初中数学定点问题知识点与常考难题和培优提高练习压轴题(含解析)

合集下载

中考数学 数学中考数学压轴题的专项培优练习题(含答案

中考数学 数学中考数学压轴题的专项培优练习题(含答案

一、中考数学压轴题1.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.2.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.3.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.4.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.5.已知.在Rt △OAB 中,∠OAB=90°,∠BOA=30°,OA=23,若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内,将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.(1)求经过点O ,C ,A 三点的抛物线的解析式.(2)若点M 是抛物线上一点,且位于线段OC 的上方,连接MO 、MC ,问:点M 位于何处时三角形MOC 的面积最大?并求出三角形MOC 的最大面积.(3)抛物线上是否存在一点P ,使∠OAP=∠BOC ?若存在,请求出此时点P 的坐标;若不存在,请说明理由.6.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.7.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.8.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.9.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+32AB =45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.10.如图,在ABC 中,90ABC ∠=︒,AB BC <,O 为AC 中点,点D 在BO 延长线上,CD BC =,AE BC ∥,CE CA =,AE 交BD 于点G .(1)若28DCE ∠=︒,求AOB ∠的度数;(2)求证:AG GE =;(3)设DC 交GE 于点M .①若3AB =,4BC =,求::AG GM ME 的值;②连结DE ,分别记ABG ,DGM ,DME 的面积为1S ,2S ,3S ,当AC DE 时,123::S S S = .(直接写出答案)11.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+62之间的大小关系,并证明.12.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长;②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围. (2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标.13.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.(1)当m =0时①一次函数y =x ﹣1关于点P 的相关函数为 ;②点(12,﹣98)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ; (3)当m ﹣1≤x ≤m +2时,函数y =x 2﹣mx ﹣12m 2关于点P (m ,0)的相关函数的最大值为6,求m 的值.16.如图,在▱ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.17.已知四边形ABCD为矩形,对角线AC、BD相交于点O,AD=AO.点E、F为矩形边上的两个动点,且∠EOF=60°.(1)如图1,当点E、F分别位于AB、AD边上时,若∠OEB=75°,求证:DF=AE;(2)如图2,当点E、F同时位于AB边上时,若∠OFB=75°,试说明AF与BE的数量关系;(3)如图3,当点E、F同时在AB边上运动时,将△OEF沿OE所在直线翻折至△OEP,取线段CB的中点Q.连接PQ,若AD=2a(a>0),则当PQ最短时,求PF之长.18.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.19.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:BEDE=33+;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.20.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 21.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 . (2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值.22.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0x y =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A ’的坐标是 ,点B’的坐标是 ;(2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q的横坐标;若不存在,请说明理由;(3)连接AB’,动点M从A点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t秒,试探究:是否存在使△MNB’为等腰直角三角形的t值.若存在,求出t的值;若不存在,说明理由.23.如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转α°(0°<α<180°),分别交直线BC、AD于点E、F.(1)当α=_____°时,四边形ABEF是平行四边形;(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形,①当α=_______°时,构造的四边形是菱形;②若构造的四边形是矩形,求该矩形的两边长.24.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P、M、N、Q,(1)如图①所示.当∠CNG=42°,求∠HMC 的度数.(写出证明过程)(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C,交 AB 于点 P,直尺另一侧与三角形交于 N、Q 两点。

数学数学中考数学压轴题的专项培优易错试卷练习题附解析

数学数学中考数学压轴题的专项培优易错试卷练习题附解析

一、中考数学压轴题1.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,PDE ABMC 1S S 9=四边形.3.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.4.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.5.已知抛物线217222y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.6.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.7.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .(1)求外接圆⊙O 的半径;(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .①连接BN ,当BN ⊥DE 时,求AM 的值;②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.8.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.9.如图1,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,连接AC 、BC ,已知点A 、C 的坐标为()2,0A -、()0,6C -.(1)求抛物线的表达式;(2)点P 是线段BC 下方抛物线上的一动点,如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形为平行四边形,求点Q 的坐标;(3)如图2,若点M 是AOC △内一动点,且满足AM AO =,过点M 作MN OA ⊥,垂足为N ,设AMN 的内心为I ,试求CI 的最小值.10.如图1,△ABC 内接于⊙O ,直径AD 交BC 于点E ,延长AD 至点F ,使DF =2OD ,连接FC 并延长交过点A 的切线于点G ,且满足AG ∥BC ,连接OC ,若cos ∠BAC =13,BC =8.(1)求证:CF 是⊙O 的切线;(2)求⊙O 的半径OC ;(3)如图2,⊙O 的弦AH 经过半径OC 的中点F ,连结BH 交弦CD 于点M ,连结FM ,试求出FM 的长和△AOF 的面积.11.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.已知:如图①,在等腰直角ABC ∆中,斜边2AC =.(1)请你在图①的AC 边上求作一点P ,使得90APB ∠=︒;(2)如图②,在(1)问的条件下,将AC 边沿BC 方向平移,使得点A 、P 、C 对应点分别为E 、Q 、D ,连接AQ ,BQ .若平移的距离为1,求AQB ∠的大小及此时四边形ABDE 的面积;(3)将AC 边沿BC 方向平移m 个单位至ED ,是否存在这样的m ,使得在直线DE 上有一点M ,满足30AMB ∠=︒,且此时四边形ABDE 的面积最大?若存在,求出四边形ABDE 面积的最大值及平移距离m 的值;若不存在,请说明理由.13.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+62之间的大小关系,并证明. 14.如图①,在ABC ∆中,90C ∠=︒,10,8AB BC ==.点,D E 分别是边,AC BC 上的动点,连接DE .设CD x =(0x >),BE y =,y 与x 之间的函数关系如图②所示.(1)求出图②中线段PQ 所在直线的函数表达式;(2)将DCE 沿DE 翻折,得DME .①点M 是否可以落在ABC ∆的某条角平分线上?如果可以,求出相应x 的值;如果不可以,说明理由;②直接写出....DME 与ABC ∆重叠部分面积的最大值及相应x 的值.15.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.16.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.17.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B 在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若728CG AG =,求点P 的坐标.18.已知AM //CN ,点B 为平面内一点,AB ⊥BC 于B .(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =5∠DBE ,求∠EBC 的度数.19.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.20.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.21.在菱形ABCD 中,P 为直线DA 上的点,Q 为直线CD 上的点,分别连接PC ,PQ ,且PC PQ =.(1)若60B ∠=︒,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图①,易证:DQ PD AB +=(不需证明);(2)如图②,若∠B =120°,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图③,猜想线段DQ ,PD 和AB 之间有怎样的数量关系?请直接写出对图②,图③的猜想,并选择其中一种情况给予证明.22.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.23.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.24.已知菱形ABCD 中,∠ABC=60°,AB=4,点M 在BC 边上,过点M 作PM ∥AB 交对角线BD 于点P ,连接PC .(1)如图1,当BM=1时,求PC 的长;(2)如图2,设AM 与BD 交于点E ,当∠PCM=45°时,求证:BE DE 33+; (3)如图3,取PC 的中点Q ,连接MQ ,AQ .①请探究AQ 和MQ 之间的数量关系,并写出探究过程;②△AMQ 的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.25.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点O 是坐标原点.(1)已知点(2,0)A ,在点123(0,2),(13),(13)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)14a =,4m =-;(2)3344d t =-;(3)220,39P ⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据24OC OB ==得出B,C 的坐标,令(2)()0y a x x m =++=即可求出m 的值,将B 的坐标代入抛物线的解析式中即可求出a 的值;(2)过点D 作DI AC ⊥于点I ,设MN 与x 轴的交点为J ,先利用抛物线的解析式求出M的坐标,然后利用平行线分线段成比例有AF NF AE DE =,代入相应的值计算即可得出答案; (3)先根据154d =求出此时D,E 的坐标,然后将点D 的坐标代入211y x b =+中求出直线的解析式,设G 点的坐标为232(,)1111m m +,利用待定系数法求出直线GE 的解析式,进而求出F 的坐标及CFG S,然后利用待定系数法求出GC,EH 的解析式,进而求出H 点的坐标,然后表示出EGH S,然后利用3CFG EGH S S =△△求出m的值,进而求出直线GE 的解析式,通过直线GE 的解析式与抛物线解析式联立即可求出P 点的坐标. 【详解】(1)24OC OB ==(0,2),(4,0)B C ∴- .令(2)()0y a x x m =++=,解得2,x x m =-=-,4m ∴-= ,4m ∴=- ,∴抛物线的解析式为(2)(4)y a x x =+- ,将点(0,2)B -代入得,82a -=-,解得14a = ; (2)如图,过点D 作DI AC ⊥于点I ,设MN 与x 轴的交点为J ,∵1,44a m ==- , 2119(2)(4)(1)444y x x x ∴=+-=--, 9(1,)4M ∴- . ∵点D 的横坐标是t ,∴211(,2)42D t t t --,211242DI t t ∴=--. MN x ⊥轴,DI x ⊥轴,//NM DI ∴ ,AJ NJ AI DI∴= . NM d = ,291(2)4112242d t t t ---∴=+--, 解得3344d t =- ; (3)如图, 当154d =时,3315444d t =-=,解得6t = , 此时D 的坐标为(6,4) . // DE x 轴,∴点E 的纵坐标也是4,令1(2)(4)44y x x =+-=, 解得4x =-或6x =,∴(4,4)E - .∵直线211y x b =+经过点D , ∴26411b ⨯+=, 解得 3211b =, ∴2321111y x =+ .设点G 的坐标为232(,)1111m m + , 设直线EG 的解析式为y kx b =+ , 将232(4,4),(,)1111E G m m -+代入解析式中得 442321111k b mk b m -+=⎧⎪⎨+=+⎪⎩ 解得2121144521281144m k m m b m -⎧=⎪⎪+⎨+⎪=⎪+⎩∴直线EG 解析式为2125212811441144m m y x m m -+=+++ , 令0y = ,即21252128011441144m m x m m -++=++,解得26646m x m+=- , 2664(,0)6m F m+∴- , ∴26643040466m m CF m m ++=-=--, 113040232(3040)(16)()226111111(6)CFG G m m m S CF y m m m +++∴=⋅=⨯⨯+=-- . 设直线GC 的解析式为y ax c =+ , 将232(4,0),(,)1111C G m m +代入解析式中得 402321111a c ma c m +=⎧⎪⎨+=+⎪⎩ 解得232114481281144m a m m c m +⎧=⎪⎪-⎨+⎪=-⎪-⎩∴直线GC 解析式为232812811441144m m y x m m ++=--- . ∵EH CG , ∴设直线EH 解析式为2321144m y x n m +=+-, 将点(4,4)E -代入得232(4)41144m n m +⨯-+=-, 解得52481144m n m -=- , ∴直线EH 解析式为232524811441144m m y x m m +-=+--. 将直线GD 的解析式与直线EH 的解析式联立,23211232524811441144y x x m m y x m m ⎧=+⎪⎪⎨+-⎪=+⎪--⎩解得422811m x m y +⎧=-⎪⎪⎨-⎪=⎪⎩ ∴428(,)211m m H +--, 11341520()10()221111EGH EDG EDH H G m m S S S ED y y ++∴=-=⋅-=⨯⨯-=- . ∵3CFG EGH S S =△△,∴(3040)(16)11(6)m m m ++-15203()11m +=⨯-, 解得154m =-或43m =-. 当154m =-时,GE 的解析式为4433y x =--, 将直线GE 的解析式与抛物线的解析式联立,2443311242y x y x x ⎧=--⎪⎪⎨⎪=--⎪⎩解得23209x y ⎧=⎪⎪⎨⎪=-⎪⎩或44x y =-⎧⎨=⎩(点E 的坐标,舍去), ∴220(,)39P -; 当43m =-时,GE 的解析式为122y x =-+, 将直线GE 的解析式与抛物线的解析式联立212211242y x y x x ⎧=-+⎪⎪⎨⎪=--⎪⎩解得40x y =⎧⎨=⎩(点C 的坐标,舍去) 或44x y =-⎧⎨=⎩(点E 的坐标,舍去), ∴综上所述,点P 的坐标为220(,)39P -. 【点睛】本题主要考查二次函数,一次函数与几何综合,难度较大,尤其是计算量太大,容易出错,掌握待定系数法,平行线分线段成比例,合理的设出点的坐标并准确的计算是解题的关键.2.C解析:(1)21y x 43=-+(,顶点M 4;(2)P 2);(3)1m =2,2m =1【解析】【分析】(1)由点C 的坐标,可求出c 的值,再把()A 3,0-、()B 33,0代入解析式,即可求出a、b 的值,即可求出抛物线的解析式,将解析式化为顶点式,即可求出顶点M 的坐标;(2)因为A 、B 关于抛物线的对称轴对称,连接BC 与抛物线对称轴交于一点,即为所求点P ,设对称轴与x 轴交于点H ,证明PHB COB ∽,即可求出PH 的长,从而求出点P 的 坐标;(3)根据点A 、B 、M 、C 的坐标,可求出ABMC S 四边形,从而求出PDE S 3=,根据OC =3,OB =33,推出OCB ∠=60,因为DE //PC ,推出 ODE ∠=60,从而得到OD =3m -,()OE 33m =-,根据PDE DOE PDOE SS S =-四边形,列出关于m 的方程,解方程即可.【详解】(1)∵抛物线y =2ax bx c a 0++≠()过()A 3,0-、()B 33,0,()C 0,3三点, ∴c =3, ∴3a 3b 3027a 33b 30⎧-+=⎪⎨++=⎪⎩, 解得1a 323b ⎧=-⎪⎪⎨⎪=⎪⎩.故抛物线的解析式为()221231y x x 3x 3433=-++=--+, 故顶点M 为()3,4. (2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC 与抛物线对称轴交于一点,即为所求点P .设对称轴与x 轴交于点H ,∵PH //y 轴,∴PHB COB ∽. ∴PH BH CO BO =. 由题意得BH =23,CO =3,BO =33, ∴PH 23333=, ∴PH =2.∴()P 3,2. (3)如图2,∵()A 3,0-、()B 33,0,()C 0,3,()M 3,4,∴ABMC S 四边形=()AOC MHB COHM 111S S S 3334342393222++=⨯⨯++⨯⨯=梯形. ∵ABMC S 四边形=PDE 9S, ∴PDE S 3=∵OC =3,OB =33∴OCB ∠=60.∵DE //PC ,∴ODE ∠=60. ∴OD =3m -,)OE 33m =-.∵PDOE S 四边形=))COE 133S333m 3m 22=⨯-=-, ∴PDE S =))2DOE PDOE 333S S 3m 3m -=--=四边形 23330m 33+<<(). ∴23333+= 解得1m =2,2m =1.【点睛】此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和四边形面积求法等知识,熟练运用方程思想方法和转化思想是解题关键.3.C解析:(1)112y x=-+;(2)1d t=-+;(3)64215t-=【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE的解析式,再将点C坐标代入即可求解;(2)过点E作EM⊥y轴于点M,过点E作EN x⊥轴于点N,通过解直角三角形可证EDM≌EAN,ENH≌EMG,得到AN=DM,HN=GM,进而得到AH DG=,再根据CE解析式求出D点坐标,即可找出d与t之间的函数关系式;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,证四边形BGMT与四边形HNMC均为矩形,得MN MT=,再进一步证明ENH≌EMG,利用全等三角形的性质通过角度计算,得出△BML为等腰三角形且BM BL=,再用含有t的代数式表示BM,最后在Rt△BMG中利用勾股定理建立等式,求出t的值.【详解】解:(1)∵CE⊥AB,∴设直线CE的解析式为:12y x c=-+,把点C(2,0)代入上述解析式,得1c=,∴直线CD的解析式为:112y x=-+;(2)过点E作EM⊥y轴于点M,过点E作EN x⊥轴于点N,令26112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN =DM ,HN =GM ,∴AH DG =,由直线CE 的解析式112y x =-+,可求点D (0,1) ∴DG =1—t ,∴1d t =-+;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,易证四边形BGMT 与四边形HNMC 均为矩形,由(2)问可知1t AH GD ==-,则6t HC =-∴6t BG MT ==-,∴MN MT =,∵90KNM LTM ∠=∠=︒,∴ENH ≌EMG ,∴L NKM ∠=∠,设KMN α∠=,则KMB KMN α∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-, ∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =,∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中,222BM BG GM =+,解得t =(不合题意舍去)或t =故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.4.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,∵抛物线的解析式为2y x 2x 3=-++, 当y=0时,2023x x =-++, 解得x=-1或x=3, ∴A (-1.0), ∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上, 则OM=x ,AM=x+1, ∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+, ∴2210332233FN EM x x x +--++==, 解得x=1或x=2,∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3,∴32OM =,3OD =, ∴tan ∠DMO=2,如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT , ∴∠TFG=∠TPF , ∴TG=2GF ,GF=2PG , ∴PT=25GF , ∵PF=QF , ∴△FGP ≌△FHQ , ∴FG=FH , ∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3), ∴PT=m²-4m ,GH=1-m , ∴m²-4m=45(1-m ), 解得:1112018m -=,或2112018m +=(不合题意,舍去), ∴点P 11201- 【点睛】本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度. 5.(1)详见解析;(2)3m =,点C 坐标为(3,2)-;(3)5k =或417k 或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形.【解析】 【分析】 (1)从2172022x mxm的判别式出发,判别式总大于等于3,而证得;(2)根据抛物线的对称轴32b xa来求m 的值;然后利用配方法把抛物线解析式转化为顶点式,由此可以写出点C 的坐标;(3)根据平行四边形的性质得到:215|1(3)|422MN k k kCD . 需要分类讨论:①当四边形CDMN 是平行四边形,2151(3)422MN k k k,通过解该方程可以求得k 的值;②当四边形CDNM 是平行四边形,2153(1)422NM k kk ,通过解该方程可以求得k 的值. 【详解】 解:(1)2217()4(2)(2)322m m m, ∵不论m 为何实数,总有2(2)0m -≥,2(2)30m ,∴无论m 为何实数,关于x 的一元二次方程2172022x mxm总有两个不相等的实数根,∴无论m 为何实数,抛物线217222y x mxm与x 轴总有两个不同的交点. (2)抛物线的对称轴为直线3x =,3122m ,即3m =,此时,抛物线的解析式为221513(3)2222y x xx ,∴顶点C 坐标为(3,2)-;(3)//,CD MN C D M N 、、、为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形(直线在抛物线的上方)或四边形CDMN (直线在抛物线的下方),如图所示,由已知215(3,2),(,1),(3)22D M k k N k k k,, (3,2)C ,4CD ∴=,2151(3)422MNk k kCD,①当四边形CDMN 是平行四边形,2151(3)422MNk k k,整理得,28150k k -+=,解得13k =(不合题意,舍去),25k =; ②当四边形CDNM 是平行四边形,2153(1)422NMk kk ,整理得2810k k , 解得,12417417k k ,,综上,5k =或417k或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.6.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】 【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得. 【详解】 解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+, 16362S AC DK t ∴=⋅=-+()06t ≤<;如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠. ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=. 同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP==,5tan 19PG OF OBF BP OB ∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=.7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=.(1,0)N ∴-,75,22D ⎛⎫⎪⎝⎭.设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩ 解得5959a c ⎧=⎪⎪⎨⎪=⎪⎩∴直线DM 的解析式为5599y x =+. 【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.7.A解析:(1)O 半径为254;(2)①458AM =;②详见解析;③当1251017x <<时,有2220ND DM -<成立. 【解析】 【分析】(1)如下图,在Rt △ABH 中,先求得AH 的值,设OA=r ,在Rt △OBH 中,利用勾股定理可求得r 的长;(2)①如下图,在Rt BCN ,可求得BN 的长,然后在矩形NBHD 中,求得AD 的值,最后利用cos ∠MAD 求得AM ;②如下图,同过证AMN NFC △∽△可得结论;③如下图,通过转换,先得出222ND DM -=22AM MB DM ⋅这个等式,然后利用3sin 5DM MAD AM ∠==,设AM=x ,可得到关于x 的方程,进而求出x 的取值范围. 【详解】解:(1)如图1,连接OB ,∵AH 过圆心O ,∴AH BC ⊥, ∵AB AC =,∴162BH CH BC ===, 在Rt ABH △中,221068AH =-=,设半径OA OB r ==,则8OH r =-,在Rt OBH 中,222(8)6r r -+=, 解得254r =,即O 半径为254. (2)①如图2,连接CN在平行四边形CDEB 中,DE BC ∥,∴ENB NBC ∠=∠. ∵BN DE ⊥,即90ENB ∠=︒,∴90NBC ∠=︒. ∴CN 是O 的直径.2522CN r ==. ∴在Rt BCN 中,2272BN CN BC =-=. ∵四边形CDEB 是平行四边形,NB ⊥BH ,DH ⊥BH ∴四边形NBHD 是矩形, ∴72DH BN ==,6ND BH ==,∴79822AD AH DH =-=-=. ∴在Rt ADM △中,4cos 5AD AH MAD AM AB ∠===,∴458AM =, ②如图3,连接AN ,CN ,∵DE BC ∥,∴DNC NCB ∠=∠. ∵NAB NCB ∠=∠,∴NAB DNC ∠=∠.由DE BC ∥,AB AC =可得AMD ABC ACB AFD ∠=∠=∠=∠, ∴AMN NFC ∠=∠,AMAF =.∴AMN NFC △∽△,MB CF =. ∴NM NM AMCF MB NF==,即NM NF AM MB ⋅=⋅. ③∵AH BC ⊥,DE BC ∥,∴AD MF ⊥,∵AM AF =,∴MD DF =,∴222222ND DM ND DM DM -=--2()()ND DM ND DM DM =-+- 2NM NF DM =⋅-22AM MB DM =⋅.∵AM x =,∴10BM x =-,由3sin 5DM MAD AM ∠==,得35DM x =, ∴22223342(10)10525ND DM x x x x x ⎛⎫-=--=-+ ⎪⎝⎭.(010)x <<该函数图象的示意图如图4易求得点P 坐标为125,017⎛⎫⎪⎝⎭∴当1251017x <<时,有2220ND DM -<成立. 【点睛】本题考查几何图形的综合,解题过程中用到了勾股定理、相似、三角函数和平行四边形、圆的性质,解题关键是将这些知识点综合起来分析题干.8.B解析:(1)12;(2)53;(3)202. 【解析】 【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长. 【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABCSAC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度,点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=, 11903033BOD COB ∴∠=∠=⨯=,10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-=⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.9.C解析:(1)26y x x =--;(2)Q 的坐标为()2,0或()4,0;(3)CI 的最小值为42【解析】【分析】 (1)待定系数法求解析式;(2)根据//CP BQ 即点C 坐标,可以求出P 点坐标,算出CP 长,即可写出Q 点坐标; (3)利用AIM AIO ≌△△可判断出I 的运动轨迹是圆弧,设I 运动轨迹所在的圆心为G 计算出圆心G 的坐标及半径为,当G 、I 、C 三点共线时候CI 最短.【详解】(1)由题意得:A 点坐标为()2,0-,C 点坐标为()0,6-带入2y x bx c =++中得:4206b c c -+=⎧⎨=-⎩, 解得:16b c =-⎧⎨=-⎩ ∴抛物线的解析式为26y x x =--.(2)∵点Q 在x 轴上,又点B 、C 、P 、Q 为顶点的四边形是平行四边形∴//CP BQ ,由对称性可知,P 点的坐标为()1,6-∴1PC =,∴1BQ =.∴Q 的坐标为()2,0或()4,0.(3)连接AI ,MI ,OI∵I 为AMN 的内心∴AI 、MI 分别平分MAN ∠,AMN ∠∴MAI OAI ∠=∠又∵MN AN ⊥,∴90ANM ∠=︒∴135AIM ︒∠=.又∵MA OA =,AI AI =∴AIM AIO ≌△△∴135AIO AIM ∠=∠=︒∴I 的运动轨迹是圆弧.设I 运动轨迹所在的圆心为G∵135AIO ∠=︒,∴90AGO ∠=︒又∵AG OG =,2AO =∴圆心G 的坐标为()1,1-当G 、I 、C 三点共线时候CI 最短∵CG === GI =∴CI 的最小值为=综上所述:CI 的最小值为【点睛】此题为二次函数的综合应用,第一问利用待定系数法求解属基本题型;第二问判断出//CP BQ 是解题关键;第三问判断出I 的运动轨迹是解题关键.10.D解析:(1)见解析;(2)3【解析】【分析】 (1)由DF=2OD ,得到OF=3OD=3OC ,求得13OE OC OC OF ==,推出△COE ∽△FOE ,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF 是⊙O 的切线;(2)利用三角函数值,设OE=x ,OC=3x ,得到CE=3,根据勾股定理即可得到答案;(3)连接BD ,根据圆周角定理得到角相等,然后证明△AOF ∽△BDM ,由相似三角形的性质,得到FM 为中位线,即可求出FM 的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1) ∵DF =2OD ,∴OF =3OD =3OC ,∴13OE OC OC OF ==, ∵∠COE =∠FOC ,∴△COE ∽△FOE ,∴∠OCF =∠DEC =90°,∴CF 是⊙O 的切线;(2)∵∠COD =∠BAC ,∴cos ∠BAC =cos ∠COE =13OE OC =, ∴设OE =x ,OC =3x ,∵BC =8,∴CE =4,∵CE ⊥AD ,∴OE 2+CE 2=OC 2,∴x 2+42=9x 2,∴x =2(负值已舍去),∴OC =3x =32,∴⊙O 的半径OC 为32;(3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠, ∵BC ⊥AD ,∴AC AB =,∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠,∴△AOF ∽△BDM ;∵点F 是OC 的中点,∴AO :OF=BD :DM=2,又∵BD=DC ,∴DM=CM ,∴FM 为中位线,∴322, ∴S △AOF : S △BDM =(326 2 34=; ∵111118(322)4222222BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯=。

中考数学中考数学压轴题知识点及练习题含答案(2)

中考数学中考数学压轴题知识点及练习题含答案(2)

