【分析】先解出每个不等式的解集,即可得到该不等式组的解集,然后根据不等式组有且只有三个整数解,确定a的取值范围,再解一元一次方程,根据方程有整数解确定满足条件的a的值,从而求和.【解答】解:,解不等式5x﹣4<4﹣a,得:x<,∴不等式组的解集为﹣2<x<,又∵该不等式组有且只有三个整数解,∴1<≤2,解得:﹣2≤a<3,ay﹣4=2y,移项,得:ay﹣2y=4,合并同类项,得:(a﹣2)y=4,系数化1,得:y=,∵该方程有整数解,且a﹣2≠0,∴符合条件的整数a有﹣2、0、1,∴满足条件的整数a值之和是﹣2+0+1=﹣1.故选:A.【点评】本题考查解一元一次不等式组,解一元一次方程,理解解一元一次不等式组和解一元一次方程的步骤,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二.填空题(共6小题)11.不等式2x<﹣12的解集是x<﹣6.【分析】直接把未知数的系数化“1”即可.【解答】解:2x<﹣12,解得:x<﹣6,故答案为:x<﹣6.【点评】本题考查的是一元一次不等式的解法,掌握“解一元一次不等式的步骤”是解本题的关键.12.若a<b,那么﹣2a>﹣2b(填“>”“<”或“=”).【分析】根据不等式的性质3得出答案即可.【解答】解:∵a<b,∴﹣2a>﹣2b,故答案为:>.【点评】本题考查了不等式的性质,能熟记不等式的性质3(不等式的两边都乘同一个负数,不等号的方向改变)是解此题的关键.13.已知(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,则k+1 不是(填“是”或“不是”)不等式x+2<2x﹣1的解.【分析】先根据二元一次方程的定义求出k的值,再求出不等式的解集即可判断.【解答】解:∵(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,∴,解得k=﹣5;解不等式x+2<2x﹣1,得x>3,∵k+1=﹣5+1=﹣4<3,∴k+1不是不等式x+2<2x﹣1的解.故答案为:不是.【点评】本题考查了二元一次方程的定义以及不等式的解集,掌握二元一次方程的定义是解答本题的关键.14.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x的取值范围是2<x≤4.【分析】根据第二次运算结果不大于28,且第三次运算结果要大于28,列出关于x的一元一次不等式组,解之即可得出x的取值范围.【解答】解:依题意得:,解得:2<x≤4,故答案为:2<x≤4.【点评】本题考查一元一次不等式组的应用,解题的关键是理解题意,能列出不等式组.15.我国《劳动法》对劳动者的加班工资作出了明确规定,“五一”长假期间,前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资.小屈由于工作需要,今年5月2日、3日、4日共加班三天,已知小屈的日工资标准为247元,则小屈“五一”长假加班三天的加班工资应不低于1976元.【分析】设小屈“五一”长假加班三天的加班工资应不低于x元,由“前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资”,列出一元一次不等式,解不等式即可.【解答】解:设小屈“五一”长假加班三天的加班工资应不低于x元,由题意得:x≥2×247×300%+247×200%,解得:x≥1976(元),故答案为:1976.【点评】本题考查了一元一次不等式的应用,找准对应关系,列出一元一次不等式是解题的关键.16.已知三个实数a,b,c,满足a+2b+3c=9,2a﹣b﹣4c=﹣2,且a≥0,b≥0,c≥0,则4a+3b+c的最小值为17.【分析】有两个已知等式a+2b+3c=9,2a﹣b﹣4c=﹣2,可用其中一个未知数表示另两个未知数得,然后由条件:a、b、c均是非负数,可求出第一个未知数c的取值范围,代入m=3a+b﹣7c,即可得解.【解答】解:联立,解得,由题意知:a、b、c均是非负数,则,解得﹣1≤c≤2,所以4a+3b+c=4(1+c)+3(4﹣2c)+c=4+4c+12﹣6c+c=16﹣c当c=﹣1时,4a+3b+c有最小值,即4a+3b+c=16﹣(﹣1)=17.故答案为:17.【点评】此题主要考查不等式的性质、解三元一次方程组、代数式求值,涉及的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.三.解答题(共7小题)17.解下列不等式:(1);(2).【分析】根据解一元一次不等式的步骤解不等式即可.【解答】解:(1)两边同时乘以6得:6﹣2(8+x)≥3x,去括号得:6﹣16﹣2x≥3x,移项得:﹣2x﹣3x≥﹣6+16,合并同类项得:﹣5x≥10,把未知数系数化为1得:x≤﹣2;(2)两边同时乘以6得:2(2x+1)﹣(2﹣x)>3(x﹣1),去括号得:4x+2﹣2+x>3x﹣3,移项得:4x+x﹣3x>﹣3﹣2+2,合并同类项得:2x>﹣3,把未知数系数化为1得:x>﹣.【点评】本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的一般步骤.18.