数值分析实验二数值积分2
数值分析综合实验报告
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析积分实验报告(3篇)
第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
数值计算基础实验报告(3篇)
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
数值分析实验报告心得(3篇)
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值积分方法
数值积分方法数值积分,又称为数值分析,是一种应用科学和数学技术来求解数学分析中几何或者微分方程的数学方法。
在实际应用中,有一系列的数值积分方法可以应用于解决某些数学问题,其中包括这些方法的微元法、有限元法、线性多项式插值法、指数插值法、函数拟合法和通用积分等方法。
通过合理的数值技术及其应用,可以有效地解决众多实际问题。
数值积分是数值分析中最基本的方法,指将数学分析中的连续函数或曲线所表示的求和问题离散化,以使其被数值计算机计算出来,也被称为数值积分。
当需要用数值积分方法求某函数的定积分时,首先必须找出该函数的积分表达式,然后对该表达式进行离散化,得到计算机可以处理的函数,最后根据具体的算法,得到数值积分的解。
数值积分方法具有多种形式,分别适用于不同实际问题。
首先,常用的数值积分方法有积分公式,如梯形公式、抛物线公式、Simpson 公式等,以及牛顿-拉夫逊多项式插值公式等,这些积分公式可以以直接的方式计算定积分,但是这种方法只适用于简单的定积分计算,在复杂定积分的计算中效果不佳。
其次,还有多元积分法,如变步长梯形法、双积分法等,这些积分法可以帮助求解一些复杂的定积分,但是计算时间较长。
此外,还有有限元法、隐式Runge-Kutta法、快速积分法等,这些积分方法能够帮助求解非定积分问题,其计算效率也相对较高。
数值积分方法在实际应用中得到了广泛的应用,如仿真求解有限元方程,求解复杂的拟合问题,估计系统的运行参数,计算力学分析等等都与数值积分技术有关。
另外,今天在这一领域,全球多家著名计算数值分析软件公司也在不断改进技术,开发出更加高效的数值积分软件,从而更好地服务于实际问题的求解。
总之,数值积分方法是一门重要的数值分析学科,可用于解决多种实际问题,广泛应用于科学和技术领域,具有重要的现实意义。
数值分析matlab实验报告
数值分析matlab实验报告《数值分析MATLAB实验报告》摘要:本实验报告基于MATLAB软件进行了数值分析实验,通过对不同数学问题的数值计算和分析,验证了数值分析方法的有效性和准确性。
实验结果表明,MATLAB在数值分析领域具有较高的应用价值和实用性。
一、引言数值分析是一门研究利用计算机进行数值计算和分析的学科,其应用范围涵盖了数学、物理、工程等多个领域。
MATLAB是一种常用的数值计算软件,具有强大的数值分析功能,能够进行高效、准确的数值计算和分析,因此在科学研究和工程实践中得到了广泛的应用。
二、实验目的本实验旨在通过MATLAB软件对数值分析方法进行实验验证,探究其在不同数学问题上的应用效果和准确性,为数值分析方法的实际应用提供参考和指导。
三、实验内容1. 利用MATLAB进行方程求解实验在该实验中,利用MATLAB对给定的方程进行求解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
2. 利用MATLAB进行数值积分实验通过MATLAB对给定函数进行数值积分,比较数值积分结果和解析积分结果,验证数值积分的精度和稳定性。
3. 利用MATLAB进行常微分方程数值解实验通过MATLAB对给定的常微分方程进行数值解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
四、实验结果与分析通过对以上实验内容的实际操作和分析,得出以下结论:1. 在方程求解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在方程求解方面的高准确性和可靠性。
2. 在数值积分实验中,MATLAB给出的数值积分结果与解析积分结果基本吻合,验证了MATLAB在数值积分方面的高精度和稳定性。
3. 在常微分方程数值解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在常微分方程数值解方面的高准确性和可靠性。
五、结论与展望本实验通过MATLAB软件对数值分析方法进行了实验验证,得出了数值分析方法在不同数学问题上的高准确性和可靠性。
数值分析计算实习题答案
数值分析计算实习题答案数值分析计算实习题答案数值分析是一门研究如何利用计算机对数学问题进行近似求解的学科。
在数值分析的学习过程中,实习题是一种重要的学习方式,通过实践来巩固理论知识,并培养解决实际问题的能力。
本文将为大家提供一些数值分析计算实习题的答案,希望能够帮助大家更好地理解和掌握数值分析的相关知识。
