激光原理与激光技术习题答案

合集下载

激光原理与激光技术思考题及习题集与解答

激光原理与激光技术思考题及习题集与解答

《激光原理与激光技术》习题解答参考钟先琼成都信息工程学院光电技术系2008年6月第一章一、填空题1、处于同一光子态的光子数同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。

2、自发辐射跃迁、受激吸收跃迁、受激辐射跃迁,自发辐射跃迁,受激吸收跃迁和受激辐射跃迁。

3、高的单色性、高的方向性、高的相干性、高的亮度;高的光子简并度。

3、玻色-爱因斯坦,没有。

4、选择模式和实现光的正反馈。

5、Light Amplification by Stimulated Emission of Radiation 泵浦激励热平衡集居数反转状态6、吸收7、难二、判断题1、×2、×3、√4、×5、×6、×7、×8、×9、√ 10、√三、名词解释1、处于同一光子态内的光子数,与之等效的含义还有:同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。

2、若21f f =时,满足:12n n >;21f f ≠时,满足:12112>f n f n ,此时称为满足集居数反转状态,是实现光放大的条件。

3、测不准关系表明:微观粒子的坐标和动量不能同时确定,在三维运动情况下,测不准关系为3h P P P z y x z y x ≈∆∆∆∆∆∆,故在六维相空间中,一个光子态占有的相空间体积为3h P P P z y x z y x ≈∆∆∆∆∆∆,上述相空间体积元称为相格。

第二章一、填空题1、几何偏折损耗、衍射损耗、腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗。

几何偏折损耗、衍射损耗,选择,腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗,非选择2、平均单程损耗因子、光子在腔内的平均寿命、无源腔的Q值3、稳定腔、非稳腔、临界腔。

非稳腔,非稳腔。

临界、临界、临界。

对称共焦。

激光原理与技术习题答案

激光原理与技术习题答案

激光原理与技术习题答案激光是一种特殊的光,它具有高度的单色性、相干性、方向性和亮度。

激光技术是现代物理学的一个分支,广泛应用于通信、医疗、工业加工等多个领域。

为了更好地理解激光原理与技术,我们通常会通过习题来加深理解。

以下是一些激光原理与技术的习题答案,供参考。

习题1:解释激光的产生机制。

激光的产生基于受激辐射原理。

当原子或分子被外部能量激发到高能级后,它们会自发地返回到较低的能级,并在此过程中释放出光子。

如果这些光子能够被其他处于激发态的原子或分子吸收,就会引发更多的受激辐射,形成正反馈机制,最终产生相干的光束,即激光。

习题2:描述激光的三个主要特性。

激光的三个主要特性是:1. 单色性:激光的波长非常窄,频率非常一致,这使得激光具有非常纯净的光谱特性。

2. 相干性:激光束中的光波在空间和时间上具有高度的一致性,使得激光束能够保持稳定的光强和方向。

3. 方向性:激光束的发散角非常小,几乎可以看作是平行光束,这使得激光能够聚焦到非常小的点上。

习题3:解释激光在通信中的应用。

激光在通信中的应用主要体现在光纤通信。

光纤通信利用激光的高亮度和方向性,通过光纤传输信息。

光纤是一种透明的玻璃或塑料制成的细长管,激光在其中传播时损耗非常小,可以实现长距离、大容量的信息传输。

激光通信具有抗干扰性强、传输速度快等优点。

习题4:讨论激光在医疗领域的应用。

激光在医疗领域的应用非常广泛,包括激光手术、激光治疗和激光诊断等。

激光手术可以用于精确切除病变组织,减少手术创伤;激光治疗可以用于治疗皮肤病、疼痛管理等;激光诊断则可以用于无创检测和成像,提高诊断的准确性。

习题5:解释激光冷却的原理。

激光冷却是利用激光与原子或分子相互作用,将它们冷却到接近绝对零度的过程。

当激光的频率略低于原子或分子的自然频率时,原子或分子吸收光子后会向激光传播的反方向运动,从而损失动能。

这个过程被称为多普勒冷却。

通过这种方法,可以实现对原子或分子的精确控制和测量。

《激光原理及技术》1-4习题答案(学习内容)

