立体几何证明题(文科)1123
(完整版)必修二立体几何11道经典证明题
1.如图,三棱柱 ABC — A i B i C i 中,侧棱垂直底面, 1/ ACB=90 , AC=BC= gAA i , D 是棱 AA i 的中点 (I )证明:平面 BDC i 丄平面BDC(n)平面BDC i 分此棱柱为两部分,求这两部分体积的 比•2•如图5所示,在四棱锥 P ABCD 中,AB 平面 PAD , AB//CD , PD AD , E 是1PB 的中点,F 是CD 上的点且 DF —AB ,2PH PAD 中AD 边上的高•(1) 证明:PH 平面ABCD ;(2) 若 PH i , AD 2, FC i ,求三 (3)证明:EF 平面PAB .3.如图,在直三棱柱ABC ABG 中,AB i AC i , D ,E 分 别是棱BC , CC i 上的点(点D 不同于点C ),且AD DE , F 为B,G 的中点.求证:(i )平面ADE 平面BCGB,;(2)直线AF 〃平面ADE .棱锥E BCF 的体积;妥5小4. 如图,四棱锥P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角形,/ APD=90面PAD丄面ABCD,且AB=1 , AD=2 , E、F分别为PC和BD的中点.(1) 证明:EF//面PAD ;(2) 证明:面PDC丄面PAD ;(3) 求四棱锥P—ABCD的体积.5. 在如图所示的几何体中,四边形ABCD是正方形,MA 平面ABCD , PD//MA , E、G、F 分别为MB、PB、PC 的中点,且AD PD 2MA.(I)求证:平面EFG 平面PDC ;(II )求三棱锥P MAB与四棱锥P ABCD的体积之比. B6. 如图,正方形ABCD和四边形ACEF所在的平面互相垂直。
EF//AC , AB=「2 ,CE=EF=1(I)求证:AF//平面BDE(H)求证:CF丄平面BDF;7. 女口图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2EF// AB,EF 丄FB, / BFC=90° , BF=FC,H 为BC 的中点, (I )求证:FH //平面EDB;(H)求证:AC丄平面EDB;(川)求四面体B—DEF的体积;8.如图,在直二棱柱ABC Ai B1C1中,E、F分别是A i B、A1C的中点,点D在B J G上,A D BQo求证:(1) EF//平面ABC ;(2)平面AFD 平面BB i C i C .BE FB9•如图4,在边长为1的等边三角形ABC中,D, E分别是AB, AC边上的点,AD AE , FG ,将ABF沿AF折起,得到如图5所示的三棱锥BCF ,其中BC10.如图,在四棱锥P ABCD中,AB//CD , AB AD , CD 2AB ,平面PAD 底面ABCD , PA AD , E和F分别是CD和PC的中点,求证:⑴ PA 底面ABCD ;(2) BE//平面PAD ;(3)平面BEF 平面PCD证明:DE //平面BCF ;证明:CF平面ABF ;2当AD 时,求三棱锥F3DEG的体积V图4是BC的中点,AF与DE交于点C11. (2013年山东卷)如图,四棱锥P ABCD中, AB AC,AB PA , AB// CD,AB 2CDE,F,G,M ,N分别为PB, AB,BC,PD,PC 的中点(I)求证:CE /平面PAD .(n )求证:平面EFG 平面EMN12立体几何经典试题参考答案1.【解析】(I)由题设知BC 丄CC 1 ,BC 丄AC CC 1 AC•••面 BDC 丄面 BDC 1 ;(n)设棱锥 B DACC i 的体积为 V , AC =1,由题意得, 由三棱柱ABC A 1B 1C 1的体积V =1,•- (V V : V | =1:1,•平面BDC 1分此棱柱为两部分体积之比为1:1.2.【解析】(1)证明:因为 AB 平面PAD , 所以PHAB 。
立体几何文科常考证明题汇总
立体几何证明题1. 正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点. (Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积.2.已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .3.如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 和PC 的中点. (Ⅰ)求证:MN ∥平面PAD ;(Ⅱ)求证:MN CD ⊥;(Ⅲ)若45PDA ∠=,求证:MN ⊥平面PCD .NM PDBA A11A EC D 1ODBAC 1B 1A 1C4. 如图(1),ABCD 为非直角梯形,点E ,F 分别为上下底AB ,CD 上的动点,且EF CD ⊥。
现将梯形AEFD 沿EF 折起,得到图(2)(1)若折起后形成的空间图形满足DF BC ⊥,求证:AD CF ⊥;(2)若折起后形成的空间图形满足,,,A B C D 四点共面,求证://AB 平面DEC ;5.如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点, N 为AE 的中点,AF=AB=BC=FE=12AD (I) 证明平面AMD ⊥平面CDE ; (II) 证明//BN 平面CDE ;6.在四棱锥P -ABCD 中,侧面PCD 是正三角形,且与底面ABCD 垂直,已知菱形ABCD 中∠ADC =60°, M 是P A 的中点,O 是DC 中点. (1)求证:OM // 平面PCB ; (2)求证:P A ⊥CD ;(3)求证:平面P AB ⊥平面COM .A B C D E F 图(1) EBCF DA 图(2)A FEBC DMN PDABCOM7.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明P A//平面EDB;(2)证明PB⊥平面EFD8.正四棱柱ABCD-A1B1C1D1的底面边长是3,侧棱长是3,点E,F分别在BB1,DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求二面角A-EF-B的大小;(3)点B1到面AEF的距离.1.已知直线l、m、平面α、β,且l⊥α,m⊂β,给出下列四个命题:(1)α∥β,则l⊥m (2)若l⊥m,则α∥β(3)若α⊥β,则l∥m (4)若l∥m,则α⊥β其中正确的是__________________.2. m、n是空间两条不同直线,αβ、是空间两条不同平面,下面有四个命题:①,;m n m nαβαβ⊥⇒⊥, ②,,;m n m nαβαβ⊥⊥⇒③,,;m n m nαβαβ⊥⇒⊥④,,;m m n nααββ⊥⇒⊥其中真命题的编号是________(写出所有真命题的编号)。
高中立体几何证明题
高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。
解析1. 连接AC。
- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。
2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。
- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。
- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。
- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。
题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。
解析1. 连接BC_{1},交B_{1}C于点E。
- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。
2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。
- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。
- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。
二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。
解析1. 连接AC,BD交于点O,连接PO。
- 因为底面ABCD是正方形,所以O为AC,BD中点。
- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。
- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。
- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。
- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。
立体几何测试题(文科)
立体几何文科试题一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设有直线m 、n 和平面α、β.下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α 2、已知直线,l m与平面αβγ,,满足//l l m βγαα=⊂ ,,和mγ⊥,则有A .αγ⊥且l m⊥ B .αγ⊥且//m β C .//m β且lm⊥ D .//αβ且αγ⊥3.若()0,1,1a =- ,()1,1,0b = ,且()a b a λ+⊥,则实数λ的值是( )A .-1 B.0 C.1 D.-24、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥β D. AC ⊥β5一个几何体的三视图及长度数据如图,则几何体的表面积与体积分别为()3,27+A ()328,+B()2327,+C ()23,28+D6、已知长方体的表面积是224cm ,过同一顶点的三条棱长之和是6cm ,则它的对角线长是( )A. B. 4cm C. D.7、已知圆锥的母线长5l cm =,高4h cm =,则该圆锥的体积是____________3cmA. 12π B 8π C. 13π D. 16π8、某几何体的三视图如图所示,当ba +取最大值时,这个几何体的体积为 ( )A .61 B .31 C .32 D .219、已知,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB =AC =8A D =,则,B C 两点间的球面距离是 ( )A. 3πB. 43π C. 23π D. 53π10、四面体A B C D 的外接球球心在C D 上,且2C D =,3=AB ,在外接球面上A B ,两点间的球面距离是( ) A .π6B .π3C .2π3D .5π611、半径为2cm 的半圆纸片做成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( ) A .4cmB .2cmC .cm 32D .cm 312、 有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记3的对面的数字为m ,4的对面的数字为n ,那么m+n 的值为( ) A .3B .7C .8D .11二.填空题:本大题共4个小题。
(完整版)高中立体几何证明题精选
1、已知正方体1111ABCD A B C D-,O是底ABCD对角线的交点.求证:(1) C1O∥面11AB D;(2)1AC⊥面11AB D.2、正方体''''ABCD A B C D-中,求证:(1)''AC B D DB⊥平面;(2)''BD ACB⊥平面.3、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.D1ODBAC1B1A1CA1AB1C1D1DGEFN MPC BA4、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =, 90BDC ∠=o ,求证:BD ⊥平面ACD5、如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB =(1)求证:MN AB ⊥;6、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .7、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE .8、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.求证:DE ⊥平面PAE ;9、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;。
文科立体几何大题训练
文科立体几何大题训练1.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.2.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.3.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.4.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.5.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,E为PA 的中点,∠BAD=60°.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求三棱锥P﹣EDC的体积.6.如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求四面体F﹣DBC的体积.7.如图,四边形ABCD是正方形,平面ABCD⊥平面ABE,AF∥BE,AB⊥BE,AB=BE=2,AF=1.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求证:AC∥平面DEF;(III)求三棱锥D﹣FEB的体积.8.如图,四棱锥S﹣ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD.(1)求证:SO⊥平面ABCD;(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A﹣PCD 的体积.文科立体几何大题训练参考答案与试题解析一.解答题(共8小题)1.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.【解答】(1)证明:四棱锥P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD⊂平面PAD,BC⊄平面PAD,∴直线BC∥平面PAD;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.设AD=2x,则AB=BC=x,CD=,O是AD的中点,连接PO,OC,CD的中点为:E,连接OE,则OE=,PO=,PE==,△PCD面积为2,可得:=2,即:,解得x=2,PO=2.则V P﹣ABCD=×(BC+AD)×AB×PO==4.2.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC=×1×1=.3.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)取BC中点E,连结EN,EM,∵N为PC的中点,∴NE是△PBC的中位线∴NE∥PB,又∵AD∥BC,∴BE∥AD,∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,∴BE=BC=AM=2,∴四边形ABEM是平行四边形,∴EM∥AB,∴平面NEM∥平面PAB,∵MN⊂平面NEM,∴MN∥平面PAB.