解不等式组:,并把解集在数轴上表示出来.【分析】先解出每个不等式的解集,再取公共解集即可.【解答】解:,解不等式①得:x<3,解不等式②得:x≥2,∴2≤x<3,把解集表示在数轴上:【点评】本题考查解一元一次不等式组,解题的关键是掌握取不等式公共解集的方法.19.下面是小虎同学解不等式的过程,请认真阅读并完成相应任务.解:去分母,得3(1+x)﹣2(2x+1)≤6………第一步去括号,得3+3x﹣4x﹣2≤6……………………………第二步移项,得3x﹣4x≤6﹣3+2………………………………第三步合并同类项,得﹣x≤5…………………………………第四步两边都除以﹣1,得x≤﹣5………………………………第五步任务:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)请直接写出该不等式的正确解集.【分析】(1)观察解不等式第二步的步骤即可求解;(2)观察解不等式的步骤,找出出错的步骤,分析其原因即可;(3)写出不等式正确解集即可.【解答】解:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;故答案为:乘法分配律;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);故答案为:五,不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)去分母,得3(1+x)﹣2(2x+1)≤6………第一步,去括号,得3+3x﹣4x﹣2≤6……………………………第二步,移项,得3x﹣4x≤6﹣3+2………………………………第三步,合并同类项,得﹣x≤5…………………………………第四步,两边都除以﹣1,得x≥﹣5………………………………第五步.【点评】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.20.某文教用品商店用1200元购进了甲、乙两种圆珠笔.已知甲种笔进价为每支12元,乙种笔进价为每支10元.文教店在销售时甲种笔售价为每支15元,乙种笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种笔各多少支;(2)若该文教商店以原价再次购进甲、乙两种笔,且购进甲种笔的数量不变,而购进乙种笔的数量是第一次的2倍,乙种笔按原售价销售,而甲种笔降价销售,当两种笔销售完毕时,要使再次购进的笔获利不少于340元,甲种笔最低售价每支应为多少元?【分析】(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,根据其进价和利润建立等量关系列出方程组求出其解即可.(2)设甲种圆珠笔每只的售价为m元,就可以求出甲种圆珠笔每只的利润,表示出甲种圆珠笔的总利润再加上乙种圆珠笔的总利润就是两种圆珠笔销售完后的总利润,由题意就可以建立不等式.从而求出其解.【解答】解:(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,由题意得,,解得.答:这个商店购进甲种圆珠笔50支,乙种圆珠笔60支.(2)设甲种笔每只的最低售价为m元,由题意得,50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.∵m为整数,∴m的最小值为14,故甲种笔每只的最低售价为每支14元.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出等式是解题关键.21.已知方程组的解x为非负数,y为非正数,求a的取值范围.【分析】解方程组得,根据“x为非负数,y为非正数”得出,解之即可.【解答】解:解方程组得,由题意知,,解得a≥3.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.冰墩墩(如图)是2022年北京冬季奥运会的吉祥物.某商店购进冰墩墩手办和冰墩墩装饰扣若干个,已知每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元.(1)冰墩墩装饰扣和冰墩墩手办的进价各多少元?(2)若商店以相同的价格1200元分别购进冰墩墩装饰扣和冰墩墩手办若干个,其中冰墩墩装饰扣的售价要比冰墩墩手办的售价少30元,且销售完毕后获利不低于1100元,问每个冰墩墩手办的售价至少是多少元?【分析】(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,根据“每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用数量=总价÷单价,可求出购进冰墩墩装饰扣及冰墩墩手办的数量,设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,利用总利润=销售单价×销售数量﹣进货总价,结合销售完毕后获利不低于1100元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,依题意得:,解得:.