《激光原理及技术》1-4习题答案(学习内容)

激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少?解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk chb λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。

激光原理与激光技术习题答案

激光原理与激光技术习题答案

解: ① ,腰在平面镜处 ② f=1m ③
(2) 某高斯光束的腰斑半径w0=1.14mm,光波长=10.6m,求与腰斑相 距z=30cm处的光斑半径及等相位曲率半径。
解:
(3) 某高斯光束的腰斑半径w0=0.3mm,光波长=0.6328m,求腰处、 与腰相距30cm处的q参数
解: q0=if=447i (mm), q(z)=z+if=300+447i (mm)
(6)氦氖激光器相干长度1km,出射光斑的半径为r=0.3mm,求光源线宽 及1km处的相干面积与相干体积。 解:
习题二
(1)自然加宽的线型函数为求①线宽②若用矩形线型函数代替(两函数高 度相等)再求线宽。 解:①线型函数的最大值为 令
②矩形线型函数的最大值若为 则其线宽为
(2)发光原子以0.2c的速度沿某光波传播方向运动,并与该光波发生共 振,若此光波波长=0.5m,求此发光原子的静止中心频率。 解:
① L ④ ③ ② ①
(a)
(b)
解: (a)
(b)
(4)利用往返矩阵证明共焦腔为稳定腔,即任意旁轴光线在其中可往返无 限多次,而且两次往返即自行闭合。 证: 共焦腔 R1=R2=L g1=g2=0
往返一周的传递矩阵, 往返两周的传递矩阵
习题七
(1) 平凹腔中凹面镜曲率半径为R,腔长L=0.2R,光波长为,求由此 平凹腔激发的基模高斯光束的腰斑半径。

(3) 氦氖激光器放电管长l=0.5m,直径d=1.5mm,两镜反射率分别为 100%、98%,其它单程损耗率为0.015,荧光线宽F=1500MHz。求满足 阈值条件的本征模式数。(Gm=310-4/d) 解:
(5) CO2激光器腔长L=1m,,放电管直径d=10mm,两反射镜的反射 率分别为0.92、0.8,放电管气压3000Pa。可视为均匀加宽,并假

激光原理与激光技术习题答案

激光原理与激光技术习题答案
解:衍射损耗:
输出损耗:
(4)有一个谐振腔,腔长L=1m,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0、99,求在1500MHz得范围内所包含得纵模个数,及每个纵模得线宽(不考虑其它损耗)
解:
(5)某固体激光器得腔长为45cm,介质长30cm,折射率n=1、5,设此腔总得单程损耗率0、01,求此激光器得无源腔本征纵模得模式线宽。
(a)(b)
解:
(a)
(b)
(4)利用往返矩阵证明共焦腔为稳定腔,即任意旁轴光线在其中可往返无限多次,而且两次往返即自行闭合。
证:共焦腔R1=R2=Lg1=g2=0
往返一周得传递矩阵,往返两周得传递矩阵
习题七
(1)平凹腔中凹面镜曲率半径为R,腔长L=0、2R,光波长为,求由此平凹腔激发得基模高斯光束得腰斑半径。
解:
(6)氦氖激光器相干长度1km,出射光斑得半径为r=0.3mm,求光源线宽及1km处得相干面积与相干体积。
解:
习题二
(1)自然加宽得线型函数为求①线宽②若用矩形线型函数代替(两函数高度相等)再求线宽。
解:①线型函数得最大值为令
②矩形线型函数得最大值若为则其线宽为
(2)发光原子以0.2c得速度沿某光波传播方向运动,并与该光波发生共振,若此光波波长=0.5m,求此发光原子得静止中心频率。
解Hale Waihona Puke ①②习题五(1) 证明:两种介质(折射率分别为n1与n2)得平面界面对入射旁轴光线得变换矩阵为
证:由折射定律近轴条件

(2)证明:两种介质(折射率分别为n1与n2)得球面界面对入射旁轴光线得变换矩阵为
证:

(3)分别按图(a)、(b)中得往返顺序,推导旁轴光线往返一周得光学变换矩阵,并证明这两种情况下得相等。

激光原理与技术答案 (4)

