高一数学不等式的解法试题
高一数学不等式测试题
高一数学不等式测试题1. 不等式的基本性质题目:请证明对于任意实数a、b、c,不等式\( a < b \) 时,\( a + c < b + c \) 成立。
2. 解一元一次不等式题目:解不等式 \( 5x - 3 > 2x + 7 \)。
3. 解绝对值不等式题目:解绝对值不等式 \( |x - 4| < 3 \)。
4. 解二次不等式题目:解不等式 \( x^2 - 4x + 3 > 0 \)。
5. 不等式与函数题目:已知函数 \( f(x) = x^2 - 2x + 1 \),求函数值大于0的x的取值范围。
6. 不等式组的解集题目:解不等式组 \( \begin{cases} x + 2 > 0 \\ 3x - 7 < 0 \end{cases} \)。
7. 不等式的变换题目:将不等式 \( x^2 - 4x + 4 \geq 0 \) 转化为标准形式,并找出其解集。
8. 不等式的应用题目:一个矩形的长为 \( 2x + 3 \),宽为 \( x - 1 \),当x取何值时,矩形的面积最大?9. 不等式与数列题目:若数列 \( \{a_n\} \) 满足 \( a_1 = 1 \) 且 \( a_{n+1} \leq 2a_n \) 对所有正整数 n 成立,证明数列 \( \{a_n\} \) 是递增的。
10. 不等式的证明题目:证明对于所有正实数 \( x \) 和 \( y \),不等式\( \sqrt{xy} \leq \frac{x + y}{2} \) 成立。
11. 不等式与几何题目:在三角形ABC中,如果 \( a + b > c \),证明三角形ABC 是锐角三角形。
12. 不等式的综合应用题目:若 \( x, y \) 为正实数,且 \( x^2 + y^2 = 1 \),求\( x^2y + xy^2 \) 的最大值。
13. 不等式的解法题目:解不等式 \( \frac{2x}{x^2 - 1} < 1 \)。
高一数学不等式部分经典习题及答案
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
完整版)高一不等式及其解法习题及答案
完整版)高一不等式及其解法习题及答案教学目标】1.能够熟练解一元二次不等式、高次不等式和分式不等式2.理解分类讨论的数学思想并能够应用于解含参不等式教学重难点】分类讨论的数学思想教学过程】题型一:解一元二次不等式例1:解下列不等式1)2x²-3x-2>0;(2)-6x²-x+2≥0;(3)2x²-4x+70方法总结:对于一元二次不等式ax²+bx+c>0或ax²+bx+c<0,可以通过求出其判别式Δ=b²-4ac的值,来判断其解的情况。
1.当Δ>0时,方程有两个不相等的实数根,解集为x根2;2.当Δ=0时,方程有两个相等的实数根,解集为x=根1=根2;3.当Δ<0时,方程无实数根,解集为空集。
变式练】1-1.已知不等式ax²+bx+c的解集为(2,3),求不等式cx²+bx+a的解集。
题型二:解高次不等式例2:求不等式(x-4)(x-6)≤0的解集。
方法总结:对于高次不等式,可以通过将其化为一元二次不等式的形式,再利用一元二次不等式的解法来求解。
变式练】2-1.解不等式x(x-1)(x+1)(x+2)≥0.题型三:解分式不等式例3-1:解下列不等式1) 23/(x²-4x+1) < 1;(2) 23/(x²-4x+1) ≤ 2;(3) 23x-7/(x²-2x+1)。
方法总结:对于分式不等式,可以通过将其化为分子分母同号的形式,再利用一元二次不等式的解法来求解。
题型四:解含参数的一元二次不等式例4-1:解关于x的不等式2x+ax+2>(a∈R)。
方法总结:对于含参不等式,可以通过分类讨论的思想来解决。
首先讨论a的值,然后根据a的取值再讨论不等式的解集。
变式练】1.已知a∈R,解关于x的不等式ax-(a+1)x+1<2.2.解不等式a(x-1)/(x-2)。
高一数学具体的不等式试题答案及解析
高一数学具体的不等式试题答案及解析1.不等式的解集是A.B.C.D.【答案】D【解析】:因为方程的两个根为,所以不等式的解集是。
故选D。
【考点】一元二次不等式的解法.点评:熟练掌握一元二次不等式的解法和实数的性质是解题的关键.2.不等式的解集是【答案】【解析】等价于,所以,,故不等式的解集是。
【考点】简单分式不等式解法点评:简单题,分式不等式解法,主要是转化成整式不等式求解。
3.不等式≥0的解集 .【答案】R【解析】根据题意,不等式≥0等价于,那么根据绝对值的几何意义可知,任意实数的绝对值都大于等于零,故可知解集为R.【考点】一元二次不等式的解集点评:主要是考查了一元二次不等式的解法的运用,属于基础题。
4.函数在上满足,则的取值范围是()A.B.C.D.【答案】D【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。
5.已知存在实数使得不等式成立,则实数的取值范围是 .【答案】【解析】解:由题意借助数轴,|x-3|-|x+2|∈[-5,5],∵存在实数x使得不等式|x-3|-|x+2|≥|3a-1|成立,∴5≥|3a-1|,解得-5≤3a-1≤5,即-≤a≤2,故答案为[-,2]【考点】绝对值不等式点评:本题考查绝对值不等式,求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别,本题是一个存在问题,解决的是有的问题,故取|3a-1|≤5,即小于等于左边的最大值即满足题意,本题是一个易错题,主要错误就是出在把存在问题当成恒成立问题求解,因思维错误导致错误6.若不等式kx2-2x+6k<0(k≠0)。
(1)若不等式解集是{x|x<-3或x>-2},求k的值;(2)若不等式解集是R,求k的取值。
【答案】(1);(2)【解析】解:∵不等式kx2-2x+6k<0(k≠0),不等式的解集是{x|x<-3或x>-2},∴根据二次函数与方程的关系,得:k<0,且-3,-2为关于x的方程kx2-2x+6k=0的两个实数根,据韦达定理有-3+(-2)=,(2)根据题意,由于k=0,不符合题意舍去,当k不为零时,则根据开口向下,判别式小于零可知,4-24k<0,k<0得到取值范围是【考点】二次函数与不等式点评:本题考查了函数恒成立问题,着重考查二次函数的图象与性质,同时考查了分类讨论思想的运用和转化思想,易错点在于忽略当k=0的情形,属于中档题7.已知关于的不等式的解集是,则 .【答案】【解析】因为,关于的不等式的解集是,所以,a=。
高一数学不等式试题
高一数学不等式试题1.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.已知实数x、y满足(0<a<1),则下列关系式恒成立的是()A.B.>C.D.【答案】D【解析】,是减函数,所以当时,,所以当时,只有成立,而当时,不能确定与的大小,以及与的大小.【考点】不等式的性质6.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题7.若实数,满足,则的取值范围是(用区间表示)【答案】【解析】且,设,,则,所以且,所以且.所以的取值范围是.【考点】1.基本不等式;2.三角换元求取值范围.8.设的最小值为_________.【答案】【解析】正数满足,,当且仅当时取等号,所以所求的最小值为。
【考点】基本不等式9.下列选项中,使不等式成立的x的取值范围是A.(1,+∞)B.(0,1)C.(-1,0)D.(-∞,-1)【答案】D【解析】当时,不等式为显然无解,当时,不等式为,即,所以不等式解集为(-∞,-1),故选择D【考点】解不等式10.解关于的不等式:【答案】详见解析【解析】解含参的一元二次不等式,第一步先讨论二次项前的系数,此题为,所以先不讨论,第一步,先将式子分解因式,整理为,第二步,,,讨论两根的大小关系,从而写出解集的形式.试题解析:原不等式可化为:,(1)当-1<a<0时,,所以x>-或x<1。
【其中复习】高一数学不等式解法经典例题
【其中复习】高一数学不等式解法经典例题解下列分式不等式:(1);(2)分析:当分式不等式化为时,要注意它的等价变形①②(1)解:原不等式等价于用“穿根法”∴原不等式解集为。
(2)解法一:原不等式等价于∴原不等式解集为。
解法二:原不等式等价于用“穿根法”∴原不等式解集为典型例题三例3 解不等式分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义二是根据绝对值的性质:或,因此本题有如下两种解法、解法一:原不等式即∴或故原不等式的解集为、解法二:原不等式等价于即∴、典型例题四例4 解不等式、分析:这是一个分式不等式,其左边是两个关于二次式的商,由商的符号法则,它等价于下列两个不等式组:或所以,原不等式的解集是上面两个不等式级的解集的并集、也可用数轴标根法求解、解法一:原不等式等价下面两个不等式级的并集:或或或或或、∴原不等式解集是、解法二:原不等式化为、画数轴,找因式根,分区间,定符号、符号∴原不等式解集是、说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解、解法二中,“定符号”是关键、当每个因式的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间、在解题时要正确运用、典型例题五例5 解不等式、分析:不等式左右两边都是含有的代数式,必须先把它们移到一边,使另一边为0再解、解:移项整理,将原不等式化为、由恒成立,知原不等式等价于、解之,得原不等式的解集为、说明:此题易出现去分母得的错误解法、避免误解的方法是移项使一边为0再解、另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理、典型例题六例6 设,解关于的不等式、分析:进行分类讨论求解、解:当时,因一定成立,故原不等式的解集为、当时,原不等式化为;当时,解得;当时,解得、∴当时,原不等式的解集为;当时,原不等式的解集为、说明:解不等式时,由于,因此不能完全按一元二次不等式的解法求解、因为当时,原不等式化为,此时不等式的解集为,所以解题时应分与两种情况来讨论、在解出的两根为,后,认为,这也是易出现的错误之处、这时也应分情况来讨论:当时,;当时,、典型例题七例7 解关于的不等式、分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解、解:原不等式或由,得:由判别式,故不等式的解是、当时,,,不等式组(1)的解是,不等式组(2)的解是、当时,不等式组(1)无解,(2)的解是、综上可知,当时,原不等式的解集是;当时,原不等式的解集是、说明:本题分类讨论标准“,”是依据“已知及(1)中‘,’,(2)中‘,’”确定的、解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点、一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定、本题易误把原不等式等价于不等式、纠正错误的办法是熟练掌握无理不等式基本类型的解法、典型例题八例8 解不等式、分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可、解答:去掉绝对值号得,∴原不等式等价于不等式组∴原不等式的解集为、说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解、典型例题九例9 解关于的不等式、分析:不等式中含有字母,故需分类讨论、但解题思路与一般的一元二次不等式的解法完全一样:求出方程的根,然后写出不等式的解,但由于方程的根含有字母,故需比较两根的大小,从而引出讨论、解:原不等式可化为、(1)当(即或)时,不等式的解集为:;(2)当(即)时,不等式的解集为:;(3)当(即或1)时,不等式的解集为:、说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论、比如本题,为求不等式的解,需先求出方程的根,,因此不等式的解就是小于小根或大于大根、但与两根的大小不能确定,因此需要讨论,,三种情况、典型例题例10 