一、插值与拟合1. 已知一组数据点,要求通过这些数据点构造一个一次插值多项式,并求出在某一特定点的函数值。
答案:首先,我们可以根据给定的数据点构造一个一次插值多项式。
假设给定的数据点为(x0, y0), (x1, y1),我们可以构造一个一次多项式p(x) = a0 + a1x,其中a0和a1为待定系数。
根据插值条件,我们有p(x0) = y0,p(x1) = y1。
将这两个条件代入多项式中,可以得到一个方程组,通过求解这个方程组,我们就可以确定a0和a1的值。
最后,将求得的多项式代入到某一特定点,就可以得到该点的函数值。
2. 已知一组数据点,要求通过这些数据点进行最小二乘拟合,并求出拟合曲线的表达式。
答案:最小二乘拟合是一种通过最小化误差平方和来找到最佳拟合曲线的方法。
假设给定的数据点为(x0, y0), (x1, y1),我们可以构造一个拟合曲线的表达式y =a0 + a1x + a2x^2 + ... + anx^n,其中a0, a1, ..., an为待定系数。
根据最小二乘拟合原理,我们需要最小化误差平方和E = Σ(yi - f(xi))^2,其中yi为实际数据点的y值,f(xi)为拟合曲线在xi处的函数值。
通过求解这个最小化问题,我们就可以确定拟合曲线的表达式。
二、数值积分1. 已知一个函数的表达式,要求通过数值积分的方法计算函数在某一区间上的定积分值。
答案:数值积分是一种通过将定积分转化为数值求和来近似计算的方法。
假设给定的函数表达式为f(x),我们可以将定积分∫[a, b]f(x)dx近似为Σwi * f(xi),其中wi为权重系数,xi为待定节点。
数值分析-数值积分详解
xk
和 Ak 的代数问题.
b
a
f ( x)dx
A
k 0
n
k
f ( xk ),
11
例 求a,b,c的值使下列求积公式的代数精度 达到最高。
1 1
f ( x)dx a f (1) bf (0) cf (1)
12
3.
插值型的求积公式
设给定一组节点
a x0 x1 x2 xn b,
b
a
f ( x)dx (b a) f ( ),
3
就是说,底为 b a 而高为 f ( ) 的矩形面积恰等于所求 曲边梯形的面积 I (图4-1).
图4-1
4
问题在于点ξ的具体位置一般是不知道的,因而难以
准确算出 f ( ) 的值.
将 f ( ) 称为区间 [a, b]上的平均高度.
k 0
n
16
4 .
定义2
求积公式的收敛性与稳定性
在求积公式中,若
lim
n h 0 k 0
Ak f ( xk )
n
b
a
f ( x)dx,
( xi xi 1 ), 则称求积公式(1.3)是收敛的. 其中 h max 1i n
在求积公式中,由于计算 f ( xk )可能产生误差 k ,
ab 的“高度” f (c ) 2
近似地取代平均
高度 f ( ),则又可导出所谓中矩形公式(简称矩形公式)
R (b a ) f ( ab ). 2
6
一般地,可以在区间 [a, b] 上适当选取某些节点 xk , 然后用 f ( xk ) 加权平均得到平均高度 f ( )的近似值,这样 构造出的求积公式具有下列形式:
数值分析实验报告2
实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。
二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力. 三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。
(1)取不同的步长h 。
分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。
(2)用龙贝格求积计算完成问题(1)。
(3)用自适应辛普森积分,使其精度达到10-4。
五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f ab dx x f b a+-≈⎰ (1.1) )]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-= (1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη(1.3) 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。
2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4) )]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5) ),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。
数值分析中的数值微分与数值积分
数值分析中的数值微分与数值积分数值微分和数值积分是数值分析领域中两个重要的概念。