激光原理与技术答案 (4)

激光原理与技术答案
激光原理及技术相关的问题较为广泛,以下是一些可能的
答案:
1. 激光的原理是通过光的受激辐射产生一种高度单色、高
度方向一致并具有相干性的光。

这是通过将活性物质置于
一个光学腔中,通过激光器提供的能量,激发活性物质中
的电子跃迁,产生光子受激辐射,最终得到激光。

2. 激光技术在许多领域有广泛应用。

例如,医学领域中的
激光手术可以精确切割组织,减少出血和伤口,加速恢复。

在通信领域,激光器用于光纤通信系统中的信号传输。

此外,激光还用于测距、测速、材料加工、激光打印、光刻、激光雷达等领域。

3. 激光的主要特点包括聚焦度高、方向性好、单色性好和
相干性好。

这些特点使得激光可以用于精确控制光束的传
播方向、聚焦到非常小的区域以及进行高精度的测量和加工。

4. 激光器的种类包括气体激光器、固体激光器、半导体激光器和液体激光器等。

不同类型的激光器具有不同的工作原理和特点,适用于不同的应用领域。

5. 激光的产生和操作涉及多个关键技术,例如激光的泵浦方式、活性物质的选择、腔体的设计和模式控制等。

这些技术的发展和创新推动了激光技术的进步和应用的拓展。

6. 激光的安全问题也需要引起重视。

激光束具有很高的能量密度,如果不正确使用和操作,可能会对人体和环境造成危害。

因此,正确的激光防护和安全措施也是激光技术应用中必须注意的问题之一。

激光原理与激光技术习题问题详解

激光原理与激光技术习题问题详解

激光原理与激光技术习题答案习题一 (1)为使氦氖激光器的相干长度达到1m ,它的单色性/应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2) =5000Å的光子单色性/=10-7,求此光子的位置不确定量x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m Rph x 5101050007102=⨯=λ=λ∆λ=∆=∆--(3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。

求由衍射损耗及输出损耗分别引起的、c 、Q 、c (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆-(4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的围所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δ s c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0.01,求此激光器的无源腔本征纵模的模式线宽。

激光原理与激光技术课后习题问题详解完整版及勘误表

激光原理与激光技术课后习题问题详解完整版及勘误表

激光原理与激光技术习题答案《激光原理与激光技术》堪误表见下方习题一(1)为使氦氖激光器的相干长度达到1m ,它的单色性∆λ/λ应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2) λ=5000Å的光子单色性∆λ/λ=10-7,求此光子的位置不确定量∆x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m R p h x 5101050007102=⨯=λ=λ∆λ=∆=∆--(3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。

求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆-(4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的围所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δs c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0.01π,求此激光器的无源腔本征纵模的模式线宽。

激光原理与激光技术习题答案e

激光原理与激光技术习题答案e

激光原理与激光技术习题答案习题一(1)为使氦氖激光器的相干长度到达1m ,它的单色性∆λ/λ应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2) λ=5000Å的光子单色性∆λ/λ=10-7,求此光子的位置不确定量∆x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m R p h x 5101050007102=⨯=λ=λ∆λ=∆=∆--(3)CO 2激光器的腔长L=100cm ,反射镜直径D=,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。

求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆-(4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δ s c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm π,求此激光器的无源腔本征纵模的模式线宽。

激光原理与技术 课后习题答案试题

激光原理与技术 课后习题答案试题

1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λλ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm 8 一质地均匀的材料对光的吸收系数为101.0-mm ,光通过10cm 长的该材料后,出射光强为入射光强的百分之几?如果一束光通过长度为1M 地均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。

解答:设进入材料前的光强为0I ,经过z 距离后的光强为()z I ,根据损耗系数()()z I dz z dI 1⨯-=α的定义,可以得到: ()()z I z I α-=ex p 0则出射光强与入射光强的百分比为:()()()%8.36%100%100ex p %10010001.001=⨯=⨯-=⨯=⨯--mm mm z e z I z I k α 根据小信号增益系数的概念:()()z I dz z dI g 1⨯=,在小信号增益的情况下, 上式可通过积分得到()()()()14000000001093.610002ln lnln exp exp --⨯====⇒=⇒=⇒=mm z I z I g I z I z g I z I z g z g I z I1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,有12R R L ==往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