已知不等式的解集是、求不等式的解集、分析:按照一元二次不等式的一般解法,先确定系数的正负,然后求出方程的两根即可解之、解:(解法1)由题可判断出,是方程的两根,∴,、又的解集是,说明、而,,∴、∴,即,即、又,∴,∴的解集为、(解法2)由题意可判断出,是方程的两根,∴、又的解集是,说明、而,、对方程两边同除以得、令,该方程即为,它的两根为,,∴,、∴,,∴方程的两根为,、∵,∴、∴不等式的解集是、说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有,是已知量,故所求不等式解集也用,表示,不等式系数,,的关系也用,表示出来;(3)注意解法2中用“变换”的方法求方程的根、典型例题二例12 若不等式的解为,求、的值、分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于、式子、解:∵,,∴原不等式化为、依题意,∴、说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解、典型例题三例13 不等式的解集为,求与的值、分析:此题为一元二次不等式逆向思维题,要使解集为,不等式需满足条件,,的两根为,、解法一:设的两根为,,由韦达定理得:由题意:∴,,此时满足,、解法二:构造解集为的一元二次不等式:,即,此不等式与原不等式应为同解不等式,故需满足:∴,、说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力、对有关字母抽象问题,同学往往掌握得不好、典型例题四例14 解关于的不等式、分析:本题考查一元一次不等式与一元二次不等式的解法,因为含有字母系数,所以还考查分类思想、解:分以下情况讨论(1)当时,原不等式变为:,∴(2)当时,原不等式变为:①①当时,①式变为,∴不等式的解为或、②当时,①式变为、②∵,∴当时,,此时②的解为、当时,,此时②的解为、说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:分类应做到使所给参数的集合的并集为全集,交集为空集,要做到不重不漏、另外,解本题还要注意在讨论时,解一元二次不等式应首选做到将二次项系数变为正数再求解、典型例题五例15 解不等式、分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,可转化为或,而等价于:或、解:原不等式等价于下面两个不等式组:①②由①得,∴由②得∴,所以原不等式的解集为,即为、说明:本题也可以转化为型的不等式求解,注意:,这里,设全集,,则所求不等式的解集为的补集,由或、即,∴原不等式的解集是、。
高一数学含绝对值不等式的解法练习题
含绝对值的不等式解法一、选择题1.已知a <-6,化简26a -得( ) A. 6-a B. -a -6C. a +6D. a -62.不等式|8-3x |≤0的解集是( ) A. ∅B. RC. {(1,-1)}D. ⎭⎬⎫⎩⎨⎧38 3.绝对值大于2且不大于5的最小整数是( ) A. 3B. 2C. -2D. -54.设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )A. {x |-1<x <5}B. {x |x ≤0或x ≥2}C. {x |-1<x ≤0}D. {x |-1<x ≤0或2≤x <5}5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A 中的元素个数是( ) A. 11 B. 10 C. 16 D. 156.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N ( ) A. {4-≥y y } B. {51≤≤-y y } C. {14-≤≤-y y } D. ∅7.语句3≤x 或5>x 的否定是( )A. 53<≥x x 或B. 53≤>x x 或C. 53<≥x x 且D. 53≤>x x 且 二、填空题1.不等式|x +2|<3的解集是 ,不等式|2x -1|≥3的解集是 .2.不等式1211<-x 的解集是_________________. 3.根据数轴表示a ,b ,c 三数的点的位置,化简|a +b |+|a +c |-|b -c |= ___ .三、解答题1.解不等式 1.02122<--x x 2.解不等式 x 2 - 2|x |-3>03.已知全集U = R , A ={x |x 2- 2 x - 8>0}, B ={x ||x +3|<2},求:(1) A ∪B , C u (A ∪B ) (2) C u A , C u B , (C u A )∩(C u B )4.解不等式3≤|x -2|<9 7.解不等式|3x -4|>1+2x .5.画出函数|21|x-||x y ++=的图象,并解不等式| x +1|+| x -2|<4.6.解下列关于x 的不等式:1<| x - 2 |≤77.解不等式2≤|5-3x |<9 11.解不等式|x -a |>b8.解关于x 的不等式:|4x -3|>2x +19.解下列关于x 的不等式:021522≤---x x x含绝对值的不等式解法答案一、选择题(共7题,合计35分) 1.1760答案:B 2.1743答案:D 3.1744答案:D 4.1773答案:D 5.2075答案:C 6.4109答案:B 7.1672答案:D二、填空题(共5题,合计21分)1.1539答案:{-5<x <1},{x |x ≥2或x ≤-1}2.1725答案:{x |0<x <4}3.1602答案:⎭⎬⎫⎩⎨⎧≤≤-3434x x4.1728答案:a <35.1788答案:0三、解答题(共19题,合计136分) 1.1510答案:{x |x >10或x <-10}2.1502答案:{}33-<>x x x 或3.1509答案:(1) A ∪B = {x |x <-1或x >4=, C U (A ∪B )= {x |-1≤x ≤4}(2) C U A = {x |-2≤x ≤4}, C U B = {x |x ≤-5或x ≥-1}, (C U A )∩(C U B ) = {x |-1≤x ≤4}4.1535答案:⎭⎬⎫⎩⎨⎧>-<317x x x 或5.1597答案:⎭⎬⎫⎩⎨⎧≥-≤2721x x x 或6.1598答案:{x |-7<x ≤-1或5≤x <11}7.1599答案:⎭⎬⎫⎩⎨⎧><553x x x 或8.1600答案:2523<<-x9.1538答案:⎭⎬⎫⎩⎨⎧>-<032x x x 或 10.1554答案:⎭⎬⎫⎩⎨⎧<≤≤<-31437134x x x 或 11.1536答案:当b <0时,解集为R ;当b =0时,解集为{x |x ∈R 且x ≠a };当b >0时,解集为{x |x <a -b 或x >a +b }.12.1601答案:a 的取值范围为a >5 13.1721答案:-5≤x <1或3<x ≤9.14.1722答案:x >2或x <1/3.15.1723答案:|x -1|+|x -2|<3⇔0<x <1或1≤x <2或2≤x <3⇔0<x <3.16.1724答案:当m >0时,原不等式的解集是{x |-3m <x <2m };当m =0时,原不等式的解集是∅;当m <0时,原不等式的解集是{x |2m <x <-3m }. 17.1726答案:x <-1/2或0<x <4.18.1727答案:x ≤-3或2<x ≤519.4121答案:21<a <32。
高一数学 含绝对值不等式的解法练习题
高一数学 含绝对值不等式的解法练习题一、 选择题:1、不等式|2-x |>0的解集是( )A 、φB 、RC 、{2}D 、{x|x ≠2}2、与不等式|2-3x |>1同解的是 ( )A 、2-3x >1±B 、3x-2>1或3x-2<-1C 、2-3x >1D 、-1<2-3x <1 3、设全集U={x||x -2|>1},A ={x||x +1|≤1},则C U A 等于 ( )A 、{x|x <-2或x >0}B 、{x|x <1或x >3}C 、{x|x <-2或0<x <1或x >3}D 、{x|1<x<3}4、不等式|ax+b|≤c 的解集为非空集合,则c 的取值范围是 ( ) A 、c ≥0 B 、c>0 C 、c<0 D 、c ≤05、若不等式|1-kx |<2的解集是{x |-1<x <3},则的k 为 ( )A 、-2<k<1B 、31-<k<1 C 、k=1 D 、k=-3 6、不等式1|12|1>+x 的解集是 ( ) A 、{x|0<x <1}B 、{x|-1<x <0}C 、{x|-1<x <0且x ≠21-}D 、{x|x<-1或x >0} 二、 填空题:7、若2∈{x _______________。
8 的解集为_______________。
9、不等式|_____________________。
10、|x +2|-|x -1|<a 的解集为非空集合,则实数a 的取值范围是______。
三、 解答题(不够写的请做在背面)11、设A ={x ||x-1|>2},B={x ||x -5|<c},若A B =A ,求实数c 的取值范围。
12、解下列不等式:(1) |2x+51|≥21 (2) |2x -1|<2-3x (3)|2-x |-|2x +5|>2x 答案 :一、选择题 DBCACC一、 填空题 {a|a>-3或a<-5}, {x|0≤x<2}, {x|x>2,或x<0}, a>-3二、 解答题 c ≤2 x ≥203或x ≤207- x<53-。
高一数学不等式试题
高一数学不等式试题1.已知,不等式的解集是,则满足的关系是( )A.B.C.D.的关系不能确定【答案】B【解析】,,则,由题意知,,故选B.2. 2010年4月14日清晨我国青海省玉树县发生里氏7.1级强震。
国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A运往玉树县,这批救灾物资随17辆车以千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于千米。
设这批救灾物资全部运送到灾区(不考虑车辆的长度)所需要的时间为小时。
求这批救灾物资全部运送到灾区所需要的最短时间,并指出此时车辆行驶的速度。
【答案】(千米/小时)时,取得最小值为8(小时)【解析】由题可得关系式为从而当且仅当,即(千米/小时)时,取得最小值为8(小时)3.已知点(3,1)和(﹣4,6)在直线3x﹣2y+m=0的两侧,则m的取值范围是()A.m<﹣7或 m>24B.﹣7<m<24C.﹣24<m<7D.m="7" 或 m=24【答案】B【解析】两点在直线的两侧,所以将点代入得到,即:,解得.【考点】不等式所表示的平面区域4.若不等式对一切恒成立,则实数a 取值范围()A.B.C.D.【答案】B【解析】当时恒成立;当时需满足,综上【考点】三个二次关系5.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为.【答案】【解析】线性约束条件表示直线围成的区域,第一象限的顶点坐标,,所以最小值为【考点】1.线性规划;2.均值不等式求最值6.(8分)关于的不等式,(1)已知不等式的解集为,求a的值;(2)解关于的不等式.【答案】(1);(2)时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为.【解析】(1)由不等式的解集可知,2是方程的两根,由韦达定理可求得的值.(2)讨论二次项系数是否为0,由时的根为或,讨论两根的大小,并注意抛物线开口方向.结合一元二次函数图像解不等式.试题解析:解:因为的解集为,所以方程的两根为或,所以,解得.(2),当时原不等式变形为,解得;当时,的根为或.时,或,时,,时,,时,综上可得时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为.【考点】一元二次不等式.7.在区间上,不等式有解,则的取值范围为()A.B.C.D.【答案】C【解析】(法一)因为,则可将原不等式化简为,记,那么在区间上单调递增且,原不等式有解,则有.(法二)对于方程,当即时,二次函数与轴无交点,又函数图像开口向下,那么不等式解为实数解;当即时,二次函数与轴有两个交点,记,,若在区间上不等式无解,则有解得,从而知若在区间上不等式有解则;则或得.