解:(Ⅱ)取AC中点F,连结NF,∵NF是△PAC的中位线,∴NF∥PA,NF==2,又∵PA⊥面ABCD,∴NF⊥面ABCD,如图,延长BC至G,使得CG=AM,连结GM,∵AM CG,∴四边形AGCM是平行四边形,∴AC=MG=3,又∵ME=3,EC=CG=2,∴△MEG的高h=,∴S△BCM===2,∴四面体N﹣BCM的体积V N﹣BCM===.4.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.5.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,E为PA 的中点,∠BAD=60°.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求三棱锥P﹣EDC的体积.【解答】(Ⅰ)证明:连接AC,BD,设AC与BD相交于点O,连接OE.由题意知,底面ABCD是菱形,则O为AC的中点,又E为AP的中点,∴OE∥CP,∵OE⊂平面BDE,PC⊄平面BDE,∴PC∥平面BDE;(Ⅱ)解:∵E为PA的中点,∴,∵四边形ABCD是菱形,∴AC⊥BD,又∵PA⊥平面ABCD,∴PA⊥BD,又PA∩AC=A,∴DO⊥平面PAC,即DO是三棱锥D﹣PCE的高,DO=1,则.6.如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求四面体F﹣DBC的体积.【解答】证明:(Ⅰ)∵DE⊥平面ABC,AB⊂平面ABC,∴AB⊥DE,又F为AB的中点,DA=DB,∴AB⊥DF,DE,DF⊂平面DEF,DE∩DF=D,∴AB⊥平面DEF,又∵AB⊂平面ABD,∴平面ABD⊥平面DEF.(Ⅱ)∵DA=DB=DC,E为AC上的一点,DE⊥平面ABC,∴线段DA、DB、DC在平面ABC的投影EA,EB,EC满足EA=EB=EC∴△ABC为直角三角形,即AB⊥BC由AD⊥DC,AC=4,∠BAC=45°,∴AB=BC=2,DE=2,∴S△FBC==2,∴四面体F﹣DBC的体积V F﹣DBC=V D﹣FBC==.7.如图,四边形ABCD是正方形,平面ABCD⊥平面ABE,AF∥BE,AB⊥BE,AB=BE=2,AF=1.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求证:AC∥平面DEF;(III)求三棱锥D﹣FEB的体积.【解答】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD.又∵平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,AB⊥BE,BE⊂平面ABEF,∴BE⊥平面ABCD.又∵AC⊂平面ABCD.∴BE⊥AC,又BE∩BD=B,∴AC⊥平面BDE;(Ⅱ)证明:取DE的中点G,连结OG,FG,∵四边形ABCD为正方形,∴O为BD的中点.则OG∥BE,且.由已知AF∥BE,且,则AF∥OG且AF=OG,∴四边形AOGF为平行四边形,则AO∥FG,即AC∥FG.∵AC⊄平面DEF,FG⊂平面DEF,∴AC∥平面DEF;(Ⅲ)解:∵平面ABCD⊥平面ABEF,四边形ABCD是正方形,平面ABEF∩平面ABCD=AB,∴AD∥BC,AD⊥AB.由(Ⅰ)知,BE⊥平面ABCD,AD⊂平面ABCD,∴BE⊥AD∴AD⊥平面BEF.∴.8.如图,四棱锥S﹣ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD.(1)求证:SO⊥平面ABCD;(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A﹣PCD 的体积.【解答】解:(1)证明:∵底面ABCD是菱形;∴对角线BD⊥AC;又BD⊥SA,SA∩AC=A;∴BD⊥平面SAC,SO⊂平面SAC;∴BD⊥SO,即SO⊥BD;又SA=SC,O为AC中点;∴SO⊥AC,AC∩BD=O;∴SO⊥平面ABCD;(2)如图,连接PO;∵SB∥平面APC,SB⊂平面SBD,平面SBD∩平面APC=PO;∴SB∥PO;在△SBD中,O是BD的中点,PO∥SB,∴P是SD的中点;取DO中点,并连接PE,则PE∥SO,SO⊥底面ACD;∴PE⊥底面ACD,且PE=;根据已知条件,Rt△ADO中AD=2,∠DAO=30°,∴DO=1;∴在Rt△SDO中,SD=2,SO=;∴;又;∴V三棱锥A﹣PCD=V三棱锥P﹣ACD=.。
(完整)立体几何(文科)
立体几何(文科)1、如图1。
4所示四棱锥P。
ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=错误!,M为BC上一点,且BM=错误!.(1)证明:BC⊥平面POM;(2)若MP⊥AP,求四棱锥P。
ABMO的体积.516图42、四面体ABCD及其三视图如图14所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H。
图1。
4(1)求四面体ABCD的体积;错误!.(2)证明:四边形EFGH是矩形.3、如图1。
5,在三棱柱ABC .A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.图1。
5(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E。
ABC的体积.错误!.4、如图1.3,四棱锥P。
ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=错误!,三棱锥PABD的体积V=错误!,求A到平面PBC的距离.错误!图13。
5、如图16所示,三棱锥A . BCD 中,AB ⊥平面BCD ,CD ⊥BD 。
(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A MBC 的体积.错误!图1。
66、如图1。
4所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F ,G 分别为AC ,DC ,AD 的中点.(1)求证:EF ⊥平面BCG ;(2)求三棱锥D 。
BCG 的体积.错误!。
7、如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==1A(Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.8、如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=。
(完整版)必修二立体几何11道经典证明题
1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.2. 如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点且12DF AB =,PH 为△PAD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)若1PH =,2AD =,1FC =,求三棱锥E BCF -的体积;(3)证明:EF ⊥平面PAB .3. 如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .B 1C BADC 1A 14. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点.(1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.5. 在如图所示的几何体中,四边形ABCD 是正方形, MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==.(I )求证:平面EFG ⊥平面PDC ;(II )求三棱锥P MAB -与四棱锥P ABCD -的体积 之比.ABDPMFGE6. 如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直。