一、中考数学压轴题1.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m 满足:322m m -+62=边AB 与x 轴交于点,E 点F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.(1)求m 的值;(2)若45,APF ∠=︒求证:AHF HFA ∠=∠;(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点M 、N 在x 轴和y 轴上所对应的数分别叫做P 点的x 坐标和y 坐标,有序实数对(x ,y )称为点P 的斜坐标,记为P (x ,y )(1)如图2,ω=45°,矩形OABC 中的一边OA 在x 轴上,BC 与y 轴交于点D ,OA=2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=23,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(23,23),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.3.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题.(1)(课本习题)如图①,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.求证:DB=DE(2)(尝试变式)如图②,△ABC是等边三角形,D是AC边上任意一点,延长BC至E,使CE=AD.求证:DB=DE.(3)(拓展延伸)如图③,△ABC是等边三角形,D是AC延长线上任意一点,延长BC至E,使CE=AD请问DB与DE是否相等? 并证明你的结论.4.综合与实践4A纸是我们学习工作最常用的纸张之一,2,我们定义:长宽之比是2的矩形纸片称为“标准纸”.操作判断:()1如图1所示,矩形纸片2ABCD AD AB=是一张“标准纸”,将纸片折叠一次,使点()AB=求CF的B与D重合,再展开,折痕EF交AD边于点,E交BC边于点F,若1,长,()2如图2,在()1的基础上,连接,BD 折痕EF 交BD 于点O ,连接,BE 判断四边形BFDE 的形状,并说明理由.探究发现:()3如图3所示,在(1)和(2)的基础上,展开纸片后,将纸片再折叠一次,使点A 与点C 重合,再展开,痕MN 交AD 边于点M ,BC 交边于点,N 交BD 也是点O .然后将四边形ENFM 剪下,探究纸片ENFM 是否为“标准纸”,说明理由.5.如图①,四边形ABCD 中,//,90AB CD ADC ∠=︒.(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ∆的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A 停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ∆的面积为8时,求t 的值.6.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.7.如图1,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,连接AC 、BC ,已知点A 、C 的坐标为()2,0A -、()0,6C -.(1)求抛物线的表达式;(2)点P 是线段BC 下方抛物线上的一动点,如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形为平行四边形,求点Q 的坐标;(3)如图2,若点M 是AOC △内一动点,且满足AM AO =,过点M 作MN OA ⊥,垂足为N ,设AMN 的内心为I ,试求CI 的最小值.8.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.9.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.10.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,123BC =,6CD =,63DA =,在四边形内部是否存在点P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.11.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM . (Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题. 小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △. 小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.13.在菱形ABCD 中,P 为直线DA 上的点,Q 为直线CD 上的点,分别连接PC ,PQ ,且PC PQ =.(1)若60B ∠=︒,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图①,易证:DQ PD AB +=(不需证明);(2)如图②,若∠B =120°,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图③,猜想线段DQ ,PD 和AB 之间有怎样的数量关系?请直接写出对图②,图③的猜想,并选择其中一种情况给予证明.14.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.15.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积. 16.我们知道,在等腰直角三角形中,底边与一边腰长比为2:1.如图1,90A ∠=︒,AB AC =,则2BC AB=.知识应用:(1)如图2,ADE ∆和ABC ∆均为等腰直角三角形,90DAE BAC ∠=∠=︒,D ,E ,C 三点共线,若2AD =2BD =,求CD 的长. 知识外延:(2)如图3,正方形ABCD 中,BE 和BC 关于BG 对称,C 点的对应点为E 点,AE 交BG 的延长线于F 点,连接CF .①求证:GF EC =;②若2AE =,2CE =BF 的长.17.如图,在⊙O 中,直径AB =10,tanA =33. (1)求弦AC 的长;(2)D 是AB 延长线上一点,且AB =kBD ,连接CD ,若CD 与⊙O 相切,求k 的值; (3)若动点P 以3cm/s 的速度从A 点出发,沿AB 方向运动,同时动点Q 以32cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <103),连结PQ .当t 为何值时,△BPQ 为Rt △?18.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD =AO .点E 、F 为矩形边上的两个动点,且∠EOF =60°.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若∠OEB =75°,求证:DF =AE ; (2)如图2,当点E 、F 同时位于AB 边上时,若∠OFB =75°,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将△OEF 沿OE 所在直线翻折至△OEP ,取线段CB 的中点Q .连接PQ ,若AD =2a (a >0),则当PQ 最短时,求PF 之长.19.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 20.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 . (2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值. 21.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.22.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0xy =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ; (2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.23.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数?(2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF ∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.24.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.25.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)32m =2)见解析;(3)221186n n ⎛⎫-+ ⎪ ⎪⎝⎭. 【解析】【分析】(1)根据二次根式有意义被开方数非负和算术平方根的非负性列出两个不等式,求公共解即可求出m 的值;(2)作BM x ⊥轴,FN x ⊥轴,证明BPM FPN ≌可得BP=PF ,再根据直角三角形斜边上的中线等于斜边的一半可得12PA BF PF ==,然后结合等腰三角形的性质,利用三角形的内角和定理分别求出AHF ∠和HFA ∠,可得它们相等;(3)分别表示AF 和AB ,利用勾股定理求得BF 的长,即可求得PF 的长,再表示ON 和PN 的长度,利用平行线分线段成比例即可求得HF .【详解】(1)∵322mm -+62=,∴320m -≥,且 622320m m -=-≥,32m ∴=;()2作BM x ⊥轴,FN x ⊥轴OA OD =,45OAD ∴∠=︒,∵四边形ABCD 为矩形,∴∠EAD=90°,∴==904545EAO EAD OAD ∠∠-∠︒-︒=︒,9045AEO EAO ∠=︒-∠=︒, 9045ADO OAD ∠=︒-∠=︒,∴=MEB AEO ADO ∠=∠∠,∵BM x ⊥轴,FN x ⊥轴90BME FND ∠=∠=︒,在BEM △和DFN △中∵=MEB ADO BME FND FD BE ∠∠⎧⎪∠=∠⎨⎪=⎩, ∴BEM △≌DFN △,BM FN ∴=,在BPM △和FPN 中,∵==90MPB FPN BME FNP BM FN ∠∠⎧⎪∠=∠︒⎨⎪=⎩∴()BPM FPN AAS ≌,PB PF ∴=,PM PN =,∵Rt ABF 中,12PA BF PF ==, 45APF ∠=︒1804567.52HFA ︒-︒∴∠==︒,18018067.54567.5AHF AFH OAD ∠=︒-∠-∠=︒-︒-︒=︒,∴AHF HFA ∠=∠;(3)∵F 点的纵坐标为n ,由(2)可知FN=ND=ME=BM=n , ∴2DF BE n ,∵m =∴(A , ()D , ∴22(32)(32)6AE AD ,∴32ON OD ND n ,62MN ED ,12PM PN MN === 62AB AE BE n ,62AF AD DF n ,在Rt △ABF 中,根据勾股定理、 222724BF AB AF n , ∴21182PF BF n ,∵FN ⊥x 轴,∴FN ∥OH,∴HFONPF PN ,3232n , 解得:22(1)18n HF n , 故答案为:22(1)186n n . 【点睛】本题考查算术平方根的非负性和二次根式有意义的条件,全等三角形的性质和判定,平行线分线段成比例,勾股定理,等腰三角形的性质,三角形内角和定理等.(1)中理解二次根式有意义被开方数非负和算术平方根的非负性是解题关键;(2)能正确作出辅助线,构造全等三角形是解题关键;(3)中能根据等腰直角三角形的性质和全等三角形的性质表示线段的长度是解题关键.2.B解析:(1)①(2,0),(1,2),(﹣1,2);②y=2x;③y=﹣22x+2;(2)①半径为2,M(4323,33);②2<r<4【解析】【分析】(1)①如图2−1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2−2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为:A(2,0),B(1,2),C(﹣1,2).②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M.∵OD∥BE,OD∥PM,∴BE∥PM,∴BE OE PM OM,∴21y x=,∴y=2x.故答案为:y=2x.③如图2﹣3中,作QM∥OA交OD于M.222MQ DMOA DOx y∴=-∴=∴222y x=-+故答案为:y=﹣22x+2.(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=3∴OF=FA3∴FM=1,OM=2FM=2,∴圆M的半径为2∵MN∥y轴,∴MN⊥OM,∴MN233ON=2MN433,∴M4323,⎛⎫⎪ ⎪⎝⎭.②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=3∴△MKO是等边三角形,∴MN=3,当FN=1时,MF=3﹣1=2,当EN=1时,ME=3+1=4,观察图象可知当⊙M的半径r的取值范围为2<r<4.故答案为:2<r<4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.3.D解析:(1)见详解;(2)见详解;(3)DB=DE成立,证明见详解【解析】【分析】(1)由等边三角形的性质,得到∠CBD=30°,∠ACB=60°,由CD=CE,则∠E=∠CDE=30°,得到∠E=∠CBD=30°,即可得到DB=DE;(2)过点D作DG∥AB,交BC于点G,证明△BDC≌△EDG,根据全等三角形的性质证明结论;(3)过点D作DF∥AB交BE于F,由“SAS”可证△BCD≌△EFD,可得DB=DE.【详解】证明:(1)∵△ABC是等边三角形∴∠ABC=∠BCA=60°,∵点D为线段AC的中点,∴BD平分∠ABC,AD=CD,∴∠CBD=30°,∵CD=CE ,∴∠CDE=∠CED ,又∵∠CDE+∠CED=∠BCD ,∴2∠CED=60°,∴∠CED=30°=∠CBD ,∴DB=DE ;(2)过点D 作DG ∥AB ,交BC 于点G ,如图,∴∠DGC=∠ABC=60°,又∠DCG=60°,∴△DGC 为等边三角形,∴DG=GC=CD ,∴BC-GC=AC-CD ,即AD=BG ,∵AD=CE ,∴BG=CE ,∴BC=GE ,在△BDC 和△EDG 中,60DC DG BCD EGD BC EG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EDG (SAS )∴BD=DE ;(3)DB=DE 成立,理由如下:过点D 作DF ∥AB 交BE 于F ,∴∠CDF=∠A ,∠CFD=∠ABC ,∵△ABC 是等边三角形∴∠ABC=∠BCA=∠A=60°,BC=AC=AB ,∴∠CDF=∠CFD=60°=∠ACB=∠DCF ,∴△CDF 为等边三角形∴CD=DF=CF ,又AD=CE ,∴AD-CD=CE-CF ,∴BC=AC=EF ,∵∠BCD=∠CFD+∠CDF=120°,∠DFE=∠FCD+∠FDC=120°,∴∠BCD=∠DFE ,且BC=EF ,CD=DF ,∴△BCD ≌△EFD (SAS )∴DB=DE .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,以及平行线的性质,正确添加恰当辅助线构造全等三角形是本题的关键.4.(1) CF 长为4 ;(2) 四边形BFDE 是菱形,理由见解析;(3) 纸片ENFM 是“标准纸",理由见解析【解析】【分析】(1)1AB =,则AD =ABCD 是矩形,得到1,CD AB BC AD ==-=FB FD =,设CF x =,则FB FD x ==,在Rt DCF △中,222+=CD CF DF ,可得)2221x x +=即可求解.(2)当顶点B 与点D 重合时,折痕EF 垂直平分BD ,可得OB OD =,90BOF DOE ∠=∠=,在矩形ABCD 中,//AD BC ,得到OBF ODE ∠=∠,在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠,,可得BOF DOE ≅,OE OF =,再根据OB OD =,可得四边形BFDE 是平行四边形,最后根据EF BD ⊥,即可求证平行四边形BFDE 是菱形.(3)由()2可知,OE OF =,同理可知,OM ON =,可得四边形ENFM 是平行四边形,根据90DOE DAB ∠=∠=︒,得到DOE DAB ,再根据AD =,可得2OE AB OD AD ===,进而得到2OE OD =,2EF BD =,同理可得,MN AC =,根据四边形ABCD 是矩形,可得AC BD =,EF MN =,四边形ENFM 是矩形,90EMF ∠=,MF OD tan FEM ME OE ∠===MF =,即可求证纸片ENFM 是“标准纸".【详解】解:()11,AB =则2,2AD AB == 四边形ABCD 是矩形1,2CD AB BC AD ∴==-= 由折叠得FB FD = 设CF x =,则2FB FD x ==- 在Rt DCF △中,222+=CD CF DF ()22212x x +=- 24x = 答:CF 长为2 ()2四边形BFDE 是菱形.理由:当顶点B 与点D 重合时,折痕EF 垂直平分,BD OB OD ∴=,90BOF DOE ∠=∠= 在矩形ABCD 中,//,AD BC OBF ODE ∴∠=∠ 在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠, BOF DOE ∴≅OE OF ∴=OB OD =∴四边形BFDE 是平行四边形 EF BD ⊥平行四边形BFDE 是菱形. ()3纸片ENFM 是“标准纸” 理由如下:由()2可知,,OE OF =同理可知,,OM ON =∴四边形ENFM 是平行四边形90DOE DAB ∠=∠=︒DOE DAB ∴ 2AD =222OE AB OD AD ∴=== 22OE OD ∴= 2EF BD ∴= 同理可得,22MN AC =四边形ABCD 是矩形,AC BD ∴=,EF MN ∴=∴四边形ENFM 是矩形. 90EMF ∴∠=.2,MF OD tan FEM ME OE∴∠=== 2MF ME ∴=.∴纸片ENFM 是“标准纸".【点睛】此题主要考查矩形的判定和性质、勾股定理、全等三角形的判定和性质、菱形的判定及三角函数,灵活运用判定和性质是解题关键.5.C解析:(1)12,16AD CD ==;(2)277和297. 【解析】【分析】(1)根据题意由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时16秒求出CD ,再利用三角形面积公式求得AD 即可;(2)由题意可知只能有P 和Q 点都在AD 边上,此时分当P 在Q 上方时以及当P 在Q 下方时两种情况运用数形结合思维进行分析得出答案.【详解】解:(1)由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时36-20=16秒,即CD=16,而此时AMD ∆的面积为96,又因为90ADC ∠=︒, 即有11169622CD AD AD =⨯=,解得12AD =. 所以12,16AD CD ==. (2)由题意可知Q 运动到点A 停止的时间为285,而P 运动到点D 停止的时间为6, 所以只能有P 和Q 点都在AD 边上,此时以PQ 为底边,CD 为高,设运动时间为t ,则AP=2t ,QD=5t-16,(162855t ≤<), ①当P 在Q 上方时,则有PQ=AD-AP-QD= 122516287t t t --+=-, 可知CPQ ∆的面积为8时即11(287)16822PQ CD t =⨯-⨯=,解得277t =(满足条件);②当P 在Q 下方时,则有PQ=QD-(AD-AP )= 516(122)728t t t ---=-, 可知CPQ ∆的面积为8时即11(728)16822PQ CD t =⨯-⨯=,解得297t =(满足条件). 所以当CPQ ∆的面积为8时,t 的值为277和297. 【点睛】 本题考查四边形动点问题和一次函数结合,熟练掌握四边形动点问题的解决办法和一次函数图象的相关性质,运用数形结合思维分析是解题的关键.6.B解析:(1)12;(2)3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =, 42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.7.C解析:(1)26y x x =--;(2)Q 的坐标为()2,0或()4,0;(3)CI 的最小值为42【解析】【分析】(1)待定系数法求解析式;(2)根据//CP BQ 即点C 坐标,可以求出P 点坐标,算出CP 长,即可写出Q 点坐标; (3)利用AIM AIO ≌△△可判断出I 的运动轨迹是圆弧,设I 运动轨迹所在的圆心为G 计算出圆心G 的坐标及半径为,当G 、I 、C 三点共线时候CI 最短.【详解】(1)由题意得:A 点坐标为()2,0-,C 点坐标为()0,6-带入2y x bx c =++中得:4206b c c -+=⎧⎨=-⎩, 解得:16b c =-⎧⎨=-⎩∴抛物线的解析式为26y x x =--.(2)∵点Q 在x 轴上,又点B 、C 、P 、Q 为顶点的四边形是平行四边形∴//CP BQ ,由对称性可知,P 点的坐标为()1,6-∴1PC =,∴1BQ =.∴Q 的坐标为()2,0或()4,0.(3)连接AI ,MI ,OI∵I 为AMN 的内心∴AI 、MI 分别平分MAN ∠,AMN ∠∴MAI OAI ∠=∠又∵MN AN ⊥,∴90ANM ∠=︒∴135AIM ︒∠=.又∵MA OA =,AI AI =∴AIM AIO ≌△△∴135AIO AIM ∠=∠=︒∴I 的运动轨迹是圆弧.设I 运动轨迹所在的圆心为G∵135AIO ∠=︒,∴90AGO ∠=︒又∵AG OG =,2AO =∴圆心G 的坐标为()1,1-2当G 、I 、C 三点共线时候CI 最短∵()()2210165052CG =--++==, 2GI =∴CI 的最小值为52242-=综上所述:CI 的最小值为42.【点睛】此题为二次函数的综合应用,第一问利用待定系数法求解属基本题型;第二问判断出//CP BQ 是解题关键;第三问判断出I 的运动轨迹是解题关键.8.C解析:(1)C ;(2)﹣1﹣2≤x k ≤1﹣2或2﹣1≤x k ≤1+2;(3)m≤3﹣210或m≥3+210.【解析】【分析】(1)由题意可知当Q 与A 重合时,点C 在以AP 为直径的圆上,所以可以成为点P 与线段AB 的共圆点的是C ;(2)根据题意由两点的距离公式可得AP=BP=22,分别画以AP 和BP 为直径的圆交x 轴于4个点:K 1、K 2、K 3、K 4,结合图形2可得4个点的坐标,从而得结论;(3)由题意先根据直线y=12x+3,当x=0和y=0计算与x 轴和y 轴的交点坐标,分两种情况:M 在A 的左侧和右侧,先计算圆E 与直线y=12x+3相切时m 的值,从而根据图形可得结论.【详解】 解:(1)如图1,可以成为点P 与线段AB 的共圆点的是C ,故答案为:C ;(2)∵P (0,1),点A (﹣2,﹣1),点B (2,﹣1).∴AP =BP 22(20)(11)--+--2,如图2,分别以PA 、PB 为直径作圆,交x 轴于点K 1、K 2、K 3、K 4,∵OP=OG=1,OE∥AB,∴PE=AE=2,∴OE=12AG=1,∴K1(﹣1﹣2,0),k2(1﹣2,0),k3(2﹣1,0),k4(1+2,0),∵点K为点P与线段AB的共圆点,∴﹣1﹣2≤x k≤1﹣2或2﹣1≤x k≤1+2;(3)分两种情况:①如图3,当M在点A的左侧时,Q为线段AM上一动点,以PQ为直径的圆E与直线y=12x+3相切于点F,连接EF,则EF⊥FH,当x=0时,y=3,当y=0时,y=12x+3=0,x=﹣6,∴ON=3,OH=6,∵tan∠EHF=ON EFOH FH=36=12,设EF=a,则FH=2a,EH5,∴OE=65,Rt△OEP中,OP=1,EP=a,由勾股定理得:EP2=OP2+OE2,∴2221(65)a a =+-, 解得:a =35222+(舍去)或35222-, ∴QG =2OE =2(6﹣5a )=﹣3+210,∴m≤3﹣210;②如图4,当M 在点A 的右侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,同理得QG =10,∴10综上,m 的取值范围是m≤3﹣10或10.【点睛】本题属于圆和一次函数综合题,考查一次函数的应用,新定义:M 为点P 与线段AB 的共圆点,圆的切线的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,学会利用特殊点解决取值范围问题.9.B解析:(1)2y x 2x 3=-++;(2)①23S m m =-+,13m ≤≤;②P (32,3); (3)3,32⎛⎫ ⎪⎝⎭或(332,122)-+-【解析】【分析】(1)将点B 、C 的坐标代入2y x bx c =-++即可; (2)①求出顶点坐标,直线MB 的解析式等,由PD ⊥x 轴且OD=m 知P (m ,-2m+6),即可用含m 的代数式表示出S ;②在和①的情况下,将S 和m 的关系式化为顶点式,由二次函数的图象和性质即可写出点P 的坐标;(3)分情况讨论,当∠CPD=90°时,推出PD=CO=3,则点P 的纵坐标为3,即可求出点P的坐标;当∠PCD=90°时,证∠PDC=∠OCD ,由锐角三角函数可求出m 的值,即可写出点P 的坐标;当∠PDC=90°时,不存在点P .【详解】解:(1)将()3,0B ,()0,3C 代入2y x bx c =-++,得0=-9+3b 33c +⎧⎨=⎩, 解得23b c =⎧⎨=⎩, ∴二次函数的解析式为2y x 2x 3=-++; (2)①∵()222314y x x x =-++=--+∴顶点M (1,4),将直线BM 的解析式设为y kx b =+,将点()3,0B ,M (1,4)代入,可得304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, ∴直线BM 的解析式为26y x =-+,如图∵PD ⊥x 轴且OD=m ,∴P (m ,-2m+6), ∴211(26)322PCD S S PD OD m m m m ==⋅=-+=-+, 即23S m m =-+,∵点P 为线段MB 上一个动点且()3,0B ,M (1,4),∴13m ≤≤;②22393()24S m m m =-+=--+, ∴当32m =时,S 取最大值94, ∴P (32,3); (3)存在,理由如下:如图,当∠CPD=90°时,90COD ODP CPD ,∴四边形CODP 为矩形,∵PD=CO=3,将3y =代入直线26y x =-+,得32x =, ∴P 3,32⎛⎫ ⎪⎝⎭;如图,当∠PCD=90°时,∵OC=3,OD=m ,22229CD OC OD m , //PD OC PDCOCD , cos cos PDC OCD ,DC OC PD DC∴=, 2DC PD OC ∴=⋅,293(26)m m ,解得1332m (舍去),13m =-+∴(3P -+-;当∠PDC=90°时,∵PD ⊥x 轴,∴不存在点P ;综上所述,点P 的坐标为3,32⎛⎫ ⎪⎝⎭或(3-+-.【点睛】本题考查了待定系数法求函数解析式,函数的思乡曲求极值以及直角三角形的存在性与动点结合等,解题的关键是注意分类讨论思想在解题过程中的运用.10.(1)①12;②4,(2)12AD BC =;理由见解析,(3)存在; 【解析】【分析】 (1)①首先证明ADB '∆是含有30的直角三角形,可得1122AD AB BC '==,即可解决问题;②首先证明BAC B AC ''∆∆≌,根据直角三角形斜边中线定理即可解决问题. (2)AD 与BC 的数量关系为12AD BC =,如图5,延长AD 到M ,使AD DM =,连接B M '、C M ',先证四边形AC MB ''是平行四边形,再证明BAC AB M '∆∆≌,即可解决问题.(3)存在,如图6,延长AD 交BC 的延长线于M ,作BE AD ⊥于E ,做直线BC 的垂直平分线交BE 于P ,交BC 于F ,连接PA 、PD 、PC ,作PDC ∆的中线PQ ,连接DF 交PC 于O ,先证明PA PD =,PB PC =,再证明+180APD BPC ∠∠=︒,即可得出结论,再在Rt PDQ ∆中,根据勾股定理,即可求出PQ 的长.【详解】(1)①如图2,∵ABC ∆是等边三角形,把AB 绕点A 顺时针旋转α得到AB ',把AC 绕点A 逆时针旋转β得到AC ',∴===AB AC BC AB AC ''=,又∵AD 是AB C ''△边B C ''上的中线,∴=DB DC '',∴AD B C ''⊥,即90ADB '∠=︒,∵60BAC ∠=︒,180BAC B AC ''∠+∠=︒,∴120B AC ''∠=︒,。

初中数学定点问题知识点与常考难题和培优提高练习压轴题(含解析)

初中数学定点问题知识点与常考难题和培优提高练习压轴题(含解析)

初中数学定点问题知识点与常考难题和培优提高练习压轴题(含解析)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学定点问题提高练习与常考难题和培优题压轴题(含解析)定点题型定点问题,初中一般是直线或抛物线恒过定点的问题,这类问题一般解法是根据直线或抛物线的动因,先选择适当的参数,用参数表示出直线或抛物线方程,然后按参数整理,并令参数的系数为0得方程组,解方程方程组求出定点坐标.解题思路:这类问题通常有两种处理方法:①第一种方法:是从特殊入手,通过考查极端位置,探索出“定值”是多少,再证明这个点(值)与变量无关;②第二种方法:是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去变量即得定值。

一、直线过定点问题:解法1:取特殊值法给方程中的参数取定两个特殊值,这样就得到关于x,y的两个方程,从中解出x,y即为所求的定点,然后再将此点代入原方程验证即可。

例1:求直线(m+1)x+(m-1)y-2=0所通过的定点P的坐标。

解:令m=-1,可得y=-1;令m=1,可得x=1。

将(1,-1)点代入原方程得:(m+1)· 1+(m-1)(-1)-2=0 成立,所以该定点P为(1,-1)。

解法2:由“y-y0=k(x-x0)”求定点把含有参数的直线方程改写成y-y0=k(x-x0)的形式,这样就证明了它所表示的所有直线必过定点(x0,y0)。

例2:已知(k+1)x-(k-1)y-2k=0为直线l的方程,求证不论k取任何实数值时,直线l必过定点,并求出这个定点的坐标。

证明:由已知直线l的方程得(k+1)x=(k-1)y+2k,∴(k+1)x-(k+1)=(k-1)y+(k-1),不论k 取任何实数值时,直线l必过定点M(1,-1)。

解法3:方程思想若方程的解有无穷多个,则方程的系数均为0,利用这一方法的思路是将原方程整理为以参数为主元的方程,然后利用系数为零求得。

第23讲 定点问题(解析版)

第23讲 定点问题(解析版)