它们在计算机科学、工程学和物理学等领域中有广泛的应用。
本文将介绍数值微分和数值积分的概念、原理以及一些常用的方法和技巧。
一、数值微分数值微分是通过数值方法来计算函数的导数。
导数是描述函数变化率的工具,它在物理学、经济学和生物学等领域中具有重要的作用。
1. 前向差分法(Forward Difference)前向差分法是一种简单而常用的计算导数的方法。
它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x))/h其中,h为步长,为了提高精度,需要选择足够小的步长。
2. 后向差分法(Backward Difference)后向差分法与前向差分法类似,不同之处在于它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x) - f(x-h))/h同样地,步长h需要选择足够小。
3. 中心差分法(Central Difference)中心差分法是一种更加准确的数值微分方法,它利用函数在某一点上的前后两个点的值来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x-h))/(2h)中心差分法相对于前向差分法和后向差分法而言,具有更高的精度。
二、数值积分数值积分是通过数值方法来计算函数的积分。
积分在物理学、经济学和统计学等领域中起着重要的作用,它可以用来计算面积、体积以及概率等。
1. 矩形法(Rectangle Method)矩形法是一种简单的数值积分方法,它利用多个矩形来逼近曲线下的面积。
具体来说,将积分区间等分为若干子区间,然后在每个子区间上选择一个点作为高度,从而构造出多个矩形。
最后,将各个矩形的面积相加,即可得到近似的积分值。
2. 梯形法(Trapezoidal Method)梯形法是一种更加准确的数值积分方法,它利用多个梯形来逼近曲线下的面积。
数值分析实(00002)
数值分析实验报告2实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。
二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力.三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。
(1)取不同的步长h 。
分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。
(2)用龙贝格求积计算完成问题(1)。
(3)用自适应辛普森积分,使其精度达到10-4。
五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f a b dx x f b a+-≈⎰ (1.1))]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-=(1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη (1.3)其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。
2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4))]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5)),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。
数值分析中的数值微分与数值积分
数值分析中的数值微分与数值积分数值分析是一门重要的数学分支,用于研究如何使用计算机来求解各种数学问题。
数值微分和数值积分是数值分析中的两个基本概念,它们在科学计算和工程应用中具有广泛的应用。
一、数值微分数值微分是通过数值方法来近似计算函数的导数。
在实际计算中,往往很难直接求得函数的导数表达式,这时候数值微分方法就派上用场了。
1. 前向差分公式前向差分公式是最简单的数值微分方法之一,它基于导数的定义,用函数值的差商来近似计算导数。
假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0)) / h其中h是一个足够小的正数,通常称为步长。
通过取不同的步长h,可以得到不同精度的数值微分结果。
2. 中心差分公式中心差分公式是数值微分中较为常用的方法,它利用了函数值的前向和后向差商来近似计算导数。
假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0 - h)) / (2h)与前向差分公式相比,中心差分公式的精度更高,但计算量稍大一些。
二、数值积分数值积分是通过数值方法来近似计算函数在某个区间上的定积分值。
定积分在数学、物理等领域中具有广泛的应用,尤其是对于无法用解析方法求解的积分问题,数值积分提供了可行的解决办法。