激光原理与激光技术(北工大)习题解答

激光原理与激光技术(北工大)习题解答

习题一1、为使氦氖激光器的相干长度达到1m ,它的单色性参数R 应为多大?(光波长为λ=0.6328μm )解: 7610328.61106328.0−−×=×==Δ=c L R λλλ2、中心频率为ν0=4×108MHz 的某光源,相干长度为2m ,求此光源的单色性参数R 及光谱函数的线宽。

解:m c6148001075.0104103−×=××==νλ 7661075.310375.021075.0−−−×=×=×==c L R λννΔ=RMHz R 1501041075.3870=×××==Δ−νν 3、中心波长为λ0=0.6μm 的某光源单色性参数为R=10-4,求此光源的相干长度与相干时间。

解:c L R 0λ= mm m R L c 6106.010106.02460=×=×==−−−λ s c L t c c 1183102103106−−×=××==4、为使光波长等于λ=630nm 的激光器相干时间达到10-5s ,求它的单色性参数R 。

解:10589101.21010310630−−−×=×××===c c ct L R λλ5、中心频率为ν0=4×1014Hz 的某光源单色性参数为R=10-5,求此光源的相干长度。

解: c c L c L R νλ==, m R c L c 75.0104101031468=×××==−ν6、求相干长度为2m 的某光源线宽。

解:MHz Hz L c t c c 150105.12103188=×=×===Δν7、某光源光波长为λ=4000Å,为使距离此光源D=1m 处的相干面积达到2mm 2,求此光源面积应为多大?解:22862102208.0108102)104000(mm m A D A c s =×=××==−−−λ8、某光源面积为A s =5cm 2,波长为λ=6000Å,求距光源D=1m 处的相干面积解:24210421022102.7102.7105)106000(mm m A D A s c −−−−×=×=××==λ9、氦氖激光器出射光斑的半径为r=3mm ,单色性参数R=10-5,求1m 处的相干面积与相干体积。

激光原理与技术习题解答

激光原理与技术习题解答

1 x θ = − 2 R 1
0 1 1 L 2 1 0 1 − R2
x θ = M
0 1 L2 1 0 1 L1 x1 1 0 1 0 1 0 1 θ1
1.2 (1)一质地均匀的材料对光的吸收为 )一质地均匀的材料对光的吸收为0.01 mm-1,光通过长 光通过长10cm的材料后,出射光强为入射 的材料后, 的材料后 光强的百分之几?( ?(2)一光束通过长度为1m的 光强的百分之几?( )一光束通过长度为 的 均匀激活的工作物质, 均匀激活的工作物质,如果出射光强是入射光强 的两倍,试求该物质的增益系数? 的两倍,试求该物质的增益系数? 解:(1) :( )
M = 2 g1 g 2 + 2 g1 g 2 ( g1 g 2 − 1) − 1 = 3.472
m1 = m2 = m
δ1→2
M = m 2 = 3.472
1 = δ 2→1 = 1 − = 71.2% M
1 = 91.7% 2 M
δ 往返 = 1 −
2.35 考虑一虚共焦非稳定腔,工作波长 考虑一虚共焦非稳定腔,工作波长λ= 1.06µm,腔长 ,腔长L=0.3m,等效菲涅耳数 eq=0.5, ,等效菲涅耳数N , 往返损耗率δ= 往返损耗率 0.5,试求单端输出时,镜M1和M2 ,试求单端输出时, 的半径和曲率半径。 的半径和曲率半径。 解:
1 δ = 1 − 2 = 0.5 M
2 M −1 a N eq = 2 Lλ
M= 2
a为输出端半径 为输出端半径
a=
2 N eq Lλ M −1
= 8.74 × 10−4 m