第23讲定点问题参考答案与试题解析一.选择题(共1小题)1.已知圆22:4C x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点()A .48(,)99B .24(,99C .(2,0)D .(9,0)【解答】解:因为P 是直线290x y +-=的任一点,所以设(92,)P m m -,因为圆224x y +=的两条切线PA 、PB ,切点分别为A 、B ,所以OA PA ⊥,OB PB ⊥,则点A 、B 在以OP 为直径的圆上,即AB 是圆O 和圆C 的公共弦,则圆心C 的坐标是92(2m -,)2m ,且半径的平方是222(92)4m m r -+=,所以圆C 的方程是222292(92)()(224m m m m x y --+-+-=,①又224x y +=,②,②-①得,(29)40m x my --+=,即公共弦AB 所在的直线方程是:(29)40m x my --+=,即(2)(94)0m x y x -+-+=,由20940x y x -=⎧⎨-+=⎩得49x =,89y =,所以直线AB 恒过定点4(9,8)9,故选:A .二.解答题(共18小题)2.已知圆C 的圆心坐标为(3,0)C ,且该圆经过点(0,4)A .(1)求圆C 的标准方程;(2)若点B 也在圆C 上,且弦AB 长为8,求直线AB 的方程;(3)直线l 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之积为2,求证:直线l 过一个定点,并求出该定点坐标.【解答】(1)解:设圆的标准为222(3)x y r -+=,把(0,4)A 代入得5r =,故圆的标准方程为22(3)25x y -+=.(2)解:①当直线AB 的斜率不存在时,直线AB 的方程为0x =,此时弦AB 长为8,符合题意;②当直线AB 的斜率存在时,设直线AB 的方程为4y kx =+,联立方程224(3)25y kx x y =+⎧⎨-+=⎩,则22(1)(68)0k x k x +--=,所以268(1kB k -+,224641k k k +-+,根据弦AB 长为8,可得||8AB =,解得724k =-,所以直线AB 的方程为724960x y +-=,综上所述,直线AB 的方程为0x =或724960x y +-=;(3)证明:当直线l 斜率不存在时,设(,)M a b ,(,)N a b -, 直线AM ,AN 的斜率之积为2,(0,4)A ,∴442b b a a---⋅=,即22162b a =-, 点(,)M a b 在圆上,22(3)25a b ∴-+=,联立2222162(3)25b a a b ⎧=-⎨-+=⎩,无解,舍去,当直线l 斜率存在时,设直线:l y kx t =+,1(M x ,1)kx t +,2(N x ,2)kx t +,2212121212442(2)(4)()(4)0AM AN kx t kx t k k k x x k t x x t x x +-+-⋅=⋅=⇒-+-++-=①联立方程22222(1)(26)160(3)25y kx tk x kt x t x y =+⎧⇒++-+-=⎨-+=⎩,122(26)1kt x x k --∴+=+,2122161t x x k -=+,代入①,得2222(2)(16)(4)(26)(4)(1)0k t kt k kt t k --+--++-+=,化简得26t k =+,∴直线l 的方程为:(2)6ty x t =++,所以过定点(6,12)--.3.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在椭圆C 上,点F 是椭圆C的右焦点.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于M ,N 两点,则在x 轴上是否存在一点P ,使得x 轴平分MPN ∠?若存在,求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)由题意得2222222421,,c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得:28a =,24b =.所以椭圆C 的方程为22184x y +=.(2)由题意可知直线l 的斜率不为0,(2,0)F .若直线l 斜率存在,设直线l 的方程为(2)(0)y k x k =-≠,1(M x ,1)y ,2(N x ,2)y ,联立221,84(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(12)8880k x k x k +-+-=.由题意可知△0>恒成立,所以2122812k x x k +=+,21228812k x x k -=+.假设在x 轴上存在一点(,0)P t ,使得x 轴平分MPN ∠,则0PM PN k k +=,所以12120y yx t x t+=--.所以1221()()0y x t y x t -+-=,所以1221(2)()(2)()0k x x t k x x t --+--=,所以12122(2)()40x x t x x t -+++=,所以2222222(88)8(2)4(12)0121212k k t t k k k k -++-+=+++,所以2164012tk -+=+,所以4t =.若直线l 斜率不存在时,则M ,N 两点关于x 轴对称,当点P 坐标为(4,0)时,x 轴平分MPN ∠.综上所述,在x 轴上存在一点(4,0)P ,使得x 轴平分MPN ∠.4.已知椭圆2222:1(0)x y C a b a b +=>>的离心率是2,一个顶点是(0,1)B ,点P ,Q 是椭圆C 上异于点B 的任意两点,且BP BQ ⊥.(1)求椭圆C 的方程;(2)试问直线PQ 是否过定点?若是,请求出定点坐标;若不是,请说明理由.【解答】解:(1)由题意得22212b ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为2212x y +=.(2)由BP BQ ⊥知直线BP ,BQ 的斜率存在且不为0.设直线BP 的斜率为k ,直线BP 的方程为1y kx =+,22112y kx x y =+⎧⎪⎨+=⎪⎩,得221(202k x kx ++=.解得0x =或2212kx k =-+.当22241212kkx k k =-=-++时,221212k y k -=+,即222412(2112k k P k k --⋅++,用1k -代替k ,得22242(,22k k Q k k -++于是直线PQ 的斜率22222222121212443221FQk k k k k k k k k k k ----++==+++,直线PQ 的方程为22221214()12321k k ky x k k k ---=+++,整理得2(1)(31)0k x k y --+=,当0x =,13y =-时,对任意的k ,2(1)(31)0k x k y --+=恒成立,所以直线PQ 过定点1(0,3-.5.已知A ,B 分别为椭圆222:1(0)x E y a a+=>的左,右顶点,G 为E 的上顶点,8AG GB ⋅=.P 为椭圆外一点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D ,且12AC BD k k =.(1)求椭圆E 的标准方程;(2)证明:直线CD 过定点.【解答】解:(1)由题意知(0,1)G ,(,0)A a -,(,0)B a ,所以2(,1)(,1)18AG GB a a a ⋅=⋅-=-=,解得3a =,故椭圆E 的标准方程为2219x y +=.证明:(2)设直线CD 的方程为x ty m =+,1(C x ,1)y ,2(D x ,2)y ,联立2299x ty m x y =+⎧⎨+=⎩,消去x 得222(9)290t y tmy m +++-=,则有212122229,99tm m y y y y t t -+=-=++,所以21212(9)()2m y y tmy y -+=-,即21212(9)()2m y y y y tm-+=,因为111133AC y y k x ty m ==+++,222233BD y y k x ty m ==-+-,所以12112121121222112212223(3)(3)(9)()2(3)(3)(3)(9)()2(3)3ACBDy k ty m y ty m ty y m y m y y m m y y k y ty m ty y m y m y y m m y ty m +++-+--++-====++++-++++-,1121112221221122(3)[2(3)()](3)(233)(3)[2(3)()](3)(233)m my m y y m my my y my y m my m y y m my my y my y --++-----==+--++-+-+,3132m m -==+,解得1m =,所以直线CD 的方程为1x ty =+,故直线CD 过定点(1,0).6.已知抛物线2:2(0)C x py p =>的焦点F 与双曲线2213y x -=的一个焦点重合,D 为直线2y =-上的动点,过点D 作抛物线C 的两条切线,切点分别为A ,B .(1)求抛物线C 的方程;(2)证明直线AB 过定点.【解答】解:(1)由题意可得双曲线2213y x -=的焦点为(0,2)-,(0,2),即有抛物线的焦点(0,2)F ,则242pp =⇒=,所以抛物线C 的方程为:28x y =;(2)证明:设0(D x ,2)-,设切线方程为02()y k x x +=-,联立28x y =得:2088160x kx kx -++=⋯⋯①,由22000644(816)0220k kx k kx =⇒-+=⇒--= .设两条切线的斜率分别为1k ,2k ,则0122x k k +=,121k k ⋅=-,由①知等根为4x k =,故设211(4,2)A k k ,222(4,2)B k k ,则220212*********AB x k k k k k k k -+===-,所以直线AB 的方程为:20112(4)4x y k x k -=-,化简得2200001011121122(22)2224444x x x xy x k x k x k k k k x k k x =-+=-++=-=+.所以直线AB 过定点(0,2).7.已知椭圆2222:1(0)x y C a b a b+=>>过点,离心率为3.(1)求椭圆C 的方程;(2)过点(1,1)P 分别作斜率为1k 、2k 的椭圆的动弦AB 、CD ,设M 、N 分别为线段AB 、CD 的中点,若121k k +=,是否存在一个定点Q ,使得其在直线MN 上,若存在,求出该定点的坐标;若不存在,请说明理由.【解答】解:(1) 椭圆2222:1(0)x y C a b a b+=>>过点,离心率为3.∴2223b ca abc ⎧=⎪⎪=⎨⎪=+⎪⎩,解得a =b =,∴椭圆C 的方程为22132x y +=.(2)由题意得12k k ≠,设(M M x ,)M y ,直线AB 的方程为11(1)y k x -=-,即12y k x k =+,代入椭圆方程并化简,得:2221122(23)6360k x k k x k +++-=,∴1221323M k k x k -=+,221223Mk y k =+,同理,1221323N k k x k -=+,122223Nk y k =+,直线MN 的方程为2121222112121063(23923k k k k k y x k k k k ---=-+-+,即1212106293k k y x k k -=--,此时直线过定点2(0,)3-,当120k k =时,直线MN 即为y 轴,此时也过点2(0,3-.综上,直线MN 恒过定点,且定点坐标为2(0,3-.8.已知左焦点为(1,0)F -的椭圆过点E .过点(1,1)P 分别作斜率为1k ,2k 的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点.(1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求1k ;(3)若121k k +=,求证直线MN 恒过定点,并求出定点坐标.【解答】(1)解:由题意1c =,且右焦点(1,0)F'2a EF EF ∴=+'=,2222b ac =-=∴所求椭圆方程为22132x y +=;(2)解:设1(A x ,1)y ,2(B x ,2)y ,则2211132x y +=①,2222132x y +=②②-①,可得2121121212()23()3y y x x k x x y y -+==-=--+;(3)证明:由题意,12k k ≠,设(M M x ,)M y ,直线AB 的方程为11(1)y k x -=-,即12y k x k =+,代入椭圆方程并化简得2221122(23)6360k x k k x k +++-=∴1221323M k k x k -=+,221223Mk y k =+同理,1222323N k k x k -=+,122223Nk y k =+当120k k ≠时,直线MN 的斜率12121069M N M N y y k k k x x k k --==--直线MN 的方程为2121222112121063()23923k k k k k y x k k k k ---=-+-+即1212106293k k y x k k -=--此时直线过定点2(0,)3-当120k k =时,直线MN 即为y 轴,此时亦过点2(0,3-综上,直线MN 恒过定点,且坐标为2(0,)3-.9.已知椭圆2222:1(0)x y C a b a b +=>>,(,0)F c -为其左焦点,点2(a P c-,0),1A ,2A 分别为椭圆的左、右顶点,且12||4A A =,11||||3PA A F =.(1)求椭圆C 的方程;(2)过点1A 作两条射线分别与椭圆交于M 、N 两点(均异于点1)A ,且11A M A N ⊥,证明:直线MN 恒过x 轴上的一个定点.【解答】(1)解:12||4A A = ,2a ∴=,又11||||3PA A F = ,∴2)3a a a c c -=-,整理得3a c =,c ∴=,则2221b a c =-=.∴椭圆C 的方程为2214x y +=;(2)证明:由已知直线MN 与y 轴不垂直,假设其过定点(,0)T n ,设其方程为x my n =+,联立2214x my n x y =+⎧⎪⎨+=⎪⎩,得222(4)240m y mny n +++-=.设1(M x ,1)y ,2(N x ,2)y ,则12224mny y m +=-+,212244n y y m -=+.1212()2x x m y y n ∴+=++,2212121212()()()x x my n my n m y y mn y y n =++=+++.11A M A N ⊥ ,∴111122(2,)(2,)0A M A N x y x y =++=.1212122()40x x x x y y ∴++++=,∴221212(1)(2)()(2)0m y y m n y y n ++++++=.即22222(1)(2)(2)2(2)(2)044m n n nm n n m m ++-+-++=++.化简得:(2)(56)0n n ++=,若2n =-,则T 与A 重合,不合题意,20n ∴+≠,整理得65n =-.综上,直线MN 过定点6(,0)5T -.10.已知椭圆22:132x y E +=的左右顶点分别为A ,B ,点P 为椭圆上异于A ,B 的任意一点.(Ⅰ)求直线PA 与PB 的斜率之积;(Ⅱ)过点(5Q -作与x 轴不重合的任意直线交椭圆E 于M ,N 两点.证明:以MN 为直径的圆恒过点A .【解答】解:(Ⅰ)(A B .设点(P x ,)(0)y y ≠,则有22132x y +=,即22222(1)(3)33x y x =-=-,∴22222(3)23333PA PBx y k k x x -⋅===---.(Ⅱ)证明:设1(M x ,1)y ,2(N x ,2)y ,MN 与x 轴不重合,∴设直线:)5MN l x ty t R =-∈,由222360x ty x y ⎧=⎪⎨⎪+-=⎩化简得,22144(23)025t y +--=;由题意可知△0>成立,且1221225231442523y yty yt⎧⎪⎪+=⎪+⎨⎪-⎪=⎪+⎩;11221212()()(AM AN x y x y ty ty y y⋅=++=+++2121248(1)()525t y y y y=++++;将1221225231442523y yty yt⎧⎪⎪+=⎪+⎨⎪-⎪=⎪+⎩代入上式并化简得,22222144144484848234825252502325252325t t tAM ANt t--++⋅=+=-⨯+=++.AM AN∴⊥,即以MN为直径的圆恒过点A.11.已知点(1,0)A-,(1,1)B-,抛物线2:4C y x=,过点A的动直线l交抛物线C于M,P 两点,直线MB交抛物线C于另一点Q,O为坐标原点.(1)求OM OP⋅;(2)证明:直线PQ恒过定点.【解答】解:(1)设点1(M x,1)y,2(P x,2)y,由题意,设直线:1l x my=-,由214x myy x=-⎧⎨=⎩得2440y my-+=,△216160m=->,21m∴>,又124y y=,∴212121212()14516y yOM OP x x y y y y⋅=+=+=+=.(2)证明:设23(4yQ,3)y,直线BQ的斜率为BQk,直线QM的斜率为QMk,直线PQ的斜率为PQk,M,B,Q三点共线,BQ QMk k∴=,∴31322233111444y y yy yy+-=--,即32313114yy y y+=-+,23133(1)()4y y y y∴++=-,即131340y y y y+++=,124y y = ,124y y ∴=,∴33224440y y y y ⋅+++=,即23234()40(*)y y y y +++=,23223232444PQ y y k y y y y -==+- ,∴直线PQ 的方程是222234(4y y y x y y -=-+,即22232()()4y y y y x y -+=-,2323()4y y y y y x ∴+-=,由(*)式可知,23234()4y y y y -=++代入上式,得23(4)()4(1)y y y x ++=-,令4010y x +=⎧⎨-=⎩,解得14x y =⎧⎨=-⎩,∴直线PQ 恒过定点(1,4)-.12.已知点(1,0)A -,(1,1)B -和抛物线2:4C y x =,O 为坐标原点,过点A 的动直线l 交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图(1)证明:OM OP为定值;(2)若POM ∆的面积为52,求向量OM 与OP 的夹角;(3)证明直线PQ恒过一个定点.【解答】()I 证明:设点211(,)4y M y ,222(,)4y P y ,P 、M 、A 三点共线,AM PM k k ∴=,即112221121444y y y y y y -=+-,∴1211214y y y y =++,124y y ∴=,⋯(2分)∴221212544y y OM OP y y =+= .⋯(5分)()II 解:设POM α∠=,则||||cos 5OM OP α=,52POMS ∆= ,||||sin 5OM OP α∴= ,tan 1α∴=.⋯(8分)又(0,)απ∈,(0,)απ∴∈,45α∴=︒,∴OM 与OP的夹角为45︒.⋯(10分)(Ⅲ)证明:设点233(,)4y Q y ,M 、B 、Q 三点共线,BQ QM k k ∴=,∴3132223311444y y y y y y -=+-,∴32313114y y y y +=-+,23133(1)()4y y y y ∴++=-,即131340y y y y +++=,124y y = ,124y y =,∴33224440y y y y +++= 即23234()40y y y y +++=,(*)⋯(12分)23223212444PQ y y k y y y y -==+- ,∴直线PQ 的方程是222234(4y y y x y y -=-+,即22232()()4y y y y x y -+=-,即2323()4y y y y y x +-=,由(*)式,23234()4y y y y -=++,代入上式,得12(4)()4(1)y y y x ++=-,∴直线PQ 过定点(1,4)E -.13.已知抛物线2:2(0)y px p Γ=>的焦点为F ,P 是抛物线Γ上一点,且在第一象限,满足(2FP =,(1)求抛物线Γ的方程;(2)已知经过点(3,2)A -的直线交抛物线Γ于M ,N 两点,经过定点(3,6)B -和M 的直线与抛物线Γ交于另一点L ,问直线NL 是否恒过定点,如果过定点,求出该定点,否则说明理由.【解答】解:(1)由抛物线的方程可得焦点(2p F ,0),满足(2FP =,的P 的坐标为(22p+,,P 在抛物线上,所以22(22pp =+,即24120p p +-=,0p >,解得2p =,所以抛物线的方程为:24y x =;(2)设0(M x ,0)y ,1(N x ,1)y ,2(L x ,2)y ,则2114y x =,2224y x =,直线MN 的斜率10102210101044MN y y y y k y y x x y y --===--+,则直线MN 的方程为:200104(4y y y x y y -=-+,即01014x y y y y y +=+①,同理可得直线ML 的方程整理可得02024x y y y y y +=+②,将(3,2)A -,(3,6)B -分别代入①,②的方程可得01010202122126y y y y y y y y +⎧-=⎪+⎪⎨+⎪-=⎪+⎩,消0y 可得1212y y =,易知直线124NL k y y =+,则直线NL 的方程为:211124(4y y y x y y -=-+,即1212124y y y x y y y y =+++,故1212412y x y y y y =+++,所以124(3)y x y y =++,因此直线NL 恒过定点(3,0)-.14.已知直线2y x =-与抛物线22y px =相交于A ,B 两点,满足OA OB ⊥.定点(4,2)C ,(4,0)D -,M 是抛物线上一动点,设直线CM ,DM 与抛物线的另一个交点分别是E ,F .(1)求抛物线的方程;(2)求证:当M 点在抛物线上变动时(只要点E 、F 存在且不重合),直线EF 恒过一个定点;并求出这个定点的坐标.【解答】解:(1)设1(A x ,1)y ,2(B x ,2)y ,联立222y x y px=-⎧⎨=⎩,整理可得:2240y py p --=,所以可得122y y p +=,124y y p =-,进而可得1212122()442244x x y y y y p p =+++=-+⨯+=,由OA OB ⊥,可得:0OA OB ⋅=,即440p -=,可得1p =,所以抛物线的方程为:22y x =;(2)证明:设20(2y M ,0)y ,21(2y E ,1)y ,22(2y F ,2)y ,由C ,M ,E 三点共线可得,10022200124222y y y y y y --=--,即021002(2)28y y y y -=+-,整理可得:01012()8y y y y =+-,所以010282y y y -=-,同理可得D ,M ,F 三点共线,208y y =,所以直线EF 的方程:211112221122()()22y y y y x x x x y y y y --=-=-+-,整理可得:1212()2y y y y y x =+-,将1y ,2y 的值代入直线方程可得:2(22)4(4)8(28)0x y y x y -+-+-=,所以040280x y x y -=⎧⎪-=⎨⎪-=⎩解得:4x y ==,所以直线EF 过定点(4,4).15.已知直线:2l y x =与抛物线21:4C y x =交于(A A x ,)A y 、(0,0)O 两点,过点O 与直线l 垂直的直线交抛物线C 于点(B B x ,)B y .如图所示.(1)求抛物线C 的焦点坐标;(2)求经过A 、B 两点的直线与y 轴交点M 的坐标;(3)过抛物线214y x =的顶点任意作两条互相垂直的直线,过这两条直线与抛物线的交点A 、B 的直线AB 是否恒过定点,如果是,指出此定点,并证明你的结论;如果不是,请说明理由.【解答】解:(1)抛物线21:4C y x =的方程化为24x y =,24p ∴=,2p =.⋯(2分)∴抛物线C 的焦点坐标为(0,1).⋯(4分)(2)联立方程组2142y xy x ⎧=⎪⎨⎪=⎩,解得点A 坐标为(8,16).⋯(6分)联立方程组21412y x y x ⎧=⎪⎪⎨⎪=-⎪⎩,解得点B 坐标为(2,1)-.⋯(7分)所以直线AB 的方程为1611(2)8(2)y x --=+-- ,⋯(8分)令0x =,解得4y =.∴点M 的坐标为(0,4).⋯(9分)(3)结论:过抛物线214y x =的顶点任意作两条互相垂直的直线,过这两条直线与抛物线的交点的直线AB 恒过定点(0,4).⋯(10分)证明如下:设过抛物线214y x =的顶点的一条直线为(0)y kx k =≠,则另一条为1y x k=-,联立方程组2141y x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,解得点A 坐标为2(4,4)k k .⋯(11分)联立方程组2141y x y xk ⎧=⎪⎪⎨⎪=-⎪⎩,解得点B 坐标为4(k -,24)k .⋯(12分)所以直线AB 的方程为2224444()44(k k y x k k k k--=+-- ,⋯(13分)令0x =,解得4y =.∴直线AB 恒过定点(0,4).⋯(14分)16.过抛物线2:2(0)E y px p =>上一点(1,2)M -作直线交抛物线E 于另一点N .(Ⅰ)若直线MN 的斜率为1,求线段||MN 的长;(Ⅱ)不过点M 的动直线l 交抛物线E 于A ,B 两点,且以AB 为直径的圆经过点M ,问动直线l 是否恒过定点.如果有求定点坐标,如果没有请说明理由.【解答】解:(Ⅰ)把M 点的坐标代入抛物线2:2(0)E y px p =>可得2p =,所以抛物线的方程为:24y x =,由题意可得直线MN 的方程为:21y x +=-,即3y x =-,与抛物线联立234y x y x=-⎧⎨=⎩,整理可得:21090x x -+=,解得:1x =或9x =,可得交点(1,2)-或(9,6),所以||MN ==;(Ⅱ)设直线l 为:x ky m =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:24x ky my x=+⎧⎨=⎩,整理可得:2440y ky m --=,△216160k m =+>,即20k m +>,124y y k +=,124y y m =-,因为MA MB ⊥,所以0MA MB ⋅=,1(1x -,122)(1y x +-,22)0y +=,整理可得:221212(1)(2)()250k y y km k y y m m ++-+++-+=,整理可得:2264850m m k k --++=,即22(3)4(1)m k -=-,21m k =+,可得2210k k ++>不是恒成立,或25m k =-+(符合△0)>,所以直线l 为:25x ky k =-+,即5(2)x k y -=-,直线恒过点(5,2).17.如图所示,已知椭圆2222:1(0)x y E a b a b+=>>的离心率为12,E 的右焦点到直线1y x =+.(1)求椭圆E的方程;(2)设椭圆E的右顶点为A,不经过点A的直线l与椭圆E交于M,N两点,且以MN为直径的圆过A,求证:直线l恒过定点,并求出此定点坐标.【解答】解:(1) 椭圆2222:1x yEa b+=的离心率为12,∴12ca=,即2a c=.⋯(2分)椭圆E的右焦点(,0)c到直线:1l y x=+.∴=1c∴=.⋯(4分)解得2a=,又222a b c=+,∴b=,故椭圆E的方程为22143x y+=.⋯(5分)(2)由题意可知,直线l的斜率为0时,不合题意,不妨设直线l的方程为x my t=+,由22143x my tx y=+⎧⎪⎨+=⎪⎩,消去x得222(34)63120m y mty t+++-=,设1(M x,1)y,2(N x,2)y,则122634mty ym+=-+,212231234ty ym-=+.⋯(7分)以MN为直径的圆过椭圆右顶点,1212(2)(2)0x x y y∴--+=,即221212(1)(2)()(2)0m y y m t y y t++-++-=.⋯(9分)∴222223126(1)(2)((2)03434t mtm m t tm m-++--+-=++,解得27t=或2t=(舍)⋯(11分)故直线l恒过定点2(,0)7.⋯(12分)18.已知椭圆222:3(0)E x y m m+=>的左顶点是A,左焦点为F,上顶点为B.(1)当AFB∆的面积为2时,求m的值;(2)若直线l交椭圆E于M,N两点(不同于)A,以线段MN为直径的圆过A点,试探究直线l是否过定点,若存在定点,求出这个定点的坐标,若不存在定点,请说明理由.【解答】解:(1)由椭圆方程:222213x ymm+=,则a m=,b=,c=,由三角形AFB的面积S,1()22S b b c=⨯-=,mm=,m∴;(2)由线段MN过直径的圆过A点,则MA NA⊥,设直线AM的斜率为(0)k k>,则直线AN的斜率为1k-,AM为()y k x m=+,设1(A x,1)y,2(B x,2)y,则222()3y k x mx y m=+⎧⎨+=⎩,整理得:22222(31)6(31)0k x k mx k m+++-=,则2212(31)()31k mx mk--=+,则212(13)31m kxk-=+,故1122()31mky k x mk=+=+,则22(13)(31m kMk-+,22)31mkk+,直线AN的方程为1()y x mk=-+,同理可得:22(3)(3m kNk-+,223mkk-+,当l的斜率不存在时,显然可得1k=,此时(2mM-,2m,(2mN-,)2m-,则圆心为(2mP-,0),由直线l总穿过x轴,证明当l的斜率存在时,也过点(2mP-,0),当l的斜率存在时,222220431(0,1)(13)3(1)312PM PNmkkkk k k km k m kk-+===>≠--++,综上可知:l过定点(2m-,0).19.已知椭圆22:132x yE+=的左右顶点分别为A、B,点P为椭圆上异于A,B的任意一点.(Ⅰ)求直线PA与PB的斜率乘积的值;(Ⅱ)设(Q t,0)(t≠,过点Q作与x轴不重合的任意直线交椭圆E于M,N两点,则是否存在实数t,使得以MN为直径的圆恒过点A?若存在,求出t的值;若不存在,请说明理由.【解答】解:(Ⅰ)(A B .设点(P x ,)(0)y y ≠,则有22132x y +=,即22222(1)(3)33x y x =-=-,∴22222(3)23333PA PBx y k k x x -⋅===---.(Ⅱ)假设存在实数t ,使得以MN 为直径的圆恒过点A ;设1(M x ,1)y ,2(N x ,2)y ,MN 与x 轴不重合,∴设直线MN 的方程为x ay t =+,()a R ∈,由222360x ay tx y =+⎧⎨+-=⎩化简得,222(23)4260a y aty t +++-=,由题意可知△0>成立,且122423at y y a +=-+,21222623t y y a -=+;1(AM AN x ⋅=+,12)(y x ,2)y 1(ay t =++,12)(y ay t ++,2)y 1212(ay t ay t y y =+++++22121212)())a y y t a y y t y y =++++将122423aty y a +=-+,21222623t y y a -=+代入上式可得,222222226426))0232323t at t AM AN a t a t a a a --⋅=-+++=+++ ,即22222222222644)(23)26023a t a a a t t a t a --+++-=+,即222222(2644246)26)0a t t t t t --+++-+=,即2530t ++=,解得,t =(舍去)或5t =.故t =.。

专题03数轴上的动点问题压轴题真题分类(解析版)—七年级数学上册重难点题型分类高分必刷题(人教版)

专题03数轴上的动点问题压轴题真题分类(解析版)—七年级数学上册重难点题型分类高分必刷题(人教版)

专题03数轴上的动点问题压轴题真题分类(解析版)专题简介:本份资料包含《有理数》这一章中动点问题压轴题常考的主流题型,所选题目源自各名校月考试题、期中试题中的典型考题,按难度逐渐递增的情况分成三类题型:简易型求运动时间、定值问题、新定义类动点问题。

适合于培训机构的老师给优等生作动点问题专题培训时使用或者想冲击满分的尖子生考前刷题时使用。

【解题方法总结】第一步:用含t 的式子表示动点,往左运动:可以表示为“起点t ⋅-速度”,往右运动:“起点t ⋅+速度”;第二步:表示距离:数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;第三步:列式化简或者列方程后再解方程。

题型一简易型求运动时间1.如图数轴上有A 、B 两点,分别表示的数为-50和70,点A 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点B 以每秒2个单位长度向左匀速运动.设运动时间为t 秒(t >0).(1)运动开始前,A 、B 两点的距离为;(2)它们按上述方式运动,t 秒后A 点表示的数为;B 点所表示的数为;(用含t 的式子表示)(3)它们按上述方式运动至两点相遇,则相遇点所表示的数为.【详解】解:(1)∵A 、B 两点,分别表示的数为-50和70,∴运动开始前,A 、B 两点的距离为()7050120--=故答案为:120;(2) 点A 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点B 以每秒2个单位长度向左匀速运动,∴t 秒后A 点表示的数为503t -+;B 点所表示的数为702t -,故答案为:503t -+,702t -;(3)根据题意,503t -+=702t -,解得24t =,50+32422-⨯=,故答案为:22。