从而选【考点】一元二次不等式定区间定轴问题8.设k>0,若关于x的不等式在(1,+∞)上恒成立,则k的最小值为.【答案】4【解析】原不等式变形为:,则问题转化成不等式在上恒成立,所以只需即可,根据均值定理可知:,当且仅当时等号成立,所以只需成立,即,所以,即.【考点】1.均值定理;2.不等式恒成立.9.已知a,b为非零实数,且a<b,则下列不等式成立的是A.B.a b<a b C.D.【答案】C【解析】为非零实数,,将两边同除以,可得.故答案选C.【考点】不等式的性质.10.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】当时,,当时,不等式为,解集为空集,符合题意;当时,若不等式解集为空集,则应满足,解得,综上所述:【考点】一元二次不等式.11.当满足时,求函数的最值及相应的的值.【答案】当时,;当时,【解析】(1)根据不等式解得x的取值范围,采用换元法令,根据x的取值范围,解得t的范围,则转化为二次函数为,在给定区间求最值的问题,进而求得最大值试题解析:(1)因为,所以解得,函数,令,因为,所以则函数为,对称轴为,所以当即时,函数有最小值,当即时,函数有最小值,所以当时,;当时,【考点】1.解对数不等式;2.求指数范围;3.二次函数在给定区间求最值的问题12.三个数,,的大小关系为()A.B.C.D.【答案】C【解析】,所以有,故选C.【考点】指数的大小比较.13.已知,,,则,,的大小关系是()A.B.C.D.【答案】A.【解析】∵,,,∴,故选A.【考点】指对数的性质.14.若,则________.【答案】-1【解析】【考点】如何去绝对值15.(2015•北京)2﹣3,3,log25三个数中最大数的是.【答案】log25.【解析】运用指数函数和对数函数的单调性,可得0<2﹣3<1,1<3<2,log25>log24=2,即可得到最大数.解:由于0<2﹣3<1,1<3<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.【考点】不等式比较大小.16.设0.3,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【答案】D【解析】由幂函数的性质比较a,b的大小,再由对数函数的性质可知c<0,则答案可求.解:∵0<<0.50=1,c=log50.3<log51=0,而由幂函数y=可知,∴b>a>c.故选:D.【考点】指数函数的图象与性质.17.不等式的解集为______.【答案】【解析】不等式或,即或,所以原不等式的解集为.【考点】二次不等式、分式的解.18.如果实数满足,则有()A.最小值和最大值B.最大值和最小值C.最小值而无最大值D.最大值而无最小值【答案】B【解析】由于,所以设,则,所以当时,取得最大值,当时,取得最大值,故选B.【考点】二倍角公式及函数的最值问题.【方法点晴】本题主要考查了二倍角公式及函数的最值问题,属于基础题.解答时关键是用好条件“实数满足”,由此可联想同角三角函数基本关系式进行三角代换,把求的最值问题转化为求三角函数的值域问题,利用二倍角公式进行化简求得三角函数的值域.19.已知实数满足,设,则的取值范围是()A.B.C.D.【答案】D【解析】设且,则,令,所以,当时上述不等式中的等号成立,所以.【考点】基本不等式的应用.【方法点晴】本题主要考查了基本不等式的应用,其中正确构造基本不等式的应用条件是使用基本不等式的基础和关键,试题思维量大,运算繁琐,属于难题,着重考查了构造思想和转化与化归思想的应用,本题的解答中,设且,得,即可利用基本不等式,可求得的值,即可求解取值范围.20.下列四个不等式中,解集为的是()A.B.C.D.【答案】B【解析】对于A.,得,判别式,所以此不等式的解集不为;对于B.,判别式,所以此不等式的解集为;对于C.,判别式,所以此不等式的解集为,不为;对于D.,得:判别式,所以此不等式的解集不为;故选B.【考点】一元二次不等式.21.设,,是与的等比中项,则的最小值是()A.B.C.4D.3【答案】B【解析】是与的等比中项,,,当且仅当时,等号成立,即的最小值是.故选B.【考点】1、正弦定理;2、和差角公式.【思路点睛】先根据等比中项的概念得出,再将转化为,最后利用基本不等式求的最值.利用基本不等式求最值时,要注意①各项皆为正数,②和或积为定值,③注意等号成立的条件.可概括为:一“正”,二“定”,三“相等”.本题主要考查基本不等式求最值,考查转化与化归思想,特别要注意的灵活运用,属于基础题.22.已知不等式的解集为.(Ⅰ)求、的值;(Ⅱ)解不等式.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由已知不等式的解集得到一元二次方程的解,再由韦达定理求出、的值;(Ⅱ)由(Ⅰ)中求出的、的值代入所求的不等式中, 解不等式即可.试题解析:(Ⅰ)由的解集为知,且方程的两根为.由根与系数的关系得,由此得.(Ⅱ)不等式可化为,解得.所以不等式的解集为.【考点】1.一元二次不等式与一元二次方程之间的关系;2.韦达定理;3.一元二次不等式的解法. 23.如果a<b<0,那么下列不等式成立的是()A.-<-B.ab<b2C.-ab<-a2D.|a|<|b|【答案】A【解析】由题意得,因为,所以,所以,即,故选A.【考点】不等关系与不等式.24.已知为非零实数,且,则下列命题成立的是()A.B.C.D.【答案】D【解析】由题意得,因为函数是单调递减函数,因为,所以,故选D.【考点】不等式的性质.25.不等式的解集为,则a,c的值为()A.a=6,c=1B.a=-6,c=-1C.a=1,c=6D.a=-1,c=-6【答案】B【解析】由题可知:,是对应方程的两根,根据韦达定理:,解得:,选择B。
高一数学 含绝对值的不等式解法试题
高一数学含绝对值的不等式解法能力提升一、选择题.1.不等式|x-2| + 1<0的解集是( )(A) {x | 1 < x < 3} (B){x | x < 1,或x > 3} (C) R. (D) ∅2.以下表述正确的是( )(A)不论a为何值,不等式|x|>a总有解.(B)不论a为何值,不等式|x|<a总有解.(C)不论a为何值,不等式|x|>a与x2>a2同解.(D)不论a为何值,不等式|x<a与x2<a2同解3.对任意实数x,若不等式|x + 1| + |x-2| > k恒成立,则k的取值范围是( )(A) k>3 (B) k<3 (C) k≥3 (D) k≤34.已知|x-a|<b的解集是{x|-3 < x < 9},则a,b的值分别是( )(A) -3,9 (B)3,6 (C)3,9 (D) -3,6二、填空题.6.集合A = {x| |2-x | >3 },B = {x||x + 3|<5},则A∩B= .7.使根式|6-x有意义的x的集合为.4|2-三、解答题.8.已知|x-2|≤3,解方程|x + 1| + |x-5| + |x + 3| = 8.9.已知A = {x||x-1|<c,c>0},B = {x||x-3>4},且A∩B = ∅,求c的取值范围.1.4含绝对值不等式的解法基础知识一、选择题。
1、如果a ,b ,c 为实数,且a >b ,则( )(A) ac > bc. (B) a 2 > b 2 (C) | a | > | b | (D) a + c > b + c2、关于|x -2|,以下叙述正确的是( )(A)总是一个正数. (B)总比x -2大.(C)在数轴上可以表示一条线段长度. (D)可以是正数,可以是负数,也可以为零.3、与不等式| 2-3x | >1同解的是( )(A) 2-3x >±1 (B) 2-3x >1(C) 2-3x >1,或2-3x <-1 (D)-1 < 3x -2 < 14、集合{x | 0 < | x -1 |< 3,x ∈Z}的真子集的个数为( )(A) 16个 (B)15个 (C)8个 (D)7个5、不等式| 2x -5 | > 3的解集是( )(A){x | x>4} (B) {x | x<1,或x > 4} (C){x | 1 < x < 4} (D){x | x <-1,或x > 4}二、填空题.6、如果方程|x + b| = 7解集为{-10,4}则| x + b | < 7的解集为.7、绝对值大于2且不大于5的最小整数是.三、解答题.8、若|x -1|<3,化简|x -4| + |x +2| .9、解不等式.12||||3≥+-x x10、解不等式|x -1| + 2|x -2|>3.一、 选择题。
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【解析】略4.二次函数的部分对应值如下表:x-3-2-101234则不等式的解集是。
【答案】【解析】略5.已知实数x,y满足,则z=4x+y的最大值为()A.10B.8C.2D.0【答案】B【解析】根据条件,可知,因为,所以两不等式相减得到,所以最大值为8【考点】函数最大最小值6.设,且,,则下列结论正确的是()A.B.C.D.【答案】A【解析】根据不等式的性质,知成立,,当就不成立,,当就不成立,同时也不成立.【考点】不等式的性质7.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式8.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划9.设a>0,b>0,若是与的等比中项,则的最小值为()A.4B.8C.1D.【答案】A【解析】,所以,所以:,等号成立的条件是.【考点】1.等差数列的性质;2.基本不等式求最值.10.不等式对一切恒成立,则实数的取值范围为.【答案】【解析】当时,或,代入,只有使不等式恒成立,当时,,即,解得,所以最后的取值范围是【考点】二次不等式恒成立11.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式12.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.13.不等式的解集为()A.或B.或C.或D.{或【答案】A【解析】,由数轴穿根法知,或【考点】•分式不等式的解法分式——不等式化整式不等式 数轴穿根法求不等式的解14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集16.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题17.若点的坐标满足约束条件:,则的最大值为A.B.C.D.11【答案】C【解析】如图,先画可行域,先设目标函数,当目标函数过点时,,最后除以得最小值是.【考点】线性规划18.不等式的解集为_______________.【答案】【解析】解:,所以不等式的解集是.【考点】一元二次不等式的解法19.(本题满分10分)已知关于的不等式的解集为.(1)求实数的值;(2)解关于的不等式:(为常数).【答案】(1)(2)当时解集为;当时解集为;当时解集为【解析】(1)本题考察的是一元二次不等式与一元二次方程关系,由题意知是关于的方程的两个根,再由韦达定理可得方程组,解方程组即可得到答案.(2)不等式等价于,按照对应方程的根的大小关系分三种情况进行讨论即可解出分式方程的解集.试题解析:(1)由题知为关于的方程的两根,即∴.(2)不等式等价于,所以:当时解集为;当时解集为;当时解集为.【考点】一元二次不等式的解法20.不等式的解集是()A.B.C.D.【答案】D【解析】不等式可得,所以解集为:,故选择D 【考点】解一元二次不等式21.已知实数满足,则的最大值是 .【答案】13【解析】作出二元一次不等式组所表示的可行域如图所示:根据图像可知当经过直线与直线的交点时,取最大值时,最大值为【考点】二元一次不等式的线性规划问题;22.解关于x的不等式:【答案】当a=0时,;当a﹥0时,;当a﹤0时,【解析】移项,通分,将分式不等式转化为一元二次不等式,分解因式后比较两根的大小即可求解不等式.试题解析:解:所以,当a=0时,当a﹥0时,当a﹤0时,【考点】分式不等式.23.如果实数x,y满足约束条件,那么2x-y的最大值为A.2B.1C.