1. 矩形法则矩形法则是最简单的数值积分方法之一,它将函数在积分区间上分成若干个小矩形,然后计算这些小矩形的面积之和。
假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * f(x)其中x是[a, b]上的随机点。
2. 梯形法则梯形法则是数值积分中较常用的方法,它将函数在积分区间上分成若干个小梯形,然后计算这些小梯形的面积之和。
假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * (f(a) + f(b)) / 2梯形法则的精度要比矩形法则要高一些。
数值计算方法课后习题答案吕同富
数值计算方法课后习题答案吕同富【篇一:《数值计算方法》(二)课程教学大纲】txt>课程编号: l124008课程类别:专业必修学分数: 3 学时数:48 适用专业:信息与计算科学应修(先修)课程:数学分析、高等代数一、本课程的地位和作用数值分析(二)为数值分析课程的第二部分,它是信息与计算科学专业的一门专业必修课。
主要内容包括函数最佳逼近、数值积分、数值微分、常微分方程数值解法。
通过本课程的学习,学生将初步具备用计算机去有效地解决实际问题的能力。
二、本课程的教学目标通过本课程的学习,使学生了解和掌握求解函数最佳逼近、数值积分、数值微分、常微分方程等问题所涉及的各种常用的数值计算方法、数值方法的构造原理及适用范围。
本课程坚持理论与实践教学并重的原则,理论上主要讲述求解函数最佳逼近、数值积分、数值微分、常微分方程等问题的基本理论和基本方法。
与此同时,通过上机实验加深学生对各种计算方法的理解,为今后用计算机去有效地解决实际问题打下基础。
三、课程内容和基本要求(“*”记号标记难点内容,“▽”记号标记重点内容,“▽*”记号标记既是重点又是难点的内容)第六章函数最佳逼近 1.教学基本要求(1)理解:几类常用的正交多项式。
(2)掌握:最佳一致逼近和最佳平方逼近。
(3)掌握:曲线拟合的最小二乘法。
2.教学内容(1)*正交多项式。
(2)▽*最佳一致逼近。
(3)▽最佳平方逼近。
(4)正交多项式的逼近性质。
(5)▽曲线拟合的最小二乘法。
第七章数值积分 1.教学基本要求(1)理解:机械求积公式的基本思想、插值型求积公式的特点。
(2)掌握:newton-cotes求积公式、复合求积公式。
(3)掌握:romberg求积公式、gauss求积公式。
2.教学内容(1)*机械求积公式。
(2)▽newton-cotes求积公式。
(3)▽复合求积公式。
(4)变步长求积公式。
(5)▽romberg求积公式。
(6)▽*gauss求积公式第八章数值微分 1.教学基本要求(1)了解:数值微分的中点法。
《数值分析》_实验
( )
( )
4、另外选取一个近似表达式,尝试拟合效果的比较; 5、* 绘制出曲线拟合图。 三、目的和意义 1、掌握曲线拟合的最小二乘法; 2、最小二乘法亦可用于解超定线代数方程组; 3、探索拟合函数的选择与拟合精度间的关系
第5页
数值分析实验,宋伦继
6
实验四 数值积分与数值微分
一、问题提出 选用复合梯形公式,复合 Simpson 公式,Romberg 算法,计算
x
*
⎡ 0 ⎤ ⎢ −6 ⎥ ⎥ ⎢ ⎢ 20 ⎥ ⎥ ⎢ ⎢ 23 ⎥ ⎢ 9 ⎥ ⎥ ⎢ ⎢− 22⎥ ⎢ − 15 ⎥ ⎥ ⎢ ⎥ ⎢ 45 ⎦ ⎣
=
( 1,
-1,
0,
2,
1,
-1,
0,
2)
T
第7页
数值分析实验,宋伦继
8
3、三对角形线性方程组
⎡ 4 − 1 0 0 0 0 0 0 0 0 ⎤ ⎡ x1 ⎤ ⎡ 7 ⎤ ⎢− 1 4 − 1 0 0 0 0 0 0 0 ⎥ ⎢ x ⎥ ⎢ 5 ⎥ ⎥ ⎢ 2⎥ ⎥ ⎢ ⎢ ⎢ 0 − 1 4 − 1 0 0 0 0 0 0 ⎥ ⎢ x3 ⎥ ⎢ − 13⎥ ⎥⎢ ⎥ ⎥ ⎢ ⎢ ⎢ 0 0 − 1 4 − 1 0 0 0 0 0 ⎥ ⎢ x4 ⎥ ⎢ 2 ⎥ ⎢ 0 0 0 − 1 4 − 1 0 0 0 0 ⎥ ⎢ x5 ⎥ ⎢ 6 ⎥ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎢ 0 0 0 0 − 1 4 − 1 0 0 0 ⎥ ⎢ x6 ⎥ ⎢− 12⎥ ⎢ 0 0 0 0 0 −1 4 −1 0 0 ⎥ ⎢ x ⎥ ⎢ 14 ⎥ ⎥ ⎢ 7⎥ ⎥ ⎢ ⎢ ⎢ 0 0 0 0 0 0 − 1 4 − 1 0 ⎥ ⎢ x8 ⎥ ⎢−4⎥ ⎢ 0 0 0 0 0 0 0 − 1 4 − 1⎥ ⎢ x ⎥ ⎢ 5 ⎥ ⎥ ⎢ 9⎥ ⎥ ⎢ ⎢ ⎥ ⎥⎢ ⎥ ⎢ 0 0 0 0 0 0 0 0 −1 4 ⎦ ⎢ −5⎦ ⎣ ⎣ ⎣ x10 ⎦
matlab数值分析实验报告
matlab数值分析实验报告Matlab数值分析实验报告引言数值分析是一门研究利用计算机进行数值计算和模拟的学科,它在科学计算、工程技术和金融等领域有着广泛的应用。
本次实验报告将介绍在Matlab环境下进行的数值分析实验,包括数值微分、数值积分和线性方程组求解等内容。