2.(立信)点A 、B 在单位长度为1的数轴上,点A 表示的数是﹣2,点A 和点B 表示的数互为相反数,若点A 以每秒3个单位长度向右运动,点B 以每秒1个单位长度向右运动.(1)在数轴上标出原点O ,并求出点B 表示的数;(2)当点A 与点B 重合于点C 时,求运动时间?(3)若点A 运动到点M ,点B 运动到点N 时,线段MN =100时,求线段MN 盖住数轴上的整数点的个数是多少?【解答】解:(1)∵点A 表示的数是﹣2,点A 和点B 表示的数互为相反数,∴点B 表示的数是2.(2)设运动时间为x 秒时点A 与点B 重合于点C ,3t =4+t ,解得t =2.(3)设运动时间为y 秒时线段MN =100,3y =4+y +100,解得y =52,∴﹣2+52×3=154,2+52=54,∴M 、N 表示的数分别为154和54,∴线段MN 盖住数轴上的整数点的个数是101个.3.(青竹湖)已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且AB =12.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点O 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t 秒.(1)当t =1秒时,写出数轴上点B 、P 、Q 所表示的数分别为、、;(2)若点P ,Q 分别从A ,B 两点同时出发,当点P 与点Q 重合时,求t 的值;(3)若M 为线段AQ 的中点,点N 为线段BP 的中点.当点M 到原点的距离和点N 到原点的距离相等时,求t 的值.【解答】解:(1)由题知,B 点表示的数为8﹣12=﹣4,P 点表示的数为8﹣3=5,Q 点表示的数为﹣4+2=﹣2,故答案为:﹣4,5,﹣2;(2)根据题意得,2t +3t =12,解得t =,即t 的值为;(3)根据题意知,|﹣4+2t +8|=|8﹣3t ﹣4|,解得t =0(舍去)或t =8,∴当点M 到原点的距离和点N 到原点的距离相等时,t 的值为8.4.已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)数轴上点B 表示的数是______,点P 表示的数是______(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发.求:当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?(3)若点M 为AP 中点,点N 为BP 中点,在点P 运动过程中,求出线段MN 的长.【详解】(1)解:点B 表示的数是6104-=-,点P 表示的数是66t -,故答案为:4-,66t -;(2)解:Q 表示的数是44t --,点P 表示的数是66t -,根据题意得:()44668t t ----=,即2108t -=或2108t -=-,解得9t =或1t =,答:当点P 运动9秒或1秒时,点P 与点Q 间的距离为8个单位长度;(3)解:线段MN 的长度不发生变化,理由如下:A 表示的数为6,点P 表示的数是66t -,表示的数是5.(长雅)如图,在数轴上A点表示数a,B点表示示数b,点A与点B之间的距离表示为AB.若点A与点O之间的距离OA=2,点B与点O之间的距离OB=6.(1)a=,b=;(2)如图①,请在数轴上找一点C,使AC=2BC,则C点表示的数为;(3)如图①,若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①分别表示出甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.【解答】解:(1)∵OA=2,A在O的左侧,∴a=﹣2,∵OB=6,B在O的右侧,∴a=6,故答案为:﹣2,6;(2)设C表示的数是c,当点C在AB之间时有:c﹣(﹣2)=2(6﹣c),解得:c=,当点C在B的右侧时有:c﹣(﹣2)=2(c﹣6),解得:c=14,故答案为:或14;(3)①甲距原点的距离为:2+t,乙距原点的距离为:当0≤t≤3时,6﹣2t,当t>3时,2(t﹣3)=2t﹣6,②当0≤t≤3时,2+t=6﹣2t,解得:t=,当t>3时,2+t=2t﹣6,解得:t=8,答:甲、乙两小球到原点的距离相等时经历的时间为秒或8秒.题型二定值问题6.(麓山)数轴上两点A 、B ,A 在B 左边,原点O 是线段AB 上的一点,已知AB =4,且OB =3OA .点A 、B 对应的数分别是a 、b ,点P 为数轴上的一动点,其对应的数为x .(1)a =,b =,并在数轴上面标出A 、B 两点;(2)若PA =2PB ,求x 的值;(3)若点P 以每秒2个单位长度的速度从原点O 向右运动,同时点A 以每秒1个单位长度的速度向左运动,点B 以每秒3个单位长度的速度向右运动,设运动时间为t 秒.请问在运动过程中,3PB ﹣PA 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【解答】解:(1)因为AB =4,且OB =3OA .A ,B 对应的数分别是a 、b ,所以a =﹣1,b =3.故答案为:﹣1,3.(2)①当P 点在A 点左侧时,PA <PB ,不合题意,舍去.②当P 点位于A 、B 两点之间时,因为PA =2PB ,所以x +1=2(3﹣x ),所以x =.②当P 点位于B 点右侧时,因为PA =2PB ,所以x +1=2(x ﹣3),所以x =7.故x 的值为或7.(3)t 秒后,A 点的值为(﹣1t ),P 点的值为2t ,B 点的值为(3+3t ),所以3PB ﹣PA=3(3+3t ﹣2t )﹣[2t ﹣(﹣1﹣t )]=9+3t ﹣(2t +1+t )=9+3t ﹣3t ﹣1=8.所以3PB ﹣PA 的值为定值,不随时间变化而变化.7.已知a 、b 满足()25|1|0a b -++=.请回管问题:(1)请直接写出a 、b 的值,a =______,b =_______.(2)当x 的取值范围是_________时,||||x a x b -+-有最小值,这个最小值是_____.(3)数轴a 、b 上两个数所对应的分别为A 、B ,AB 的中点为点C ,点A 、B 、C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,当A 、B 两点重合时,运动停止.①经过2秒后,求出点A 与点B 之间的距离AB .②经过t 秒后,请问:BC AB +的值是否随着时间t 的变化而变化?若变化,请说明理由;若不变,请求其值.【解答】解:()15,1-;()215x -≤≤,6;()3:5213,1211312A B AB -⨯==-+⨯==-=①,()()515,1,323223115=3+226A tB tC t t BC AB t t t t t t -=-=-+=+=++=+--++-+--+-②,A B 重合时,()()51113t =+÷+= ,A B 重合时,运动停止,03,t ∴≤≤3+20,260.t t ∴-≤>32(26)9BC AB t t +=+--=.所以()()238262738124720AP OB OP t t t t t t +-=+++-=+++-=.9.(长郡)如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,且a ,b ,c 满足(c ﹣5)2+|a +b |=0.回答问题:(1)点P 为一动点,其对应的数为x ,若PA =2PC ,求x 的值;(2)点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和每秒5个单位长度的速度向右运动,设运动时间为t 1秒.请问在运动过程中,BC ﹣AB 的值是否随着时间t 1的变化而改变?若变化,请说明理由;若不变,请求其值.(3)在(2)的条件下,若点C 从第2秒开始掉头向左继续运动,速度不变;A 、B 保持原来运动方向,速度不变继续运动,设继续运动时间为t 2秒.请问在运动过程中,是否存在某个时刻,A ,B ,C 中某一点是另外两点的中点?如果有,请求出t 2的值;如果没有,请说明理由.【解答】解:(1)依题意得b =﹣1,c ﹣5=0,a +b =0,解得a =﹣1,b =1,c =5;∵点P 为一动点,其对应的数为x ,∴PA =|x +1|,PC =|x ﹣5|,∴|x +1|=2|x ﹣5|,解得x =11或x =3;(2)BC ﹣AB 的值不变.根据题意可知,BC ﹣AB =[5+5t 1﹣(1+2t 1)]﹣[1+2t 1﹣(﹣1﹣t 1)]=5+5t 1﹣1﹣2t 1﹣1﹣2t 1﹣1﹣t 1=2,故BC ﹣AB 的值不会随着时间t 的变化而改变;(3)存在,理由如下:第2A 对应的数为:﹣1﹣2=﹣3,点B 对应的数为:1+2×2=5,点C 对应的数为:5+2×5=15.∵继续运动时间为t 2秒,∴点A 对应的数为:﹣3﹣t 2,点B 对应的数为:5+2t 2,点C 对应的数为:15﹣5t 2.若A ,B ,C 中某一点是另外两点的中点,则分三种情况:①当点B 为AC 的中点,则BA =BC ,∴5+2t 2﹣(﹣3﹣t 2)=(15﹣5t 2)﹣(5+2t 2),解得t 2=,②当点C 为AB 的中点,则CA =CB ,∴15﹣5t 2﹣(﹣3﹣t 2)=(5+2t 2)﹣(15﹣5t 2),解得tt 2=,③当点A 为BC 的中点,则AB =AC ,∴(5+2t 2)﹣(﹣3﹣t 2)=﹣3﹣t 2﹣(15﹣5t 2),解得t 2=26,综上,若A ,B ,C 中某一点是另外两点的中点,则t 2的值为或或26.题型三新定义类动点问题10.(中雅)阅读下列材料:我们给出如下定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“雅中点”.解答下列问题:(1)若点A表示的数为﹣5,点B表示的数为1,点M为点A与点B的“雅中点”,则点M表示的数为;(2)若A、B两点的“雅中点M”表示的数为2,且A、B两点的距离为9(A在B的左侧),则点A 表示的数为,点B表示的数为;(3)点A表示的数为﹣6,点C,D表示的数分别是﹣4,﹣2,点O为数轴原点,点B为线段CD上一点(点B可与C、D两点重合).①设点M表示的数为m,若点M可以为点A与点B的“雅中点”,则m可取得整数有;②若点A和点D同时以每秒2个单位长度的速度向数轴正半轴方向移动.设移动的时间为t(t>0)秒,求t的所有整数值,使得点O可以为点A与点B的“雅中点”.【解答】解:(1)(﹣5+1)=﹣2,故答案为:﹣2;(2)2﹣4.5=﹣2.5,2+4.5=6.5,故答案为:﹣2.5,6.5;(3)设B表示的数为x(﹣4≤x2),①m=(﹣6+x),所以整数m的值为:﹣4,﹣5,故答案为:﹣4,﹣5;②由题意得:A表示的数为:﹣6+2t,D表示的数为:﹣2+2t,∵O可以为点A与点B的“雅中点”,∴B表示的数为:6﹣2t,∵点B为线段CD上一点(点B可与C、D两点重合),∴﹣4≤6﹣2t≤﹣2+2t,解得:2≤t≤5,∵t的所有整数值为:2,3,4,5.t=3不符合题意,舍去.故满足条件的t的值为2,4,5.11.(广益点)已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P 到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B的“广益点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“广益点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“广益点”,请直接写出所有符合条件的点P表示的数.【解答】解:(1)∵数轴上两点A,B对应的数分别为﹣8和4,∴AB=4﹣(﹣8)=12,∵点P到点A的距离等于点P到点B的距离,∴点P是AB的中点,∴BP=AP=AB=6,∴点P表示的数为﹣2;(2)设点P运动时间为t秒,根据题意可知,PA=t+8,PB=|4﹣t|,∴t+8=3|4﹣t|,解得:t=1或10,∴点P运动的时间为1秒或10秒;(3)设点P表示的数为n,根据题意可得,PA=n+8或﹣n﹣8,PB=4﹣n,AB=12,分五种情况进行讨论:①当点A是关于P→B的“广益点”时,得PA=3AB,即﹣n﹣8=36,解得n=﹣44;②当点A是关于B→P的“广益点”时,得AB=3AP,即3(﹣n﹣8)=12,解得n=﹣12;或3(n+8)=12,解得n=﹣4;③当点P是关于A→B的“广益点”时,得PA=3PB,即﹣n﹣8=3(4﹣n),解得n=10;(不符合题意,舍去),或n+8=3(4﹣n),解得n=1(不符合题意,舍去);④当点P是关于B→A的“广益点”时,得PB=3AB,即4﹣n=3(n+8),解得n=﹣5;或4﹣n=3(﹣n﹣8),解得n=﹣14;⑤当点B是关于P→A的“广益点”时,得BP=3AB,即4﹣n =36,解得n=﹣32,综上所述,所有符合条件的点P表示的数是:﹣4,﹣5,﹣12,﹣14,﹣32,﹣44.12.(长郡)已知:点A、B、P为数轴上三点,我们约定:点P到点A的距离是点P到点B的距离的k 倍,则称P是[A,B]的“k倍点”,记作:P[A,B]=k.例如:若点P表示0,点A表示﹣2,点B表示1,则P是[A,B]的“2倍点”[A,B]=2.(1)如图,A、B、P、Q、M、N为数轴上各点,如图图示,回答下面问题:①P[A,B]=;②M[N,A]=;③若C[Q,B]=1,则C表示的数为.(2)若点A表示﹣1,点B表示5,点C是数轴上一点,且C[A,B]=3,求点C所表示的数.(3)数轴上,若点M表示﹣10,点N表示50,点K在点M和点N之间,且K[M,N]=5.从某时刻开始,M、N同时出发向右匀速运动,且M的速度为5单位/秒,点N速度为2单位/秒,设运动时间为t(t>0),当t为何值时,M是K、N两点的“3倍点”.【解答】解:(1)①∵A、B、P三点表示的数分别是﹣3、5、3,∴PA=3﹣(﹣3)=6,PB=5﹣3=2,∴PA=3PB,即P[A,B]=3;②∵MN=7﹣(﹣5)=12,MA=﹣3﹣(﹣5)=2,∴MN=6MA,即M[N,A]=6;③∵C[Q,B]=1,∴CQ=CB,∴C为线段QB的中点,∴C表示的数为=2.故答案为:①3;②6;③2.(2)设点C在数轴上表示的数为x,∵C[A,B]=3,∴CA=3CB,∴|x﹣(﹣1)|=3|x﹣5|,∴x=3.5或8.故点C所表示的数为:3.5或8.(3)∵K[M,N]=5,∴KM=5KN,∵点M表示﹣10,点N表示50,点K在点M和点N之间,∴KM+KN=MN=60,∴KN=MN=10,∴点K表示的数为50﹣10=40.由题意得,运动t秒时点M表示的数为﹣10+5t,点N表示的数为50+2t.∵M是K、N两点的“3倍点”,∴MK=3MN,∴|40﹣(﹣10+5t)|=3|50+2t﹣(﹣10+5t)|,∴t=或.即当t为或时,M是K、N两点的“3倍点”.。

九年级数学中考复习压轴题专题训练含答案解析二次函数小综合抛物线中的定点问题

九年级数学中考复习压轴题专题训练含答案解析二次函数小综合抛物线中的定点问题

典例精讲考点动直线过定点【例】如图,已知抛物线C1:y=ax2+bx+c的顶点坐标为(0,-1),且经过点A(-1,1),动直线l的解析式为y=-4x+k.(1)求抛物线C1的解析式;(2)将抛物线C1向上平移一个单位得到新的抛物线C2,过点A的直线交抛物线于M,N两点(点M位点N的左边),动直线l过点M,与抛物线C2的另一个交点为点P求证:直线PN恒过一个定点.典题精练如图,已知抛物线y=-2x2交直线y=kx-2k-4于P,Q两点,在抛物线上是否存在一个定点D,使∠PDQ =90°,若存在,求定点D的坐标;若不存在,请说明理由.典例精讲考点动直线过定点【例】如图,已知抛物线C1:y=ax2+bx+c的顶点坐标为(0,-1),且经过点A(-1,1),动直线l的解析式为y=-4x+k.(1)求抛物线C1的解析式;(2)将抛物线C1向上平移一个单位得到新的抛物线C2,过点A的直线交抛物线于M,N两点(点M位点N的左边),动直线l过点M,与抛物线C2的另一个交点为点P求证:直线PN恒过一个定点.【解答】(1)y=2x2-1;(2)C2:y=2x2,设M(m,2m2),N(n,2n2),P(t,2t2)(m<n),则MN的解析式y=2(m+m)x-2mn,∵MN过点A(-1,1),∴-2(m+n)-2mn=1,即2mn=-1-2m=2n又l:y=-4x+k过点M(m,2m2),∴2m2=-4m+k,∴k=2m2+4m,y=-4x+2m2+4m∴l:y=-4x+2m2+4m,联立y=-4x+2m2+4m,y=2x2得2x2+4x-2m2-4m=0,∴t+m=-2,即t=-2-m,∴P(-2-m,2m2+8m+8),∴PN的解析式:y=(2n-2m-4)x+(2mn+4n)=(2n-2m)(x+1)-1-4x,取x=-1时,则y=-1+4=3,∴PN恒过定点(-1,3).典题精练如图,已知抛物线y=-2x2交直线y=kx-2k-4于P,Q两点,在抛物线上是否存在一个定点D,使∠PDQ =90°,若存在,求定点D的坐标;若不存在,请说明理由.解:过点D作EF⊥y轴,PE⊥DE于点E,QF⊥DF于点F,△PED∽△DFQ,∴PE·QF=DE·DF,(y D-y P)(y D-y Q)=(x D-x P)(x Q-x D)(-12x2D+12x2P)(-12x2D+12x2Q)=(x D-x P)(x Q-x D),(x D+x P)(x D+x Q)=-4,x D2+(x P+x Q)x D+x P·x Q+4=0,联立21,224, y xy kx k⎧=-⎪⎨⎪=--⎩得x P+x Q=-2k,x P⋅x Q=-4k-8,∴x D2-2kx D-4k-4=0,(x D-2k-2)(x D+2)=0,x D=2k+2或x D=-2,∵D为定点,∴x D=-2,D(-2,-2).。

数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)

数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)

数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)一.选择题(共9小题)1.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x 的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<102.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a3.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠34.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个5.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或109.若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a 与b的大小关系是a b.(填“>”“<”或“=”)13.已知正比例函数y=(1﹣m)x|m﹣2|,且y随x的增大而减小,则m的值是.14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C 为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD 沿x轴向右平移m个单位.当点A落在MN上时,则m=.三.解答题(共22小题)19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S=S△PAB.△QAB①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿BA以每秒1个单位的速度向点A运动,当点P到达点A时停止运动,设点P的运动时间为t秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线AD 并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为,点C的坐标为.(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移,如图②.设平移的长度为x cm,且满足0≤x≤10,直尺与直角三角形纸板重合部分的面积(即图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)2+=0,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO=;AD=;OC=;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=45°,求点D的坐标.33.如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P=,求此时点P的坐标.作x轴的垂线交x轴于点E,若S△PBE34.在平面直角坐标系xoy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ 为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.39.已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程x2﹣4=0的解,点C的纵坐标恰好是方程x2﹣4x+4=0的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.1)求直线BC的解析式;2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5h与乙相遇,…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)参考答案与试题解析一.选择题(共9小题)1.(2016春•农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.2.(2012秋•镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x 的增大而减小.同时注意直线越陡,则|k|越大.3.(2016春•重庆校级月考)函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(2016春•南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5.(2016春•重庆校级月考)一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春•浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春•无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m【分析】根据一次函数图象与系数的关系,确定m、n的符号,然后由绝对值、二次根式的化简运算法则解得即可.【解答】解:根据图示知,关于x的一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0;∴|n﹣m|﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.故选D.【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0时,经过第一、二、四象限.8.(2015秋•盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或10【分析】由一次函数的性质,分k>0和k<0时两种情况讨论求解.【解答】解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得.即kb=10;当k<0时,y随x的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.9.(2015秋•西安校级月考)若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春•邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=﹣3.【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春•南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春•大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a与b的大小关系是a<b.(填“>”“<”或“=”)【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.(2015春•建瓯市校级月考)已知正比例函数y=(1﹣m)x|m﹣2|,且y随x 的增大而减小,则m的值是3.【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春•天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(2015春•宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A (x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是0≤a<.【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,那么经过一三或一二三象限,那么此函数的常数项应为非负数.【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象限是解决本题的关键.16.(2015秋•靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP 的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是2.【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,当点P在DE上时,三角形的面积不变,故此DE=4,从而可求得DC=2,于是得到AC=2+2,从而可求得BC的长为2+.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣2)=4.∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.【点评】本题主要考查的是动点问题的函数图象,由函数图象判断出AD、DE的长度是解题的关键.17.(2016春•盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是(a,a).【分析】根据题意得出直线BB1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60°=a,∴B1的坐标为:(a,a),∴点B1,B2,B3,…都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),…A n(a,).∴A2015(a,a).故答案为.【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A 点横纵坐标变化规律是解题关键.18.(2016春•泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春•武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋•兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法即可直接求得l2的函数解析式;(2)首先解两条之间的解析式组成的方程组求得C的坐标,然后利用三角形的面积公式即可求解;(3)△ADF和△ADC的面积相等,则F的纵坐标与C的总坐标一定互为相反数,代入l2的解析式即可求解;(4)求得C关于x轴的对称点,然后求得经过这个点和B点的直线解析式,直线与x轴的交点就是E.【解答】解:(1)设l2的解析式是y=kx+b,根据题意得:,解得:,则函数的解析式是:y=﹣x+4;(2)在中令y=0,解得:x=﹣2,则D的坐标是(﹣2,0).。

初中数学数与式提高练习与难题和培优综合题压轴题(含解析)

初中数学数与式提高练习与难题和培优综合题压轴题(含解析)