-2D.-3【答案】B【解析】将不等式组中不等式看成方程.两两结合解出交点坐标分别为,代入可得值最大为.故答案选B.也可结合图形分析得出答案.【考点】线性规划24.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】当时,,当时,不等式为,解集为空集,符合题意;当时,若不等式解集为空集,则应满足,解得,综上所述:【考点】一元二次不等式.25.(本小题满分12分)已知函数.(Ⅰ)若,解不等式;(Ⅱ)若,任意,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)当,,由两个数将轴分为三个区间,去绝对值,将函数表示成分段函数形式,分别解不等式即可;(Ⅱ)等价于,分,,三种情况去绝对值,研究恒成立时的实数的范围,再求并集即可.试题解析:(Ⅰ)若,由解得或;所以原不等式的解集为.(Ⅱ)由可得当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要综上.【考点】1.绝对值的意义;2.分段函数的表示;3.函数与解不等式.【方法点睛】本题主要考查绝对值的意义、分段函数的表示的方法、函数与解不等式的知识,属中档题.在解决含有绝对值不等式有关问题时,通常是利用绝对值的意义去掉绝对值符号变为分段函数,利用分段函数的性质求解,在去绝对值符号量一定要注意自变量的取值范围.26.解关于的不等式:.【答案】见解析【解析】解分式不等式,一般移项、通分、再讨论有无根及根的大小:由得只有一根-1; 比较大小试题解析:解:【考点】解分式不等式【名师】解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.27.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在区间上的最小值.【答案】(Ⅰ) f(x) =2x2-10x (Ⅱ)【解析】(Ⅰ)求二次函数解析式常采用待定系数法,设出解析式,由已知条件得到参数值,从而得到解析式;(Ⅱ)求二次函数最值首先判断其单调性,本题中要分情况讨论区间与对称轴的位置关系试题解析:(Ⅰ)∵f(x)是二次函数,且f(x)<0的解集是(0,5)∴可设f(x)=ax(x-5)(a>0)∴f(x)的对称轴为x=且开口向上∴f(x)在区间[-1,4]上的最大值是f(-1)=6a=12.∴a=2∴f(x)=2x(x-5)=2x2-10x.(Ⅱ)由题意,,①当时,在区间上单调递增,∴的最小值为;②当时,∴的最小值为;③当时,在区间上单调递减,∴的最小值为;综上所述:【考点】1.待定系数法求解析式;2.二次函数单调性与最值28.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.29.设0.3,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【答案】D【解析】由幂函数的性质比较a,b的大小,再由对数函数的性质可知c<0,则答案可求.解:∵0<<0.50=1,c=log50.3<log51=0,而由幂函数y=可知,∴b>a>c.故选:D.【考点】指数函数的图象与性质.30.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.31.下列各函数中,最小值为2的是()A.B.,C.D.【答案】A【解析】对于A.,当且仅当即取等号正确;对于B.,,则当且仅当即取等号,等号取不到所以错误;对于C.,当且仅当即取等号,等号取不到所以错误,D.,当不满足题意,所以应选A.【考点】基本不等式的应用.【易错点睛】利用基本不等式求最值必须满足一正,二定,三相等三个条件,并且和为定值时,积有最大值,积为定值时,和有最小值,特别是等号成立的条件是否满足,必须进行验证,否则易错;基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.32.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集33.已知正项等比数列满足,若存在两项使得,则的的最小值为()A.B.C.D.【答案】B【解析】将代入中,可求得(数列为正向数列,舍去负值),则,代入有,所以,当且仅当,显然是整数,所以不能取得最小值,单可取相邻整数的值,即时的值,可求得最小值为,股本题正确选项为B.【考点】等比数列的公比与重要不等式的运用.【思路点睛】因为,所以只要求得公比,便可通过求得的和,将等比数列通项代入,化简解方程便可求得公比,从而进一步求得,对乘以,化简整理后,再利用重要不等式求最值,最后要注意,取最值时,看能否满足取等号的条件,如果不能满足,则可取的相邻两个整数值,从中取最小的代数值即可.34.若,则下列结论中正确的是()A.B.C.D.【答案】C【解析】由题意得,,因为,所以,所以,所以,【考点】不等式的性质.35.已知实数满足.(1)若,求的最小值;(2)解关于的不等式:.【答案】(1);(2).【解析】(1)根据条件将二元代数式的最值问题转化为一元代数式的最值问题,再结合基本不等式,即可求出的最小值;(2)根据条件将不等式转化为关于的分式不等式,进而可得到其解集.试题解析:(1)由及得,因为,所以当且仅当,即时取等号,此时所以的最小值为(2)由(1),且原不等式可化为,即所以,即且所以原不等式的解集为【考点】1、基本不等式;2、分式不等式.36.若x>0,y>0,且+=1,则xy有()A.最大值64B.最小值C.最小值D.最小值64【答案】D【解析】因为,所以(当且仅当,即时取等号),即;故选D.【考点】基本不等式.【方法点睛】本题考查利用基本不等式求最值,属于基础题;在利用基本不等式求最值时,要注意其适用条件(一正,二定,三相等)的验证,陪凑“定和或定积”的解题的关键,也是难点,而验证“相等”是学生易忽视的问题,如“由判定的最小值为2”是错误的,因为是不成立的.37.如果不等式对一切实数均成立,则实数的取值范围是()A.B.C.D.【解析】不等式对一切实数均成立,等价于对一切实数均成立,所以,解得,故选A.【考点】函数的恒成立问题.【方法点晴】本题主要考查了不等式的恒成立问题的求解及一元二次函数的图象与性质的综合应用,对于函数的恒成立问题,一般选用参变量分离法、转化为对一切实数均成立,进行求解,其中正确运用一元二次函数的图形与性质是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档题.38.若满足约束条件则的最大值为【答案】7【解析】如图,画出可行域,令,画出初始目标函数,,当初始目标函数向上平移时,函数取值越来越大,当多点时,函数取得最大值,最大值为,故填:7.【考点】线性规划39.已知a>0,则的最小值是【答案】【解析】,当且仅当时等号成立取得最小值【考点】不等式性质40.二次不等式的解集为或,则关于的不等式的解集为_________.【答案】【解析】由题意可知所以所以不等式为,又,所以,解得.所以答案应填:.【考点】一元二次不等式的解法.【方法点睛】根据二次不等式的解集得出,求出,采用消元的思想,将和消去,再将不等式转化为具体的一元二次不等式来求解即可.本题考查了一元二次不等式与一元二次方程之间的应用问题,解题时应利用一元二次方程根与系数的关系进行求解即可.属于基础题.41.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.42.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】由题意得,不等式的解集是空集,当,解得或,(1)当时,不等式可化为,所以解集不是空集,不符合题意(舍去);(2)当时,不等式可化为不成立,所以解集为空集;当,要使的不等式的解集为空集,则,解得,综上所述,实数的范围为,故选B.【考点】一元二次不等式问题.43.设,则的大小关系是()A.B.C.D.【答案】D【解析】【考点】比较大小44.三个数的大小关系是().A.B.C.D.【答案】C【解析】,,,所以,故选C.【考点】指数,对数45.已知,则的大小关系为()A.B.C.D.【答案】C【解析】由指数函数是单调递减函数,所以,又,所以,故选C.【考点】指数函数与对数函数图象与性质.46.设,则()A.B.C.D.【答案】C【解析】,函数在上单调递增,故,又,而.综上知【考点】指数函数,对数函数的性质47.已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.【答案】(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.48.设,且b>0,则下列不等式正确的是()A.B.C.D.【答案】C【解析】解答:∵a+b<0,且b>0,∴−a>b>0,∴a 2>b2.本题选择C选项.49.关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2)B.(-1,2)C.(-,-1)(2,+)D.(-,1)(2,+)【答案】C【解析】由已知,不等式为,所以或,故选C.50.设,给出下列结论:①;②;③;④.其中正确的结论有()A.①④B.②④C.②③D.③④【答案】B【解析】①;②;③;;④.所以选B.51.已知.(1)当时,解不等式;(2)若,解关于的不等式.【答案】(1)(2)见解析【解析】(1),结合图像可得不等式解集(2),所以根据根的大小进行分类讨论:时,为;,为;时,为试题解析:(1)当时,不等式,即,解得.故原不等式的解集为.(2)因为不等式,当时,有,所以原不等式的解集为;当时,有,所以原不等式的解集为;当时,原不等式的解集为52.已知,那么下列命题中正确的是( )A.若则B.若,则C.若且,则D.若且,则【答案】C【解析】当时,,选项A是假命题;若,则由可得,选项B是假命题;若a3>b3且ab<0,则 (对),若a3>b3且ab<0,则若a2>b2且ab>0,则 (错),若,则D不成立。
高一数学具体的不等式试题
高一数学具体的不等式试题1.记关于x的不等式的解集为P,不等式的解集为Q.(1)若a=3,求P(2)若求正数a的取值范围【答案】(1)(2)【解析】思路分析:(1)解得(2)化简由得得到。
解:(1)由得(2)由得所以,即的取值范围是【考点】集合的概念,集合的运算,简单不等式的解法。
点评:中档题,为进行集合的运算,首先化简集合,明确集合中的元素是什么。
2.不等式ax2+bx+2>0的解集是,则a+b的值是()A.10B.-10C.-14D.14【答案】C【解析】根据题意,由于不等式ax2+bx+2>0的解集是,那么说明了是ax2+bx+2=0的两个根,然后利用韦达定理可知则a+b的值是-14,故选C.【考点】一元二次不等式的解集点评:主要是考查了二次不等式的解集的运用,属于基础题。
3.关于x的不等式:的解集为 .【答案】【解析】根据题意,由于等价于,故可知不等式的解集为。
【考点】不等式的求解点评:主要是考查了不等式的求解,属于基础题。
4.若,则下列不等式:①;②;③;④中,正确的有( )A.1个B.2个C.3个D.4个【答案】C【解析】取,可以验证①②③都是正确的,所以正确的有3个.【考点】本小题主要考查不等式的性质的应用.点评:遇到考查不等式性质的题目时,要注意特殊值法的应用,这种方法一般情况下简单有效.5.函数在上满足,则的取值范围是()A.B.C.D.【答案】D【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。
6.不等式的解集是,【答案】【解析】根据题意,由于不等式,故可知答案为【考点】一元二次不等式的解法点评:本试题主要是考查了一元二次不等式的解集的求解,属于基础题。
7.已知关于的不等式的解集是,则 .【答案】【解析】因为,关于的不等式的解集是,所以,a=。
高一数学不等式解法经典例题
学习必备欢迎下载
典型例题一
例1解不等式:(1)015223x x x
;(2)0)2()5)(4(32x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(x f (或0)(x f )可用“穿根法”求解,但要注意处理好有重根的情况.