一、数值微分数值微分是通过数值方法计算函数的导数,常用的数值微分方法有前向差分、后向差分和中心差分。
在Matlab中,可以使用diff函数来计算函数的导数。
例如,对于函数f(x)=x^2,在Matlab中可以使用如下代码进行数值微分的计算:```matlabsyms x;f = x^2;df = diff(f, x);```二、数值积分数值积分是通过数值方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则和龙贝格积分法。
在Matlab中,可以使用trapz、quad和integral等函数来进行数值积分的计算。
例如,对于函数f(x)=sin(x),可以使用如下代码进行数值积分的计算:```matlabx = linspace(0, pi, 100);y = sin(x);integral_value = trapz(x, y);```三、线性方程组求解线性方程组求解是数值分析中的重要问题,常用的求解方法有高斯消元法和LU 分解法。
在Matlab中,可以使用\操作符来求解线性方程组。
例如,对于线性方程组Ax=b,可以使用如下代码进行求解:```matlabA = [1, 2; 3, 4];b = [5; 6];x = A\b;```四、实验结果与分析在本次实验中,我们分别使用Matlab进行了数值微分、数值积分和线性方程组求解的计算。
通过实验结果可以发现,Matlab提供了丰富的数值计算函数和工具,能够方便地进行数值分析的计算和求解。
数值微分的计算结果与解析解相比较,可以发现数值微分的误差随着步长的减小而减小,但是当步长过小时,数值微分的误差会受到舍入误差的影响。
《数值分析》课程教学大纲
《数值分析》课程教学大纲课程编号:07054352课程名称:数值分析英文名称:Numerical Analysis课程类型:学科基础课程要求:必修学时/学分:48/3 (讲课学时:40 上机学时:8)适用专业:计算机科学与技术;软件工程一、课程性质与任务“数值分析”是计算机科学与技术、软件工程等相关专业学生的学科基础课,也是其它理、工科专业本科生及研究生的必修或选修课。
数值分析是研究各种数学问题在计算机上通过数值运算,得到数值解答的方法和理论。
随着计算机系统能力的提高和新型数值软件的不断开发,无论在高科技领域还是在传统学科领域,数值分析的理论和方法的作用和影响巨大,是科学工作者和工程技术人员必备的基础知识和工具。
课程的任务是使学生能了解数值分析的基本概念,熟悉常用数值方法的构造原理,了解数值算法复杂性、误差与收敛性分析的基本方法,了解重要数值算法的软件实现过程,使学生系统掌握数值分析的基本概念和分析问题、解决问题的基本方法,为掌握更复杂的现代计算方法打好基础。
内容包括数值计算的基本方法、线性和非线性方程组解法、插值法、数值积分法及微分方程的数值解法。
二、课程与其他课程的联系先修课程:高等数学,线性代数,C语言程序设计,计算基础。
后续课程:人工智能,数字图像处理技术,大数据分析及应用。
三、课程教学目标1.学习使用计算机进行数值计算的基础知识和基本理论知识,能够分辨、选用合适的数值方法解决工程问题。
(支撑毕业能力要求1和2)2. 能掌握常用数值计算方法的构造原理,根据问题设计和综合运用算法设计问题解决方案。
(支撑毕业能力要求1和2)3. 能运用数值算法复杂性、误差与收敛性分析的基本方法初步进行算法分析。
4. 能用计算机语言实现典型的数值计算算法,得到实验技能的基本训练,并具有利用计算机解决常见数学问题的能力;(支撑毕业能力要求4)5.能通过查询阅读文献资料,了解数值分析的前沿和新发展动向,了解数值分析算法原理应用的典型工程领域。
数值分析的实验报告
数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。
本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。
实验一:方程求根方程求根是数值分析中的基础问题之一。
我们选取了一个非线性方程进行求解。
首先,我们使用二分法进行求解。
通过多次迭代,我们得到了方程的一个近似解。
然后,我们使用牛顿法进行求解。
与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。
通过比较两种方法的结果,我们验证了牛顿法的高效性。
实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。
我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。
通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。
同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。
实验三:数值积分数值积分是数值分析中的重要内容之一。
我们选取了一个定积分进行计算。