答:冰墩墩装饰扣的进价为40元,冰墩墩手办的进价为60元.(2)购进冰墩墩装饰扣的数量为1200÷40=30(个),购进冰墩墩手办的数量为1200÷60=20(个).设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,依题意得:20m+30(m﹣30)﹣1200﹣1200≥1100,解得:m≥88,∴m的最小值为88.答:每个冰墩墩手办的售价至少为88元.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.若不等式(组)只有n个正整数解(n为自然数),则称这个不等式(组)为n阶不等式(组).我们规定:当n=0时,这个不等式(组)为0阶不等式(组).例如:不等式x+1<6只有4个正整数解,因此称其为4阶不等式.不等式组只有3个正整数解,因此称其为3阶不等式组.请根据定义完成下列问题:(1)x<是0阶不等式;是1阶不等式组;(2)若关于x的不等式组是4阶不等式组,求a的取值范围;(3)关于x的不等式组的正整数解有a1,a2,a3,a4,…其中a1<a2<a3<a4<…如果是(m﹣3)阶不等式组,且关于x的方程2x﹣m=0的解是的正整数解a3,请求出m的值以及p的取值范围.【分析】(1)根据题目中的定义进行分析;(2)根据题目中的定义进行分析,可知整数解为1,2,3,4,从而可得出a的范围;(3)分析题意,可以利用特殊值法,看(m﹣3)是从第几个整数开始的,从而求解.【解答】解:(1)∵x<没有正整数解,∴x<是0阶不等式;由得1<x<3,∴有1个正整数解,∴是1阶不等式组,故答案为:0,1;(2)解不等式组得:1≤x<2a,由题意得:x有4个正整数解,为:1,2,3,4,∴4<2a≤5,解得:2<a≤2.5;(3)由题意得,m是正整数,且p≤x<m有(m﹣3)个正整数解,∴2<p≤3,=5,∴m=10.【点评】本题考查了一元一次不等式组的正整数解,理解题中的新定义是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.24不等式单元测试卷一、选择题(本大题共10小题,每小题5分,共50分) 1.已知c<d, a > b >0, 下列不等式中必成立的一个是( )A .a +c> b +dB .a -c> b -dC .a d< b cD . dbc a > 2.设a 、b ∈R ,且a b<0,则( )A .| a +b|>| a -b|B .| a +b|<| a -b|C .| a -b|<| a |-|b|D .| a -b|<| a |+|b|4.不等式| x -4|≤3 的整数解的个数是( )A .7B .6C .5D .45.设集合p={ x |-2< x <3},Q={ x | | x +1|>2,x ∈R},则集合P ∪Q=( )A .{ x |-2< x <1}B .{ x |1< x <3}C .{ x |-3< x <3|D .{ x | x <-3 或x >-2}7.不等式122+<+x x 的解集是( )A .(-3, -2)∪(0, +∞)B .(-∞, -3)∪(-2, 0)C .(-3, 0)D .(-∞, -3)∪(0, +∞)8.若a < b <0,则下列结论中正确的是( )A. 不等式||1||111b a b a >>和均不成立 B. 不等式||1||111b a a b a >>-和均不成立 C. 不等式22)1()1(11ab b a a b a +>+>-和均不成立 D. 不等式22)1()1(||1||1ab b a b a +>+>和均不成立 9.关于x 的不等式a x 2+b x +2>0的解集是}3121|{<<-x x ,则a +b=( )A .10B .-10C .14D .-1410.已知集合A={ x | | x -1|≤a , a >0}, B={ x | | x -3|>4},且A ∩B=φ,则a 的取值范围是 ( )A .(0, 2]B .(-∞, 2]C .(7, +∞)D .(- ∞, -1)二、填空题(本大题共4小题,每小题6分,共24分)11.已知sin 2α+sin 2β+sin 2r=1(α、β、r 均为锐角),则cos αcos βcosr 的最大值等于 . 13.不等式x x x <-24的解集是 .14.某工厂建造一间地面面积为12m 2的背面靠墙的矩形小房,房屋正面的造价为1200元/ m 2,房屋侧面的造价为800元/ m 2,屋顶的造价为5800元,如果墙高为3 m ,且不计房屋背面的费用,则建造此小房的最低总造价是 元. 三、解答题(本大题共6题,共76分) 16.解不等式2931831>⋅+-+x x .(12分)17.锐角三角形△ABC 中,已知边a =1,b=2,求边c 的取值范围.(12分)18.求证:bb aa ba b a +++≤+++111(12分)19.已知21)(x x f += 当a ≠b 时 求证:|||)()(|b a b f a f -<-.(14分)参考答案一.