解:(1)原不等式可化为
0)
3)(52(x x x 把方程0)3)(52(x x x 的三个根3,25,0321x x x 顺次标上数轴.然后从右上
开始画线顺次经过三个根,其解集如下图的阴影部分.
∴原不等式解集为
3
025x x x 或(2)原不等式等价于2450)2)(4(050)2()5)(4(32x x
x x x x
x x
x 或∴原不等式解集为2
455x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或
奇次重根可转化为不含重根的不等式,也可直接用“穿根法”
,但注意“奇穿偶不穿”,其法如下图.
典型例题二
例2 解下列分式不等式:
(1)22
123
x x ;(2)1
2731422
x x x x 分析:当分式不等式化为)0(0)()
(或x g x f 时,要注意它的等价变形。
高一数学绝对值不等式的解法试题
高一数学绝对值不等式的解法试题1.(2014•宜春模拟)若关于x的不等式|x﹣1|+|x﹣3|≤a2﹣2a﹣1在R上的解集为∅,则实数a 的取值范围是()A.a<﹣1或a>3B.a<0或a>3C.﹣1<a<3D.﹣1≤a≤3【答案】C【解析】|x﹣1|+|x﹣3|表示数轴上的x对应点到1和3对应点的距离之和,其最小值等于2,再由a2﹣2a﹣1<2,解得a的取值范围.解:|x﹣1|+|x﹣3|表示数轴上的x对应点到1和3对应点的距离之和,其最小值等于2,由题意|x﹣1|+|x﹣3|≤a2﹣2a﹣1的解集为空集,可得|x﹣1|+|x﹣3|>a2﹣2a﹣1恒成立,故有2>a2﹣2a﹣1,解得﹣1<a<3,故选:C.点评:本题考查绝对值的意义,绝对值不等式的解法,得到2>a2﹣2a﹣1,是解题的关键,属于中档题.2.(2014•河西区三模)已知不等式|y+4|﹣|y|≤2x+对任意实数x,y都成立,则常数a的最小值为()A.1B.2C.3D.4【答案】D【解析】令f(y)=|y+4|﹣|y|,利用绝对值不等式可得|y+4|﹣|y|≤|y+4﹣y|=4,从而将问题转化为2x+≥f(y)max =4,令g(x)=﹣(2x)2+4×2x,则a≥g(x)max=4,从而可得答案.解:令f(y)=|y+4|﹣|y|,则f(y)≤|y+4﹣y|=4,即f(y)max=4.∵不等式|y+4|﹣|y|≤2x+对任意实数x,y都成立,∴2x+≥f(y)max=4,∴a≥﹣(2x)2+4×2x=﹣(2x﹣2)2+4恒成立;令g(x)=﹣(2x)2+4×2x,则a≥g(x)max =4,∴常数a的最小值为4,故选:D.点评:本题考查绝对值不等式的解法,着重考查化归思想与构造函数思想,突出恒成立问题的考查,属于中档题.3.(2014•南昌三模)若关于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,则实数a的取值范围为()A.(0,1)B.(﹣1,0)C.(﹣∞,﹣1)D.(﹣∞,﹣1)∪(0,+∞)【答案】D【解析】依题意,关于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集⇔a2+a+1>|x﹣1|﹣|x﹣2|恒成立,构造函数f(x)=|x﹣1|﹣|x﹣2|,可求其最大值,从而可解关于a的不等式即可.解:∵|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,∴a 2+a+1>|x﹣1|﹣|x﹣2|恒成立,构造函数f(x)=|x﹣1|﹣|x﹣2|=,则a2+a+1>f(x)max ,∵f(x)max =1,∴a2+a+1>1,∴a2+a>0,解得a>0或a<﹣1.∴实数a的取值范围为(﹣∞,﹣1)∪(0,+∞)故选D.点评:本题考查绝对值不等式的解法,考查函数恒成立问题,突出等价转化思想的应用与一元二次不等式的解法的考查,属于中档题.4.(2014•吉安二模)已知f(x)=|x﹣1|+|x+m|(m∈R),g(x)=2x﹣1,若m>﹣1,x∈[﹣m,1],不等式f(x)<g(x)恒成立,则实数m的取值范围是()A.(﹣1,﹣]B.(﹣1,﹣)C.(﹣∞,﹣]D.(﹣1,+∞)【答案】B【解析】依题意,x∈[﹣m,1]时,f(x)=1﹣x+x+m=1+m;又x∈[﹣m,1],不等式f(x)<g(x)恒成立,问题转化为1+m<g(x)min=﹣2m﹣1恒成立,从而可得答案.解:∵f(x)=|x﹣1|+|x+m|,∴当m>﹣1,x∈[﹣m,1]时,f(x)=1﹣x+x+m=1+m;又g(x)=2x﹣1,x∈[﹣m,1],不等式f(x)<g(x)恒成立,即1+m<2x﹣1(x∈[﹣m,1])恒成立,又当x∈[﹣m,1]时,g(x)min =﹣2m﹣1,∴1+m<﹣2m﹣1,解得:m<﹣,又m>﹣1,∴﹣1<m<﹣.故选:B.点评:本题考查绝对值不等式的解法,考查等价转化思想与综合运算能力,属于中档题.5.(2014•衡阳三模)设函数f(x)=|x2﹣2x﹣1|,若a>b>1,且f(a)=f(b),则ab﹣a﹣b的取值范围为()A.(﹣2,3)B.(﹣2,2)C.(1,2)D.(﹣1,1)【答案】D【解析】作出函数f(x)的图象,由a>b>1,且f(a)=f(b)可得(a﹣1)2+(b﹣1)2=4.设a﹣1=2cosθ,b﹣1=2sinθ,θ∈(0,),根据ab﹣a﹣b=2sin2θ﹣1,利用正弦函数的定义域和值域求得ab﹣a﹣b的范围.解:作出函数f(x)的图象,如图:可得f(x)=|x2﹣2x﹣1|的图象关于直线x=1对称,且f(1﹣)=f(1+)=0,f(3)=f(﹣1)=f(1)=2,由a>b>1,且f(a)=f(b),得a2﹣2a﹣1=﹣(b2﹣2b﹣1),整理得(a﹣1)2+(b﹣1)2=4.设a﹣1=2cosθ,b﹣1=2sinθ,θ∈(0,),则ab﹣a﹣b=(a﹣1)(b﹣1)﹣1=2sin2θ﹣1,由sin2θ∈(0,1),可得2sin2θ﹣1∈(﹣1,1),即ab﹣a﹣b∈(﹣1,1),故选:D.点评:本题主要考查绝对值不等式的解法,三角代换、正弦函数的定义域和值域,体现了转化、数形结合的数学思想,属于中档题.6.(2014•湖北)若不等式|x﹣a|+≥在x>0上恒成立,则实数a的取值范围是()A.a≤2B.a<2C.a>2D.a≥2【答案】A【解析】通过对x﹣a>0与x﹣a≤0的讨论,去掉原不等式中的绝对值符号,分离参数a,转化为恒成立问题,利用函数的单调性与最值即可求得答案.解:①当x﹣a>0,|x﹣a|+≥⇔x﹣a+≥⇔a+≤,∵x>0,x+≥2(当且仅当x==1时取“=”),即=2,∴a≤;②当x﹣a≤0,即0<x≤a时,原不等式化为:a﹣x+≥⇔a≥x﹣+,∵y=x与y=﹣在(0,a]上均为增函数,∴y=x﹣+在(0,a]上为增函数,于是,当x=a时,y=a﹣+,max∴a≥a﹣+,解得:0<a≤2;综上所述,实数a的取值范围是a≤2.故选:A.点评:本题考查绝对值不等式的解法,着重考查分类讨论思想与等价转化思想的综合应用,考查函数的单调性与最值,属于难题.7.(2014•梧州模拟)不等式|x2﹣1|>3的解集为()A.(﹣2,2)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,1)D.(﹣∞,﹣2)∪(2,+∞)【答案】D【解析】由原不等式可得可得x2﹣1>3,或x2﹣1<﹣3,分别求得每个不等式的解集,再取并集,即得所求.解:由不等式|x2﹣1|>3,可得x2﹣1>3,或x2﹣1<﹣3.解x2﹣1>3,可得x>2,或x<﹣2;解x2﹣1<﹣3可得x无解.综上可得,不等式的解集为[x|x>2,或x<﹣2},故选:D.点评:本题主要考查分式不等式的解法,体现了等价转化和分类讨论的数学思想,属于基础题.8.(2014•安徽模拟)已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2,则关于x的不等式:|x﹣1|+|x﹣3|≥m的解集为()A.(﹣∞,0]B.[4,+∞)C.(0,4]D.(﹣∞,0]∪[4,+∞)【答案】D【解析】(1)已知关于x的不等式:|2x﹣m|≤1,化简为,再利用不等式整数解有且仅有一个值为2,求出m的值.(2)可以分类讨论,根据讨论去掉绝对值,然后求解.解:(1)由不等式|2x﹣m|≤1,可得,∵不等式的整数解为2,∴,解得3≤m≤5.再由不等式仅有一个整数解2,∴m=4.(2)(2)本题即解不等式|x﹣1|+|x﹣3|≥4,当x≤1时,不等式等价于1﹣x+3﹣x≥4,解得x≤0,不等式解集为{x|x≤0}.当1<x≤3时,不等式为x﹣1+3﹣x≥4,解得x∈∅,不等式解为∅.当x>3时,x﹣1+x﹣3≥4,解得x≥4,不等式解集为{x|x≥4}.综上,不等式解为(﹣∞,0]∪[4,+∞).故选D.点评:此题考查绝对值不等式的性质及其解法,这类题目是高考的热点,难度不是很大,要注意进行分类讨论,解题的关键是去掉绝对值,属于中档题.9.(2014•武汉模拟)若关于x的不等式|x﹣3|+|x﹣4|<a的解集是空集,则实数a的取值范围是()A.(﹣∞,1]B.(﹣∞,1)C.[1,+∞)D.(1,+∞)【答案】A【解析】不等式|x﹣3|+|x﹣4|<a的解集是空集⇔|x﹣3|+|x﹣4|≥a恒成立,令f(x)=|x﹣3|+|x﹣4|,利用绝对值不等式可求得f(x)min=1,从而可得答案.解:∵不等式|x﹣3|+|x﹣4|<a的解集是空集,∴|x﹣3|+|x﹣4|≥a恒成立,令f(x)=|x﹣3|+|x﹣4|,则a≤f(x)min .∵f(x)=|x﹣3|+|x﹣4|≥|(x﹣3)﹣(x﹣4)|=1,即f(x)min =1,∴a≤1,即实数a的取值范围是(﹣∞,1],故选:A.点评:本题考查绝对值不等式的解法,考查绝对值不等式的应用,突出等价转化思想的考查,属于中档题.10.(2014•南昌模拟)对任意x∈R,且x≠0,不等式|x+|>|a﹣5|+1恒成立,则实数a的取值范围是()A.(﹣∞,4)∪(6,+∞)B.(2,8)C.(3,5)D.(4,6)【答案】D【解析】根据|x+|≥2结合题意可得2>|a﹣5|+1,去掉绝对值,求得不等式的解集.解:∵|x+|≥2,不等式|x+|>|a﹣5|+1恒成立,∴2>|a﹣5|+1,即|a﹣5|<1,﹣1<a﹣5<1,解得4<a<6,故选:D.点评:本题主要考查基本不等式、绝对值不等式的解法,体现了转化的数学思想,属于中档题.。