首先,我们使用复化梯形公式进行积分计算。
通过增加分割区间的数量,我们得到了更精确的结果。
然后,我们使用复化辛普森公式进行积分计算。
与复化梯形公式相比,复化辛普森公式具有更高的精度。
通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。
实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。
我们选取了一个常微分方程进行数值解的计算。
首先,我们使用欧拉方法进行数值解的计算。
然后,我们使用改进的欧拉方法进行数值解的计算。
通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。
实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。
我们选取了一个线性方程组进行数值解的计算。
首先,我们使用高斯消元法进行数值解的计算。
然后,我们使用追赶法进行数值解的计算。
通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。
博士研究生入学考试《数值分析(二)》
博士研究生入学考试《数值分析(二)》
考试大纲
(科目代码:2228)
一、误差分析
1.误差来源
2.误差的基本概念
3.误差分析的若干原则
二、插值法
1. 拉格朗日插值
2. 均差与牛顿插值公式
3.分段线性插值公式
4.三次样条插值
三、函数逼近与计算
1. 最佳一致逼近多项式
2. 切比雪夫多项式
3. 最佳平方逼近
4. 正交多项式
5. 曲线拟合的最小二乘法
6. 离散富氏变换及其快速算法
四、数值积分与数值微分
1. 龙贝格求积算法
2. 高斯求积公式
3. 数值微分
五、常微分方程数值解法
1. 尤拉方法
2. 龙格-库塔方法
3. 单步法的收敛性和稳步性
4. 线性多步法
5. 方程组与高阶方程的情形
六、方程求根
1. 牛顿法
2. 弦截法与抛物线法
3. 代数方程求根
七、解线性方程组的迭代法
1. 雅可比迭代法与高斯-塞德尔迭代法
2. 迭代法的收敛性
3. 解线性方程组的松弛迭代法。
《数值分析》课程实验报告范文
《数值分析》课程实验报告范文《数值分析》课程实验报告姓名:学号:学院:机电学院日期:2022年某月某日目录实验一函数插值方法1实验二函数逼近与曲线拟合5实验三数值积分与数值微分7实验四线方程组的直接解法9实验五解线性方程组的迭代法15实验六非线性方程求根19实验七矩阵特征值问题计算21实验八常微分方程初值问题数值解法24实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。
试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。
实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。
t(分)051015202530354045505501.272.162.863.443.874.154.374.51 4.584.024.64二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为;3、打印出拟合函数,并打印出与的误差,;4、另外选取一个近似表达式,尝试拟合效果的比较;5、某绘制出曲线拟合图。
三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系四、实验步骤:第一步先写出线性最小二乘法的M文件functionc=lpoly(某,y,m)n=length(某);b=zero(1:m+1);f=zero(n,m+1); fork=1:m+1f(:,k)=某.^(k-1);enda=f'某f;b=f'某y';c=a\b;c=flipud(c);第二步在命令窗口输入:>>lpoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:an=-0.00240.20370.2305即所求的拟合曲线为y=-0.0024某2+0.2037某+0.2305在编辑窗口输入如下命令:>>某=[0,5,10,15,20,25,30,35,40,45,50,55];>>y=-0.0024某某.^2+0.2037某某+0.2305;>>plot(某,y)命令执行得到如下图五、实验结论分析复杂实验数据时,常采用分段曲线拟合方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析实验二 数值积分组号 班级 学号 姓名 张伟分数一:实验目的1 掌握牛顿—柯特斯公式的方法,并观察牛顿—柯特斯公式的稳定性。
2 掌握复化梯形求积公式的方法。
3 掌握龙贝格积分法。
二:实验内容及基本知识介绍1 牛顿—柯特斯公式对求积节点作适当的限制和选择,可以简化问题的复杂性和提高公式的性能。