激光原理与技术习题解答-文档资料

激光原理与技术习题解答-文档资料

解:
0
L(
R
L)
2
(2
R
L)
1/
4
(2R 2L)2
2 (2RL
4 2
L2
)
1/
4
4.65104 m
1 2
L
R2(R L)
1/ 4
L(R
L)(2R
L)
R2 L2 2
2 (2RL L2 )
1/ 4
4.98 104
m
2.28 设对称双凸非稳定腔的腔长L=1m,腔镜 的曲率半径R=-5m,试求单程和往返功率损耗率。
解:
1
1 M2
0.5
N eq
M 1 2
a2
L
M 2
a为输出端半径
a 2NeqL 8.74104 m
M 1
L R1 R2 22
M R1 R2
R1 2.05m R2 1.45m
复习提纲
氦氖激光器的能级图;谱线竞争;工作的激发原理; 举出几种可调谐激光器;染料激光器的三重态影响以及如 何克服? 调Q和锁模技术的基本原理;两种技术在脉宽范围上的差异? 均匀增宽与非均匀增宽的区别;用兰姆凹陷法如何实现稳频? 激光冷却、激光操纵微粒的基本原理 选模方法 证明稳定腔 、临界腔的边界条件
R3
L1
L2
R1
R2
L
证明:根据光线传播的轨迹,总的坐标变换为:
1
x
2 R1
0
1
1
0
1
L 1
2 R2
0
1
1
0
L2 1
1
0
0 1 1 0
L1 x1
1
1

《激光原理及技术》-习题答案

《激光原理及技术》-习题答案

激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少? 解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求:(1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk ch b λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。

《激光原理及技术》1-4习题答案

《激光原理及技术》1-4习题答案

激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1, 它的单色性0/λλ∆应当是多少? 解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求:(1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk ch b λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. 2激光器的腔长100, 反射镜直径1.5, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ解:(1)输出损耗由腔镜反射不完全引起。

激光原理与激光技术课后习题问题详解完整版及勘误表

激光原理与激光技术课后习题问题详解完整版及勘误表

激光原理与激光技术习题答案《激光原理与激光技术》堪误表见下方习题一 (1)为使氦氖激光器的相干长度达到1m ,它的单色性/应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2)=5000Å的光子单色性/=10-7,求此光子的位置不确定量x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m Rph x 5101050007102=⨯=λ=λ∆λ=∆=∆--(3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。

求由衍射损耗及输出损耗分别引起的、c 、Q 、c (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆-(4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的围所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δ s c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0.01,求此激光器的无源腔本征纵模的模式线宽。

激光原理与激光技术习题含答案.docx

激光原理与激光技术习题含答案.docx

激光原理与激光技术习题答案习题一(1) 为使氦氖激光器的相干长度达到1m,它的单色性/应为多大?解:632810 1010R 6.32810L c1000(2)=5000? 的光子单色性/-7x =10,求此光子的位置不确定量解:hphx p h xh2500010 105m p2p R10 7(3)CO 2激光器的腔长L=100cm,反射镜直径D=1.5cm,两镜的光强反射系数分别为r 1=,r 2=。

求由衍射损耗及输出损耗分别引起的、c、Q、c(设n=1)解:衍射损耗 :L10.610610 188c L1.8sa2( 0.7510 2)2.c0.188 3 108 1 75 10Q2c23.14310 86 1.7510 8 3.1110610.610c12 3.14110 89.1106 Hz9.1MHz2c 1.75输出损耗 :12 ln r1 r 20.5ln( 0.9850.8 ) 0.119c L1 2.78 10 8 sc0.119 3 108Q2c23.143108 2.7810 8 4.9610610.610 6c12 3.14110 85.710 6 Hz 5.7MHz2c 2.78(4) 有一个谐振腔,腔长L=1m,两个反射镜中,一个全反,一个半反,半反镜反射系数r= ,求在 1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽( 不考虑其它损耗 )解:c3108.8Hz MHz1500q10150q[1] [1]11 2L21 1 5q150T0.010.005cL11086.67107s22c0.0053c110.24MHz2 c2 3.14 6.6710 7(5) 某固体激光器的腔长为45cm,介质长30cm,折射率n=,设此腔总的单程损耗率,求此激光器的无源腔本征纵模的模式线宽。