初中数学数与式提高练习与难题和培优综合题压轴题(含解析)一.选择题(共10小题)1.设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值2.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根3.用同样多的钱,买一等毛线,可以买3千克;买二等毛线,可以买4千克,如果用买a千克一等毛线的钱去买二等毛线,可以买()A.a千克 B.a千克 C.a千克 D.a千克4.如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是()A.B.C.D.5.已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形6.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027C.1.111111×1056D.1.1111111×10177.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A. B. C. D.8.如果m为整数,那么使分式的值为整数的m的值有()A.2个 B.3个 C.4个 D.5个9.若4与可以合并,则m的值不可以是()A.B.C.D.10.设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1 B.﹣+1 C.﹣﹣1 D.++1二.填空题(共12小题)11.与最接近的整数是.12.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.13.若,则=.14.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.15.已知A=2x+1,B是多项式,在计算B+A时,某同学把B+A看成了B÷A,结果得x2﹣3,则B+A=.16.若m为正实数,且m﹣=3,则m2﹣=.17.因式分解:x2﹣y2+6y﹣9=.18.已知:x2﹣x﹣1=0,则﹣x3+2x2+2002的值为.19.若=+,对任意自然数n都成立,则a=,b=;计算:m=+++…+=.20.已知三个数x,y,z满足=﹣3,=,=﹣.则的值为.21.无论x取任何实数,代数式都有意义,则m的取值范围为.22.化简二次根式的正确结果是.三.解答题(共18小题)23.对于任何实数,我们规定符号的意义是:=ad﹣bc.按照这个规定请你计算:当x2﹣3x+1=0时,的值.24.分解因式:a2+4b2+c4﹣4ab﹣2ac2+4bc2﹣1.25.(1)计算:.(2)先化简,再求值:,其中.26.若实数x,y满足(x﹣)(y﹣)=2016.(1)求x,y之间的数量关系;(2)求3x2﹣2y2+3x﹣3y﹣2017的值.27.已知x,y都是有理数,并且满足,求的值.28.已知+=0,求的值.29.已知a2+b2﹣4a﹣2b+5=0,求的值.30.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:(﹣)÷=(1)求所捂部分化简后的结果:(2)原代数式的值能等于﹣1吗?为什么?31.阅读下列材料,解决后面两个问题:我们可以将任意三位数(其中a、b、c分别表示百位上的数字,十位上的数字和个位上的数字,且a≠0),显然=100a+10b+c;我们形如和的两个三位数称为一对“姊妹数”(其中x、y、z是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意两对“姊妹数”,并判断2331是否是一对“姊妹数”的和;(2)如果用x表示百位数字,求证:任意一对“姊妹数”的和能被37整除.32.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.33.阅读与计算:对于任意实数a,b,规定运算@的运算过程为:a@b=a2+ab.根据运算符号的意义,解答下列问题.(1)计算(x﹣1)@(x+1);(2)当m@(m+2)=(m+2)@m时,求m的值.34.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.35.斐波那契(约1170﹣1250,意大利数学家)数列是按某种规律排列的一列数,他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n为正整数)个数a n可表示为[()n﹣()n].(1)计算第一个数a1;(2)计算第二个数a2;(3)证明连续三个数之间a n﹣1,a n,a n+1存在以下关系:a n+1﹣a n=a n﹣1(n≥2);(4)写出斐波那契数列中的前8个数.36.问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定它们的大小,即要比较代数式M、N的大小,只要作出它们的差M﹣N,若M﹣N>0,则M>N;若M﹣N=0,则M=N;若M﹣N<0,则M<N.问题解决如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.解:由图可知:M=a2+b2,N=2ab.∴M﹣N=a2+b2﹣2ab=(a﹣b)2.∵a≠b,∴(a﹣b)2>0.∴M﹣N>0.∴M>N.类比应用(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.37.附加题:若a=,b=,试不用将分数化小数的方法比较a、b的大小.观察a、b的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.38.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.(1)设A=﹣,B=,求A与B的积;(2)提出(1)的一个“逆向”问题,并解答这个问题.39.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得,经过四次“F”运算得,经过五次“F”运算得,经过2016次“F”运算得.(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).40.观察并验证下列等式:13+23=(1+2)2=9,13+23+33=(1+2+3)2=36,13+23+33+43=(1+2+3+4)2=100,(1)续写等式:13+23+33+43+53=;(写出最后结果)(2)我们已经知道1+2+3+…+n=n(n+1),根据上述等式中所体现的规律,猜想结论:13+23+33+…+(n﹣1)3+n3=;(结果用因式乘积表示)(3)利用(2)中得到的结论计算:①33+63+93+…+573+603②13+33+53+…+(2n﹣1)3(4)试对(2)中得到的结论进行证明.初中数学数与式提高练习与难题和培优综合题压轴题(含解析)参考答案与试题解析一.选择题(共10小题)1.(2009秋•和平区校级期中)设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值【分析】根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题.【解答】解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x的范围为﹣1≤x≤1,故选D.【点评】本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.2.(2016秋•郑州月考)下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根【分析】正数平方根有两个,算术平方根有一个,立方根有一个.【解答】解:A、2是8的立方根是正确的,不符合题意;B、4是64的立方根,原来的说法错误,符合题意;C、﹣是的平方根是正确的,不符合题意;D、4是的算术平方根是正确的,不符合题意.故选:B.【点评】本题考查立方根,平方根和算术平方根的概念.3.(2016秋•全椒县期中)用同样多的钱,买一等毛线,可以买3千克;买二等毛线,可以买4千克,如果用买a千克一等毛线的钱去买二等毛线,可以买()A.a千克 B.a千克 C.a千克 D.a千克【分析】先设出买1千克的一等毛线花的钱数和买1千克的二等毛线花的钱数,列出一等毛线和二等毛线的关系,再乘以a千克即可求出答案.【解答】解:设买1千克的一等毛线花x元钱,买1千克的二等毛线花y元钱,根据题意得:3x=4y,则=,故买a千克一等毛线的钱可以买二等毛线a.故选A.【点评】此题考查了列代数式,解题的关键是认真读题,找出等量关系,列出代数式,是一道基础题.4.(2009•江干区模拟)如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是()A.B.C.D.【分析】观察图形可知:阴影部分的面积=大圆的面积﹣小圆的面积,大圆的直径=a,小圆的直径=,再根据圆的面积公式求解即可.【解答】解:据题意可知:阴影部分的面积S=大圆的面积S1﹣小圆的面积S2,∵据图可知大圆的直径=a,小圆的半径=,∴阴影部分的面积S=π()2﹣π()2=π(2ab﹣b2).故选A.【点评】此题主要考查学生的观察能力,只要判断出两圆的直径,问题就迎刃而解.本题涉及到圆的面积公式、整式的混合运算等知识点,是整式的运算与几何相结合的综合题.5.(2015•湖北校级自主招生)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形【分析】等式两边乘以2,利用配方法得到(2a2﹣c2)2+(2b2﹣c2)2=0,根据非负数的性质得到2a2﹣c2=0,2b2﹣c2=0,则a=b,且a2+b2=c2.然后根据等腰三角形和直角三角形的判定方法进行判断.【解答】解:∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4﹣4a2c2+c4+4b4﹣4b2c2+c4=0,∴(2a2﹣c2)2+(2b2﹣c2)2=0,∴2a2﹣c2=0,2b2﹣c2=0,∴c=a,c=b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.故选:B.【点评】本题考查了因式分解的应用,利用完全平方公式是解决问题的关键.6.(2015•河北模拟)现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027C.1.111111×1056D.1.1111111×1017【分析】根据题意得出一般性规律,写出第8个等式,利用平方差公式计算,将结果用科学记数法表示即可.【解答】解:根据题意得:第⑧个式子为5555555552﹣4444444452=(555555555+444444445)×(555555555﹣444444445)=1.1111111×1017.故选D.【点评】此题考查了因式分解﹣运用公式法,以及科学记数法﹣表示较大的数,熟练掌握平方差公式是解本题的关键.7.(2016春•雁江区期末)如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A. B. C. D.【分析】设第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可.【解答】解:设规则瓶体部分的底面积为S.倒立放置时,空余部分的体积为bS,正立放置时,有墨水部分的体积是aS因此墨水的体积约占玻璃瓶容积的=,故选A.【点评】考查列代数式;用墨水瓶的底面积表示出墨水的容积及空余部分的体积是解决本题的突破点.8.(2016秋•乐亭县期末)如果m为整数,那么使分式的值为整数的m的值有()A.2个 B.3个 C.4个 D.5个【分析】分式,讨论就可以了.即m+1是2的约数则可.【解答】解:∵=1+,若原分式的值为整数,那么m+1=﹣2,﹣1,1或2.由m+1=﹣2得m=﹣3;由m+1=﹣1得m=﹣2;由m+1=1得m=0;由m+1=2得m=1.∴m=﹣3,﹣2,0,1.故选C.【点评】本题主要考查分式的知识点,认真审题,要把分式变形就好讨论了.9.(2004•十堰)若4与可以合并,则m的值不可以是()A.B.C.D.【分析】根据同类二次根式的定义,把每个选项代入两个根式化简,检验化简后被开方数是否相同.【解答】解:A、把代入根式分别化简:4=4=,==,故选项不符合题意;B、把代入根式化简:4=4=;==,故选项不合题意;C、把代入根式化简:4=4=1;=,故选项不合题意;D、把代入根式化简:4=4=,==,故符合题意.故选D.【点评】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.需要注意化简前,被开方数不同也可能是同类二次根式.10.(2016•邯郸校级自主招生)设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1 B.﹣+1 C.﹣﹣1 D.++1【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后代、化简、运算、求值,即可解决问题.【解答】解:∵﹣=﹣===,∴a的小数部分=﹣1;∵﹣===,∴b的小数部分=﹣2,∴﹣====.故选B.【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.二.填空题(共12小题)11.(2014•雨花区校级自主招生)与最接近的整数是6.【分析】先利用完全平方公式将分母化简变形,再进行分母有理化即可.【解答】解:∵=======≈5.828,∴与最接近的整数是6.故答案为:6【点评】本题主要考查了无理数的估算,先利用完全平方公式将分母化简,再分母有理化是解决问题的关键.12.(2012•常德)规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为4.【分析】求出的范围,求出+1的范围,即可求出答案.【解答】解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.【点评】本题考查了估计无理数的应用,关键是确定+1的范围,题目比较新颖,是一道比较好的题目.13.(2013•德阳)若,则=6.【分析】根据非负数的性质先求出a2+、b的值,再代入计算即可.【解答】解:∵,∴+(b+1)2=0,∴a2﹣3a+1=0,b+1=0,∴a+=3,∴(a+)2=32,∴a2+=7;b=﹣1.∴=7﹣1=6.故答案为:6.【点评】本题考查了非负数的性质,完全平方公式,整体思想,解题的关键是整体求出a2+的值.14.(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.【分析】根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.15.(2012•河南模拟)已知A=2x+1,B是多项式,在计算B+A时,某同学把B+A 看成了B÷A,结果得x2﹣3,则B+A=2x3+x2﹣4x﹣2.【分析】由B除以A商为x2﹣3,且A=2x+1,利用被除数等于商乘以除数,表示出B,利用多项式乘以多项式的法则计算,确定出B,再由B+A列出关系式,去括号合并后即可得到结果.【解答】解:根据题意列出B=(2x+1)(x2﹣3)=2x3﹣6x+x2﹣3=2x3+x2﹣6x﹣3,则B+A=(2x3+x2﹣6x﹣3)+(2x+1)=2x3+x2﹣4x﹣2.故答案为:2x3+x2﹣4x﹣2.【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.16.(2011•乐山)若m为正实数,且m﹣=3,则m2﹣=3.【分析】由,得m2﹣3m﹣1=0,即=,因为m为正实数,可得出m的值,代入,解答出即可;【解答】解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.【点评】本题考查了完全平方公式、平方差公式,求出m的值代入前,一定要把代数式分解完全,可简化计算步骤.17.(2002•益阳)因式分解:x2﹣y2+6y﹣9=(x﹣y+3)(x+y﹣3).【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题后三项提取﹣1后y2﹣6y+9可运用完全平方公式,可把后三项分为一组.【解答】解:x2﹣y2+6y﹣9,=x2﹣(y2﹣6y+9),=x2﹣(y﹣3)2,=(x﹣y+3)(x+y﹣3).【点评】本题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.18.(2002•福州)已知:x2﹣x﹣1=0,则﹣x3+2x2+2002的值为2003.【分析】把2x2分解成x2与x2相加,然后把所求代数式整理成用x2﹣x表示的形式,然后代入数据计算求解即可.【解答】解:∵x2﹣x﹣1=0,∴x2﹣x=1,﹣x3+2x2+2002,=﹣x3+x2+x2+2002,=﹣x(x2﹣x)+x2+2002,=﹣x+x2+2002,=1+2002,=2003.故答案为:2003.【点评】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.19.(2015•梅州)若=+,对任意自然数n都成立,则a=,b=﹣;计算:m=+++…+=.【分析】已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b的值即可;原式利用拆项法变形,计算即可确定出m的值.【解答】解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.20.(2013•涟水县校级一模)已知三个数x,y,z满足=﹣3,=,=﹣.则的值为﹣6.【分析】先将该题中所有分式的分子和分母颠倒位置,化简后求出的值,从而得出代数式的值.【解答】解:∵=﹣3,=,=﹣,∴=﹣,,=﹣,整理得,+=﹣①,+=②,+=﹣③,①+②+③得,++=﹣+﹣=﹣,∴=﹣,=﹣,∴=﹣6.故答案为:﹣6.【点评】本题考查了分式的化简求值,将分式的分子分母颠倒位置后计算是解题的关键.21.(2013•六盘水)无论x取任何实数,代数式都有意义,则m的取值范围为m≥9.【分析】二次根式的被开方数是非负数,即x2﹣6x+m=(x﹣3)2﹣9+m≥0,所以(x﹣3)2≥9﹣m.通过偶次方(x﹣3)2是非负数可求得9﹣m≤0,则易求m 的取值范围.【解答】解:由题意,得x2﹣6x+m≥0,即(x﹣3)2﹣9+m≥0,∵(x﹣3)2≥0,要使得(x﹣3)2﹣9+m恒大于等于0,∴m﹣9≥0,∴m≥9,故答案为:m≥9.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.(2009•琼海模拟)化简二次根式的正确结果是.【分析】根据二次根式的性质及定义解答.【解答】解:由二次根式的性质得﹣a3b≥0∵a<b∴a<0,b>0∴原式==﹣a.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.2、性质:=|a|.三.解答题(共18小题)23.(2010•东莞校级一模)对于任何实数,我们规定符号的意义是:=ad ﹣bc.按照这个规定请你计算:当x2﹣3x+1=0时,的值.【分析】应先根据所给的运算方式列式并根据平方差公式和单项式乘多项式的运算法则化简,再把已知条件整体代入求解即可.【解答】解:=(x+1)(x﹣1)﹣3x(x﹣2),=x2﹣1﹣3x2+6x,=﹣2x2+6x﹣1,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴原式=﹣2(x2﹣3x)﹣1=2﹣1=1.【点评】本题考查了平方差公式,单项式乘多项式,弄清楚规定运算的运算方法是解题的关键.24.(2016秋•昌江区校级期末)分解因式:a2+4b2+c4﹣4ab﹣2ac2+4bc2﹣1.【分析】先分组得到原式=(a2+4b2﹣4ab)+(﹣2ac2+4bc2)+(c4﹣1),再根据完全平方公式,提取公因式法,平方差公式得到原式=(2b﹣a)2+2c2(2b﹣a)+(c2+1)(c2﹣1),再根据十字相乘法即可求解.【解答】解:a2+4b2+c4﹣4ab﹣2ac2+4bc2﹣1=(a2+4b2﹣4ab)+(﹣2ac2+4bc2)+(c4﹣1)=(2b﹣a)2+2c2(2b﹣a)+(c2+1)(c2﹣1)=(2b﹣a+c2+1)(2b﹣a+c2﹣1).【点评】本题考查了因式分解﹣分组分解法,本题关键是式子分组,以及熟练掌握完全平方公式,提取公因式法,平方差公式,十字相乘法的计算方法.25.(2013•黔西南州)(1)计算:.(2)先化简,再求值:,其中.【分析】(1)先分别根据0指数幂、负整数指数幂、有理数乘方的法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=1×4+1+|﹣2×|=4+1+|﹣|,=4+1+0,=5;(2)原式====.当x=﹣3时,原式==.【点评】本题考查的是分式的化简求值及实数的运算,熟知分式混合运算的法则是解答此题的关键.26.若实数x,y满足(x﹣)(y﹣)=2016.(1)求x,y之间的数量关系;(2)求3x2﹣2y2+3x﹣3y﹣2017的值.【分析】(1)将式子变形后,再分母有理化得①式:x﹣=y+,同理得②式:x+=y﹣,将两式相加可得结论;(2)将x=y代入原式或①式得:x2=2016,代入所求式子即可.【解答】解:(1)∵(x﹣)(y﹣)=2016,∴x﹣===y+①,同理得:x+=y﹣②,①+②得:2x=2y,∴x=y,(2)把x=y代入①得:x﹣=x+,x2=2016,则3x2﹣2y2+3x﹣3y﹣2017,=3x2﹣2x2+3x﹣3x﹣2017,=x2﹣2017,=2016﹣2017,=﹣1.【点评】本题是二次根式的化简和求值,有难度,考查了二次根式的性质和分母有理化;二次根式中分母中含有根式时常运用分母有理化来解决,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.本题利用巧解将已知式变成两式,相加后得出结论.27.(2017春•启东市月考)已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.28.(2017春•滨海县月考)已知+=0,求的值.【分析】因为一个数的算术平方根是非负数,先由非负数的和等于0,求出a、b 的值,把a、b代入并求出的值.【解答】解:∵≥0,≥0,又∵+=0,∴a﹣,b﹣+2=0,即a=,b=﹣2∴a2+b2+7=()2+(﹣2)2+7=5+4+4+5﹣4+4+7=25∴==5.【点评】本题考查了非负数的算式平方根和二次根式的化简.解决本题的关键是根据非负数的和为零求出a、b的值.初中阶段学过的非负数有:一个数的绝对值、一个数的偶次方、一个数的算术平方根.29.(2016•海淀区校级模拟)已知a2+b2﹣4a﹣2b+5=0,求的值.【分析】由条件利用非负数的性质可先求得a、b的值,再代入计算即可.【解答】解:∵a2+b2﹣4a﹣2b+5=0∴(a﹣2)2+(b﹣1)2=0∴a=2,b=1,∴==7+.【点评】本题主要考查二次根式的运算,利用非负数的性质求得a、b的值是解题的关键.30.(2016•滦南县一模)老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:(﹣)÷=(1)求所捂部分化简后的结果:(2)原代数式的值能等于﹣1吗?为什么?【分析】(1)设所捂部分为A,根据题意得出A的表达式,再根据分式混合运算的法则进行计算即可;(2)令原代数式的值为﹣1,求出x的值,代入代数式中的式子进行验证即可.【解答】解:(1)设所捂部分为A,则A=•+=+==;(2)若原代数式的值为﹣1,则=﹣1,即x+1=﹣x+1,解得x=0,当x=0时,除式=0,故原代数式的值不能等于﹣1.【点评】本题考查的是分式的化简求值,在解答此类提问题时要注意x的取值要保证每一个分式有意义.31.(2016•重庆校级模拟)阅读下列材料,解决后面两个问题:我们可以将任意三位数(其中a、b、c分别表示百位上的数字,十位上的数字和个位上的数字,且a≠0),显然=100a+10b+c;我们形如和的两个三位数称为一对“姊妹数”(其中x、y、z是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意两对“姊妹数”,并判断2331是否是一对“姊妹数”的和;(2)如果用x表示百位数字,求证:任意一对“姊妹数”的和能被37整除.【分析】(1)根据“姊妹数”的意义直接写出两对“姊妹数”,根据“姊妹数”的意义设出一个三位数,表示出它的“姊妹数”,求和,用2331建立方程求解,最后判断即可;(2)表示出这对“姊妹数”,并且求和,写成37×6(x﹣1),判断6(x﹣1)是整数即可.【解答】解:(1)根据“姊妹数”满足的条件得,和是一对姊妹数,和是一对姊妹数;假设是一对“姊妹数”的和,设这对“姊妹数”中的一个三位数的十位数字为x,个位数字为(x﹣1),百位数字为(x+1),(x为大于1小于9的整数),∴这个三位数为100(x+1)+10x+x﹣1=111x+99,∴另一个三位数的十位数字为x,个位数字为(x+1),百位数字为(x﹣1),则这个三位数为100(x﹣1)+10x+x+1=111x﹣99,∴这对“姊妹数”的和为(111x+99)+(111x﹣99)=222x=2331,∴x=10,不符合题意,∴2331不是一对“姊妹数”的和;(2)∵x表示一个三位数的百位数字,(x为大于2小于9的整数),根据“姊妹数”的意义得,这个三位数的十位数字为(x﹣1),个位数字为(x﹣2),∴这个三位数为:100x+10(x﹣1)+(x﹣2)=111x﹣12,∴它的“姊妹数”为:100(x﹣2)+10(x﹣1)+x=111x﹣210,∴这对“姊妹数”的和为:(111x﹣12)+(111x﹣210)=222x﹣222=222(x﹣1)=37×6(x﹣1),∵x为大于2小于9的整数,∴(x﹣1)是整数,∴6(x﹣1)是整数,∴37×6(x﹣1)能被37整除,即:任意一对“姊妹数”的和能被37整除.【点评】此题是因式分解的应用,主要考查了新定义,解一元一次方程,这出问题,解本题的关键是理解“姊妹数”的意义,并且会用它解决问题.32.(2017春•崇仁县校级月考)若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=﹣;(2)代数式为完全平方式,则k=±3;(3)解方程:=6x2+7.【分析】(1)根据新定义运算代入数据计算即可求解;(2)根据新定义运算代入数据计算,再根据完全平方式的定义即可求解;(3)根据新定义运算代入数据得到关于x的方程,解方程即可求解.【解答】解:(1)=[2×(﹣3)×1]÷[(﹣1)4+31]=﹣6÷4=﹣.故答案为:﹣;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为:±3;(3)=6x2+7,(3x﹣2)(3x+2)]﹣[(x+2)(3x﹣2)+32]=6x2+7,解得x=﹣4.【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:完全平方公式为:①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.33.(2016•太原二模)阅读与计算:对于任意实数a,b,规定运算@的运算过程为:a@b=a2+ab.根据运算符号的意义,解答下列问题.(1)计算(x﹣1)@(x+1);(2)当m@(m+2)=(m+2)@m时,求m的值.【分析】(1)根据题目中的新运算可以化简题目中的式子;(2)根据题目中的新运算可以对题目中的式子进行转化,从而可以求得m的值.【解答】解:(1)∵a@b=a2+ab,∴(x﹣1)@(x+1)=(x﹣1)2+(x﹣1)(x+1)=x2﹣2x+1+x2﹣1=2x2﹣2x;(2)∵a@b=a2+ab,∴m@(m+2)=(m+2)@m即m2+m(m+2)=(m+2)2+(m+2)m,化简,得4m+4=0,解得,m=﹣1,即m的值是﹣1.【点评】本题考查整式的混合运算、解一元一次方程、新运算,解题的关键是明确题目中的新运算,利用新运算解答问题.34.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;。

八年级数学一次函数提高练习与常考题和培优难题压轴题(含解析)

八年级数学一次函数提高练习与常考题和培优难题压轴题(含解析)

一次函数提高练习与常考题和培优难题压轴题( 含解析)9小题)一.选择题(共1.函数的自变量x的取值范围是()A.x≤ 2 B.x≥ 2 且x≠3C.x≥2D.x≤ 2 且x≠32.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x 轴的交点是(﹣2,0)③由图象可知y 随x 的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2 平行的直线,其中正确说法有()A.5 个B.4 个C.3 个D.2 个3.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y 与x2x,那么自变量x的取值范围是()的函数关系式为y=20﹣A.x>0 B.0<x<10 C.0<x<5 D.5<x<104.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a5.一辆慢车以50 千米/小时的速度从甲地驶往乙地,一辆快车以75 千米/小时发,则的速度从乙地驶往甲地,甲、乙两地之间的距500 千米,两车同时出离为图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B. C .D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x 关于的一次函数y=mx+n 的图象如上图,则| n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤ 1 时,﹣1≤y≤7,则k b 的值为()A.10 B.21 C.﹣10 或2 D.﹣2或102+(1﹣2m)x +1(m 为常数)是一次函数,则m的值为9.若函数y=(2m+1)x()77页)第2页(共二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣b x+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a与b的大小关系是a b.(填“>”<“”或“=)”,且y随x的增大而减小,则m的值是.|m﹣2|13.已知正比例函数y=(1﹣m)x14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段A B最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,S与运动时间t(s)的函沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,⋯都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,⋯都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD 沿x轴向右平移m个单位.当点A落在MN上时,则m=.19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;2=OE2+A F2;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6 的图象分别与y 轴、x 轴交于点A、B,点P从点B出发,沿BA以每秒 1 个单位的速度向点 A 运动,当点P到达点A 时停止运动,设点P的运动时间为t 秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q 为y 轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t 为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线ADA D为一边向上作正方形ABCD.并以线段(1)填空:点B的坐标为,点C的坐标为.线DA 向上平移,直至正方形的(2)若正方形以每秒个单位长度的速度沿射顶点C落在y 轴上时停止运动.在运动过程中,设正方形落在y 轴右侧部分的面量t 的取值积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点 D 与点A 重合,将直尺沿AB方向平移,如图②.设平移0≤x≤10,直尺与直角三角形纸板重合部分的面积(即的长度为x cm,且满足图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、2+=0,C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO=;AD=;OC=;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=4°5,求点D的坐标.33.如图,?ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P 作x轴的垂线交x轴于点E,若S△PBE=,求此时点P的坐标.34.在平面直角坐标系x oy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非:常距离”,给出如下定义若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).,0),B为y轴上的一个动点,(1)已知点A(﹣①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.2﹣4=0 39.已知,如图,在平面直角坐标系中,点 A 、B 的横坐标恰好是方程x的解,点 C 的纵坐标恰好是方程x 2﹣4x+4=0 的解,点 P 从 C 点出发沿 y 轴正方向以 1 个单位/ 秒的速度向上运动,连P A 、PB ,D 为 AC 的中点.1)求直线 BC 的解析式;2)设点 P 运动的时间为 t 秒,问:当 t 为何值时, DP 与 DB 垂直且相等?3)如图 2,若 PA=AB ,在第一象限内有一动点 Q ,连Q A 、QB 、QP ,且∠PQA=60°, 问:当 Q 在第一象限内运动时,∠ APQ+∠ABQ 的度数和是否会发生改变?若不 变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从 M 地出发沿一条公路匀 速前往 N 地,设乙行驶的时间为 t (h ),甲乙两人之间的距离为 y (km ),y 与 t 的函数关系如图 1 所示,方成思考后发现了图 1 的部分正确信息,乙先出发 1h , 甲出发 0.5h 与乙相遇, ⋯ 请你帮助方成同学解决以下问题:(1)分别求出线段B C ,CD 所在直线的函数表达式;(2)当 20<y <30 时,求 t 的取值范围;(3)分别求出甲、乙行驶的路程S 甲、S 乙与时间 t 的函数表达式,并在图 2 所给 的直角坐标系中分别画出它们的图象.优难题压轴题数学初二一次函数提高练习与常考题和培( 含解析)参考答案与试题解析9小题)一.选择题(共1.(2016 春?重庆校级月考)函数的自变量x 的取值范围是()A.x≤ 2 B.x≥ 2 且x≠3C.x≥2D.x≤ 2 且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.3≠0,【解答】解:根据题意得:2﹣x≥0 且x﹣解得:x≤ 2 且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2016 春?南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x 轴的交点是(﹣2,0)③由图象可知y随x 的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2 平行的直线,其中正确说法有()A.5 个B.4 个C.3 个D.2 个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0 时,y=﹣x﹣2 中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y 随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2 与y=﹣x 的k 值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b 中,当k>0 时,y 随x 的增大而增大;当k<0 时,y 随x 的增大而减小.3.(2016 春?农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y 与x 的函数关系式为y=20﹣2x,那么自变量x 的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.4.(2012 秋?镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c 的符号,再根据直线越陡,则| k| 越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则| k| 越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0 时,图象经过一、三象限,y随x 的增大而增大;当k<0 时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则| k| 越大.5.(2016 春?重庆校级月考)一辆慢车以50 千米/小时的速度从甲地驶往乙地,一辆快车以75 千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500 千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B. C .D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春?浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春?无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣mm、n 的符号,然后由绝对值、【分析】根据一次函数图象与系数的关系,确定二次根式的化简运算法则解得即可.x的一次函数y=mx+n 的图象经过第一、二、四【解答】解:根据图示知,关于象限,∴m<0,n>0;∴| n﹣m| ﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.D.故选【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0 时,经过第一、二、四象限.8.(2015 秋?盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤ 1 时,﹣1≤y≤7,()则kb 的值为A.10 B.21 C.﹣10 或2 D.﹣2 或10解.【分析】由一次函数的性质,分k>0 和k<0 时两种情况讨论求【解答】解:由一次函数的性质知,当k>0 时,y 随x 的增大而增大,所以得,解得.即kb=10;当k<0 时,y 随x 的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.2+(1﹣2m)x+1(m为常数)9.(2015秋?西安校级月考)若函数y=(2m+1)x是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春?邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=﹣3.【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春?南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春?大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k (k为常数)上,则a与b的大小关系是a<b.(填“>”<“”或“=)”【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.|m﹣2|,且y随x 13.(2015春?建瓯市校级月考)已知正比例函数y=(1﹣m)x的增大而减小,则m的值是3.【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春?天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点.的坐标一定适合此函数的解析式是解答此题的关键15.(2015春?宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A (x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的是0≤a<.取值范围【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,负数.为非那么经过一三或一二三象限,那么此函数的常数项应【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象.限是解决本题的关键16.(2015秋?靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCPB C的长是2.t(s)的函数图象如图2所示,则的面积S与运动时间【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,D E=4,从而可求得DC=2,于是当点P在DE上时,三角形的面积不变,故此得到AC=2+2,从而可求得BC的长为2+.2)=4.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.出AD、DE的【点评】本题主要考查的是动点问题的函数图象,由函数图象判断.长度是解题的关键17.(2016春?盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,⋯都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,⋯都在同一条直点A2015的坐标是(a,a).线上,则【分析】根据题意得出直线B B1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.B1C,垂足为C,B1向x轴作垂线【解答】解:过由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60=°a,∴B1的坐标为:(a,a),∴点B1,B2,B3,⋯都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),⋯A n(a,).∴A2015(a,a).故答案为.,得出A 【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类点横纵坐标变化规律是解题关键.18.(2016春?泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春?武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋?兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.。

初三数学九上九下压轴题难题提高题培优题(含答案解析)

初三数学九上九下压轴题难题提高题培优题(含答案解析)