设将积分区间[a,b]划分为n 等分,步长h=(b-a)/n ,选取等距节点x k =a+kh 构造出的差值型求积公式()()0()n n n k k k I b a C f x ==-∑ 称为牛顿—柯特斯公式,式中()n k C 称为柯特斯系数。
按(1.6)式,引进变换x=a+th ,则有()00n n n k j h t j C dt b a k j=-=--∏⎰ ()()001()!!n k n n j t j dt nk n k -=-=--∏⎰ , (其中j k ≠). 2 复化梯形公式求积算法设将区间[a,b]分为n 等分,分点,,0,1,...,,k b a x a kh h k n n-=+==在每个子区间[x k ,x k+1]上采用梯形公式,则得 110()()k k n b x a x k I f x dx f x dx +-===∑⎰⎰[]()110()()2n k k n k h f x f x R f -+==++∑ 记[]110()()2n k k k h f x f x -+==+∑ 11()2()()2n k k h f a f x f b -=⎡⎤=++⎢⎥⎣⎦∑称为复化梯形公式。
3 龙贝格积分法对于定积分()baI f x dx =⎰,把区间 [a,b] 两分0次(即等分20次)用梯形公式求 得的值记为T(1,1),把[a,b]区间两分1次(即等分21次),用复化梯形公式求得的值记为T (2,1), 一般的,把[a,b]区间两分k 次(即等分2k 次),用复化梯形公式求得的值记为T (k+1,1),将这些值用外推公式()()()1141,1,1141m m T k m T k m T k --+---+=- (k=1,2…,m=2,3,…, k+1)进行线性组合,可获得更高精度的加速值T(k,k),数学上也已经证明()lim ,1n T k k →∞=这就是著名的龙贝格积分法。
三:实验问题及方法、步骤1、(1)用牛顿—柯特斯公式计算32311n I dx x -=+⎰的近似值I n (n=1,2,…,8); (2)根据计算结果说明在n=8的情况下,其计算结果不准确。
编程思想:1、为被积函数创建函数文件f.m ,其代码如下;function y=f(x)y=1/(1+x ˆ2);2、 用8行9列矩阵cotes 存放牛顿—柯特斯系数表,用0表示空格。
3、 为使系统具有一般性,用a 、b 分别表示积分区间的左右端点。
这里a=-3,b=3.用n 表示牛顿—柯特斯公式的阶数,这里n=1,2,…,8 .4、牛顿—柯特斯公式的计算算法如下:(1) 对于n-1,2,…,8 ,做以下操作:s ←0,h ←(b-a)/n.(2) 对于k=1,2,…,n+1,做以下操作x k ←a+(k-1)h,y k ←f(x k ),s ←s+cotes(n,k)x k ;(3) s ←s(b-a);(4) 输出n 、s ;可在MATLAB 命令空间键入以下命令:%创建牛顿—柯特斯系数矩阵,其中0表示空格cotes=[1/2,1/2,0,0,0,0,0,0,0;1/6,2/3,1/6,0,0,0,0,0,0;1/8,3/8,3/8,1/8,0,0,0,0,0;7/90,16/45,2/15,16/45,7/90,0,0,0,0;19/288,25/96,25/144,25/144,25/96,19/288,0,0,0;41/840,9/35,9/280,34/105,9/280,9/35,41/840,0,0;751/17280,3577/17280,1323/17280,2989/17280,2989/17280,1323/17280,3577/17280,751/17280,0;989/28350,5888/28350,-928/28350,10496/28350,-4540/28350,10496/28350,-928/28350,5888/28350,989/28350];a=input('请输入积分下限 a=');b=input('请输入积分上限 b=');disp('阶数 牛顿—柯特斯值');for n=1:8s=0; %牛顿—柯特斯求积公式的初值 h=(b-a)/n; %步长for k=1:n+1x(k)=a+(k-1)*h; %节点y(k)=f(x(k)); %节点处得函数值s=s+cotes(n,k)*y(k); %计算牛顿—柯特斯求积公式的和 ends=s*(b-a); %计算牛顿—柯特斯求积公式的值 fprintf('n=%ld I=%5.4f\n',n,s);end其运行结果为:请输入积分下限 a=-3请输入积分上限 b=3阶数 牛顿—柯特斯值n=1 I=0.6000n=2 I=4.2000n=3 I=2.4000n=4 I=2.2062n=5 I=2.3481n=6 I=2.8114n=7 I=2.5963n=8 I=2.2146根据实际的计算结果和结果显示的数据比较可得:当 n > 5 之后,其计算效果越来越差。