EF//AC ,AB=2,CE=EF=1 (Ⅰ)求证:AF//平面BDE ; (Ⅱ)求证:CF ⊥平面BDF;7.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点,(Ⅰ)求证:FH ∥平面EDB;(Ⅱ)求证:AC ⊥平面EDB; (Ⅲ)求四面体B —DEF 的体积;8. 如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,11A D B C⊥。
(完整版)高考文科立体几何证明专题
图 4立体几何专题1.如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ;(3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.【解析】(1)在等边三角形ABC 中,AD AE =AD AEDB EC∴=,在折叠后的三棱锥A BCF -中 也成立,//DE BC ∴ ,DE ⊄Q 平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BFCF ==. Q 在三棱锥A BCF -中,2BC =,222BC BF CF CF BF ∴=+∴⊥② BF CF F CF ABF ⋂=∴⊥Q 平面;(3)由(1)可知//GE CF ,结合(2)可得GEDFG ⊥平面.111111132323323324F DEG E DFGV V DG FG GF --⎛⎫∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎪ ⎪⎝⎭【解析】这个题是入门级的题,除了立体几何的内容,还考查了平行线分线段成比例这个平面几何的内容.2.如图5所示,在四棱锥P-ABCD 中,AB ⊥平面PAD,AB CD,PD=AD,E 是PB 的中点,F 是DC 上的点且DF=21AB,PH 为∆PAD 中AD 边上的高. (1) 证明:PH ⊥平面ABCD ;(2) 若PH=1,AD=2,FC=1,求三棱锥E-BCF 的体积; (3) 证明:EF ⊥平面PAB . 解:(1)ABCDPH PAD PAD AB PAD 平面所以平面,面又中的高为⊥=⋂⊥∴⊂⊥⊥∴∆AAD AB AB PH PH AD PH PH Θ(2):过B 点做BG G CD BG ,垂足为⊥;连接HB,取HB 中点M ,连接EM ,则EM 是BPH ∆的中位线ABCD )1(平面知:由⊥PH ΘABCD 平面⊥∴EM BCF 平面EM⊥∴即EM 为三棱锥B CF -E 底面上的高BG FC •=∆21S BCF =222121=⨯⨯2121=PH EM=12221223131=⨯⨯=••=-EMS V BCF BCF E(3):取AB 中点N ,PA 中点Q ,连接EN ,FN ,EQ ,DQ NFN EN FN AB NADF AB 21DF //EN PAB EN PAD PAD AB PAD ,//=⋂⊥∴∴=⊥∴∴∆⊥∴⊂⊥∴⊥是距形四边形又的中位线是又平面,平面平面ΘΘΘENAB PA PAAB PA CD CD AB3、如图,已知三棱锥A —BPC 中,AP ⊥PC , AC ⊥BC , M 为AB 中点,D 为PB 中点,且△PMB 为正三角形。
高中数学立体几何常考证明题汇总精选资料
立体几何常考证明题汇总考点1:证平行(利用三角形中位线),异面直线所成的角已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形(2) 若BD=AC=2,EG=2。
求异面直线AC 、BD 所成的角和EG 、BD 所成的角。
考点2:线面垂直,面面垂直的判定如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。
考点3:线面平行的判定如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 考点4:线面垂直的判定已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点5:线面平行的判定(利用平行四边形),线面垂直的判定 已知正方体1111-ABCD A B C D ,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D . 考点6:线面垂直的判定正方体''''ABCD ABC D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面.考点7:线面平行的判定(利用平行四边形)正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 考点8:线面垂直的判定,三角形中位线,构造直角三角形AE D 1 CB 1DCBAAHGFEDCBAED BCSDCBA D 1ODBAC 1B 1A 1C A 1NMPCBA四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD考点9:三垂线定理如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3ANNB =(1)求证:MN AB ⊥;(2)当90APB ∠=,24AB BC ==时,求MN 的长。
高考数学最新真题专题解析—立体几何(文科)
高考数学最新真题专题解析—立体几何(文科)考向一 线面夹角【母题来源】2022年高考全国甲卷(文科)【母题题文】 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30,则( ) A. 2AB AD =B. AB 与平面11AB C D 所成的角为30C. 1AC CB =D. 1B D 与平面11BB C C 所成的角为45︒ 【答案】D【试题解析】【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,22212B D c a b c ==++2a c =. 对于A ,AB a ,AD b ,2AB AD =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为2tan c BAE a ∠==30BAE ∠≠,B 错误; 对于C ,223AC a b c =+=,2212CB b c c =+=,1AC CB ≠,C 错误; 对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,112sin 22CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确. 故选:D .【命题意图】本题主要考查直线与平面夹角,是一道容易题.【命题方向】这类试题在考查题型上选择题、填空题、解答题形式出现,试题难度不大,多为中低档题,重点考查线面夹角的求法问题. 【得分要点】(1)找斜线在平面中的射影; (2)求斜线与其射影的夹角; 考向二 线面平行、垂直的证明【母题来源】2022年高考全国乙卷(文科)【母题题文】 如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积. 【试题解析】【小问1详解】由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CD BD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD平面BED ,所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD . 【小问2详解】依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形, 所以2,1,3AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =.222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC . 由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅,所以AF CF =,所以EF AC ⊥,由于12AFCS AC EF =⋅⋅,所以当EF 最短时,三角形AFC 的面积最小值.