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.下列函数中,最小值为2的是----------------------------------------()A.B.C.D.【答案】B【解析】略2.(本题满分10分)已知正数满足,求的最小值有如下解法:解:∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法【答案】不正确【解析】∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法解:以上解法错误------1分理由:∵,当且仅当x=y时取到等号,3.已知则的最小值为()A.2B.C.4D.5【答案】C【解析】【考点】均值不等式求最值4.设常数,若对一切正实数成立,则的取值范围为 .【答案】【解析】【考点】1.不等式与函数的转化;2.均值不等式求最值5.已知点满足约束条件,为坐标原点,则的最小值为_______________.【答案】【解析】将约束条件中任意俩条件进行联立,若想满足三个不等式,则解出y=,将y值带入不等式,解出,所以的最小值为。
【考点】函数不等式6.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式7.如果,那么下列不等式成立的是()A.B.C.D.【答案】A【解析】因为,则,所以,A正确;因为,则,B错;因为,则,所以,C错;因为,则,D错;【考点】不等式的基本性质;8.关于x的不等式的解集是,则关于x的不等式的解集是()A.B.C.D.【答案】D【解析】关于x的不等式的解集是,所以,所以不等式可化为,从而确定解集;【考点】1.一元二次不等式的解法;2.一元一次不等式的解集与系数的关系;9.若,且,则的最小值等于_______.【答案】【解析】约束条件对应的平面区域如上图所示,当直线过点时取得最小值3.【考点】线性规划10.(本小题16分)已知函数(1)时,解关于的不等式;(2)当时,若对任意的,不等式恒成立,求实数的取值范围;(3)若,求的取值范围.【答案】(1)(2)(3)【解析】(1)将不等式系数整理可得到二次不等式,结合二次函数图像即可求解;(2)将不等式恒成立问题采用分离参数的方法转化为求函数最值问题,本题中首先将不等式变形为进而利用均值不等式求解的最小值;(3)将不等式化简得到关于的不等式,进而求得范围,将所求式子的绝对值去掉,结合值及线性规划求式子的范围试题解析:(1)化为因此解集为;(2)原不等式化为:,因为所以原不等式化为恒成立,,当且仅当时等号成立,所以(3)题目条件化为,作图可知,去绝一个绝对值z=,对讨论再去掉一个绝对值.当时,由线性规划得;当时,,综上可得【考点】1.不等式解法;2.函数最值;3.线性规划问题11.不等式组所表示的平面区域的面积是 ____________.【答案】25【解析】由已知条件可计算出,不等式表示的平面区域为,易得【考点】线性规划不等式组表示的平面区域及三角形的面积计算12.二次不等式的解集是全体实数的条件是()A.B.C.D.【答案】B【解析】当时,原不等式换位对任意的都成立,要使二次不等式的解集是全体实数,只需,综上,故选B。
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.已知a>b, c>d,则()A.ac>bd B.C.D.【答案】D【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。
在第二小问中,将条件乘入到所求结果中去,再将式子进行展开,利用万能公式,解不等式即可求出最小值。
试题解析:(1)x<,∴4x-5<0.∴y=4x-5++3=-[(5-4x)+]+3=1.≤-2+3=1,ymax(2)∵x>0,y>0且=1,∴x+y=(x+y)=10+≥10+2=16,即x+y的最小值为16【考点】函数万能关系不等式4.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【答案】(1);(2)【解析】(1)定义域为,指被开方数恒大于等于0,讨论两种情况当或是两种情况;(2)函数的最小值,指被开方数为抛物线时的顶点函数值是,所以先根据顶点坐标求参数,然后将参数代入二次不等式,解不等式.试题解析:(1)∵函数y=的定义域为R,∴a=0时,满足题意;a>0时,△=4a2﹣4a≤0,解得0<a≤1;∴a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥, a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【考点】1.二次函数;2.二次函数的性质;3.解二次不等式.5.已知实数满足约束条件则的最大值是.【答案】9【解析】作出可行域及目标函数线如图,平移目标函数线使之经过可行域,当目标函数线过点时目标函数线的纵截距最大此时也最大.,所以.【考点】线性规划.6.下列结论正确的是A.若,则B.若,则C.若则D.若,则【答案】D【解析】对于A若c<0则错,对于B,若A,B都是负数则错,对于C,只有两个同向且全正的不等式才恒成立,故只有D正确.【考点】不等式的基本性质.7.(本小题满分8分)已知函数.(Ⅰ)当时,解关于的不等式;(Ⅱ)当时,解关于的不等式.【答案】(Ⅰ)(Ⅱ)当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或【解析】第一问考查了一元二次不等式的解法,第二问首先对二次三项式因式分解得到,再分类讨论两根的大小得到不等式的解集.试题解析:(Ⅰ)当时,不等式可化为,即,解得,所以不等式的解集为.(Ⅱ)当时,不等式可化为,即,则,当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或.【考点】一元二次不等式的解法,分类讨论的思想.8.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划9.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式10.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.11.若关于的不等式在区间上有解,则实数的取值范围为()A.B.C.(1,+∞)D.【答案】A【解析】因为,则不等式可化为:,设,由题意得只需,因为函数为区间上的减函数,所以,所以选A【考点】1.分离参数;2.存在性问题;12.若,且,则的最小值是()A.B.C.2D.3【答案】B【解析】由已知条件可得(b=c时等号成立),所以,故选B【考点】不等式和最值计算综合问题13.若,则()A.B.C.D.【答案】C【解析】不等式的两边同时乘以负数,不等号方向改变,故A错,B错,C错,只有B对,故选B.【考点】不等式的基本性质.14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.已知,则的最大值是.【答案】3【解析】求解该不等式组在第一象限及与坐标轴的交点坐标是(0,2),(1,4),(5,0),(0,0),分别代入目标函数z=-x+y,得2,3,-5,0比较得最大值是3,当且仅当x=1,y=4时取得最大.【考点】线性规划的应用.16.(12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1);(2)详见解析;(3)详见解析【解析】(1)当时,将不等式分解因式,得到解集;(2)比较大小,可以做差,然后通分,分解因式,然后讨论的范围,比较两数的大小;(3)第一步,先分解因式,第二步,根据上一问的结果得到与的大小关系,得到解集.试题解析:解:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.解二次不等式;2.比较大小.17.(本题满分12分)已知函数,的解集为(1)求,的值;(2)为何值时,的解集为R.【答案】(1);(2)【解析】(1)不等式的解集的端点就是其对应方程的实根,所以代入,解,然后根据韦达定理求;(2)代入上一问的结果,问题转化为解集为,所以讨论两种情况,和.试题解析:解(1)由已知得是方程的两根,的解集为(2)由(1)得解集为,当时,不等式解集为成立,当时,由(1)(2)可得.【考点】1.二次不等式的解法;2.二次不等式恒成立;3.韦达定理.18.不等式的解集是.【答案】【解析】根据解一元二次不等式得口诀“大于取两边,小于取中间”可得不等式的解集是【考点】解一元二次不等式19.关于不等式的解集为,则等于()A.B.11C.D.【答案】C【解析】二次不等式的解集的端点值就是二次方程的实根,所以根据韦达定理,,解得,,所以【考点】1.一元二次不等式的解法;2.韦达定理.20.(共10分)(1)解不等式:;(2)解关于的不等式:【答案】(1);(2)详见解析.【解析】(1)将此分式不等式转化为相乘形式,即,即,然后按二次不等式求解;(2)解此类型的含参二次不等式,第一步,先分解因式,第二步,讨论两根的大小关系,根据根的大小关系,写出不等式的解集.试题解析:解:(1)原不等式等价于故原不等式的解集为(2)原不等式可化为综上:不等式的解集为:【考点】1.解分式不等式;2.解含参二次不等式.21.已知,则的最小值是()A.10B.C.12D.20【答案】C【解析】,,当且仅当时取得等号.【考点】基本不等式.22.若,则下列正确的是()A.B.C.D.【答案】D【解析】A.若,则不成立,所以错误;B.若,则不成立,所以错误;C.若,则不成立,所以错误;D因为,不等式两边同时减去同一个数,不等号方向不变,所以正确,故选择D【考点】不等式性质23.