初三数学九上压轴题难题提高题培优题一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B (6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c 经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.6.如图1,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.初三数学九上压轴题难题提高题培优题参考答案与试题解析一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:由题意可知.解得.∴抛物线的表达式为y=﹣.(2)将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1).设直线MA的表达式为y=kx+b,则.解得.∴直线MA的表达式为y=x+1.设点D的坐标为(),则点F的坐标为().DF==.当时,DF的最大值为.此时,即点D的坐标为().(3)存在点P,使得以点P、A、N为顶点的三角形与△MAO相似.设P(m,).在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限.①设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3(舍去)或m=﹣8.又﹣3<m<0,故此时满足条件的点不存在.②当点P在第三象限时,∵点P不可能在直线MA上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3或m=﹣8.此时点P的坐标为(﹣8,﹣15).③当点P在第四象限时,若AN=3PN时,则﹣3,即m2+m﹣6=0.解得m=﹣3(舍去)或m=2.当m=2时,.此时点P的坐标为(2,﹣).若PN=3NA,则﹣,即m2﹣7m﹣30=0.解得m=﹣3(舍去)或m=10,此时点P的坐标为(10,﹣39).综上所述,满足条件的点P的坐标为(﹣8,﹣15)、(2,﹣)、(10,﹣39).2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.【解答】解:(1)如图,过点A作AD⊥y轴于点D,∵AO=OB=4,∴B(4,0).∵∠AOB=120°,∴∠AOD=30°,∴AD=OA=2,OD=OA=2.∴A(﹣2,2).将A(﹣2,2),B(4,0)代入y=ax2+bx,得:,解得:,∴这条抛物线的表达式为y=x2﹣x;(2)过点M作ME⊥x轴于点E,∵y=x2﹣x=(x﹣2)2﹣,∴M(2,﹣),即OE=2,EM=.∴tan∠EOM==.∴∠EOM=30°.∴∠AOM=∠AOB+∠EOM=150°.(3)过点A作AH⊥x轴于点H,∵AH=2,HB=HO+OB=6,∴tan∠ABH==.∴∠ABH=30°,∵∠AOM=150°,∴∠OAM<30°,∴∠OMA<30°,∴点C不可能在点B的左侧,只能在点B的右侧.∴∠ABC=180°﹣∠ABH=150°,∵∠AOM=150°,∴∠AOM=∠ABC.∴△ABC与△AOM相似,有如下两种可能:①△BAC与∽△OAM,②△BAC与∽△OMA∵OD=2,ME=,∴OM=,∵AH=2,BH=6,∴AB=4.①当△BAC与∽△OAM时,由=得,解得BC=4.∴C1(8,0).②当△BAC与∽△OMA时,由=得,解得BC=12.∴C2(16,0).综上所述,如果点C在x轴上,且△ABC与△AOM相似,则点C的坐标为(8,0)或(16,0).3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B (6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(2,0),B(6,0),;∴,解得;∴抛物线的解析式为:;(2)易知抛物线的对称轴是x=4,把x=4代入y=2x,得y=8,∴点D的坐标为(4,8);∵⊙D与x轴相切,∴⊙D的半径为8;连接DE、DF,作DM⊥y轴,垂足为点M;在Rt△MFD中,FD=8,MD=4,∴cos∠MDF=;∴∠MDF=60°,∴∠EDF=120°;∴劣弧EF的长为:;(3)设直线AC的解析式为y=kx+b;∵直线AC经过点,∴,解得;∴直线AC的解析式为:;设点,PG交直线AC于N,则点N坐标为,∵S△PNA :S△GNA=PN:GN;∴①若PN:GN=1:2,则PG:GN=3:2,PG=GN;即=;解得:m1=﹣3,m2=2(舍去);当m=﹣3时,=;∴此时点P的坐标为;②若PN:GN=2:1,则PG:GN=3:1,PG=3GN;即=;解得:m1=﹣12,m2=2(舍去);当m=﹣12时,=;∴此时点P的坐标为;综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1:2两部分.4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c 经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)由OB=2,可知B(2,0),将A(﹣2,﹣4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,得解得:∴抛物线的函数表达式为.答:抛物线的函数表达式为.(2)由,可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB交直线x=1于点M,M点即为所求.∴MO=MB,则MO+MA=MA+MB=AB作AC⊥x轴,垂足为C,则AC=4,BC=4,∴AB=∴MO+MA的最小值为.答:MO+MA的最小值为.(3)①若OB∥AP,此时点A与点P关于直线x=1对称,由A(﹣2,﹣4),得P(4,﹣4),则得梯形OAPB.②若OA∥BP,设直线OA的表达式为y=kx,由A(﹣2,﹣4)得,y=2x.设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=﹣4,∴直线BP的表达式为y=2x﹣4由,解得x1=﹣4,x2=2(不合题意,舍去)当x=﹣4时,y=﹣12,∴点P(﹣4,﹣12),则得梯形OAPB.③若AB∥OP,设直线AB的表达式为y=kx+m,则,解得,∴AB的表达式为y=x﹣2.∵AB∥OP,∴直线OP的表达式为y=x.由,得x2=0,解得x=0,(不合题意,舍去),此时点P不存在.综上所述,存在两点P(4,﹣4)或P(﹣4,﹣12)使得以点P与点O、A、B为顶点的四边形是梯形.答:在此抛物线上,存在点P,使得以点P与点O、A、B为顶点的四边形是梯形,点P的坐标是(4,﹣4)或(﹣4,﹣12).5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3),∴,解得,所以,抛物线的函数解析式为y=﹣x2+x+1;(2)如图,过点B作BC⊥x轴于C,过点A作AD⊥OB于D,∵A(0,1),B (4,3),∴OA=1,OC=4,BC=3,根据勾股定理,OB===5,∵∠OAD+∠AOD=90°,∠AOD+∠BOC=90°,∴∠OAD=∠BOC,又∵∠ADO=∠OCB=90°,∴△AOD∽△OBC,∴==,即==,解得OD=,AD=,∴BD=OB﹣OD=5﹣=,∴tan∠ABO===;(3)设直线AB的解析式为y=kx+b(k≠0,k、b是常数),则,解得,所以,直线AB的解析式为y=x+1,设点M(a,﹣a2+a+1),N(a,a+1),则MN=﹣a2+a+1﹣a﹣1=﹣a2+4a,∵四边形MNCB为平行四边形,∴MN=BC,∴﹣a2+4a=3,整理得,a2﹣4a+3=0,解得a1=1,a2=3,∵MN在抛物线对称轴的左侧,抛物线的对称轴为直线x=﹣=,∴a=1,∴﹣12+×1+1=,∴点M的坐标为(1,).6.如图1,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【解答】解:(1)将x=2,y=2代入抛物线的解析式得:﹣×4×(2﹣m)=2,解得:m=4,经检验:m=4是分式方程的解.∴m的值为4.(2)y=0得:0=﹣(x+2)(x﹣m),解得x=﹣2或x=m,∴B(﹣2,0),C(m,0).由(1)得:m=4,∴C(4,0).将x=0代入得:y=﹣×2×(﹣m)=2,∴E(0,2).∴BC=6,OE=2.∴S=BC•OE=×6×2=6.△BCE(3)如图1所示:连接EC交抛物线的对称轴于点H,连接BH,设对称轴与x 轴的交点为P.∵x=﹣,∴抛物线的对称轴是直线x=1.∴CP=3.∵点B与点C关于x=1对称,∴BH=CH.∴BH+EH=EH+HC.∴当H落在线段EC上时,BH+EH的值最小.∵HP∥OE,∴△PHC∽△EOC.∴,即.解得HP=.∴点H的坐标为(1,).(4)①如图2,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.∵BF∥EC,∴∠BCE=∠FBC.∴当,即BC2=CE•BF时,△BCE∽△FBC.设点F的坐标为(x,﹣(x+2)(x﹣m)),由,得.解得x=m+2.∴F′(m+2,0).∵∠BCE=∠FBC.∴,得,解得:.又∵BC2=CE•BF,∴,整理得:0=16.此方程无解.②如图3,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,∵OE=OB,∠EOB=90°,∴∠EBO=45°.∵∵∠CBF=45°,∴∠EBC=∠CBF,∴当,即BC2=BE•BF时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得(x+2)(x﹣m)=x+2,解得x=2m.∴F′(2m,0).∴B F′=2m+2,∴BF=2m+2.由BC2=BE•BF,得(m+2)2=2×(2m+2).解得.∵m>0,∴m=2+2.综上所述,点m的值为2+2.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为(b,0),点C的坐标为(0,)(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.【解答】解:(1)令y=0,即y=x2﹣(b+1)x+=0,解得:x=1或b,∵b是实数且b>2,点A位于点B的左侧,∴点B的坐标为(b,0),令x=0,解得:y=,∴点C的坐标为(0,),故答案为:(b,0),(0,);(2)存在,假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP.=S△PCO+S△POB=••x+•b•y=2b,则S四边形PCOB∴x+4y=16.过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,∴∠PEO=∠EOD=∠ODP=90°.∴四边形PEOD是矩形.∴∠EPD=90°.∴∠EPC=∠DPB.∴△PEC≌△PDB,∴PE=PD,即x=y.由解得由△PEC≌△PDB得EC=DB,即﹣=b﹣,解得b=>2符合题意.∴P的坐标为(,);(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.∵∠QAB=∠AOQ+∠AQO,∴∠QAB>∠AOQ,∠QAB>∠AQO.∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.∵b>2,∴AB>OA,∴∠Q0A>∠ABQ.∴只能∠AOQ=∠AQB.此时∠OQB=90°,由QA⊥x轴知QA∥y轴.∴∠COQ=∠OQA.∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.(I)当∠OCQ=90°时,△CQO≌△QOA.∴AQ=CO=.由AQ2=OA•AB得:()2=b﹣1.解得:b=8±4.∵b>2,∴b=8+4.∴点Q的坐标是(1,2+).(II)当∠OQC=90°时,△OCQ∽△QOA,∴=,即OQ2=OC•AQ.又OQ2=OA•OB,∴OC•AQ=OA•OB.即•AQ=1×b.解得:AQ=4,此时b=17>2符合题意,∴点Q的坐标是(1,4).∴综上可知,存在点Q(1,2+)或Q(1,4),使得△QCO,△QOA和△QAB 中的任意两个三角形均相似.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.【解答】解:(1)A(1,4).由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).∴将y=4﹣t代入y=﹣2x+6中,解得点E的横坐标为x=1+.∴点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t)=t﹣.又∵点A到GE的距离为,C到GE的距离为2﹣,即S=S△AEG+S△CEG=•EG•+•EG(2﹣)△ACG=•2(t﹣)=﹣(t﹣2)2+1.的最大值为1.当t=2时,S△ACG(3)第一种情况如图1所示,点H在AC的上方,由四边形CQEH是菱形知CQ=CE=t,根据△APE∽△ABC,知=,即=,解得t=20﹣8;第二种情况如图2所示,点H在AC的下方,由四边形CQHE是菱形知CQ=QE=EH=HC=t,PE=t,EM=2﹣t,MQ=4﹣2t.则在直角三角形EMQ中,根据勾股定理知EM2+MQ2=EQ2,即(2﹣t)2+(4﹣2t)2=t2,解得,t1=,t2=4(不合题意,舍去).综上所述,t=20﹣8或t=.。

中考复习压轴题之二次函数压轴之定值问题与定点问题-含详细参考答案

中考复习压轴题之二次函数压轴之定值问题与定点问题-含详细参考答案

二次函数压轴之定值、定点问题1.如图,抛物线y=x2+bx+c与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3OA.(1)求该抛物线的函数表达式;(2)如图2,∠BAC的角平分线交y轴于点M,过M点的直线l与射线AB,AC分别于E,F,已知当直线l绕点M旋转时,11AF AE为定值,请直接写出该定值.2.如图,平面直角坐标系中,抛物线y=﹣x2+nx+4过点A(﹣4,0),与y轴交于点N,与x轴正半轴交于点B.直线l过定点A.(1)求抛物线解析式;(2)过点T(t,﹣1)的任意直线EF(不与y轴平行)与抛物线交于点E、F,直线BE、BF分别交y轴于点P、Q,是否存在t的值使得OP与OQ的积为定值?若存在,求t的值,若不存在,请说明理由.3.如图1,已知二次函数y =x 2+bx +c 的图象与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴的负半轴交于点C .(1)求这个函数的解析式;(2)如图2,点T 是抛物线上一点,且点T 与点C 关于抛物线的对称轴对称,过点T 的直线TS 与抛物线有唯一的公共点,直线MN ∥TS 交抛物线于M ,N 两点,连AM 交y 轴正半轴于G ,连AN 交y 轴负半轴于H ,求OH ﹣OG4.如图1,已知抛物线的解析式为21362y x =--,直线y =kx ﹣4k 与x 轴交于M ,与抛物线相交于点A ,B (A 在B 的左侧).(1)当k =1时,直接写出A ,B ,M 三点的横坐标:x A =,x B =,x M =;(2)作AP ⊥x 轴于P ,BQ ⊥x 轴于Q ,当k 变化时,MP •MQ 的值是否发生变化?若变化,求出其变化范围;若不变,求出其值;5.如图,在正方形OABC中,AB=4,点E是线段OA(不含端点)边上一动点,作△ABE 的外接圆交AC于点D.抛物线y=ax2﹣x+c过点O,E.(1)如图1,若抛物线恰好经过点B,求此时点D的坐标;(2)如图2,AC与BE交于点F.请问点E在运动的过程中,CF•AD是定值吗?如果是,请求出这个值,如果不是,请说明理由;6.已知顶点为A的抛物线y=a(x﹣2)2(a≠0)交y轴于点B(0,2),且与直线l交于不同的两点M、N(M、N不与点A重合).(1)求抛物线的解析式;(2)若∠MAN=90°,试说明:直线l必过定点;7.如图,在直角坐标系中有Rt△AOB,O为坐标原点,OB=1,tan∠ABO=3,将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=﹣x2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q(1,3)的直线l:y=kx﹣k+3与二次函数的图象相交于M,N两点.证明:无论k为何值,△PMN恒为直角三角形.8.已知,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,点P是抛物线上一点.(1)求抛物线的解析式;(2)如图2,当点P位于第二象限时,过P点作直线AP,BP分别交y轴于E,F两点,请问CECF的值是否为定值?若是,请求出此定值;若不是,请说明理由.9.已知点P(0,﹣4)为平面直角坐标系内一点,直线l绕原点O旋转,交经过点(0,﹣2)的抛物线y=14x2+c于M、N两点.(1)请求出该抛物线的解析式;(2)在直线l绕原点O旋转的过程中,请你研究一下(PM+MO)(PN﹣NO)是否定值?若是,请求出这个定值;若不是,请说明理由.10.如图,抛物线C:y=ax2+bx+c(a≠0)的对称轴为直线x=﹣12,且抛物线经过A、B两点,交x轴于另一点C,A(﹣2,0),B(0,2);(1)求抛物线的解析式;(2)在(1)的条件下,设对称轴直线x=﹣12与x轴交于M,点P为抛物线上对称轴左侧一点,直线PM交抛物线于另一点Q,点P关于抛物线对称轴对称点H,直线HQ交抛物线对称轴于G点,在点P运动过程中GM长是否为一定值,若为定值,请求出其值,若不为定值,请求出其变化范围.11.如图,在平面直角坐标系中,已知抛物线的顶点D为(1,﹣1),且经过点B(3,3).(1)求这个抛物线相应的函数表达式;(2)如图1,过点D且平行于x轴的直线l,与直线OB相交于点A,过点B作直线l 的垂线,垂足为C.若点Q是抛物线上BD之间的动点(不与B、D重合),连接DQ并延长交BC于点E.如图2,连接BQ并延长交CD于点F,在点Q运动的过程中,FC(AC+EC)的值是否发生变化?若不变求出该定值,若变化说明理由.12.如图,抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)与坐标轴分别交于点A(﹣3,0),B(1,0)和点C.(1)求出a与c的数量关系式;(2)如图,若抛物线y=-x2-2x+3与直线y=(2k1﹣2)x交于E,F两点,与直线y=(2k2﹣2)x交于M,N两点,且k1k2=﹣1,点P,Q分别是EF、MN的中点,求证:直线PQ必定经过一个定点,并求出该定点坐标.13.已知抛物线y=ax2+bx+5(a≠0)经过点(4,5).(1)若a+b=﹣3,求抛物线y=ax2+bx+5的解析式;(2)在(1)的条件下,经过点A(2,54)的任意直线y=mx+n(m≠0)与(1)中的抛物线交于B,C两点,那么11AB AC的值是定值吗?如果是定值,请求出这个定值,如果不是定值,请说明理由.14.如图1,抛物线C:y=ax2+bx﹣3与x轴的正半轴交于点B,与y轴交于点C,OB=OC,其对称轴为直线x=1.(1)直接写出抛物线C的解析式;(2)如图2,将抛物线C平移得到抛物线C1,使C1的顶点在原点,过点P(t,﹣1)的两条直线PM,PN,它们与y轴不平行,都与抛物线C1只有一个公共点分别为点M和点N,求证:直线MN必过定点.参考答案1.解:(1)OB=OC,C(0,c)则B(-c,0),代入抛物线解析式得c 2-bc+c=0,c-b+1=0,即当x=-1时,y =1-b+c=0,故抛物线过点(-1,0),故A(-1,0),B(3,0),C(0,-3)抛物线的解析式为y =x 2-2x -3(2)过点M 作MG||x 轴交AC 于点G ,作FP||x 轴交AM 于点P ,作CQ||x 轴,易知∆COA~∆CMG ,∆ACQ~∆AGM ,GM CG OA AC =GM AG CQ AC =,GM GM CG AG 1OA CQ AC AC+=+=即得111OA CQ GM+=,而AM 平分∠BAC ,故AC=CQ ,故111OA AC GM +=;同时CG AC GM AE =,AF GM AC CQ=即可得111AE AF GM +=,OA=1,AC=10,故11101AE AF 10+=+2.解:(1)y =-x 2-3x +4(2)存在t 的值使得OP 与OQ 的积为定值,t=-4设E(m ,-m 2-3m+4),F(n,-n 2-3n+4),设BE 的解析式为y =k (x -1),将E 点坐标代入得k =-m -4,同理k =-n -4,则OP=m+4,OQ=-n-4,故OP ∙OQ=(m+4)(-n-4)=-mn-4(m+n)-16,直线CE 的解析式为y =k 1(x-t )-1,与抛物线y =-x 2-3x +4联立得x 2+(k 1+3)x-k 1t -5=0,m+n=-k 1-3,mn =-k 1t -5,OP ∙OQ=k 1t+4k 1+1=4k 1(t+4)+1,当t=-4时,OP ∙OQ 为定值,故当t=-4时,OP ∙OQ=13.解:(1)y =x 2-2x-3(3)易知T(2,-3),设直线TS 的解析式为y=m(x-2)-3,与抛物线y =x 2-2x-3联立得x 2-(m +2)x +2m =0,有两个相等实根,m 2+4m+4-8m=0,故m=2,即TS 解析式为y =2x -7,设MN 的解析式为y =2x+h ,与抛物线联立得x 17+h ,x 27+h 故7+h ,7+h ),N(2-7+h 7+h ),直线AM 解析式为y 1=k 1x+b 1,得b 1737hh +++737hh +++,同理可得773hh ++-,OH-OG=24.解:6,6,4;(2)MP ∙MQ 的值不变.y =21362x -与y =kx -4k 联立得x 2+6kx +9-24k =0,x A +x B =6k ,x A ∙x B =9-24k ,M(4,0),MP ∙MQ=(4-x P )(4-x Q )=16-4(x A +x B )+x A x B =16+24k+9-24k=255.解:(1)易得抛物线的解析式为y =12x 2-x ,圆的直径为BE ,故∠BDE=90°,且∠BED=∠BAD=45°,作MN ⟂OA 交BC 、OA 于点M 、N ,易知∆BDM ≅∆DEN ,设DM=NE=m ,则CM=ON=m ,而OE=2,故m=1,此时D(1,3)(2)不变,CF ∙AD=16,∠DBF=∠BAD=45°,故∆ADB~∆CBF ,故CF ∙AD=AB ∙CB=166.解:(1)y =12(x -2)2(2)设直线MN 的解析式为y=kx+b ,与抛物线联立得x 2-(4+2k )x +4-2b=0,x M +x N =4+2k,x M ∙x N =4-2b ,作ME 、NF 垂直于x 轴,易知∆AME~∆NAF ,AE ME NF AF =,即有AE ∙AF=ME ∙NF ,ME=kx 1+b ,NF=kx 2+b ,AE=2-x 1,AF=x 2-2,(2-x 1)(x 2-2)=(kx 1+b)(kx 2+b),即有4+2(x 1+x 2)-x 1x 2=k 2x 1x 2+kb (x 1+x 2)+b 2,整理得2k+b =0或2k +b -2=0,即当x =2时,y =2,所以直线l 必过定点(2,2)7.解:(1)y =-x 2+2x +3,P(1,4)(2)联立y=kx-k +3和抛物线y =-x 2+2x +3得x 2+(k-2)x-k=0,x 1+x 2=k-2,x 1x 2=-k,过点M 、N 作对称轴的垂线ME 、NF ,tan ∠PME=PE ME =221111114(23)(1)111x x x x x x --++-==---,同理tan ∠PFN=211x -,(1-x)(x2-1)=1,故tan ∠PME=tan ∠FPN,∠PME=∠FPN ,故∠MPN=90°,所以无论k 为何值,∆PMN 恒为直角三角形.8.解:(1)y =-x 2+2x +3(2)CE CF 的值为定值13,设P(t,-t 2+2t+3),直线AP 的解析式为y =(3-t)x +3-t ,直线BP 的解析式为y =(-t-1)x +3t+3,故CE=-t ,CF=-3t ,故CE CF =139.(1)y =2124x -(2)(PM+MO)(PN-ON)为定值,设直线l 的解析式为y=kx ,与抛物线联立得x 2-4kx -8=0,设M(x 1,y 1),N(x 2,y 2)则有x 1x 2=-8,,y 1=kx 1,故PM=|x 1OM=|x 1,同理PN=|x 2,ON=|x 2,故+|x 1)(|x 2-|x 2)=16,故(PM+MO)(PN-ON)为定值16.10.解:(1)y=-x 2-x +2(2)连接MH ,易知AMP=CMH ,设PQ 的解析式为y=kx+b 1,MH 的解析式为y=-kx+b 2,分别代入(-12,0)得b 1=12k ,b 2=12-k ,故PM 的解析式为y=kx+12k ,MH 的解析式为y=-kx-12k 与抛物线联立得x=(1)92k -+±,所以Q((1)92k -++,292k -±),同理可得H(192k -,292k --),易知QH 的解析式为y=-x +992-当x=-12时,y=92,所以G(-12,92),所以点P 运动过程中GM 长为定值9211.解:(1)y =x 2-2x(2)FC(AC+EC)为定值,设Q(m ,m 2-2m ),易得BF 的解析式为y=(m -1)x -3m ,故点F(311m m -+,-1),D(1,-1),DE 的解析式为y=(m-1)x-m ,E(3,2m-3),FC=3-311m m -+=41m +,AC+EC=4+2m-3+1=2m+2,所以FC(AC+EC)=41m +(2m+2)=812.解:(1)c =-3a (2)联立y =-x 2-2x +3与y =(2k 1﹣2)x 得x 2+2k 1x -3=0所以x 1+x 2=-2k 1,y 1+y 2=-4k 12+4k 1,故P(-k 1,-2k 12+2k 1),同理可得Q(-k 2,-2k 22+2k 2),设直线PQ 的解析式为y=kx+b,将P 、Q 两点代入得y =(2k 1+2k 2-2)x -2,所以直线PQ 过定点(0,-2)13.解:(1)y=x 2-4x +5(3)将坐标系向右平移2个单位,向上平移1个单位,此时抛物线的解析式为y=x2,点A(0,14),设B(m,m 2),C(n,n 2),则AB=m 2+14,AC=n 2+14,故11AB AC +=AB AC AB AC +⋅=22221211()()416m n mn m n +++++,同时BC 的解析式y=kx +14,与抛物线联立得x 2-kx -14=0,m+n=k,mn =-14,故11AB AC +=414.解:(1)y =x 2-2x -3(2)平移后的抛物线的解析式为y =x 2,设M(m,m 2),N(n,n 2),直线PM 的解析式设为y=k 1(x-m)+m 2,PN 的解析式为y=k 2(x-n)+n 2,与抛物线联立得x2-k1x+k1m-m2=0,此时∆=0,即有k 1=2m ,PM 的解析式为y=2m(x-m)+m 2=2mx-m 2同理可得PN 的解析式为y=2n(x-n)+n 2=2nx-n 2,可得P(2m n +,mn ),mn =-1,MN 的解析式为y=(m+n)x +1,故MN 过定点(0,1)。

(完整版)初一培优专题:数轴上动点问题(有答案)

(完整版)初一培优专题:数轴上动点问题(有答案)

培优专题:借助方程求解数轴上的动点问题(压轴题常考题型)数轴上的动点问题离不开数轴上两点之间的距离。

为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数—左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

一、相关知识准备1.数轴上表示4和1的两点之间的距离是_____________。

-,则A与B两点之间的距离用式子2.若数轴上点A表示的数为x,点B表示的数为1可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。

3.A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为t,则A点运动的路程可以用式子表示为______________。

-,A点在数轴上以2个单位长度/秒的速度向右运动,4.若数轴上点A表示的数为1若运动时间为t,则A点运动t秒后到达的位置所表示的数可以用式子表示为______________。

答案:1、3; 2、1x+,x+1; 3、2t; 4、12t-+二、已做题再解:1、半期考卷的第25题:如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满足-2++8=a16(b)0(1)点A表示的数为_________,点B表示的数为________。

(2)若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度,点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。