解: L 30 1.5 15 60cmcL 0.6108 6.366 10 8 sc0.01π 3 c112.5MHz2 3.14 6.366 10 82c(6) 氦氖激光器相干长度 1km ,出射光斑的半径为r=0.3mm ,求光源线宽及1km 处的相干面积与相干体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光原理与激光技术习题答案习题一(1)为使氦氖激光器的相干长度达到1m ,它的单色性∆λ/λ应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2) λ=5000Å的光子单色性∆λ/λ=10—7,求此光子的位置不确定量∆x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m R p h x 5101050007102=⨯=λ=λ∆λ=∆=∆--(3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0。

985,r 2=0.8。

求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆-(4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δ s c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0。

01π,求此激光器的无源腔本征纵模的模式线宽.解: cm L 60155.130=+⨯=' s 106.3661030.01π0.6c L 88c -⨯=⨯⨯='=δτ 2.5MHz 106.3663.1428cc =⨯⨯⨯==-121πτν∆(6)氦氖激光器相干长度1km,出射光斑的半径为r=0。

3mm ,求光源线宽及1km 处的相干面积与相干体积.解: 0.3MHz 10103L c 38c =⨯==ν∆ 222 1.42m )10π(3100.632810A D A 241226s c =⨯⨯⨯==--λ 331042.1m L A V c c c ⨯==习题二(1)自然加宽的线型函数为20220)(4)21(1),(ννπττνν-+ccH g 求①线宽②若用矩形线型函数代替(两函数高度相等)再求线宽。

解:①线型函数的最大值为c N g τνν4),(00= 令cccτννπττ2)(4)21(12022=-+ cc c τννπττ1)(821202=-+c c τννπτ21)(8202=- 2220161)(c τπνν=- c πτνν410±= cNπτν21=∆∴②矩形线型函数的最大值若为 c m g τ4= 则其线宽为cm N g τν411==∆(2)发光原子以0。

2c 的速度沿某光波传播方向运动,并与该光波发生共振,若此光波波长λ=0.5μm ,求此发光原子的静止中心频率。

解: c v s z ⎪⎪⎭⎫ ⎝⎛-=10λλ cc ⎪⎪⎭⎫ ⎝⎛-=-15.02.00λ 15.02.00-=-λ m μλ625.08.05.00== MHz c 86800108.410625.0103⨯=⨯⨯==-λν(3)某发光原子静止时发出0。

488μm 的光,当它以0。

2c 速度背离观察者运动,则观察者认为它发出的光波长变为多大?解: m cc c v z μλλ5856.0488.02.1488.0)2.01(100=⨯=⨯--=⎪⎭⎫ ⎝⎛-='(4)激光器输出光波长λ=10μm ,功率为1w,求每秒从激光上能级向下能级跃迁的粒子数。

解:νϕh dtd P = s hc P h P dt d P /11051031063.610101198346⨯=⨯⨯⨯⨯⨯====--λνϕ(6)红宝石调Q 激光器中有可能将几乎全部的Cr +3激发到激光上能级,并产生激光巨脉冲。

设红宝石棒直径为1cm ,长为7。

5cm ,Cr +3的浓度为2⨯109cm —3,脉冲宽度10ns ,求输出激光的最大能量和脉冲功率。

解:J h L r V h W 9108341522103.4106943103106.631020.0750.0053.14---⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===νϕπνϕ w t W P 34.01010104.399=⨯⨯==--(7)静止氖原子3S 2→2P 4谱线中心波长0。

6328μm,求当它以0.1c 速度向观察者运动时,中心波长变为多大?解: m cc c v z μλλ5695.06328.09.06328.0)1.01(100=⨯=⨯-=⎪⎭⎫ ⎝⎛-='(9)红宝石激光器为三能级系统,已知S 32=0。

5⨯1071/s, A 31=3⨯1051/s , A 21=0。

3⨯1031/s 。

其余跃迁几率不计.试问当抽运几率W 13等于多少时,红宝石晶体将对λ=0。

6943μm 的光是透明的?02123232=-=A n S n dt dn 322123S A n n =∴03233131313=--=S n A n W n dtdn)(323113132331313S A n n n S n A n W +=+=∴透明即n 1=n 2 175733231322132312313318)105.0103(105.0103.0)()(-=⨯+⨯⨯⨯=+=+=∴s S A S A S A n n W习题三(1)若光束通过1m 长的激光介质以后,光强增大了一倍,求此介质的增益系数。