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式24.函数f(x)=,若f(x0)=3,则x的值是()A.1B.C.D.【答案】D【解析】f(x)=3,所以,舍去,或,其中舍去,或,舍去,综上,故选D【考点】分段函数求值25.三个数,,的大小关系为()A.B.C.D.【答案】C【解析】,所以有,故选C.【考点】指数的大小比较.26.若,,且恒成立,则的最小值是()A.B.C.D.【答案】B【解析】分离参数得恒成立,两边平方得,而,当且仅当时等号成立,所以,故选B.【考点】1、不等式性质;2、均值不等式;3、不等式的恒成立.【方法点晴】本题主要考查的是含参不等式的恒成立问题,属于中档题题.首先利用不等式的性质将不等式变形分离出常数,转化为求的最大值问题,再平方后运用基本不等式求其最大值,注意分析等号能否取得.27.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.28.设,则的大小关系A.B.C.D.【答案】B【解析】在同一直角坐标系中画出函数:的图像(略),由图像可知.故选B.【考点】指数函数和对数函数的图像和性质.29.若关于x的不等式(2x-1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是__________.【答案】【解析】关于x的不等式(2x-1)2<ax2等价于,其中且有,故有,不等式的解集为,所以解集中一定含有1,2,3,可得,所以,解得.【考点】含参数的一元二次方程的解法.30.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集31.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集32.已知实数满足,设,则的取值范围是()A.B.C.D.【答案】D【解析】设且,则,令,所以,当时上述不等式中的等号成立,所以.【考点】基本不等式的应用.【方法点晴】本题主要考查了基本不等式的应用,其中正确构造基本不等式的应用条件是使用基本不等式的基础和关键,试题思维量大,运算繁琐,属于难题,着重考查了构造思想和转化与化归思想的应用,本题的解答中,设且,得,即可利用基本不等式,可求得的值,即可求解取值范围.33.下列关于的不等式解集是实数集R的为()A.B.C.D.【答案】C【解析】A中的解集是,B中的解集是,C中的解集是R,D中的解集是,故答案为C.【考点】不等式的解法.34.已知,那么下列不等式中正确的是()A.B.C.D.【答案】D【解析】由题根据不等式的性质,A,B,C选项,数的正负不明,错误;而选项D,无论取任何数都成立。
高一数学具体的不等式试题答案及解析
高一数学具体的不等式试题答案及解析1.记关于x的不等式的解集为P,不等式的解集为Q.(1)若a=3,求P(2)若求正数a的取值范围【答案】(1)(2)【解析】思路分析:(1)解得(2)化简由得得到。
解:(1)由得(2)由得所以,即的取值范围是【考点】集合的概念,集合的运算,简单不等式的解法。
点评:中档题,为进行集合的运算,首先化简集合,明确集合中的元素是什么。
2.不等式的解集是【答案】【解析】等价于,所以,,故不等式的解集是。
【考点】简单分式不等式解法点评:简单题,分式不等式解法,主要是转化成整式不等式求解。
3.若不等式kx2-2x+6k<0(k≠0)。
(1)若不等式解集是{x|x<-3或x>-2},求k的值;(2)若不等式解集是R,求k的取值。
【答案】(1);(2)【解析】解:∵不等式kx2-2x+6k<0(k≠0),不等式的解集是{x|x<-3或x>-2},∴根据二次函数与方程的关系,得:k<0,且-3,-2为关于x的方程kx2-2x+6k=0的两个实数根,据韦达定理有-3+(-2)=,(2)根据题意,由于k=0,不符合题意舍去,当k不为零时,则根据开口向下,判别式小于零可知,4-24k<0,k<0得到取值范围是【考点】二次函数与不等式点评:本题考查了函数恒成立问题,着重考查二次函数的图象与性质,同时考查了分类讨论思想的运用和转化思想,易错点在于忽略当k=0的情形,属于中档题4.已知不等式的解集为,(1)求的值;(2)(文科做)解关于的不等式:(2)(理科做)解关于的不等式:.【答案】(1)m+2n=7(2)(文科做)a<-3时,不等式的解集为;a>-3时,不等式的解集为;a=-3时,不等式的解集为(2)(理科做)当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为,或;当时,原不等式的解集为,或.【解析】(1)由不等式的解集为知关于x的方程的两根为-1和n,且由根与系数关系,得∴,∴ m+2n=7(2)(文科做)由(1)知关于不等式可以化为,即故当-a>3,即a<-3时,不等式的解集为;当-a<3,即a>-3时,不等式的解集为;当-a=3,即a=-3时,不等式的解集为(2)(理科做)解:原不等式化为,①当时,原不等式化为,解得;②当时,原不等式化为,且,解得;③当时,原不等式化为,且,解得或;④当时,原不等式化为,解得且;⑤当时,原不等式化为,且,解得或;综上所述,当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为,或;当时,原不等式的解集为,或.【考点】含参数一元二次不等式的解法。
高一数学不等式试题
高一数学不等式试题1.已知求不等式的解集.【答案】(I)把原不等式移项通分得,…………(2分)由则可整理得.(※)…………(4分)当即时,由(※)得………(7分)当即时,由(※)得…………………(9分)当即时,由(※)得…………(12分)综上:当时,原不等式的解集为;当时,原不等式无解;当时,原不等式的解集为【解析】略2.二次函数的部分对应值如下表:x-3-2-101234则不等式的解集是。
【答案】【解析】略3.设x,y∈R+且xy-(x+y)="1," 则()A.B.C.D.【答案】A【解析】略4.若关于x的不等式的解集为(1,2),则关于x不等式的解集为.【答案】【解析】由题意可得,令,所以,代入不等式得或,不等式解集为【考点】一元二次不等式解法与三个二次关系5.设,且,,则下列结论正确的是()A.B.C.D.【解析】根据不等式的性质,知成立,,当就不成立,,当就不成立,同时也不成立.【考点】不等式的性质6.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【答案】C【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划7.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.8.若,且,则的最小值是()A.B.C.2D.3【答案】B【解析】由已知条件可得(b=c时等号成立),所以,故选B【考点】不等式和最值计算综合问题9.若a<b<0,则()A.B.C.D.【解析】根据函数的单调性,,A.错;,B错;根据不等式的性质,,C正确;,所以D错误.【考点】不等式的性质10.设关于x,y的不等式组表示的平面区域内存在点P(x0,y),满足x 0-2y=2,则m的取值范围是()A.(-∞,)B.(-∞,)C.(-∞,)D.(-∞,)【答案】C【解析】根据线性约束条件画出可行域,由已知条件可知:要使可行域存在,必有,要求可行域包含直线,只要边界点在直线上方,在直线下方,故建立不等式组,解之得,故选C.【考点】线性规划问题、含参不等式的解法.11.不等式的解集为________________.【答案】【解析】当,当,所以不等式的解集为.【考点】绝对值不等式的解法12.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集13.已知则不等式的解集是()A.B.C.D.【答案】C【解析】当时,不等式化为当时,不等式化为,综上解集为【考点】1.解不等式;2.分情况讨论14.当满足时,求函数的最值及相应的的值.【答案】当时,;当时,【解析】(1)根据不等式解得x的取值范围,采用换元法令,根据x的取值范围,解得t的范围,则转化为二次函数为,在给定区间求最值的问题,进而求得最大值试题解析:(1)因为,所以解得,函数,令,因为,所以则函数为,对称轴为,所以当即时,函数有最小值,当即时,函数有最小值,所以当时,;当时,【考点】1.解对数不等式;2.求指数范围;3.二次函数在给定区间求最值的问题15.(2015秋•德阳期末)设a=e0.3,b=0.92,c=ln0.9,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.b<c<a【答案】B【解析】由于a=e0.3>1,0<b=0.92<1c=ln0.9<0,即可得出.解:a=e0.3>1,0<b=0.92<1c=ln0.9<0,∴c<b<a.故选:B.【考点】对数值大小的比较.16.在上满足,则的取值范围是()A.B.C.D.【答案】D【解析】在上满足,即函数的最大值小于,因函数中含有参数,先对其进行讨论:当时,恒成立;当时,为一元二次函数,且图像开口向上,不存在最大值,所以不满足恒成立;当时,为一元二次函数,且图像开口向下,存在最大值,则有,综上所述有,本题正确选项为D.【考点】不等式恒成立的证明(求解).17.关于的不等式的解集为________________.【答案】【解析】,,所以不等式的解集为.所以答案应填:.【考点】1、绝对值不等式;2、一元二次不等式组.18.已知实数,,且,则的最小值为()A.B.C.D.【答案】B【解析】因为,所以,,,,当且仅当,即时等号成立,,而,当且仅当,即时,等号成立,所以的最小值为.故选B.【考点】1、等差数列的性质;2、等差数列的前项和公式.【思路点睛】本题的关键是将配凑成能利用基本不等式求最值的形式,先将其化为,利用基本不等式的变形求出的最小值,再利用基本不等式求出的最小值即可.利用基本不等式求最值时,要注意①各项皆为正数,②和或积为定值,③注意等号成立的条件.可概括为:一“正”,二“定”,三“相等”.