九年级数学中考复习压轴题专题训练含答案解析二次函数小综合抛物线中的线段定值

九年级数学中考复习压轴题专题训练含答案解析二次函数小综合抛物线中的线段定值

专题九 二次函数小综合(四)定点、定值、定线微专题15 抛物线中的线段定值典例精讲考点 设参数→构相似计算【例1】如图,抛物线y =-2x 2-2x +3交 轴于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,D 为抛物线的顶点,E 为对称轴与x 轴的交点,P 是抛物线上B ,D 两点间的一个动点,PA ,PB 与直线DE 分别交于点F ,G ,当点P 运动时,EF +EG 是否为定值?若是,试求出该定值;若不是,请说明理由.考点 相似转化线段比→设参计算【例2】如图,抛物线y =a (x 2+2mx -3m 2)(其中a ,m 是常数,a <0,m >0)与x 轴分别交于A ,B 两点(点A 位于点B 的右侧),与y 轴交于点C (0,3),CD //AB 交抛物线于点D ,连接AD ,过点A 作射线AE 交抛物线于点E ,AB 平分∠DAE ,求证:AEAD为定值.考点 设直线的解析式→根系关系求解【例3】如图,抛物线2114y x =-与x 轴交于A ,B 两点,与y 轴交于点C ,M 为B 点右侧的抛物线上一动点,M ,N 两点关于y 轴对称,直线MB 与直线NB 分别交直线x =-3于点F ,E ,EF 交x 轴于点P ,求PF -PE 的值.典题精练训练点 利用相似求线段比1.(2020镇江改)如图,抛物线y =ax 2-2ax +c (a ,c 是常数,a <0)经过点M (-1,1),N ,已知点N 的横坐标是4,顶点为D ,它的对称轴与x 轴交于点C ,直线DM ,DN 分别与工轴相交于A ,B 两点,随着a 的变化,ACBC的值是否发生变化?请说明理由.训练点 利用根系关系求线段积2.(2020原创题)如图,抛物线y =x 2-4x +3交x 轴于点C ,B (C 在B 左边),交y 轴于点A , 直线y =kx -3k +7(k ≠0)交抛物线于M ,N 两点(M ,N 不与C ,B 重合),直线MC ,NC 分别交y 轴于点I ,点J .求证OI .OJ 为定值.训练点 利用含参直线解析式求线段积3.(2020原创题)如图,抛物线2122y x bx =-++交y 轴于点A ,点B (2,2)在抛物线上,过点C (0,4)的直线交抛物线于M ,N 两点,MB ,NB 分别交y 轴于点F ,G .求证:AF ⋅AG 为定值.专题九 二次函数小综合(四)定点、定值、定线微专题15 抛物线中的线段定值典例精讲考点 设参数→构相似计算【例1】如图,抛物线y =-2x 2-2x +3交 轴于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,D 为抛物线的顶点,E 为对称轴与x 轴的交点,P 是抛物线上B ,D 两点间的一个动点,PA ,PB 与直线DE 分别交于点F ,G ,当点P 运动时,EF +EG 是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】EF +EG 为定值8,理由如下:过点P 作PQ //y 轴交x 轴于Q ,设P (t ,-t 2-2t +3),则PQ =-t 2-2t +3,AQ -3+t ,QB =1-t ,∵PQ //EF ,∴△AEF ∽△AQP ,∴EF AEPQ AQ=, ∴EF =2(23)22(1)3PQ AE t t t AQ t ⋅--+⨯==-+.又∵PQ //EG ,∴△BEG ∽△BQP ,∴EG BE PQ BQ =,∴EG =2(23)22(3)1PQ BE t t t BQ t⋅--+⨯==+-,∴EF +EG =2(1-t )+2(t +3)=8.考点 相似转化线段比→设参计算【例2】如图,抛物线y =a (x 2+2mx -3m 2)(其中a ,m 是常数,a <0,m >0)与x 轴分别交于A ,B 两点(点A 位于点B 的右侧),与y 轴交于点C (0,3),CD //AB 交抛物线于点D ,连接AD ,过点A 作射线AE 交抛物线于点E ,AB 平分∠DAE ,求证:AEAD为定值.【解答】∵-3am 2=3,∴am 2=-1,由a (x 2+2mx -3m 2)=0,得x =m 或x =-3m ,∴.A (m ,0),由CD //AB 可得D (-2m ,3),设点E (n ,t ),t =a (n 2+2mn -3m 2),分别过点D ,E 作x 轴的垂线,垂足分别为M ,N ,∵AB 平分∠DAE ,∴Rt △ADM ∽△Rt △AEN ,∴AE NE NE =AD AM DM =,即23m n tm m --=+,解得:n m t m -=,∴E (n ,n m m -),∴a (n 2 + 2mn -3m 2)=n m m -,解得n =-4m 或m (舍去m ),∴5n m t m -==-,∴E (-4m ,-5),∴4533AE AN m m =AD AM m +==为定值.考点 设直线的解析式→根系关系求解【例3】如图,抛物线2114y x =-与x 轴交于A ,B 两点,与y 轴交于点C ,M 为B 点右侧的抛物线上一动点,M ,N 两点关于y 轴对称,直线MB 与直线NB 分别交直线x =-3于点F ,E ,EF 交x 轴于点P ,求PF -PE 的值.【解答】易求点B (2.0),设BF 的解析式为y =kx -2k ,∴F (-3,-5k ),∴PF =5k ,设BN 的解析式为y =nx -2n ,∴E (-3,-5n ),∴PE =-5n ,∴PF -PE =5k +5n =5(k +n ),联立22114y kx k y x =-⎧⎪⎨=-⎪⎩得x 2-4kx +8k -4=0,∴x m ⋅x B =8k -4,∴x B =2,∴x M =4k -2,同理,x N ⋅x B =8n -4, ∴x N =4n -2,∵M ,N 关于y 轴对称,∴x M +x N =0,∴4k -2+4n -2=0,∴k +n =1, ∴PF -PE =5(k +n )=5. 典题精练训练点 利用相似求线段比1.(2020镇江改)如图,抛物线y =ax 2-2ax +c (a ,c 是常数,a <0)经过点M (-1,1),N ,已知点N 的横坐标是4,顶点为D ,它的对称轴与x 轴交于点C ,直线DM ,DN 分别与工轴相交于A ,B 两点,随着a 的变化,ACBC的值是否发生变化?请说明理由.解:∵y =ax 2-2ax +c 过M (-1,1),∴a +2a +c =1,∴c =1-3a ,∴y =a 2-2ax +(1-3a ),∴D (1,1-4a ),N (4,1+5a ).分别过点M ,N 作MG ⊥CD 于点E ,NT ⊥DC 于点T ,∴NT =3.DG =-4a . ∵MG //TN //x 轴,∴△DMG ∽△DAC ,△DCB ∽△DTN ,∴ MG DG BC DCAC DC TN DT==,,∴24141493a a CB AC a a --==--,,∴1414,23a a AC BC a a --==--,∴32AC BC =训练点 利用根系关系求线段积2.(2020原创题)如图,抛物线y =x 2-4x +3交x 轴于点C ,B (C 在B 左边),交y 轴于点A , 直线y =kx -3k +7(k ≠0)交抛物线于M ,N 两点(M ,N 不与C ,B 重合),直线MC ,NC 分别交y 轴于点I ,点J .求证OI .OJ 为定值.解:易知C (1,0),设N (x 1,x 2-4x 1 +3),M (x 2,x 2-4x 2+3),联立23743y kx k y x x =-+⎧⎨=-+⎩,得x 2-(4+k )x -4+3k =0,∴x 1 +x 2=4+k ,x 1x 2=-4+3k ,由N (x 1, 21x -4x 1+3),C (1,0),可求得直线NC :y =(x 1-3)x -(x 1-3),同理,直线MC :y =(x 2-3)x -(x 2-3),∴OI ⋅OJ =121233(3)(3)x x x x -⋅-=---=-x 1⋅x 2+3(x 1+x 2)-9=-(-4+3k )+3(4+k )-9=7.训练点 利用含参直线解析式求线段积3.(2020原创题)如图,抛物线2122y x bx =-++交y 轴于点A ,点B (2,2)在抛物线上,过点C (0,4)的直线交抛物线于M ,N 两点,MB ,NB 分别交y 轴于点F ,G .求证:AF ⋅AG 为定值.解:易知A (0,2),抛物线为2122y x x =-++.设F (0,m ),G (0,n ),设直线BF 为y =kx +m ,则2-2k +m ,∴k =22m -,∴直线BF 为y =22m x m -+,同理可求直线BG 为y =22n-x +n ,由y =22m x m -+和2122y x x =-++,解得x =2或m -2,∴x M =m -2,同理,x N =n -2,设直线CN 的解析式为y =tx +4,由y =tx +4和2122y x x =-++,得21(1)202x t x +-+=,∴x M ⋅x N =4,即(m -2)⋅(n -2)=4,∴AF ⋅AG =(2-m )⋅(2-n )=4.。

初中数学共圆问题知识点与常考难题和培优提高练习压轴题(含解析汇报)

初中数学共圆问题知识点与常考难题和培优提高练习压轴题(含解析汇报)

初中数学共圆问题提高练习与常考难题和培优题压轴题(含解析)问题探究:一个班级的学生正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?怎样排?四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式:(1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆;(2) 通过某四点共圆得到一些重要结论,进而解决问题下面给出与四点共圆有关的一些基本知识(1) 若干个点与某定点的距离相等,则这些点在一个圆上;(2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆;(3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆;(4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆;(5) 若线段AB CD 、交于E 点,且AE EB CE ED =,则A B C D 、、、四点共圆;(6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =,则A B C D 、、、四点共圆。

四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。

1.如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M 、N ,量得OM=8cm ,ON=6cm ,则该圆玻璃镜的半径是( )A .cm B .5cm C .6cm D .10cm2.正方形的四个顶点和它的中心共5个点能确定 个不同的圆.3.如图,若AD 、BE 为△ABC 的两条角平分线,I 为内心,若C ,D ,I ,E 四点共圆,且DE=1,则ID= .4.如图,在△ABC中,AD,BE分别是∠A,∠B的角平分线,O是AD与BE的交点,若C,D,O,E四点共圆,DE=3,则△ODE的内切圆半径为.5.如图,已知A,B,C,D四点共圆,且AC=BC.求证:DC平分∠BDE.6.如图,BD,AH分别是△ABC的高,求证:A、B、H、D四点共圆.7.等腰梯形ABCD中,AD∥BC,求证:A,B,C,D四个顶点共圆.8.如图,四边形ABCD中,∠B=∠D=90°,点E为AC的中点,则A,B,C,D四点共圆吗?9.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.10.如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.11.O和H分别是△ABC的外心和垂心,若∠BAC=60°,求证:B、0、H、C的共圆.12.如图,AB为⊙O直径,BF⊥AB,E为BF上一点,AE和AF交⊙O于C和D,求证:C、D、F、E四点共圆.13.如图,在△ABC中,AB=AC,延长CA到P,延长AB到Q,使AP=BQ,求证:△ABC的外心O与A,P,Q四点共圆.14.如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.15.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,O是△ABC的外心,证明C,E,O,F四点共圆.16.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G 四点共圆.参考答案1.(2016•常州)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是:MN=5cm.故选:B.2.(2006•黄石)正方形的四个顶点和它的中心共5个点能确定 5 个不同的圆.【解答】解:正方形的四个顶点和它的中心的点的距离相等,中心与一边的两个端点可以确定一个圆,正方形有四条边,因而有四个圆;而正方形的四个顶点都在以中心为圆心的圆上,因而能确定5个不同的圆.3.如图,若AD、BE为△ABC的两条角平分线,I为内心,若C,D,I,E四点共圆,且DE=1,则ID=.【解答】解:连接CI,∵AD、BE为△ABC的两条角平分线,∴∠BAI=∠BAC,∠IBA=∠ABC,∵∠AIB=180°﹣∠BAI﹣∠IBA,∴∠AIB=180°﹣(∠CAB+∠CBA),又∵∠ABC+∠CBA+∠ACB=180°,∴∠AIB=90°+∠C,∵C,D,I,E四点共圆,∴∠EID+∠ACB=180°,又∵∠AIB=∠EID,∴90°+∠C+∠C=180°,∴∠ACB=60°,∵I为内心,∴∠ICD=30°,∵DE=1,∴=2R,∴R=,∴,∴ID=,故答案为:.4.(2005•温州校级自主招生)如图,在△ABC中,AD,BE分别是∠A,∠B的角平分线,O是AD与BE 的交点,若C,D,O,E四点共圆,DE=3,则△ODE的内切圆半径为3﹣.【解答】解:作OF⊥ED于点F,∵AD,BE分别是∠A,∠B的角平分线,∴∠AOB=90°+∠C,CO平分∠ACB,又∵∠DOE=∠AOB,∠DOE+∠C=180°,∴∠C=60°,∠DOE=∠AOB=120°,又∵OD=OE,∴∠OED=∠ODE=30°,∴FD=,tan30°==,∴FO=,OD=OE=,∴△ODE的周长为:2+3,∴△ODE的面积为:×3×=,∴△ODE的内切圆半径为=3﹣.故答案为:3﹣.5.如图,已知A,B,C,D四点共圆,且AC=BC.求证:DC平分∠BDE.【解答】证明:∵A,B,C,D四点共圆,∴∠2=∠1,∠3=∠ABC,∵AC=BC,∴∠1=∠ABC,∴∠2=∠3,∴DC平分∠BDE.6.如图,BD,AH分别是△ABC的高,求证:A、B、H、D四点共圆.【解答】证明:取AB的中点O,连接DO、HO,∵BD,AH分别是△ABC的高,∴△DAB和△HAB都是直角三角形,且它们的斜边都是AB,∵点O为斜边中点,∴DO=HO=AB=AO=BO,也就是说,点D、H、B在以O为圆心、OA为半径的圆上,即点D、H、B、A都在以O为圆心、以OA为半径的圆上,故可得:A、B、H、D四点共圆.7.等腰梯形ABCD中,AD∥BC,求证:A,B,C,D四个顶点共圆.【解答】证明:如图:∵ABCD是等腰梯形,且AD∥BC,∴∠A=∠D,∠B=∠C,∠A+∠B=180°.∴∠A+∠C=∠B+∠D=180°.根据对角互补的四边形是圆的内接四边形,所以A,B,C,D四点共圆.8.如图,四边形ABCD中,∠B=∠D=90°,点E为AC的中点,则A,B,C,D四点共圆吗?【解答】解:A,B,C,D四点共圆,理由如下:连结DE.∵在Rt△ABC中,∠ABC=90°,点E为AC的中点,∴EB=EA=EC=AC,∵在Rt△ADC中,∠ADC=90°,点E为AC的中点,∴ED=EA=EC=AC,∴EA=EB=EC=ED,∴A、B、C、D四个点在以E为圆心,AC为直径的圆上,即A,B,C,D四点共圆.9.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.【解答】证明:连接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是内心知∠ABC=2∠IBC.从而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠BAC+∠ABC+∠ACB=180°,故∠BOC+∠BAC=180°,于是O、B、A、C 四点共圆.10.如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.【解答】解:∵AD⊥BC,DE⊥AB,∴∠AED=∠ADB=90°.又∵∠DAE=∠BAD,∴△AED∽△ADB,∴=,即AD2=AE•AB.同理可得AD2=AF•AC,∴AE•AB=AF•AC,即=.又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB,∴B、E、F、C四点共圆.11.O和H分别是△ABC的外心和垂心,若∠BAC=60°,求证:B、0、H、C的共圆.【解答】证明:连接BH并延长交AC于E,连接CH并延长交AB于F,连接OB、OC,如图所示:∵O是三角形的外心,∠BAC=60°,∴∠BOC=2∠BAC=120°(同弧所对的圆心角等于圆周角的两倍)又∵垂心为点H,∴BE⊥AC,∴∠ABE=90°,∴∠ABE=90°﹣∠BAC=90°﹣60°=30°,同理:∠ACF=30°,∴∠HBC+∠HCB=180°﹣(∠BAC+∠ABE+∠ACF)=60°,∴∠BHC=180°﹣(∠HBC+∠HCB)=180°﹣60°=120°,∴∠BOC=∠BHC,又∵O,H在BC边同侧,∴B,C,O,HI四点共圆.12.如图,AB为⊙O直径,BF⊥AB,E为BF上一点,AE和AF交⊙O于C和D,求证:C、D、F、E四点共圆.【解答】证明:连接BC、CD,如图所示:∵AB为⊙O直径,∴∠ACB=90°,∴∠BCE=90°,∴∠BEC+∠EBC=90°,∵BF⊥AB,∴∠ABF=90°,即∠ABC+∠EBC=90°,∴∠ABC=∠BEC,∵∠ABC+∠ADC=180°,∴∠BEC+∠ADC=180°,∵∠CDF+∠ADC=180°,∴∠BEC=∠CDF,∴C、D、F、E四点共圆.13.如图,在△ABC中,AB=AC,延长CA到P,延长AB到Q,使AP=BQ,求证:△ABC的外心O与A,P,Q四点共圆.【解答】证明:如图,作△ABC的外接圆⊙O,作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,∵O是△ABC的外心,∴OE=OF,OB=OA,由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,∴BE=AF,∵AP=BQ,∴PF=QE,∵OE⊥AB,OF⊥AC ∴∠OFP=∠OEQ=90°,在Rt△OPF和Rt△OQE中,,∴Rt△OPF≌Rt△OQE,∴∠P=∠Q,∴O、A、P、Q四点共圆,即:△ABC的外心O与点A、P、Q四点共圆.14.(2009•黄冈校级自主招生)如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.【解答】证明:连接FC,FB,则FC=FB.…(2分)连接EF,则△CEF≌△BEF,∴∠BFE=∠CFE.…(5分)∵A,B,F,C共圆,∴∠CAB+∠CFB=180°…(7分)∴∠CAB+2∠BFE=180°.∵AB=AD,∴∠ABD=∠ADB…(8分)∴∠CAB+2∠ADB=180°.∴∠ADB=∠BFE.…(10分)∴B、E、D、F四点共圆.…(12分)15.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,O是△ABC的外心,证明C,E,O,F四点共圆.【解答】证明:如图,连接OB、OC、OE、OF.∵OB=OC,∴∠OCB=∠OBC,又∵AC=BC,∴∠OCB=∠OCA,∴∠OBC=∠OCA,在△ECO与△FBO中,,∴△ECO≌△FBO(SAS),∴∠EOC=∠FOB,又∠AOC=∠BOC,∴∠EOF=∠COB,又∵EO=OF,∴∠OEF=∠OCF,∴C,E,O,F四点共圆.16.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G四点共圆.【解答】解:连接EF,CD,∴∠ADE=∠ADC+∠CDE,∵∠ADC=∠ABC,∠CDE=∠CAE,∴∠ADE=∠ABC+∠CAE,∵AB=AC,∴∠ABC=∠ACB,∴∠ADE=∠ACB+∠CAE,∵∠AGF=∠ACB+∠CAE(三角形的一个外角等于与它不相邻的两内角之和),∴∠ADE=∠AGF,∵∠ADE+∠EDF=180°,∠AGF+∠FGE=180°,∴∠EDF=∠EGF,∴F、D、E、G四点共圆(共底边的两个三角形顶角相等,且在底边的同侧,则可推出四个顶点共圆).。

数学中考数学压轴题知识点及练习题含答案

数学中考数学压轴题知识点及练习题含答案

一、中考数学压轴题1.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.2.如图1,在平面直角坐标系中,抛物线2393344y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C .(1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.4.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.6.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.7.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S .(1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值; (4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.8.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值. (2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.9.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;②若12,(33)2ADH a S ==+,求sin GAB ∠的值.10.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C .(1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.11.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx+c 的图象与x 轴交于A (﹣3,0)、B (2,0)两点,与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)点E (m ,2)是直线AC 上方的抛物线上一点,连接EA 、EB 、EC ,EB 与y 轴交于D .①点F 是x 轴上一动点,连接EF ,当以A 、E 、F 为顶点的三角形与△BOD 相似时,求出线段EF 的长;②点G 为y 轴左侧抛物线上一点,过点G 作直线CE 的垂线,垂足为H ,若∠GCH =∠EBA ,请直接写出点H 的坐标.12.如图1,已知抛物线21833y x x c =--+与x 轴相交于A 、B 两点(B 点在A 点的左侧),与y 轴相交于C 点,且10AB =.(1)求这条抛物线的解析式;(2)如图2,D 点在x 轴上,且在A 点的右侧,E 点为抛物线上第二象限内的点,连接ED 交抛物线于第二象限内的另外一点F ,点E 到y 轴的距离与点F 到y 轴的距离之比为3:1,已知4tan 3BDE ∠=,求点E 的坐标; (3)如图3,在(2)的条件下,点G 由B 出发,沿x 轴负方向运动,连接EG ,点H 在线段EG 上,连接DH ,EDH EGB ∠=∠,过点E 作EK DH ⊥,与抛物线相交于点K ,若EK EG =,求点K 的坐标.13.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点O 是坐标原点.(1)已知点(2,0)A ,在点123(0,2),(13),(13)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.14.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).15.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.16.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.17.如图,直线y =﹣x+4与抛物线y =﹣12x 2+bx+c 交于A ,B 两点,点A 在y 轴上,点B 在x 轴上.(1)求抛物线的解析式; (2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.18.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度19.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.20. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q 为抛物线上位于直线AB 上方的一动点(不与B 、A 重合),过Q 作QP ⊥x 轴,交x 轴于P ,连接AQ ,M 为AQ 中点,连接PM ,过M 作MN ⊥PM 交直线AB 于N ,若点P 的横坐标为t ,点N 的横坐标为n ,求n 与t 的函数关系式;在此条件下,如图2,连接QN 并延长,交y 轴于E ,连接AE ,求t 为何值时,MN ∥AE .(3)如图3,将直线AB 绕点A 顺时针旋转15度交抛物线对称轴于点C ,点T 为线段OA 上的一动点(不与O 、A 重合),以点O 为圆心、以OT 为半径的圆弧与线段OC 交于点D ,以点A 为圆心、以AT 为半径的圆弧与线段AC 交于点F ,连接DF .在点T 运动的过程中,四边形ODFA 的面积有最大值还是有最小值?请求出该值.21.ABC 内接于O ,AB BC =,连接BO ;(1)如图1,连接CO 并延长交O 于点M ,连接AM ,求证://AM BO ;(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF AB BF =,求证:BAF HAF ∠=∠;(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为O 上一点,连接ED 、OE ,若CBD 3ABH 90∠+∠=︒,若OF 3=,FH 4=,1362EBD S ∆=OE ,求线段OE 的长.22.在△ABC 中∠B=45°,∠C=30°,点D 为BC 边上任意一点,连接AD ,将线段AD 绕A 顺时针旋转90°,得到线段AE ,连接DE .(1)如图1,点E 落在BA 的延长线上时,∠EDC= (度)直接填空.(2)如图2,点D 在运动过程中,DE ⊥AC 时,AB=4 ,求DE 的值.(3)如图3,点F 为线段DE 中点,AB=2a ,求出动点D 从B 运动到C ,点F 经过的路径长度.23.如图,在等腰Rt △ABC 中,∠ACB=90°,AC=BC=8,点D 在△ABC 外,连接AD 、BD ,且∠ADB=90°,AB 、CD 相交于点E ,AB 、CD 的中点分别是点F 、G ,连接FG .(1)求AB 的长;(2)求证:2CD ;(3)若BD=6,求FG 的值.24.如图①,在ABC ∆中,90C ∠=︒,10,8AB BC ==.点,D E 分别是边,AC BC 上的动点,连接DE .设CD x =(0x >),BE y =,y 与x 之间的函数关系如图②所示.(1)求出图②中线段PQ 所在直线的函数表达式;(2)将DCE 沿DE 翻折,得DME .①点M 是否可以落在ABC ∆的某条角平分线上?如果可以,求出相应x 的值;如果不可以,说明理由;②直接写出....DME 与ABC ∆重叠部分面积的最大值及相应x 的值.25.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1) 149,212⎛⎫ ⎪⎝⎭;(2) 257t =;(3)存在,见解析 【解析】【分析】(1)已知抛物线的2点,代入可直接求解;(2)根据A 、B 的坐标,得出AD 、AB 的长,通过推导可证ABC QDB ∆∆,利用相似得到的比例线段即可求得DQ 、PD 的长,从而得出t ;(3)根据轴对称的最短路径先作C 关于对称轴的对称点,即点A ,连接AO 与对称轴的交点即为点M .【详解】(1)抛物线()240y ax bx a =++≠与x 轴交于()()3,0,4,0A C -两点 164409340a b a b ++=⎧∴⎨-+=⎩解这个方程组,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为211433y x x =-++ 221111494333212y x x x ⎛⎫=-++=--+ ⎪⎝⎭ ∴这条抛物线的顶点坐标为149,212⎛⎫ ⎪⎝⎭(2)点,A C 的坐标为()()3,0,4,0- 3,4AO OC ∴==7AC AO OC ∴=+=抛物线211433y x x =-++与轴交于点B ∴点B 的坐标为()0,44OB ∴=5AB ∴=5AB AB ∴==2DC AC AD ∴=-=连接QD=AD ABABD ADB ∴∠=∠线段PQ 被BD 垂直平分DP DQ ∴=DPQ DQP ∴∠=∠PDB QDB ∴∠=∠ABD QDB ∴∠=∠//AB DQ ∴ABCQDB ∴∆∆ DQ CD AB CA ∴= 257DQ ∴= 107DQ ∴= 107PD ∴= 257AP AD PD ∴=-=257t ∴= (3)存在连接AQ 交对称轴于M ,此时MQ+MC 为最小,过点Q 作QN ⊥x 轴于点N∵DQ ∥AB ,∴∠QDN=∠BACsin ∠QDN=sin ∠BAC=OB QN AB DQ=∴41057QN =,∴QN=87设直线BC 的解析式为:y=kx+b将点B(0,4)和点C(4,0)代入可求得:k=-1,b=4∴直线BC 的解析式为:y=-x+4当y=87时,x=207 ∴Q(207,87) 同理可得:AQ 的解析式为:y=8244141x + 当x=12时,y=2841 ∴M(12,2841) 【点睛】本题考查二次函数的综合,在求解最短距离时,解题关键是利用对称,将要求解的2段线段转化为1条线段,从而求出点M .2.A解析:(1)min 92t R H '==;(2)(0,0,6)或(0,(0,12).【解析】【分析】(1)根据题意设29(4P m m --,5(,4Q m m -,以及作R 关于y轴对称(R '-,并过R '点作直线:4l y =的垂线交于H 点R H '即为所求,从而进行分析求解即可; (2)根据题意分四种情形即①当AA''=A''B 时;②当AA''=AB 时;③当AA''=A''B 时;④当A''B=AB 时分别画出图形并进行分析求解.【详解】解:(1)设29(4P m m --,5(,4Q m m -,292()2(2PQMN C QP NP m ∴=+=+-矩形,302-<,开口向下, ∴当33m =时,(33,33)P -,最少时间12t RK RK TB =++, 3(3,33)2R -,作R 关于y 轴对称3(3,33)2R '--,过R '点作直线3:43x l y =-的垂线交于H 点R H '即为所求, 令y=0,解得5312x =, 12()530H ∴,, t R K K T TH =+''+'',∴过R ''作R H l ''⊥,22min 3119(33)(330)3242125t R H ∴==++'--=+. (2)①当AA''=A''B 时,如图2中,此时,A''在对称轴上对称性可知∠AC′E=∠A''C′E又∠HEC′=∠A''C′E∴∠AC′E=∠HEC′∴333∴3,∴E(0,3−3 3),②当AA''=AB时,如图3中,设A″C′交y轴于J.此时AA''=AB=BC'=A''C',∴四边形A''ABC'为菱形,由对称性可知,∠AC'E=∠A''C'E=30°,∴JE= 3JC′=3,2∴OE=OJ-JE=6∴E(0,6)③当AA''=A''B时,如图4中,设AC′交y轴于M.此时,A''在对称轴上∠MC'E=75°又∠AMO=∠EMC'=30°∴∠MEC'=75°∴ME=MC'∴MC'=3 3,∴OE=3+3 3,∴E(0,3+3).④当A''B=AB时,如图5中,此时AC'=A''C'=A''B=AB∴四边形AC'A''B 为菱形由对称性可知,C'',E ,B 共线由抛物线2944y x x =--x 轴交于A B 、两点(点A 在点B 的左侧)可知,令x=0,解得y=−x=0,解得:x 1=,x 2∴A (0),0), ∴=12,∴E (0,12).综上满足条件的点E 坐标为(0,)或(0,6)或(0,)或(0,12).【点睛】本题考查二次函数综合题,解题的关键是学会构建二次函数解决最值问题,学会利用垂线段最短解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1, ∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+, ∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3,∴32OM=,3OD=,∴tan∠DMO=2,如图,过点P作PT∥y轴交直线DM于点T,过点F作直线GH⊥y轴交PT于点G,交直线CE于点H.∵PQ⊥MT,∴∠TFG=∠TPF,∴TG=2GF,GF=2PG,∴PT=25 GF,∵PF=QF,∴△FGP≌△FHQ,∴FG=FH,∴PT=45 GH.设点P(m,-m²+2m+3),则T(m,-2m+3),∴PT=m²-4m,GH=1-m,∴m²-4m=45(1-m),解得:111201m-=211201m+=(不合题意,舍去),∴点P 11201-【点睛】本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.D解析:(1)DF的长为158;(2)MN的长为5;(3)O的半径长为258.【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF =⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形 ∴2528AF BM r === ∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上 ∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.6.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析【解析】【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻.【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =,∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩;(2)当01x ≤≤时,第二颗弹珠未弹出,∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟,第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟;(4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标. 7.B解析:(1)35t ,45t ;(2)当0<t <3时,224655S t t =--+;当3<t <7时,23391052S t t =+-;(3)75;(4)132,7713,477 【解析】【分析】(1)过点B 作x 轴垂线,利用相似三角形可求得; (2)分2种情况,一种是点P 在AD 上,另一种是点P 在CD 上,然后利用三角形面积公式可求得;(3)直接令15h OD =即可求出; (4)存在3种情况,第一种是:QP ∥BD ,第二种是EP ∥CD 或EQ ∥CB ,第三种是QE ∥BD ,分别按照几何性质分析求解.【详解】(1)如下图,过点B 作x 轴垂线,垂足为点M根据平移的特点,可得∠BOM=∠DBA∵∠BMO=∠DAB=90°,∴△BMO ∽△DAB∵AB=4,AD=BC=3∴BD=5 ∵BM OM BO DA BA BD ==,OB=t ∴BM=35t ,OM=45t (2)情况一:当0<t <3时,图形如下,过点P 作OD 的垂线,交OD 于点N∵∠NDP=∠BDA ,∠PND=∠BAD ,∴△PND ∽△BAD∵AP=t ,∴PD=3-t∵PN BA PD BD =,∴PN=()435t - 图中,OD=5+t ∴()()243124562555OBD t S t t t -=+=--+ 情况二:当3<t <7时,图形如下,过点P 作OD 的垂线,交OD 于点N图中,PD=t -3,OD=5+t同理,△PND ∽△BCD ,可得PN=()335t - ∴()()23313395251052OBD t S t t t -=+=-+- (3)情况一:当0<t <3时则h=PN=()435t -∵15h OD = ∴()43555t t -+= 解得:t=75情况二:当3<t <7时 则h=PN=()335t - ∵15h OD =∴()33555t t -+= 解得:t=7(舍)(4)情况一:QP ∥BD ,图形如下由题意可得:BQ=43t ,AP=t ,则QA=4-43t ,DP=3-t ∵BD ∥QP∴QA PA QB PD= 代入得:4()2243t t =-解得:t=32∴OD=5+t=132 情况二:如下图,EP ∥CD(或EQ ∥CB)∵点E是点A关于QP对称的点∴EP=PA,EQ=QA,QP=QP∴△APQ≌△EPQ∵EP∥CD,CD⊥AD∴EP⊥AD∴∠APQ=∠EPQ=45°∴△AQP是等腰直角三角形,AQ=PA∴4-43 tt=解得:t=12 7∴OD=5+t=47 7情况三:如下图,QE∥BD,延长QE交DA于点N∵△APQ≌△EPQ,∴∠QEP=∠QAP=90°∴△ENP是等腰直角三角形∵QN∥BD,∴∠NQA=∠DBA,∠A=∠A∴△QNA∽△BDA∵BQ=43t,AP=t,QA=4-43t,DP=3-t∴QN QA AN BD BA AD==∴QN=5-43t,NA=3-t∴EN=QN -QE=QN -QA=1-3t ,NP=NA -AP=3-2t ,EP=PA=t ∴在Rt △ENP 中,()2223213t t t ⎛⎫-+-= ⎪⎝⎭ 解得:t=1213或t=3(舍) ∴OD=5+t=7713 【点睛】本题考查动点问题,解题关键是利用相似将图形中各边用t 表示出来.8.D解析:(1)D 点坐标为()2,3,矩形MONC 的最小值为645;(2)交点坐标为(3+13,﹣9313+),(3﹣13,﹣9313-),(1﹣5,15-),(1+5,15+). 【解析】【分析】(1)当△DEB 的面积最大时,直线DN 与抛物线相切,可求出直线DN 的解析式和点D 的坐标,当矩形面积最小时,MG 最小,求出MG 的最小值即可.(2)分两种情况讨论,以DB 为边和以DB 为对角线,分别求出此时ON 的解析式,联立求出交点坐标即可.【详解】解:(1)如图1所示,过点D 作y 轴的平行线交MB 于点H ,过点O 作OQ 垂直MB 于点Q ,令y =0,解得x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0),令x=0,y=2,∴E(0,2),设直线BE的解析式为y=kx+b,则2, 40,bk b=⎧⎨+=⎩解得122kb⎧=-⎪⎨⎪=⎩,∴直线BE的解析式为y=﹣12x+2,∵DN∥BE,∴设直线DN的解析式为y=﹣12x+b1,S△DEB=DH12⨯•(x B﹣x E),∴当△DEB面积最大时,即是DH最大的时候,∴﹣12x+b1=﹣12x2+32x+2,△=b2﹣4ac=0,即16﹣4(2b1﹣4)=0,解得b1=4,点D(2,3),S矩=2S△MOG+S平形四边形,∴矩形面积最小时就是MG最小,设QG=m,MQ=n,∴MG=m+n,∵m+n≥∵△QOG∽△MQO,∴OQ2=m•n,∵△OEQ∽△EOB,∴OQ=5,∴m•n=165,∴m+n.∴MG,∴S矩=2S△MOG+S平形四边形=645.(2)分两种情况讨论,情况一:当GN ∥DB 时,直线DB 的解析式为:y =﹣32x +6, 则直线NG 的解析式为y =﹣32x , ∴﹣32x =﹣12x 2+32x +2,解得x 1=x 2=3∴交点坐标为(92+),(392-), 情况二:DB 为对角线时,此时NG 必过DB 的中点(3,32), 设直线ON 的解析式为y =k 1x ,则k 1=12, ∴直线OD 的解析式为y =12x , 12=﹣12x 2+32x +2,解得x 1=1x 2=∴交点坐标为(112),(12),综上所述:交点坐标为(),(3),(1﹣),(). 【点睛】此题考查了二次函数的性质以及二次函数与几何相结合的问题,转化矩形面积最小和三角形面积最大为某条线段的最值为解题关键.9.E解析:(1)EF =,见解析;(2)BK =;(3)①AGH 是等边三角形,见解析;②14 【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到AE =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA =,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:。