解: 2ln ln 10==I I zG(2) 计算Y AG 激光器中的峰值发射截面S 32,已知∆νF =2⨯1011Hz ,τ3=2。

3⨯10—4s ,n=1。

8. 解:222114221223222032109.1102103.28.114.341006.14m n S F ---⨯=⨯⨯⨯⨯⨯⨯⨯=∆=ντπλ(3) 计算红宝石激光器当ν=ν0时的峰值发射截面,已知λ0=0。

6943μm , ∆νF =3.3 ⨯1011Hz , τ2=4。

2ms, n=1。

76。

解:2241132212222220211084.2103.3102.476.114.34106943.04m n S F ---⨯=⨯⨯⨯⨯⨯⨯⨯=∆=ντπλ习题四(1) 红宝石激光器腔长L=11.25cm ,红宝石棒长l =10cm,折射率n=1.75,荧光线宽∆νF =2⨯105MHz,当激发参数α=1。

16时,求:满足阈值条件的纵模个数解: MHz H T 45108116.11021⨯=-⨯⨯=-∆=∆ανν cm l n L L 75.1810)175.1(25.11)1(=⨯-+=-+='MHz L c q 8001075.182103228=⨯⨯⨯='=∆-ν 101]180080000[]1[=+=+∆∆=∆q T q νν(2) 氦氖激光器腔长1m ,放电管直径2mm ,两镜反射率分别为100%、98%,单程衍射损耗率δ=0。

04,若I s =0。

1W/mm 2,G m =3⨯10—4/d, 求①νq =ν0时的单模输出功率 ②νq =ν0+21∆νD 时的单模输出功率 解:①05.004.0202.004.02=+=+=T δ mm lG t /1105100005.05-⨯===δmm dG m /1105.12103103444---⨯=⨯=⨯= 3105105.154=⨯⨯==--t m G G α mw STI P s 13.25)13(1.002.0114.35.0)1(222210=-⨯⨯⨯⨯⨯=-=αν②mw e eSTI P i q s 8.7)13(1.002.0114.3]1[2ln 222)(2ln 822200=-⨯⨯⨯⨯=-=-∆--ννννα(3) 氦氖激光器放电管长l =0。

5m ,直径d=1。

5mm,两镜反射率分别为100%、98%,其它单程损耗率为0。

015,荧光线宽∆νF =1500MHz 。

求满足阈值条件的本征模式数。

(G m =3⨯10—4/d ) 解:025.0015.0202.0015.02=+=+=T δ mm lG t /1105500025.05-⨯===δmm d G m /11025.1103103444---⨯=⨯=⨯= 410510254=⨯⨯==--t m G G α MHz DT 21212ln 4ln 15002ln ln =⨯=∆=∆ανν MHz L c q3005.0210328=⨯⨯==∆ν 8]13002121[]1[=+=+∆∆=∆q T q νν(5) CO 2激光器腔长L =1m ,,放电管直径d=10mm ,两反射镜的反射率分别为0.92、0。

8,放电管气压3000Pa 。

可视为均匀加宽,并假设工作在最佳放电条件下。

求 ①激发参数α ②振荡带宽∆νT ③满足阈值条件的纵模个数 ④稳定工作时腔内光强。

(频率为介质中心频率ν0)经验公式:∆νL =0.049p(MHz)、G m =1.4⨯10-2/d(1/mm)、I s =72/d 2(w/mm 2). 解:①153.0)8.092.0ln(5.0ln 2121=⨯⨯-=-=r r δ mm lG t /11053.11000153.04-⨯===δ mm dG m /1104.110104.1104.1322---⨯=⨯=⨯= 15.91053.1104.143=⨯⨯==--t m G G α ② MHz p L 1473000049.0049.0=⨯==∆ν MHz L T 420115.91471=-⨯=-∆=∆ανν③MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 3]1150420[]1[=+=+∆∆=∆q T q νν④222/72.0107272mm w d I s ===2/87.515.872.0)1(0mm w I I s =⨯=-=αν(6)氦氖激光器放电管直径d=0。

相关文档
最新文档