过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得32EF =,所以223131,2222DF BF DF ⎛⎫=-==-= ⎪ ⎪⎝⎭,所以34BF BD =. 过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==, 所以34FH =,所以11133233324F ABC ABCV SFH -=⋅⋅=⨯⨯=【命题意图】本题考查线面平行、垂直的证明.【命题方向】这类试题在考查题型多以解答题形式出现,多为中档题,是历年高考的必考题型. 常见的命题角度有:(1)线面平行的证明;(2)线面垂直的证明;(3)面面平行的证明;(4)面面垂直的证明. 【得分要点】(1)利用线面、面面平行的判定定理与性质定理; (2)利用线面、面面垂直的判定定理与性质定理. 真题汇总及解析 一、单选题1.(2022·内蒙古·乌兰浩特一中模拟预测(文))已知,αβ为空间的两个平面,直线,l ααβ⊄⊥,那么“l ∥α”是“l β⊥”的( )条件 A .必要不充分 B .充分不必要C .充分且必要D .不充分也不必要【答案】A 【解析】 【分析】根据空间线面位置关系,结合必要不充分条件的概念判断即可. 【详解】当直线,l ααβ⊄⊥,l ∥α,则l β//,l 与β相交,故充分性不成立; 当直线l α⊄,且αβ⊥,l β⊥时,l ∥α,故必要性成立, ⸫“l ∥α”是“l β⊥”的的必要不充分条件. 故选:A.2.(2022·贵州·贵阳一中模拟预测(文))在正方体1111ABCD A B C D -中,M 为1A D 的中点,则直线CM 与11A C 所成的角为( ) A .π2B .π3C .π4D .π6【答案】D 【解析】 【分析】11AC AC ∥,所求角为ACM∠,利用几何体性质,解CMA 即可【详解】设正方体棱长为1,连接11,,AC AC AC CM ∴与11A C 所成角即是CM 与AC 所成角,22222221162,,1,2222AC AM CM AM CM AC ⎛⎫⎛⎫===++=∴+= ⎪ ⎪⎝⎭⎝⎭,CMA ∴为Rt △,1πsin ,26AM ACM ACM AC ∠∠==∴= 故选:D3.(2022·青海·模拟预测)已知四面体ABCD 的所有棱长都相等,其外接球的6π,则下列结论错误的是( ) A .四面体ABCD 的棱长均为2 B .异面直线AC 与BD 2 C .异面直线AC 与BD 所成角为60︒D .四面体ABCD 的内切球的体积等于6π27【答案】C 【解析】 【分析】对于A, 设该四面体的棱长为a ,表示出高,根据其外接球的体积等于6π,求得外接球半径,即可求得a ,判断A;对于B, 分别取BD,AC 的中点为E,F ,连接EF ,求得EF 的长,即可判断;对于C ,证明线面垂直即可证明异面直线AC 与BD 互相垂直,即可判断;对于D ,利用等体积法求得内切球半径,即可求得内切球体积,即可判断. 【详解】如图示,设该四面体的棱长为a ,底面三角形BCD 的重心为G ,该四面体的外接球球心为O ,半径为R ,连接AG ,GB,OB ,AG 为四面体的高,O 在高AG 上,在Rt AGB △中,2223336,()33BG AG a a ===-, 在Rt OGB △中,22263()()R R =-+,解得6R = , 6π,即34π6π3R ,故336R =故38,2a a == ,故A 正确; 分别取BD,AC 的中点为E,F ,连接EF ,正四面体ABCD 中,AE=EC ,故EF AC ⊥ ,同理EF BD ⊥, 即EF 为AC,BD 的公垂线,而3232CE =⨯= , 则2222(3)12EF CE CF =-=-= ,故B 正确;由于,AE BD CE BD ⊥⊥ , AE CE ⊂,平面ACE ,故BD ⊥平面ACE , 又AC ⊂平面ACE ,所以BD AC ⊥,即异面直线AC 与BD 所成角为90︒ ,故C 错误; 设四面体内切球的半径为r ,而263AG =,故11433BCDBCDSr SAG ⨯⨯⨯=⨯⨯,故646AG r a ==, 所以四面体ABCD 的内切球的体积等于3344666ππ()π3327r a ==,故D 正确, 故选:C4.(2022·湖北·华中师大一附中模拟预测)如图,正方体1111ABCD A B C D -中,P 是1A D 的中点,则下列说法正确的是( )A .直线PB 与直线1A D 垂直,直线PB ∥平面11B DC B .直线PB 与直线1D C 平行,直线PB ⊥平面11AC D C .直线PB 与直线AC 异面,直线PB ⊥平面11ADC B D .直线PB 与直线11B D 相交,直线PB ⊂平面1ABC【答案】A 【解析】 【分析】根据空间的平行和垂直关系进行判定. 【详解】连接11111,,,,DB A B D B D C B C ;由正方体的性质可知1BA BD =,P 是1A D 的中点,所以直线PB 与直线1A D 垂直;由正方体的性质可知1111//,//DB D B A B D C ,所以平面1//BDA 平面11B D C , 又PB ⊂平面1BDA ,所以直线PB ∥平面11B D C ,故A 正确;以D 为原点,建立如图坐标系,设正方体棱长为1,()111,1,,0,1,122PB D C ⎛⎫==- ⎪⎝⎭显然直线PB 与直线1D C 不平行,故B 不正确;直线PB 与直线AC 异面正确,()1,0,0DA =,102PB DA ⋅=≠,所以直线PB 与平面11ADC B 不垂直,故C 不正确;直线PB与直线B D异面,不相交,故D不正确;11故选:A.5.(2022·安徽·合肥市第八中学模拟预测)下列四个命题,真命题的个数为()(1)如果一条直线垂直于一个平面内的无数条直线,则这条直线垂直于该平面;(2)过空间一定点有且只有一条直线和已知平面垂直;(3)平行于同一个平面的两条直线平行;(4)a与b为空间中的两条异面直线,点A不在直线a,b上,则过点A有且仅有一个平面与直线a,b都平行.A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据线面垂直的定义即可判断命题(1);根据线面垂直的性质定理即可判断命题(2);根据空间中线面的位置关系即可判断命题(3);结合图形即可判断命题(4). 【详解】命题(1):由直线垂直平面的定义可知,若直线垂直于一个平面的任意直线,则该直线垂直于该平面,故命题(1)错误;命题(2):由直线与平面垂直的性质定理可知,过空间一定点有且只有一条直线与已知平面垂直,故命题(2)正确;命题(3):平行于同一个平面的两条直线,可能平行,可能相交,也可能异面,故命题(3)错误;命题(4):如图,当点A在如图上底面时,不存在平面同时平行于直线a、b;点A不在异面直线a、b上,若点A在直线a、b之间,则可以确定一个平面同时平行于直线a、b;若点A在直线a、b的外侧,也可以确定一个平面同时平行于直线a、b,故命题(4)错误.故选:B.6.(2022·河南安阳·模拟预测(文))如图,在四面体ABCD中,90BCD AB∠=︒⊥,平面BCD,AB BC CD==,P为AC的中点,则直线BP与AD所成的角为()A.π6B.π4C.π3D.π2【答案】D【解析】【分析】根据给定条件,证明BP⊥平面ACD即可推理计算作答.【详解】在四面体ABCD中,AB⊥平面BCD,CD⊂平面BCD,则AB CD⊥,而90BCD∠=︒,即BC CD⊥,又AB BC B⋂=,,AB BC⊂平面ABC,则有CD⊥平面ABC,而BP⊂平面ABC,于是得CD BP ⊥,因P 为AC 的中点,即AC BP ⊥,而AC CD C =,,AC CD ⊂平面ACD ,则BP ⊥平面ACD ,又AD ⊂平面ACD ,从而得BP AD ⊥, 所以直线BP 与AD 所成的角为π2. 故选:D7.(2022·四川成都·模拟预测)如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,A ,B ,C ,D 是该三棱锥表面上四个点,则直线AC 和直线BD 所成角的余弦为( )A .0B .13C .13-D 22【答案】A 【解析】 【分析】由三视图还原几何体,根据线面垂直的判定有BG ⊥面AGD ,线面垂直的性质可得BG AC ⊥,再由线面垂直的判定和性质得AC BD ⊥,即可得结果. 