初中数学定点问题知识点与常考难题和培优提高练习压轴题(含解析)

初中数学定点问题知识点与常考难题和培优提高练习压轴题(含解析)

初中数学定点问题提高练习与常考难题和培优题压轴题(含解析)定点题型?定点问题,初中一般是直线或抛物线恒过定点的问题,这类问题一般解法是根据直线或抛物线的动因,先选择适当的参数,用参数表示出直线或抛物线方程,然后按参数整理,并令参数的系数为0得方程组,解方程方程组求出定点坐标.?解题思路:?这类问题通常有两种处理方法:①第一种方法:是从特殊入手,通过考查极端位置,探索出“定值”是多少,再证明这个点(值)与变量无关;②第二种方法:是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

??具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去变量即得定值。

一、直线过定点问题:解法1:取特殊值法?给方程中的参数取定两个特殊值,这样就得到关于x,y的两个方程,从中解出x,y即为所求的定点,然后再将此点代入原方程验证即可。

?例1:求直线(m+1)x+(m-1)y-2=0所通过的定点P的坐标。

?解:令m=-1,可得y=-1;令m=1,可得x=1。

将(1,-1)点代入原方程得:(m+1)·?1+(m-1)(-1)-2=0?成立,所以该定点P为(1,-1)。

?解法2:由“y-y0=k(x-x0)”求定点把含有参数的直线方程改写成y-y0=k(x-x0)的形式,这样就证明了它所表示的所有直线必过定点(x0,y0)。

?例2:已知(k+1)x-(k-1)y-2k=0为直线l的方程,求证不论k取任何实数值时,直线l必过定点,并求出这个定点的坐标。

?证明:由已知直线l的方程得(k+1)x=(k-1)y+2k,?∴(k+1)x-(k+1)=(k-1)y+(k-1),不论k取任何实数值时,直线l必过定点M(1,-1)。

?解法3:方程思想?若方程的解有无穷多个,则方程的系数均为0,利用这一方法的思路是将原方程整理为以参数为主元的方程,然后利用系数为零求得。

?例3:若?2a-3b=1(a,b∈R),求证:直线?ax+by=5必过定点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学定点问题知识点与常考难题和培优提高练习压轴题(含解析)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学定点问题提高练习与常考难题和培优题压轴题(含解析)定点题型定点问题,初中一般是直线或抛物线恒过定点的问题,这类问题一般解法是根据直线或抛物线的动因,先选择适当的参数,用参数表示出直线或抛物线方程,然后按参数整理,并令参数的系数为0得方程组,解方程方程组求出定点坐标.解题思路:这类问题通常有两种处理方法:①第一种方法:是从特殊入手,通过考查极端位置,探索出“定值”是多少,再证明这个点(值)与变量无关;②第二种方法:是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去变量即得定值。

一、直线过定点问题:解法1:取特殊值法给方程中的参数取定两个特殊值,这样就得到关于x,y的两个方程,从中解出x,y即为所求的定点,然后再将此点代入原方程验证即可。

例1:求直线(m+1)x+(m-1)y-2=0所通过的定点P的坐标。

解:令m=-1,可得y=-1;令m=1,可得x=1。

将(1,-1)点代入原方程得:(m+1)· 1+(m-1)(-1)-2=0 成立,所以该定点P为(1,-1)。

解法2:由“y-y0=k(x-x0)”求定点把含有参数的直线方程改写成y-y0=k(x-x0)的形式,这样就证明了它所表示的所有直线必过定点(x0,y0)。

例2:已知(k+1)x-(k-1)y-2k=0为直线l的方程,求证不论k取任何实数值时,直线l必过定点,并求出这个定点的坐标。

证明:由已知直线l的方程得(k+1)x=(k-1)y+2k,∴(k+1)x-(k+1)=(k-1)y+(k-1),不论k取任何实数值时,直线l必过定点M(1,-1)。

解法3:方程思想若方程的解有无穷多个,则方程的系数均为0,利用这一方法的思路是将原方程整理为以参数为主元的方程,然后利用系数为零求得。

例3:若 2a-3b=1(a,b∈R),求证:直线 ax+by=5必过定点。

解:由已知得 ax+by=5(2a-3b),即 a(x-10)+b(y-15)=0 无论a,b为何值上式均成立,所以a,b的系数同时为0,所以过定点(10,15)。

解法4:直线系观点过定点的直线系A1x+B1y+C1+λ(A2x+B2y+C2)=0表示通过两直线l1∶A1x+B1y+C1=0与l2∶A2x+B2y +C2=0交点的直线系,而这交点即为直线系所通过的定点。

例4:求证对任意的实数m,直线(m-1)x+2(m-1)y=m-5必过定点。

解:原式可整理为(x+2y-1)m-(x+y-5)=01.直线l:kx﹣y+2k+1=0必过定点.2.直线y=mx+2m+14过定点.3.直线kx+3y+k﹣9=0过定点.4.设a+b=3,则直线ax+by=1恒过定点.5.当a+b+c=0时,直线ax+by+c=0必过定点.6.直线(m﹣1)x+y+2m+1=0过定点.7.直线(2a﹣1)x+2ay+3=0恒过的定点是.8.对于任意实数m.n,直线(m+n)x+12my﹣2n=0恒过定点的坐标是.9.若p,q满足条件3p﹣2q=1,直线px+3y+q=0必过定点.10.直线(m﹣1)x+(2m+3)y﹣(m﹣2)=0恒过定点.11.不论实数k为何值,直线(2k+1)x+(1﹣k)y+7﹣k=0恒经过的定点坐标是.二、抛物线过定点问题:第一步:对含有变系数的项集中;第二步:然后将这部分项分解因式,使其成为一个只含系数和常数的因式与一个只含x和常数的因式之积的形式;第三步:令后一因式等于0,得到一个关于自变量x的方程(这时系数如何变化,都“失效”了);第四步:解此方程,得到x的值x0(定点的横坐标),将它代入原函数式(也可以是其变式),即得到一个y 的值y0(定点的纵坐标),于是,函数图象一定过定点(x0,y0);第五步:验算回顾,查看关键点、易错点,完善解题步骤.1.已知抛物线y=2x2﹣(m2+1)x+2m2﹣1,不论m取何值,抛物线恒过某定点P,则P点的坐标为()A.(2,﹣5)B.(2,5)C.(﹣2,5)D.不能确定2.某数学兴趣小组研究二次函数y=mx2﹣2mx+3(m≠0)的图象发现,随着m的变化,这个二次函数的图象形状与位置均发生变化,但这个二次函数的图象总经过两个定点,请你写出这两个定点的坐标:.3.已知抛物线y=kx2+(2k+1)x+2恒过定点,请直接写出定点坐标.4.抛物线y=x2+ax+a﹣2过定点A,直线l:y=x+m也过点A,则直线l的函数解析式为.5.抛物线y=x2+mx﹣2m通过一个定点,则这个定点的坐标是.6.已知实数a、b、c满足不等式:|a|≥|b﹣c|,|b|≥|a+c|,|c|≥|a﹣b|,抛物线y=ax2+bx+c恒过定点M,则定点M的坐标为.7.在平面直角坐标系xOy中,直线y=kx﹣2k+6经过定点Q.(1)直接写出点Q的坐标;(2)点M在第一象限内,∠QOM=45°,若点M的横坐标与点Q的纵坐标相等(如图1),求直线QM的解析式;(3)在(2)条件下,过点M作MA⊥x轴于点A,过点Q作QB⊥y轴于点B,点E为第一象限内的一动点,∠AEO=45°,点C为OB的中点(如图2),求线段CE长度的最大值.8.已知函数y=ax2﹣4bx+3,(1)求证:无论a、b为何值,函数图象经过y轴上一个定点;(2)当a、b满足什么条件时,图象与直线y=1有交点;(3)若﹣1<x<0,a=1,当函数值y恒大于1时,求b的取值范围.9.已知函数y=x2﹣(m2+4)x﹣2m2﹣12.(1)当m取何值时,此函数有最小值﹣,求出此时x的值;(2)求证:不论m取任何实数,抛物线都过一定点,并求出定点坐标.10.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值若有,求出该最值及相对应的m值.11.已知二次函数的顶点坐标为(﹣,﹣),与y轴的交点为(0,n﹣m),其顶点恰好在直线y=x+(1﹣m)上(其中m、n为正数).(1)求证:此二次函数的图象与x轴有2个交点;(2)在x轴上是否存在这样的定点:不论m、n如何变化,二次函数的图象总通过此定点若存在,求出所有这样的点;若不存在,请说明理由.参考答案1.(2010秋•扬州校级期末)直线l:kx﹣y+2k+1=0必过定点(﹣2,1).【解答】解:直线l:kx﹣y+2k+1=0 即 k(x+2)﹣y+1=0,过直线x+2=0 和直线﹣y+1=0的交点(﹣2,1),故答案为:(﹣2,1).2.直线y=mx+2m+14过定点(﹣2,14).【解答】解:∵y=mx+2m+14=m(x+2)+14,当x+2=0,即x=﹣2时,y=14,∴直线y=mx+2m+14过定点(﹣2,14).故答案为:(﹣2,14).3.(2014秋•温州校级期中)直线kx+3y+k﹣9=0过定点(﹣1,3).【解答】解:∵kx+3y+k﹣9=0,∴k(x+1)+3y﹣9=0,∴,解得,∴直线kx+3y+k﹣9=0过定点(﹣1,3).故答案为:(﹣1,3).4.设a+b=3,则直线ax+by=1恒过定点(,).【解答】解:∵a+b=3,∴a•+b•=1,∴直线ax+by=1恒过定点(,).故答案为:(,).5.(2012秋•广陵区校级期中)当a+b+c=0时,直线ax+by+c=0必过定点(1,1).【解答】解:由于a+b+c=0,故点(1,1)满足直线方程ax+by+c=0,即点(1,1)在直线ax+by+c=0上,即直线ax+by+c=0必过定点(1,1),故答案为(1,1).6.(2013春•启东市校级月考)直线(m﹣1)x+y+2m+1=0过定点(﹣2,﹣3).【解答】解:直线(m﹣1)x+y+2m+1=0可化为﹣x+y+1+m(x+2)=0,可得,解得,∴直线(m﹣1)x+y+2m+1=0过定点(﹣2,﹣3)故答案为:(﹣2,﹣3)7.(2012秋•柯城区校级期中)直线(2a﹣1)x+2ay+3=0恒过的定点是(3,﹣3).【解答】解:取a=,得方程为y+3=0,此时对应的直线设为l1;再取a=0,得方程为﹣x+3=0此时对应的直线设为l2.联解.得x=3且y=﹣3,所以直线l1与l2交于点A(3,﹣3)A点即为所求直线(2a﹣1)x+2ay+3=0恒过的定点故答案为:(3,﹣3)8.(2010•定西模拟)对于任意实数m.n,直线(m+n)x+12my﹣2n=0恒过定点的坐标是.【解答】解:方程(m+n)x+12my﹣2n=0可化为(x+12y)m+(x﹣2)n=0∵对于任意实数m.n,直线(m+n)x+12my﹣2n=0恒过定点∴∴故定点坐标是9.(2014春•海陵区校级期中)若p,q满足条件3p﹣2q=1,直线px+3y+q=0必过定点(﹣,).【解答】解:由于3p﹣2q=1,故直线px+3y+q=0,即 px+3y+=0,即 p(2x+3)+6y﹣1=0,由,求得,故直线经过定点(﹣,),故答案为:(﹣,).10.直线(m﹣1)x+(2m+3)y﹣(m﹣2)=0恒过定点.【解答】解:直线(m﹣1)x+(2m+3)y﹣(m﹣2)=0化为m(x+2y﹣1)﹣(x﹣3y﹣2)=0,联立,解得.∴直线(m﹣1)x+(2m+3)y﹣(m﹣2)=0恒过定点.故答案为:.2.(2014•涪城区校级自主招生)不论实数k为何值,直线(2k+1)x+(1﹣k)y+7﹣k=0恒经过的定点坐标是(﹣2,﹣5).【解答】解:①特殊值法:设k1=2,k2=0,代入函数关系式得:解得:.②分离参数法:由(2k+1)x+(1﹣k)y+7﹣k=0,化简得k(2x﹣y﹣1)+x+y+7=0,无论k取何值,只要成立,则肯定符合直线方程;解得:.故直线经过的定点坐标是(﹣2,﹣5).1.(2015•秦皇岛校级模拟)已知抛物线y=2x2﹣(m2+1)x+2m2﹣1,不论m取何值,抛物线恒过某定点P,则P点的坐标为()A.(2,﹣5) B.(2,5)C.(﹣2,5) D.不能确定【解答】解:∵不论m取何值,抛物线恒过某定点P,∴令m=0,则y=2x2﹣x﹣1,令m=1,则y=2x2﹣2x+1,解得∴P的坐标为(2,5),故选B.1.(2012•鼓楼区一模)某数学兴趣小组研究二次函数y=mx2﹣2mx+3(m≠0)的图象发现,随着m 的变化,这个二次函数的图象形状与位置均发生变化,但这个二次函数的图象总经过两个定点,请你写出这两个定点的坐标:(0,3),(2,3).【解答】解:∵原函数化为y=mx(x﹣2)+3的形式,∴当x=0或x﹣2=0时函数值与m值无关,∵当x=0时,y=3;当x=2时,y=3,∴两定点坐标为:(0,3),(2,3).故答案为:(0,3),(2,3).3.已知抛物线y=kx2+(2k+1)x+2恒过定点,请直接写出定点坐标(0,2)、(﹣2,0).【解答】解:依题意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,则,解得或.所以该抛物线恒过定点(0,2)、(﹣2,0).故答案为(0,2)、(﹣2,0).4.抛物线y=x2+ax+a﹣2过定点A,直线l:y=x+m也过点A,则直线l的函数解析式为y=x.【解答】解:∵y=x2+ax+a﹣2,∴(x+1)a=y+2﹣x2,当x+1=0且y+2﹣x2=0时,即x=﹣1,y=﹣1,a为任意实数,∴抛物线y=x2+ax+a﹣2过定点A(﹣1,﹣1),把A(﹣1,﹣1)代入y=x+m得﹣1+m=﹣1,解得m=0,∴直线l的解析式为y=x.故答案为y=x.5.抛物线y=x2+mx﹣2m通过一个定点,则这个定点的坐标是(2,4).【解答】解:∵y=x2+mx﹣2m可化为y=x2+m(x﹣2),∴当x=2时,y=4;且与m的取值无关;∴定点(2,4),故答案为(2,4).6.已知实数a、b、c满足不等式:|a|≥|b﹣c|,|b|≥|a+c|,|c|≥|a﹣b|,抛物线y=ax2+bx+c恒过定点M,则定点M的坐标为(﹣1,0).【解答】解:∵|a|≥|b﹣c|,|b|≥|a+c|,|c|≥|a﹣b|,平方得:a2≥(b﹣c)2,b2≥(a+c)2,c2≥(a﹣b)2,三式相加得:a2+b2+c2≥(b﹣c)2+(a+c)2+(a﹣b)2,展开得:a2+b2+c2≥2a2+2b2+2c2﹣2bc+2ac﹣2ab,即0≥a2+b2+c2﹣2bc+2ac﹣2ab,∴(a﹣b+c)2≤0,∴a﹣b+c=0,当x=﹣1时y=a﹣b+c=0,∴定点M的坐标为(﹣1,0).故答案为:(﹣1,0).7.(2014春•武昌区期末)在平面直角坐标系xOy中,直线y=kx﹣2k+6经过定点Q.(1)直接写出点Q的坐标(2,6);(2)点M在第一象限内,∠QOM=45°,若点M的横坐标与点Q的纵坐标相等(如图1),求直线QM 的解析式;(3)在(2)条件下,过点M作MA⊥x轴于点A,过点Q作QB⊥y轴于点B,点E为第一象限内的一动点,∠AEO=45°,点C为OB的中点(如图2),求线段CE长度的最大值.【解答】解:(1)y=kx﹣2k+6=k(x﹣2)+6,则当x﹣2=0,即x=2时,y的值与k无关,则G的坐标是(2,6);(2)延长BQ,AM交于点F.连接OF,作QG⊥OF于点G.则四边形AOBF是正方形,△QFG是等腰直角三角形,且OA=OB=BF=AF=6,BQ=2,则QF=4,∴QG=QF×=4×=2,在直角△OBQ中,OQ===2,∴直角△OQG中,OG===4.∵正方形AOBF中,∠AOB=90°,∠AOF=45°,又∵∠QOM=45°,∴∠QOG+∠FOM=∠FOM+∠AOM=45°,∴∠QOG=∠AOM,又∵∠OGQ=∠AOM∴△OQG∽△OMA,∴,即,∴AM=3,∴M的坐标是(6,3).设直线QM的解析式是y=kx+b,则,解得:,则直线的解析式是:y=﹣x+;(3)∵∠AEO=45°,∴E在以OA的斜边的等腰直角三角形直角顶点为圆心,以OA为弦的圆上,且弦OA 所对的圆心角是90°的圆上,设圆心是N,则N的坐标是(3,3),圆的半径是3,又∵点C为OB的中点,∴C的坐标是(0,3),则CN∥x轴,则当E是CN的延长线与圆N的交点时,线段CE最长,则最大的长度是:3+3.8.(2014秋•长沙校级期中)已知函数y=ax2﹣4bx+3,(1)求证:无论a、b为何值,函数图象经过y轴上一个定点;(2)当a、b满足什么条件时,图象与直线y=1有交点;(3)若﹣1<x<0,a=1,当函数值y恒大于1时,求b的取值范围.【解答】证明:(1)∵当x=0时,y=ax2﹣4bx+3=3,∴函数图象与y轴的交点坐标为(0,3),∴论a、b为何值,函数图象经过y轴上一个定点(0,3);解:(2)∵象与直线y=1有交点,∴1=ax2﹣4bx+3,ax2﹣4bx+2=0,∴△=(﹣4b)2﹣8a≥0,解得:a≤2b2.(3)∵﹣1<x<0,a=1,函数值y恒大于1,∴1+4b>1,解得:b>0.9.已知函数y=x2﹣(m2+4)x﹣2m2﹣12.(1)当m取何值时,此函数有最小值﹣,求出此时x的值;(2)求证:不论m取任何实数,抛物线都过一定点,并求出定点坐标.【解答】(1)解:y最小===﹣,m4+16m2﹣17=0(m2﹣1)(m2+17)=0∵m2+17≠0,∴m=±1,∴y=x2﹣5x﹣14x=﹣=﹣=,当m=±1时,此函数有最小值﹣,此时x=;(2)证明:∵此函数可以写成y=(x+2)•[x﹣(m2+6)],∴函数与x轴的交点为(﹣2,0),(m2+6,0),∴不论m取任何实数,抛物线都过一定点,定点坐标是(﹣2,0).10.(2016•广州)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值若有,求出该最值及相对应的m值.【解答】(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠,∴m的取值范围为m≠0且m≠;(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,∴y=m(x2﹣2x﹣3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x2﹣2x﹣3=0时,y与m无关,解得:x=3或x=﹣1,当x=3时,y=4,定点坐标为(3,4);当x=﹣1时,y=0,定点坐标为(﹣1,0),∵P不在坐标轴上,∴P(3,4);(3)解:|AB|=|x A﹣x B|=====||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,∴0<|﹣4|≤,∴|AB|最大时,||=,解得:m=8,或m=(舍去),∴当m=8时,|AB|有最大值,此时△ABP的面积最大,没有最小值,则面积最大为:|AB|y P=××4=.11.已知二次函数的顶点坐标为(﹣,﹣),与y轴的交点为(0,n﹣m),其顶点恰好在直线y=x+(1﹣m)上(其中m、n为正数).(1)求证:此二次函数的图象与x轴有2个交点;(2)在x轴上是否存在这样的定点:不论m、n如何变化,二次函数的图象总通过此定点若存在,求出所有这样的点;若不存在,请说明理由.【解答】(1)证明:把(﹣,﹣)代入y=x+(1﹣m)得﹣+(1﹣m)=﹣,整理得m2﹣mn+m﹣n=0,∵(m﹣n)(m+1)=0,∴m=n或m=﹣1(舍去),∴二次函数的顶点坐标为(﹣,﹣),与y轴的交点为(0,0),∵m为正数,∴二次函数的顶点在第四象限,而抛物线过原点,∴抛物线开口向上,∴此二次函数的图象与x轴有2个交点;(2)解:存在.∵抛物线的对称轴为直线x=﹣,抛物线与x轴的一个交点坐标为(0,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),即不论m、n如何变化,二次函数的图象总通过点(﹣1,0)和(0,0).。

相关文档
最新文档