2﹑对于给定的误差限0>ε,利用利用复化梯形求积的递推公式以及它的截断误差事后估计式 ()()][21b f a f a b T --= ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=∑=+n i i n n x f h T T 021221 ⎪⎭⎫ ⎝⎛-=n a b h ()n n n T T T I -≈-2231 ()⎪⎭⎫ ⎝⎛=⎰dx x f I b a 编程计算定积分dx x x I ⎰=10sin 的近似值。
编程思想:1. 为被积函数创建文件f.m ,其代码如下:function y=f(x)if x==0y=1;else x x y )sin(=;end2. 自动选步长的复化梯形求积算法如下:(1)输入a ,b ,eps(2)h ←b-a,T 1←h(f(a)+f(b))/2(3)反复做以下操作① u ←h/2,H ←0,x ←a+u② 当 x<b 时, 反复做以下操作H ←H+f(x),x ←x+h③ T 2←(T 1+hH)/2④ 若eps T T <-21,则I ←T 2+(T 2-T 1)/3,break⑤ h ←u,T 1←T 2(5) 输出I程序代码:a=input('请输入积分下限 a=');b=input('请输入积分上限 b=');esp=input('请输入误差限 eps=');h=b-a; %初始步长T1=h*(f(a)+f(b))/2; %初始梯形值while 1u=h/2; %步长两分H=0; %函数值累和变量初始化x=a+u; %求积节点赋初值while x<bH=H+f(x); %节点处函数值累加x=x+h; %求积节点endT2=(T1+h*H)/2; %梯形递推if abs(T2-T1)<epsI=T2+(T2-T1)/3; %带补偿的梯形值breakendh=u; %准备下一轮梯形递推的初值T1=T2;endfprintf('定积分的的近似值I=%8.7f\n'); %输出定积分近似值其程序的运行结果:请输入积分下限 a=0请输入积分上限 b=1请输入误差限 eps=10^(-5)定积分的近似值为 I=0.94608313﹑(1)根据龙贝格公式编写计算龙贝格数据表,以及龙贝格积分法的程序;(2)利用编写的程序,计算dx xx I ⎰=10sin 的近似值(取误差限为510-=ε)。
编程思想:1.为被积函数创建函数文件f.m ,其代码如下:function y=f(x)if x==0y=1;else x x y )sin(=;end2. 输入积分下限a ,积分上限b ,和误差限eps 。
3. err ←1,k ←0,h ←b-a ,T(1,1)←h(f(a)+f(b))/2。
4. 当err ←esp 时,做以下操作(1)k ←k+1,u ←h/2,H ←0,x ←a+u(2 ) 当x<b 时,做以下操作H ←H+f(x),x ←a+x(3)T(k+1,1)←(T(k,1)→hH)/2( 4 ) 对于m=1,2, … ,k+1,做以下操作T(k+1,m) ←(4^(m-1)T(k+1,m-1)-T(k,m-1))/(4^(m-1)-1)( 5 ) err ←|T(k+1,k+1)-T(k,k)|( 6 ) h ←n( 7 ) 输出T(k+1,k+1),显示T 。
程序代码为:format longa=input('请输入积分下限 a=');b=input('请输入积分上限 b=');esp=input('请输入误差限 eps=');err=1; %给定初始误差,一般取err>epsk=0; %积分区间的两分次数初始化h=b-a;T(1,1)=h*(f(a)+f(b))/2; %积分区间的两分0次时的梯形值while (err>=eps)%计算复化梯形值k=k+1; %积分区间的两分次数增1u=h/2;H=0;x=a+u;while x<bH=H+f(x);x=x+h;endT(k+1,1)=(T(k,1)+h*H)/2;%计算加速值for m=2:k+1T(k+1,m)=(4^(m-1)*T(k+1,m-1)-T(k,m-1)/4^(m-1));enderr=abs(T(k+1,k+1)-T(k,k));h=u;endfprintf('定积分I 的近似值为%8.7f\n',T(k+1,k+1));disp('龙贝格数表为 ');disp(T);其程序的运行结果为:请输入积分下限 a=0请输入积分上限 b=1请输入误差限 eps=10^(-5)定积分 I 的近似值为 0.9460831龙贝格数表为0.92073549240395 0 0 0 0.93979328480618 0.94614588227359 0 0 0.94451352166539 0.94608693395179 0.94608300406367 0 0.94569086358270 0.94608331088847 0.94608306935092 0.94608307038722四 计算结果分析1 由32312arctan 31I dx x -==+⎰,在MATLAB 命令空间键入命令2*tan(3)a ,可得到其值大约为2.4981。