【详解】由三视图可得如下几何体:BG AG ⊥,BG DG ⊥,AG DG G =,则BG ⊥面AGD ,又AC ⊂面AGD ,则BG AC ⊥,而AC GD ⊥, 由BG GD G ⋂=,则AC ⊥面BGD ,又BD ⊂面BGD , 所以AC BD ⊥,故直线AC 和直线BD 所成角的余弦为0. 故选:A8.(2022·山东潍坊·三模)我国古代数学名著《九章算术》中给出了很多立体几何的结论,其中提到的多面体“鳖臑”是四个面都是直角三角形的三棱锥.若一个“鳖臑”的所有顶点都在球O 的球面上,且该“鳖臑”的高为2,底面是腰长为2的等腰直角三角形.则球O 的表面积为( ) A .12π B .43π C .6π D .26π【答案】A 【解析】 【分析】作出图形,设在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥且2BC CD ==,2AB =,证明出该三棱锥的四个面均为直角三角形,求出该三棱锥的外接球半径,结合球体表面积公式可得结果. 【详解】 如下图所示:在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥且2BC CD ==,2AB =, 因为AB ⊥平面BCD ,BC 、BD 、CD ⊂平面BCD ,则AB BC ⊥,AB BD ⊥,CD AB ⊥,CD BC ⊥,AB BC B ⋂=,CD平面ABC ,AC ⊂平面ABC ,AC CD ∴⊥,所以,三棱锥A BCD -的四个面都是直角三角形,且2222BD BC CD =+=,2223AD AB BD =+=,设线段AD 的中点为O ,则12OB OC AD OA OD ====, 所以,点O 为三棱锥A BCD -的外接球球心,设球O 的半径为R ,则132R AD ==,因此,球O 的表面积为2412R ππ=. 故选:A. 二、填空题9.(2022·四川成都·模拟预测(理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积为________.【答案】816283++ 【解析】 【分析】根据三视图可知这是一个四面体,根据长度即可根据三角形面积公式求每一个面的面积,进而可得表面积. 【详解】该几何体的直观图是正方体中的四面体ABCD ,4,42,43AB AD BD BC CD AC ======,()21113448,44282,44282,42832224ABD ABC ADC DBCS S SS =⨯⨯==⨯⨯==⨯⨯==⨯= 故答案为: 816283++.10.(2022·上海普陀·二模)已知一个圆锥的侧面积为2π,若其左视图为正三角形,则该圆锥的体积为________. 3π3 【解析】 【分析】由圆锥侧面积公式求得底面半径12r =3.【详解】由题设,令圆锥底面半径为r ,则体高为3r ,母线为2r , 所以12222r r ππ⨯⨯=,则12r =,故圆锥的体积为2133324r r ππ⨯⨯=. 故答案为:324π 11.(2022·黑龙江·佳木斯一中模拟预测(理))如图,在正方体1111ABCD A B C D -中,点F 是棱1AA 上的一个动点,平面1BFD 交棱1CC 于点E ,则下列正确说法的序号是___________.①存在点F 使得11A C ∥平面1BED F ; ②存在点F 使得1B D ∥平面1BED F ; ③对于任意的点F ,都有EF BD ⊥;④对于任意的点F 三棱锥1E FDD -的体积均不变. 【答案】①③④ 【解析】 【分析】①,找到点F 为1AA 的中点时,满足11A C ∥平面1BED F ;②,证明出11,BD B D 相交,得到不存在点F 使得1B D ∥平面1BED F ;③,作出辅助线,证明线面垂直,进而得到线线垂直; ④,得到三棱锥1E FDD -的体积等于正方体体积的16,为定值. 【详解】当点F 为1AA 的中点,此时点E 为1CC 的中点,此时连接EF ,可得:11A C EF , 因为11A C ⊄平面1BED F ,EF ⊂1BED F ,所以11A C ∥平面1BED F ,①正确;连接11,BD B D ,因为11//BB DD ,且11BB DD =,所以四边形11BB D D 为平行四边形, 所以11,BD B D 相交, 因为1BD ⊂平面1BED F ,所以不存在点F 使得1B D ∥平面1BED F ,②错误连接AC ,BD ,则AC ⊥BD ,又1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA ⊥BD , 因为1AA AC A =, 所以BD ⊥平面11AAC C ,因为EF ⊂平面11AAC C , 所以BD ⊥EF ,③正确;连接DF ,EF ,ED ,则无论点F 在1A A 的何处,都有1112DFD SDD AD =⋅,是定值,为正方形11ADD A 面积的一半,又高等于CD ,故体积也为定值,为正方体体积的16,④正确.故选:①③④12.(2022·甘肃·武威第六中学模拟预测(文))如图,在长方体1111ABCD A B C D -中,E ,F 是棱CD 上的两个动点,点E 在点F 的左边,且满足122EF DC BC ==,给出下列结论:①11B D ⊥平面1B EF ;②三棱锥11D B EF -的体积为定值; ③1A A //平面1B EF ; ④平面11A ADD ⊥平面1B EF . 其中所有正确结论的序号是______. 【答案】②④ 【解析】 【分析】根据线面位置关系、面面位置关系判断命题①③④,由棱锥体积公式判断②. 【详解】11B D 与11D C 显然不垂直,而11//EF C D ,因此11B D 与EF 显然不垂直,从而11B D ⊥平面1B EF 是错误的,①错;1111D B EF B D EF V V --=,三棱锥11B D EF -中,平面1D EF 即平面11CDD C ,1B 到平面11CDD C 的距离为11B C 是定值,1D EF 中,EF 的长不变,1D 到EF 的距离不变,面积为定值,因此三棱锥体积是定值,②正确;平面1B EF 就是平面11B A DC ,而1AA 与平面11B A DC 相交,③错;长方体中CD ⊥平面11A D DA ,CD ⊂平面11B A DC ,所以平面11A D DA ⊥平面11B A DC ,即平面11A ADD ⊥平面1B EF ,④正确. 故答案为:②④.三、解答题13.(2022·四川成都·模拟预测(文))如图,四棱锥P ABCD -中,四边形ABCD 为直角梯形,,PB PD 在底面ABCD 内的射影分别为,AB AD ,222PA AB AD CD .(1)求证:PC BC ⊥; (2)求D 到平面PBC 的距离. 【答案】(1)证明见解析 3【解析】 【分析】(1)由题意可证AD PA ⊥、AB PA ⊥,则可得PA ⊥面ABCD ,即可知PA BC ⊥,又AC BC ⊥则可得BC ⊥面PAC ,即可证PC BC ⊥.(2)分别计算出BCD S 与PBC S ,再利用等体积法D PBC P BCD V V --=即可求出答案. (1)因为PB 在底面ABCD 内的射影为AB ,所以面PAB ⊥面ABCD , 又因为AD AB ⊥,面PAB ⋂面ABCD AB =,AD ⊂面ABCD 所以AD ⊥面PAB ,又因PA ⊂面PAB 因此AD PA ⊥, 同理AB PA ⊥,又AB AD A ⋂=,AD ⊂面ABCD ,AB 面ABCD 所以PA ⊥面ABCD ,又BC ⊂面ABCD ,所以PA BC ⊥,连接AC ,易得2AC =45BAC ∠=,又2AB =, 故AC BC ⊥,又PA AC A =,PA ⊂面PAC ,PA ⊂面PAC 因此BC ⊥面PAC , 又PC ⊂面PAC 即PC BC ⊥;(2)在RT PAC 中426PC =+=在RT ACB 中422BC =-把D 到平面PBC 的距离看作三棱锥D PBC -的高h , 由等体积法得,D PBC P BCD V V --=,故1133PBC BCD S h S PA ,即123213622BCD PBCS PA h S ,故D 到平面PBC 的距离为33. 