本题主要考查基本不等式求最值,属于中档题.19.若lgx+lgy=2,则的最小值为 ( )【答案】B【解析】由,得,则,所以最小值为.故选B.【考点】对数的运算;均值不等式.20.已知,则函数的最小值为()A.1B.2C.3D.4【答案】C【解析】由题意得,因为,所以,则,当且仅当时,即时等号的是成立的,故选C.【考点】基本不等式的应用.21.若,,则下列各式一定成立的是()A.B.C.D.【答案】C【解析】因,故,故应选C.【考点】不等式的性质及运用.22.以下列函数中,最小值为的是()A.B.C.D.【答案】A【解析】由不等式性质可知,当且仅当即时等号成立,取得最小值2【考点】不等式性质23.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.24.三个数大小的顺序是()A.B.C.D.【答案】A【解析】,所以.【考点】比较大小.25.已知,,,则A.B.C.D.【答案】D【解析】【考点】比较大小26.三个数的大小顺序是()A.B.C.D.【答案】D【解析】由指数函数与对数函数的图形与性质可知,所以,故选D.【考点】指数函数与对数函数的性质.27.不等式对任意实数恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】因,故,解之得或,故选A.28.若,且,则的最小值为______;【答案】1【解析】因,故由基本不等式可得,应填答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学同步测试(2)—不等式的解法
一、选择题:
1.不等式1≤|x -3|≤6的解集是
( )
A .{x |-3≤x ≤2或4≤x ≤9}
B .{x |-3≤x ≤9}
C .{x |-1≤x ≤2}
D .{x |4≤x ≤9}
2.已知集合A ={x ||x -1|<2},B ={x ||x -1|>1},则A ∩B 等于
( )
A .{x |-1<x <3}
B .{x |x <0或x >3}
C .{x |-1<x <0}
D .{x |-1<x <0或2<x <3} 3.不等式|2x -1|<2-3x 的解集为
( )
A .{x |x <
53
或x >1} B .{x |x <
5
3
}
C .{x |x <21 或 21<x < 5
3
}
D .{x |-3<x <
3
1} 4.已知集合A={x ||x +2|≥5},B={x |-x 2+6x -5>0},则A ∪B 等于 ( )
A .R
B .{x |x ≤-7或x ≥3}
C .{x |x ≤-7或x >1}
D .{x |3≤x <5} 5.不等式3129x -≤的整数解的个数是
( )
A .7
B .6
C .5
D .4 6.不等式31
12x x
-≥-的解集是
( )
A .324
x x ⎧⎫≤≤⎨⎬⎩⎭
B .324
x x ⎧⎫≤<⎨⎬⎩⎭
C .324
x x x ⎧⎫≤>⎨⎬⎩
⎭
或
D .{}2x x <
7.已知集合A ={x ||x -1|<2},B ={x ||x -1|>1},则A ∩B 等于
( )
A .{x |-1<x <3}
B .{x |x <0或x >3}
8.己知关于x 的方程(m +3)x 2-4m x +2m -1=0的两根异号,且负根的绝对值比正根大,那么实数m 的取值范围是
( )
A .-3<m <0
B .m <-3或m >0
C .0<m <3
D .m <0 或 m >3
9.设集合{}{}
2450,0P x x x Q x x a =--<=-≥,则能使P ∩Q=φ成立的a 的值是( ) A .{}
5a a > B .{}5a a ≥
C .{}15a a -<<
D .{}1a a >
10.已知0a >,若不等式43x x a -+-<在实数集R 上的解集不是空集,则a 的取值范围是( )
A .0a >
B .1a >
C . 1a ≥
D .2a >
11.已知集合A ={x |x 2-x -6≤0},B ={x |x 2+x -6>0},S =R ,则C S (A ∩B )等于( )
A .{x |-2≤x ≤3}
B .{x |2<x ≤3}
C .{x |x ≥3或x <2}
D .{x |x >3或x ≤2}
12.设集合{}
212,12x A x x a B x x ⎧-⎫
=-<=<⎨⎬+⎩⎭
,若A B ⊆,则a 的取值范围是( )
A .{}
01a a ≤≤
B .{}01a a <≤
C .{}01a a <<
D .{}01a a ≤<
二、填空题:
13.已知集合A={x ||x +2|≥5},B={x |-x 2+6x -5>0},则A ∪B= ; 14.若不等式2x -1>m(x 2-1)对满足-2≤x ≤2 的所有实数m 都成立,则实数x 的取值范围是 .
15.不等式0≤x 2+m x +5≤3恰好有一个实数解,则实数m的取值范围是 . 16.己知关于x 的方程(m +3)x 2-4mx +2m -1=0 的两根异号,且负根的绝对值比正根大,
那么实数m 的取值范围是 .
三、解答题: 17.解下列不等式:
⑴|x +2|>x +2; ⑵3≤|x -2|<9.
18.解关于x 的不等式:(1) x 2-(a +1)x +a <0,(2) 0222
>++mx x .
19.设集合A={x |x 2+3k 2≥2k (2x -1)},B={x |x 2-(2x -1)k +k 2≥0},且A ⊆B ,试求k 的取值
范围.
20.不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.
21.已知二次函数y =x 2+px +q ,当y <0时,有-
21<x <3
1
,解关于x 的不等式 qx 2+px +1>0.
22.若不等式
012
>++p qx x p
的解集为{}42|<<x x ,求实数p 与q 的值.
参考答案
一、选择题: ADBCA BDABB DA 二、填空题:
13.{x |x ≤-7或x >1},14. 2
31271+<<+-x ,15.m=±2,16.-3< m <0
17、解析:⑴ ∵当x +2≥0时,|x +2|=x +2,x +2>x +2无解.
当x +2<0时,|x +2|=-(x +2)>0>x +2 ∴当x <-2时,|x +2|>x +2 ∴不等式的解集为{x |x <-2} ⑵原不等式等价于不等式组
⎩
⎨⎧<-≥-9|2|3
|2|x x
由①得x ≤-1或x ≥5;
由②得-7<x <11,把①、②的解表示在数轴上(如图), ∴原不等式的解集为{x |-7<x ≤-1或5≤x <11}.
18、解析:(1)原不等式可化为:,0)1)((<--x a x 若a >1时,解为1<x <a ,若a >1时, 解为a <x <1,若a =1时,解为φ (2)△=162
-m .
①当时或即440162>-<>-m m m ,△>0.
方程0222
=++mx x 有二实数根:.4
16
,4162221-+-=---=m m x m m x
∴原不等式的解集为.
416416|22⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧-+->---<m m x m m x x 或 ①当m =±4 时,△=0,两根为.4
21m
x x -
== 若,4=m 则其根为-1,∴原不等式的解集为{}1,|-≠∈x R x x 且. 若,4-=m 则其根为1,∴原不等式的解集为{}1,|≠∈x R x x 且. ②当-4<4<m 时,方程无实数根.∴原不等式的解集为R .
19.解析:}0)]1()][13([|{≥+---=k x k x x A ,比较,1,13的大小+-k k
因为),1(2)1()13(-=+--k k k
(1)当k >1时,3k -1>k +1,A={x |x ≥3k -1或x 1+≤k }. (2)当k =1时,x R ∈.
(3)当k <1时,3k -1<k +1,A={}131|+≤+≥k x k x x 或.
2
2
① ②
(1)当k =0时,R x ∈<∆,0. (2)当k >0时,△<0,x R ∈.
(3)当k <0时,k k x k k x -+≥--≤>∆或,0.
故:当0≥k 时,由B=R ,显然有A B ⊆, 当k <0时,为使A B ⊆,需要⇒⎪⎩⎪⎨
⎧-+≥+--≤-k
k k k k k 113k 1-≥,于是k 1-≥时,B A ⊆.
综上所述,k 的取值范围是:.010<≤-≥k k 或
20.解析: (1)当m 2-2m -3=0,即m =3或m =-1时,
①若m =3,原不等式解集为R
②若m =-1,原不等式化为4x -1<0
∴原不等式解集为{x |x <
4
1
=,不合题设条件. (2)若m 2-2m -3≠0,依题意有
⎪⎩⎪⎨⎧<--+-=∆<--0)32(4)3(032222m m m m m 即⎪⎩⎪
⎨⎧<<-<<-35
131m m ∴-
5
1
<m <3 综上,当-5
1
<m ≤3时,不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R .
21.解析: 由已知得x 1=-2
1,x 2=31
是方程x 2+px +q =0的根,
∴-p =-21+31
q =-21×31
∴p =6
1,q =-61
,∴不等式qx 2+px +1>0
即-6
1x 2+61
x +1>0
∴x 2-x -6<0,∴-2<x <3.
即不等式qx 2+px +1>0的解集为{x |-2<x <3}.
22.解析:由不等式01
2>++p qx x p
的解集为{}42|<<x x ,得
2和4是方程
012
=++p qx x p
的两个实数根,且01<p .(如图)
∴ .
042420
12<⇒⎪⎪⎩⎪⎪⎨
⎧=⋅-=+<p p pq P
解得.22
3
,22=
-=q P 注:也可从)4)(2(1
12--=++x x p
q px x p 展开,比较系数可得.
y
x
o 24。