选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案BBAADBABDA二.填空题(本大题共4小题,每小题6分,共24分) 11.69212.S 13.]4,2( 14.34600三、解答题(本大题共6题,共76分) 15.(12分)[解法一]:[][])1(log )1(log )1(log )1(log |)1(log | |)1(log |22x x x x x x a a a a a a +---+-=+--xxx a a +--=11log )1(log 2 ∵0 < 1 - x 2 < 1,1110<+-<x x∴011log )1(log 2>+--xx x a a ∴|)1(log | |)1(log |x x a a +>- [解法二]:2111111log 11log )1(log )1(log )1(log )1(log x x x x x x x xx x x a a -+=-=--=-=+-++++)1(log 121x x --=+∵0 < 1 - x 2 < 1, 1 + x > 1, ∴0)1(log 21>--+x x∴1)1(log 121>--+xx ∴|)1(log | |)1(log |x x a a +>-[解法三]:∵0 < x < 1, ∴0 < 1 - x < 1, 1 < 1 + x < 2, ∴0)1(log ,0)1(log <+>-x x a a∴左 - 右 =)1(log )1(log )1(log 2x x x a a a -=++-∵0 < 1 - x 2 < 1, 且0 < a < 1 ∴0)1(log 2>-x a∴|)1(log | |)1(log |x x a a +>-16.(12分)[解析]:原不等式可化为:018329332>+⋅-⋅x x即:0)233)(93(>-⋅-x x解之得:93>x 或323<x ∴x >2或32log 3<x∴不等式的解集为{x |x >2或32log 3<x} 17.(12分)[解析]:因为△ABC 是锐角三角形,且a =1,b=2,c>0, 所以,0cos 0cos 0cos ⎪⎩⎪⎨⎧>>>C BA即,⎪⎪⎪⎩⎪⎪⎪⎨⎧>⇒>⇒>-+=-+<<⇒<⇒>-+=-+>+⇒>-+=-+3302412505041420304142222222222222222c c c c ac b c a c c c ba c a b c c c bc a c b 因此,所求c 的取值范围是(5,3)18.(12分)[证法一]: 当0=+b a 时,不等式显然成立,当0≠+b a 时,由b a b a +≤+<0ba b a +≥+⇒11所以,ba b a ba ba ba b a +++=++≤++=+++11111111bb aa +++≤11[证法二]:要证明原不等式成立,则只需证明:|a +b|(1+|a |)(1+|b|)≤|a |(1+|a +b|)(1+|b|)+|b|(1+|a +b|)(1+|a |), 展开,合并同类项,得:|a +b|≤|a |+2|a b|+|a 2b+a b 2|+|b|, ∵|a +b|≤|a |+|b|, ∴|a +b|≤|a |+2|a b|+|a 2b+a b 2|+|b|成立, 故原不等式成立.19.(14分)[证法一]:1111|11||)()(|222222+++--+=+-+=-b a b a b a b f a f|||||)(||||))((|11||222222b a b a b a b a b a b a b a b a +-+=+-+<+++-=|||||||||)||(|b a b a b a b a -=+-+≤[证法二]:(构造法) 如图:21)(a a f OA +== 21)(b b f OB +==OA Bab1||||b a AB -=由三角形两边之差小于第三边得:|||)()(|b a b f a f -<-20.(14分)[解析]:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,......,第n 年投入为800×1)511(--n 万元.所以,n 年内的总投入为1)511(800)511(800800--⨯+⋅⋅⋅+-⨯+=n n a ])54(1[4000n -⨯=第1年旅游业收入为400万元,第2年旅游业收入为400×)411(+万元.......,第n 年旅游业收入为400×1)411(-+n 万元.所以,n 年内的旅游业总收入为1)411(400)411(400400-+⨯+⋅⋅⋅++⨯+=n n b ]1)45[(1600-⨯=n(Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此0>-n n a b即]1)45[(1600-⨯n -])54(1[4000n -⨯>0 化简得n )54(5⨯+n)45(2⨯-7>0设n x )54(=,得5 x 2-7 x +2>0,解之得152><x x 或(不合题意,舍去)即 52)54(<n由此得 5≥n答:至少经过5年旅游业的总收入才能超过总投入.。