14.(2022·青海·海东市第一中学模拟预测(文))如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,PCD 为等边三角形,22CD AB ==,2AD =,90BAD ADC ∠=∠=︒,M 是棱PC 上一点.(1)若2MC MP =,求证://AP 平面MBD .(2)若MC MP =,求点P 到平面BDM 的距离.【答案】(1)证明见解析22 【解析】【分析】(1)连接AC ,记AC 与BD 的交点为H ,连接MH ,先证明//AP MH ,再由线面平行的判定定理即可证明.(2)由等体积法B DMP P BMD V V --=,即可求出点P 到平面BDM 的距离.(1)连接AC ,记AC 与BD 的交点为H ,连接MH .由90BAD ADC ∠=∠=︒,得//AB CD ,12AB AH CD HC ==,又12PM MC =,则AH PM HC MC =, ∴//AP MH ,又MH ⊂平面MBD ,PA ⊄平面MBD ,∴//AP 平面MBD .(2) 由已知易得3BD DM ==,3BM =,所以在等边BMD 中,BM 边上的高为32h =,所以BMD 的面积为13333224BMD S =⨯⨯=△, 易知三棱锥B PDM -的体积为116132326B DMP V -=⨯⨯⨯⨯=, 又因为B DMP P BMD V V --=,所以点P 到平面BDM 的距离为3223P BMD BMD V d S -==△. 15.(2022·贵州·贵阳一中模拟预测(文))如图,四棱锥P ABCD -中,平面,PAB ABCD ⊥平面,AB CD ∥,AB AD ⊥3,3,2,60AB AD AP CD PAB ====∠=︒.M 是CD 中点,N 是PB 上一点.(1)若3,BP BN =求三棱锥P AMN -的体积;(2)是否存在点N ,使得MN 平面PAD ,若存在求PN 的长;若不存在,请说明理由.【答案】(1)1;(2)存在,73=PN . 【解析】 【分析】 (1)证得点M 到平面PAB 的距离是3AD =,进而可求出结果; (2)证得//MN PE ,进而可证出MN //平面PAD ,从而可求出PN 的长.(1)P AMN M PAN V V --=, 由面PAB ⊥面ABCD 且交线是AB ,又DA AB ⊥,DA ⊂面PAB , 所以DA ⊥平面PAB ,又MD //AB , ∴点M 到平面PAB 的距离是3AD =, 又3BP BN =,则22123sin603332APN APB S S ==⨯⨯⨯⨯=, ∴三棱锥P AME -的体积13313=⨯⨯=. (2)存在.//,3,2AB DC AB CD==,连接BM并延长至于AD交于点E,//DM AB,∴在EAB中:13 EM DMEB AB==,∴在PBE△中:在PB上取点N,使得23 BN BMBP BE==,而13PN PB=,则//MN PE,又MN⊄平面PAD,PE⊂平面PAD,MN∴//平面PAD,在PAB△中,2212322372PB=+-⨯⨯⨯=7PN∴=。
立体几何证明题[文科]
立体几何练习1. 如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC12AD CD AB ==,且O 为AB 中点. ( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .2.如图,菱形ABCD 的边长为6,60BAD ∠=,ACBD O =.将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC的中点,DM =(Ⅰ)求证://OM 平面ABD ; (Ⅱ)求证:平面ABC ⊥平面MDO ; (Ⅲ)求三棱锥M ABD -的体积.BACDOPABCCMODC3. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,BC =12AD ,PA =PD ,Q 为AD 的中点. (Ⅰ)求证:AD ⊥平面PBQ ;(Ⅱ)若点M 在棱PC 上,设PM =tMC ,试确定t 的值,使得PA //平面BMQ .4. 已知四棱锥P ABCD -的底面是菱形.PB PD =,E 为PA 的中点. (Ⅰ)求证:PC ∥平面BDE ; (Ⅱ)求证:平面PAC ⊥平面BDE .5. 已知直三棱柱111C B A ABC -的所有棱长都相等,且F E D ,,分别为11,,AA BB BC 的中点. (I) 求证:平面//1FC B 平面EAD ;PABCDQ M1C 1A 1B(II )求证:⊥1BC 平面EAD .6. 如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠=,DE AF //,22===AF DA DE .(Ⅰ)求证:AC ⊥平面BDE ; (Ⅱ)求证://AC 平面BEF ;(Ⅲ)求四面体BDEF 的体积.7. 如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD , AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点 求证:(1)直线EF//平面PCD ; (2)平面BEF ⊥平面PAD.8.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD . (I )证明:PQ ⊥平面DCQ ;ABCDFE(II )求棱锥Q —ABCD 的的体积与棱锥P —DCQ 的体积的比值.9. 如图,在△ABC 中,∠ABC=45°,∠BAC=90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC=90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何1. 如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC12AD CD AB ==,且O 为AB 中点. ( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .2.如图,菱形ABCD 的边长为6,60BAD ∠=,ACBD O =.将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC的中点,DM =.(Ⅰ)求证://OM 平面ABD ; (Ⅱ)求证:平面ABC ⊥平面MDO ; (Ⅲ)求三棱锥M-BA CDOPABCCMODC3. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,BC =12AD ,PA =PD ,Q 为AD 的中点. (Ⅰ)求证:AD ⊥平面PBQ ;(Ⅱ)若点M 在棱PC 上,设PM =tMC ,试确定t 的值,使得PA //平面BMQ .4. 已知四棱锥P ABCD -的底面是菱形.PB PD =,E 为PA 的中点. (Ⅰ)求证:PC ∥平面BDE ; (Ⅱ)求证:平面PAC ⊥平面BDE .5. 已知直三棱柱111C B A ABC -的所有棱长都相等,且F E D ,,分别为11,,AA BB BC 的中点. (I) 求证:平面//1FC B 平面EAD ;PABC D Q M1C 1A 1B(II )求证:⊥1BC 平面EAD .6. 如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠=,DE AF //,22===AF DA DE .(Ⅰ)求证:AC ⊥平面BDE ; (Ⅱ)求证://AC 平面BEF ; (Ⅲ)求四面体BDEF 的体积.7. 如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,ABCDF EAB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF//平面PCD;(2)平面BEF⊥平面PAD.PD.8.如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=12(I)证明:PQ⊥平面DCQ;(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.9. 如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。
(1)证明:平面ADB⊥平面BDC;(2 )设BD=1,求三棱锥D—ABC的表面积。
参考答案:1. 证明: (I) 因为O为AB中点,所以1,2BO AB…………………1分又//,AB CD 12CD AB =, 所以有,//,CD BO CD BO = …………………2分所以ODCB 为平行四边形,所以//,BC OD …………………3分 又DO ⊂平面,POD BC ⊄平面,POD所以//BC 平面POD . …………………5分 (II)连接OC .因为,//,CD BO AO CD AO ==所以ADCO 为 平行四边形, …………………6分 又AD CD =,所以ADCO 为菱形,所以 AC DO ⊥, …………………7分 因为正三角形PAB ,O 为AB 中点,所以PO AB ⊥ , …………………8 分 又因为平面ABCD ⊥平面PAB ,平面ABCD平面PAB AB = ,所以PO ⊥平面ABCD , …………………10分 而AC ⊂平面ABCD ,所以 PO AC ⊥, 又PODO O =,所以AC ⊥平面POD . …………………12分又PD ⊂平面POD ,所以AC ⊥PD . …………………13分 2. (Ⅰ)证明:因为点O 是菱形ABCD 的对角线的交点,所以O 是AC 的中点.又点M 是棱BC 的中点,所以OM 是ABC ∆的中位线,//OM AB . ……………2分BACDOP因为OM ⊄平面ABD ,AB ⊂平面ABD ,所以//OM 平面ABD . ……………4分 (Ⅱ)证明:由题意,3OM OD ==,因为DM =所以90DOM ∠=,OD OM ⊥. ……………6分 又因为菱形ABCD ,所以OD AC ⊥. …………7分 因为OMAC O =,所以OD ⊥平面ABC , ……………8分 因为OD ⊂平面MDO ,所以平面ABC ⊥平面MDO . ……………9分(Ⅲ)解:三棱锥M ABD -的体积等于三棱锥D ABM -的体积. ……………10分由(Ⅱ)知,OD ⊥平面ABC ,所以3OD =为三棱锥D ABM -的高. ……………11分ABM ∆的面积为11sin120632222BA BM ⨯⨯=⨯⨯⨯=, ……………12分 所求体积等于13ABM S OD ∆⨯⨯=. ……………13分 3. 证明:(Ⅰ)AD // BC ,BC =12AD ,Q 为AD 的中点, ∴ 四边形BCDQ 为平行四边形, ∴CD // BQ . ∵ ∠ADC =90° ∴∠AQB =90° 即QB ⊥AD .∵ PA =PD ,Q 为AD 的中点, ∴PQ ⊥AD . ∵ PQ ∩BQ =Q ,ABCMODCC∴AD ⊥平面PBQ . ……………………6分(Ⅱ)当1t =时,PA //平面BMQ .连接AC ,交BQ 于N ,连接MN .∵BC //12DQ , ∴四边形BCQA 为平行四边形,且N 为AC 中点, ∵点M 是线段PC 的中点, ∴ MN // PA .∵ MN ⊂平面BMQ ,PA ⊄平面BMQ ,∴ PA // 平面BMQ . ……………………13分 4. (Ⅰ)证明:因为E ,O 分别为PA ,AC 的中点, 所以EO ∥PC . 因为EO ⊂平面BDE PC ⊄平面BDE 所以PC ∥平面BDE .……………………6分(Ⅱ)证明:连结OP 因为PB PD =,所以OP BD ⊥.在菱形ABCD 中,BD ⊥因为OPAC O =所以BD ⊥平面PAC 因为BD ⊂平面BDE所以平面PAC ⊥平面BDE . ……………………13分5. (Ⅰ)由已知可得1//AF B E ,1AF B E =, ∴四边形E AFB 1是平行四边形,∴1//FB AE , ……………1分AE ⊄平面FC B 1,1FB ⊂平面FC B 1,//AE ∴平面FC B 1; ……………2分又 E D ,分别是1,BB BC 的中点,∴C B DE 1//, ……………3分ED ⊄平面FC B 1,1B C ⊂平面FC B 1, //ED ∴平面FC B 1; ……………4分,AEDE E AE =⊂平面EAD ,ED ⊂平面EAD , ……………5分∴平面FC B 1∥平面EAD . ……………6分 (Ⅱ) 三棱柱111C B A ABC -是直三棱柱, ∴⊥C C 1面ABC ,又⊂AD 面ABC ,∴⊥C C 1AD . ……………7分 又直三棱柱111C B A ABC -的所有棱长都相等,D 是BC 边中点,∴ABC ∆是正三角形,∴BC AD ⊥, ……………8分 而1C CBC C =, 1CC ⊂面11B BCC ,BC ⊂面11B BCC ,⊥∴AD 面11B BCC , ……………9分故 1AD BC ⊥ . ……………10分四边形11BCC B 是菱形,∴C B BC 11⊥, ……………11分 而C B DE 1//,故 1DE BC ⊥ , ……………12分由D DE AD = AD ⊂,面EAD ,ED ⊂面EAD ,得 ⊥1BC 面EAD . ……………13分6. (Ⅰ)证明:因为平面ABCD ⊥平面ADEF ,90ADE ∠=,所以DE ⊥平面ABCD , …………………2分 所以AC DE ⊥. …………………3分 因为ABCD 是正方形,所以BD AC ⊥,所以AC ⊥平面BDE . …………………4分 (Ⅱ)证明:设ACBD O =,取BE 中点G ,连结OG FG ,,所以,OG //=12DE . ……………………5分 因为DE AF //,AF DE 2=,所以AF //=OG , ……………………6分 从而四边形AFGO 是平行四边形,AO FG //. ……………………7分 因为FG ⊂平面BEF ,AO ⊄平面BEF , ……………………8分 所以//AO 平面BEF ,即//AC 平面BEF . ……………………9分 (Ⅲ)解:因为平面ABCD ⊥平面ADEF ,AB AD ⊥,所以AB ⊥平面ADEF . ……………………11分 因为DE AF //,90ADE ∠=,22===AF DA DE ,所以DEF ∆的面积为122ED AD ⨯⨯=, ……………………12分 所以四面体BDEF 的体积=⨯=∆AB S DEF 3143. ……………………13分7. 答案:(1)因为E 、F 分别是AP 、AD 的中点,,EF PD ∴又,PD PCD EF PCD ⊂⊄面面∴直线EF//平面PCD(2)连接BDAB=AD,BAD=60,∠ABD ∆为正三角形F 是AD 的中点,,BF AD ∴⊥又平面PAD ⊥平面ABCD ,PAD ABCD AD,⋂面面=,BF PAD BF BEF ∴⊥⊂面面 所以,平面BEF ⊥平面PAD.8. 解:(I )由条件知PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC. 在直角梯形PDAQ 中可得DQ=PQ=2PD ,则PQ ⊥QD 所以PQ ⊥平面DCQ. ………………6分(II )设AB=a .由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3V a =由(I )知PQ 为棱锥P —DCQ 的高,而PQ=2a ,△DCQ 的面积为222a , 所以棱锥P —DCQ 的体积为321.3V a = 故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.…………12分9. 1)∵折起前AD是BC边上的高,∴ 当Δ ABD折起后,AD ⊥DC,AD ⊥DB,又DB ⋂DC=D,∴AD⊥平面BDC,又∵AD平面BDC.∴平面ABD ⊥平面BDC .(2)由(1)知,DA DB ⊥,DB DC ⊥,DC DA ⊥,DB=DA=DC=1,∴2 1111,22DAM DBC DCA S S S ===⨯⨯= 1322sin 6022ABC S =︒=∴三棱锥D —ABC的表面积是132S =⨯+=。